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A semiprime is a natural number which is the product of two (possibly equal) prime numbers. It is the purpose
of this article to give some insight into the number of semiprimes pq with p ≤ q < p2 within an interval of fixed
width. Heuristics are developed for the density of semiprimes in an interval of fixed width and an adaptation to
correct for q < p2 is discussed.

An asymptotic formula for the number of semiprimes less than a given bound is borrowed from On Distribution
of Semiprime Numbers 1, the presented formula for the distribution of strong semiprimes is adapted.

1 Introduction

In order to be able to count the semiprimes of the form pq with p ≤ q < p2 and pq ≤ n we need to distinguish
between two situations. Given p we either have pq ≤ n for all q < p2 or we reach the bound n sooner. An
example might illustrate this.

For n = 200 we find:

p bound q bound pq q

2 p2 = 4 p3 = 8 {2, 3}
3 p2 = 9 p3 = 27 {3, 5, 7}
5 p2 = 25 p3 = 125 {5, 7, 11, 13, 17, 19, 23}
7 bn/pc = 28 n = 200 {7, 11, 13, 17, 19, 23}
11 bn/pc = 18 n = 200 {11, 13, 17}
13 bn/pc = 15 n = 200 {13}

We may limit p by using p2 ≤ n. If p3 ≤ n we may count all available q in p ≤ q < p2. If p3 > n the
available q and hence the semiprimes pq are defined by p ≤ q ≤ bn/pc.

2 Definitions

The number of primes p ∈ P less or equal to a given bound x is defined as

π(x) = #{p ∈ P|p ≤ x}

The number of semiprimes less than or equal to x can be expressed by

π2(x) =
∑

pk≤
√
x

(π(bx/pkc)− π(pk) + 1) =
∑

pk≤
√
x

(π(bx/pkc)− k + 1) (2.1)

The number of semiprimes less than or equal to x for which p ≤ q < p2 may be split into

π2,a(x) =
∑

pk≤ 3
√
x

(π(p2k)− π(pk) + 1) =
∑

pk≤ 3
√
x

(π(p2k)− k + 1) (2.2)

1 On Distribution of Semiprime Numbers, by Sh.T. Ishmukhametov and F.F. Sharifullina, 01-31-2013
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where we are able to count all available semiprimes of the form pq with p ≤ q < p2, and

π2,b(x) =
∑

3
√
x<pk≤

√
x

(π(bx/pkc)− π(pk) + 1) =
∑

3
√
x<pk≤

√
x

(π(bx/pkc)− k + 1) = π2(x)− π2(
3
√
x2) (2.3)

where the number of available q are limited by bx/pkc instead of p2. The last equality is only for demonstration
purposes.

3 Goal

We are interested in the number of semiprimes of the form pq with p ≤ q < p2 in an interval of the form
A < pq ≤ B for natural numbers A,B.

∆π2(A,B) = π2,a(B)− π2,a(A)︸ ︷︷ ︸
q limited by p2

+π2,b(B)− π2,b(A) (3.1)

The first term, counting semiprimes for all q with q < p2 cancels or equals 1 if we choose the width of the interval
W = B −A small compared to A. Set pmax,A = prevprime(b 3

√
Ac) and pmax,B = prevprime(b 3

√
Bc). We would

like these primes to coincide but that would be too much to hope for in general; pmax,A might be slightly smaller

than 3
√
A and the next prime, nextprime(pmax,A), might still be smaller than or equal to 3

√
B. All we can do is

make sure that pmax,B <= nextprime(pmax,A) <= pmax,A + 2, i.e. enforce a maximal prime gap 2.

W ≤ 2 + 6
(

3
√
A+ 1

)2
∨A ≥

(
−1 +

√
(W − 2)/6

)3
=⇒ 0 ≤ π2,a(B)− π2,a(A) ≤ 1 (3.2)

For instance W = 106 =⇒ A ≥ 6.75 · 107 ensures that we may compute (3.1) by only considering the second
term (with a maximum error equal to 1). In general this correction equals

π2,a(B)− π2,a(A) =
∑

d 3√
Ae<pk≤b 3√

Bc

(π(p2k)− k + 1) (3.3)

In order to estimate the number of semiprimes pq in an interval of the form [A,B], with A large enough, we
may thus focus on π2,b(x) (2.3). This formula is hardly practical for large values of x. Instead we’ll approximate
two functions g(y), g∗(y), where g(y) is the probability of finding a semiprime less than or equal to y and
g∗(y) the probability of finding a semiprime pq for which p > 3

√
y. For g(y) I’ll follow the text given by Sh.T.

Ishmukhametov and F.F. Sharifullina and for g∗(y) I’ll derive an adaptation to their formula (which I believe
has an error), but will otherwise closely follow their lead.

4 Estimates for g(y) and g∗(y)

Let y be fixed and p ≤ b√yc be an arbitrary prime. Consider the real number v = y/p. The number v is an
integer with probability 1/p and prime with probability

gp(y) ≈ 1/(p ln(y/p)) = 1/(p(ln(y)− ln(p)))

i.e., gp(y) equals the probability that y is semiprime and one of its divisors is p. We may thus approximate g(y)
by the sum

g(y) ≈
∑
p≤√y

1

p(ln(y)− ln(p))
(4.1)

the summing is over prime p. In turn, we may approximate g∗(y) by the sum

g∗(y) ≈
∑

3
√
y<p≤√y

1

p(ln(y)− ln(p))
(4.2)

where we also assume that p is prime.

Notice that in doing so we used that v is prime with probability
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π(v)

v
≈ 1

ln(v)

without considering a possible estimate of the error that is involved. For large enough v we have

1

ln(v)

(
1 +

C1

ln(v)

)
≤

v≥599

π(v)

v
≤
v>1

1

ln(v)

(
1 +

C2

ln(v)

)
with C1 = 1, C2 = 1.2762. Sharper estimates may be found in Estimates of some functions over primes
without R.H., by Pierre Dusart 2. Notice that for 3

√
y < p ≤ √y we have

1.5

ln(y)
<

1

ln(v)
≤ 2

ln(y)
(4.3)

5 Preparation, Abel’s summation theorem and Mertens’ formula

The given summand in (4.1) and (4.2) may be recast to

1

pn(ln(y)− ln(pn))
=

ln(pn)

pn
· 1

ln(pn)(ln(y)− ln(pn))
(5.1)

Where the prime p is equipped with an indexed. In doing so we may rewrite (4.1) for fixed y into the form

g(y) ≈
∑

pn≤
√
y

anϕy(pn) (5.2)

where

an =
ln(pn)

pn

and

ϕy(t) =
1

ln(t)(ln(y)− ln(t))
=

1

ln(y)

(
1

ln(t)
+

1

ln(y)− ln(t)

)
(5.3)

is a function of t having a continuous derivative for 0 < t < y. This region is quite a bit larger than needed,
since we would like to apply ϕy(t) for 2 ≤ t ≤ √y. With pn = λn, x =

√
y we may apply:

Abel’s summation theorem Let λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · be a sequence or real numbers such that
limn→∞ λn = ∞, and {an}, n ∈ N be a sequence of complex numbers. Let A(x) =

∑
λn<x

an and ϕ(x) be
a complex valued function, defined for x ≥ 0 having a continuous derivative for x > 0. Then

k∑
n=1

anϕ(λn) = A(x)ϕ(x)−
∫ x

λ1

A(t)ϕ′(t) dt (5.4)

where λk ≤ x < λk+1.

In order to be able to compute the right hand side we need to find an alternative expression for

A(x) =
∑
pn<x

an =
∑
pn<x

ln(pn)

pn

We may approximate A(x) by using Mertens’ first theorem

A(x) = ln(x) + C +O(1/ ln(x))

We’ll replace A(x) in (5.4) by

A∗(x) = ln(x) +R(x), |R(x)| < 2

instead3, where I’ll replace R(x) by a suitable constant R to simplify the computation. Here I’ll deviate from
Sh.T. Ishmukhametov and F.F. Sharifullina, for two reasons. The main reason is that I don’t need the asymptotic
behaviour of R(x), a second reason is that their related investigation of I3(x) contains a serious error.

2 Estimates of some functions over primes without R.H., by Pierre Dusart, 02-02-2010
3 Mertens’ proof on Mertens’ theorem, by Mark T. Villarino, (2.3.3), 04-28-2005
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6 Asymptotic analysis of g(y), g∗(y)

We’ll investigate

h(x) = A∗(x)ϕy(x)−
∫ x

2

A∗(t)ϕ′y(t) dt (6.1)

where, for some constant R < 2

A∗(x)ϕy(x) =
ln(x) +R

ln(y)(ln(y)− ln(x))
(6.2)

and

ϕ′y(t) =
1

ln(y)

(
− 1

t ln2(t)
+

1

t(ln(y)− ln(t))2

)
(6.3)

And we have

g(y) ≈ h(
√
y), g∗(y) ≈ h(

√
y)− h( 3

√
y)

Substitution of x =
√
y, ln(x) = ln(y)/2 in (6.2) gives

A∗(
√
y)ϕy(

√
y) =

1

ln(y)
+

2R

ln2(y)
(6.4, g)

Substitution of x = 3
√
y, ln(x) = ln(y)/3 in (6.2) gives

A∗( 3
√
y)ϕy( 3

√
y) =

1

2 ln(y)
+

3R

2 ln2(y)

The contribution of (6.2) for g∗(y) is thus

A∗(
√
y)ϕy(

√
y)−A∗( 3

√
y)ϕy( 3

√
y) =

1

2 ln(y)
+

R

2 ln2(y)
(6.4, g∗)

The integral in (6.1) may be split as∫ x

2

A∗(t)ϕy(t) dt =
1

ln(y)

∫ x

2

− 1

t ln(t)
+

ln(t)

t(ln(y)− ln(t))2
dt︸ ︷︷ ︸

I1

+R

∫ x

2

ϕ′y(t) dt︸ ︷︷ ︸
I2

Substitution of z = ln(t),dz = dt/t gives

I1 =
1

ln(y)

∫ ln(x)

ln(2)

−1

z
+

z

(ln(y)− z)2
dz =

1

ln(y)

∫ ln(x)

ln(2)

−1

z
+
z − ln(y) + ln(y)

(ln(y)− z)2
dz

=
1

ln(y)

[
− ln(z) + ln(ln(y)− z)

]ln(x)
ln(2)

+
[ 1

ln(y)− z

]ln(x)
ln(2)

=
ln(ln(2))− ln(ln(x)) + ln(ln(y)− ln(x))− ln(ln(y)− ln(2))

ln(y)
+

1

ln(y)− ln(x)
− 1

ln(y)− ln(2)
(6.5)

We may use a Taylor series approximation ln(1 + α) = α+O(α2) to obtain

ln(ln(y)− ln(2)) = ln

(
ln(y)

(
1− ln(2)

ln(y)

))
= ln(ln(y))− ln(2)

ln(y)
+O

(
1

ln2(y)

)
Substition of x =

√
y, ln(x) = ln(y)/2, ln(ln(y)− ln(x)) = ln(ln(x)) into (6.5) and the above asymptotics give:

I1(
√
y) =

ln(ln(2))− ln(ln(y)) + ln(2)/ ln(y) +O(1/ ln2(y))

ln(y)
+

2

ln(y)
− 1

ln(y)− ln(2)
= − ln(ln(y))

ln(y)
+O

(
1

ln(y)

)
(6.5, g)
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For g∗(y) we need to compute I1(
√
y) − I1( 3

√
y) and may drop the contributions of ln(ln(2)), ln(y) − ln(2) in

(6.5). We are left with

I1(
√
y)− I1( 3

√
y) =

ln(ln(y)/3)− ln(2 ln(y)/3)

ln(y)
+

2

ln(y)
− 3

2 ln(y)
= − ln(2)

ln(y)
+

1

2 ln(y)
(6.5, g∗)

Similarly we find, use (5.3):

I2 = ϕy(x)− ϕy(2) =
1

ln(x)(ln(y)− ln(x))
− 1

ln(2)(ln(y)− ln(2))
(6.6)

Substitute x =
√
y and find its contribution to g(y)

R · I2(
√
y) = R

(
2

ln2(y)
− 1

ln(2)(ln(y)− ln(2))

)
= O

(
1

ln(y)

)
(6.6, g)

Similarly we find the contribution to g∗(y)

R · (I2(
√
y)− I2( 3

√
y)) = − 5R

2 ln2(y)
= O

(
1

ln2(y)

)
(6.6, g∗)

If we collect (6.4,g),(6.5,g) and (6.6,g) we obtain

g(y) =
ln(ln(y))

ln(y)
+O

(
1

ln(y)

)
(6.7)

If we collect (6.4,g∗),(6.5,g∗) and (6.6,g∗) we obtain

g∗(y) =
ln(2)

ln(y)
+O

(
1

ln2(y)

)
(6.8)

In the article by Sh.T. Ishmukhametov and F.F. Sharifullina, a formula g̃∗(y) is derived for the probability
of finding a strong semiprime pq, y1/4 < p ≤ q. To be specific, the probability at the right hand side of

g∗(y) ≈
∑

4
√
y<p≤√y

1

p(ln(y)− ln(p))

is estimated by the following asymptotics, valid for y < 1010

g̃∗(y) =
ln(ln(y))

ln(y)
− 2.65

ln(y)
+

13.7

ln2(y)

A slight adaptation in the derivation of g∗(y) in (6.8) and dropping O(1/ ln2(y)) gives a simple estimate

g̃∗1(y) =
ln(3)

ln(y)

A comparison of the aforementioned three expressions, where the first three rows in the table are borrowed from
the article by Sh. T. Ishmukhametov and F.F. Sharifullina

y 103 104 105 106 107 108 109 1010

g∗(y) 0.125 0.107 0.086 0.073 0.066 0.059 0.052 0.0470

g̃∗(y) 0.183 0.115 0.085 0.070 0.061 0.055 0.050 0.0470

g̃∗1(y) 0.159 0.119 0.095 0.080 0.068 0.060 0.053 0.0477

The approximations to g∗(y) behave quite similar. Using g̃∗1(y) there is no need of estimating additional terms
of the form Ck/ lnk(y) by applying a regression technique using the same (or similar) data as a source.
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7 The density of semiprimes in an interval of fixed width

The number of semiprimes less than or equal to x for which p ≤ q < p2, see (2.2),(2.3), may be written as

π∗2(x) = π2,a(x) + π2,b(x)

These semiprimes inside an interval [y −W/2, y +W/2] may be computed, see (3.1), by

∆π2(y −W/2, y +W/2) = π∗2(y +W/2)− π∗2(y −W/2)

If we choose W sufficiently small, see (3.2).

y ≥W/2 + (−1 +
√

(W − 2)/6)3

we may bound δ = π2,a(y +W/2)− π2,a(y −W/2) ≤ 1 and find

∆π2(y −W/2, y +W/2) = π2,b(y +W/2)− π2,b(y −W/2) + δ

We also defined the probability of finding a semiprime pq having 3
√
y < p ≤ √y, see (2.3)

π2,b(y)

y
≈ g∗(y)

Where the left hand side is exact and the right hand side is an approximation, see (4.2).

g∗(y) ≈
∑

3
√
y<p≤√y

1

p(ln(y)− ln(p))

Although not exact, it is my belief that if we propagate the bounds on the error term given by Pierre Dusart and
use (4.3) that the final asymptotics on the density will remain as given later on.

The number of semiprimes less than y for which p ≤ q < p2, for y sufficiently large is equal to

∆π2(y −W/2, y +W/2) ≈ (y +W/2)g∗(y +W/2)− (y −W/2)g∗(y −W/2) + δ (7.1)

If we divide by the width W of the interval the average density is equal to

∆π2(y −W/2, y +W/2)

W
≈ (y +W/2)g∗(y +W/2)− (y −W/2)g∗(y −W/2) + δ

W

Discard δ, as a curiosity the right hand side tends to the derivative of yg∗(y) if W/y → 0. Apply a Taylor series
for W/y → 0. We may use (6.8)

g∗(y) =
ln(2)

ln(y)
+O

(
1

ln2(y)

)
and we’ll find an approximation to the density

∆π2(y −W/2, y +W/2)

W
≈ ln(2)

ln(y)
+O

(
1

ln2(y)

)
+O((W/y)2) (7.2)

The last term is included in order to be complete. The other big-o term can be estimated by using our bound
on R and a further correction by using (4.3). We could have found the main term by setting g∗(y −W/2) =
g∗(y) = g∗(y +W/2) in (7.1) as well. As a corollary we found

π∗2(y +W/2)− π∗2(y −W/2)

π(y +W/2)− π(y −W/2)
≈ ln(2)

This constant matches experimental results quite well; this comparison may be found at

Conjecture 90, by Alain Rochelli . The prime puzzles and problem connection4 is moderated by Carlos Rivera.

4 The prime puzzles and problem connection
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8 Visual comparison

Intervals [y−W/2, y+W/2] having width W = 2 ·106 are used to compute the density of semiprimes of the form
pq with p ≤ q < p2 (the left hand side of (7.2)), with y = m10k + W/2, k ∈ {9, 10, . . . , 18},m ∈ {1, 2, . . . , 9},
where I limited m ≤ 7 for k = 18. A total of 87 intervals. In this section g∗(y) represents the actual density.

A distribution of the residual g∗(y)− ln(2)

ln(y)

The requested density is slightly underestimated, the distribution is skewed to the left. A normal distribution
was not expected, since the error is exptected to have size O(1/ln2(y)) and should decrease with increasing y.
In order to capture the dependence on y a graph where g∗(y) is graphed versus ln(2)/ ln(y).

The black line represents the best fit due to linear regression and the red line has equation g∗(y) = ln(2)/ ln(y).
For large values of y, i.e. for small values of ln(2)/ ln(y), the black and red line are rather close, which indicates
an improvement of our estimate for larger values of y.
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Similarly we may compare the fraction of the number of semiprimes and the number of primes within these
intervals with ln(2).

The value ln(2) overestimates the fraction #semiprimes/#primes. Close, but no cigar. In order to investigate
the dependence on y, a second graph of #semiprimes/#primes versus y is provided

y

The displayed domain for y is much too small to conclude that this fraction tends to ln(2) or to say anything
sensible with regard to a possible decrease in the displayed deviations with increasing y. Due to Dusart we are
able to bound the denominator, the #primes, however similar bounds are necessary for the numerator. The
asymptotic behaviour O(1/ ln2(y)) is insufficient to say anything more definitive.
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