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Abstract 

Terms: Plato vs. Archimedes, reals vs. hyper-reals, Descartes’ dualism and Leibniz’ monad concept, Newton’s “particle” vs. Leibniz’s “field” 

infinitesimal concepts, particle vs. analytical mechanics, Newton’s momentum (impressed forces)/standard continuity vs. Leibniz’ living forces (vis 

viva, standard vs.non-standard continuity, virtual vs. actual displacement, dx  vs. x , causial vs. purpose (physical) principle, Heissenberg vs. 

Schroedinger, 
2l
 vs. 

2L Hilbert spaces, Lagrange vs. Hamiltonian formalism, point particles vs. fields/wave, minimal surface vs. torsion-freedom,  

particle-field dualism, eigen differentials, non standard analysis.  

Section 0 gives the overall idea of the proposed new mathematical concept for a unified field theory, which is hyper-real in a 

double sense, This is about a newly proposed physical principle based on Leibniz’s philosophy to be described in a non-

standard number analysis to overcome this issue of (massless) particles without extentions, but with energy, i.e. overcome 

current particle-wave dualism paradoxon. A proper hyperbolic 3-Lorentz-manifold (required to be being consistent with 

Huygens’ principle), not building on metrization and torsion-free conditions for co-variant differentials, but on metrization and 

minimal surface conditions (the later one is built on variation argument in direction of the normal) defining attributes might 

enable a consistent k-form framework for a variational framework to model gravitation PDE. As a side effect this hyperbolic 

framework might generate specific spherical non-standard waves, replacing current wave models in quantum or gravitation 

theory. 

Based on the proposition that hyper-real number are more appropriate to model the “real” mathematical entities than the real 

numbers, enabling an appropriate model physical forces in the sense of Leibniz, it’s suggested to start first with a look at 

Leibniz formula  

ydxxdydxdyydxxdyxyd +=++=)(  

In standard analysis the term  dxdy   is neglected as infinitely small of second order. In a hyper-real context (in combination 

with k-form theory) the equivalence of the Lagrange and Hamiltonian formalism (variation in the direction of the curve), 

reflecting the physical principles of causality and purpose, might no longer be valid in the purely hyper-real world, where an 

adequate action princinple makes only sense based on “purpose principle”, not based on “causality-principle”. This might 

leverage an appropriate (purely Hamiltonian formalism) model beyong the Heissenberg uncertainty border. The Legendre 

transformation  

),(),(:),(: yxfyxyfyyxgg −=−==   

enables the equivalence between both formalism. In a hyper-real world this might lead to an alternative expression in the 

form   

dx
x

f
ddyygd
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  . 

In the light of this e.g. the concept of affine connexions in current tensor theory framework might get some modificatios.  

http://www.quantum-gravitation.de/
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0. A mathematical program for a unified field theory 

 

In a nutshell 

Currently there are two one-way roads ending up in quantum theory and gravitation theory. 

Both together are inconsistent, i.e. there must have been a branch somewhere back the 

road, where underlying common sense assumptions lead to two different ways forward.  

From Michio Kaku, Introduction to Superstrings and M-Theory, Springer Verlag, New York 

(1.2) we recall: 

Because general relativity and quantum mechanics can be derived from a small set of 

postulates, one or more of these postulates must be wrong. The key must be to drop one or 

more of these assumptions about Nature on which we have constructed general relativity 

and quantum mechanics. Over the years several proposals have been made to drop some of 

our commonsense notions about the universe: continuity, causality, unitarity, locality, point 

particles. 

We will focuss on the later commonsense notation, which is about “point particle” and move 
back to Newton and Leibniz where the branch seems to be. Before that we recall from 
Abraham Robinson (Non-standard Analysis, Amsterdam: North-Holland, 1966):   
 
"... it appears to us today that the infinitely small and infinitely large numbers of a non-
standard model of Analysis are neither more nor less real than, for example, the standard 
irrational numbers."  
 

Today we think of the set of real numbers as equivalent to the set of points of the real line - a 

sort of ruler extending endlessly in both directions from the point corresponding to zero.  To 

the ancient Greeks, there were only points corresponding to rational numbers (ratios of 

whole numbers, e.g., 2/5) and between any two points on a line there were only a finite 

number of such rational "points". When irrational numbers were discovered, they were 

deemed "incommensurable", meaning they could not be expressed as such ratios and, in a 

sense, were non-measurable.  

From a mathematical point of view the difference between the field of hyper-real and real 

numbers is the missing Archimedian principle, which is, that the set of natural numbers is not 

bounded by a real number. This (missing commosense assumption) might already indicate 

an apropriate modification of Heissenberg/von Neumann quantum mechanics Hilbert space 

framework, just by replacing the summation indices out of N by indices out of N*.  

As mathematical sophistication increased since Leibniz, the ideas of Cauchy, Weierstrass 

and others took hold, and monads and moments - in their original guise - faded away. In the 

Standard Analysis that derived from their work, all real numbers were either rational or 

irrational, and "infinitesimal" came to mean simply very, very small, but real.   

There is an effective limit to the measurability of distances between points that are extremely 

close together. So, in a sense, there are "spaces" around points in which infinitesimals might 

reside. Perhaps aspects of logic break down, as they seem to in quantum mechanics, when 

dealing with microcosmic worlds.  
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Leibniz’s differential calculus, which enabled the mathematical modelling of continuity and 

continuous functions in combination with Newton’s massless particle model in the context of 

his mechanics models (also to describe gravitation) got a great success. At the very end this 

approach in combination with Einstein’s gravitation theory lead to massless particle, which 

are purely energy, but still acting as particle, which can only be influenced by independent 

acting forces on it. On the other side, forces are only measured in such a way, that massless 

particles are assumed and observed due its behaviour to such forces. In other words: the 

forces are transcendental, and the massless particles are “real”. Applying continuity is in 

such a framework at the very end not possible, which is in line with Heissenberg’s 

uncertainty relation. 

Why not turning the whole thing around, gonig back to the complete idea of Leibniz, which 

lead him to his differential calculus?  

Leinbiz proposed monads, which are completely independent with its own “internal” living 

force. The relations between monads are somehow “self-organizing” via a proposed “pre-

defined harmony” concept. In modern terminology this could mean, that the first one 

describes a real continuity beyong our world, where the border is given by Heissenberg’s 

uncertainty relation (which is valid in the Hilbert-space 
22 lL  ). The later one proposes 

instead of “causality” a “purpose”, which is responsible for an appropriate “inter-relation” of 

the living forces (=monads). The definition of non-standard numbers ([Ro]) is very much 

related to Leibniz’s monad concept. It is based on infinite series of numbers with certain 

properties. Trying to make a link already from this to 
2l  might indicate relations of non-

standard (hyper-real) numbers to quantum theory “particle” modelling. 

Another relation to some basic concepts of standard quantum mechanics might be, roughly 

speaking, moving from a discrete eigenvalues producing bounded, hermitian and positive 

definite operator to a bounded, hermitian operator only. The Leibniz concept of the monad is 

per definition transcendental, i.e. additionally, if one would accept a living force as physical 

“reality” a continuous eigenvalue spectrum becomes physical relevant (from a non empirical 

perspective), i.e. the spectral theorem (developed by Hilbert, von Neumann, Dirac) can be 

applied to (see also §18). This would put an alternatve light for instance on modelling the 

zero point energy. 
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The framework of the super-gravitation theory is a (4+n)-dimensional space. A unification 

model of the three elementary forces  )1(),2(),3( USUSU  are proposed to be by e.g. 

)5(SU (which can be interpreted also as Kaluza-Klein theory or )10(O  or )6(E ) replacing the 

combined  )1()2()3( USUSU   symmetry group. This “GUT trial” requires 24 Yang-Mills 

fields. 

The framework of the super-string theory is an 11 dimensional space. Its key concept is 

modelling the different particles as real extension (with some distance) of virtual points to a 

string, having different possible vibration modi (which is basically the same, than proposing 

different energy levels) to differentiate different possible particle types.  

Both approaches do not allow a consistent match to the graviton. Both approaches already 

use implicitely transcendental objects, which are the mathematical points, either as 

necessary concept of the underlying mathematical model (which is being seen as proof of 

concept for the physical concept itself) or as neccessary, imaginary point in a physical field, 

just refer to, in order to desribe the action of a transcendental force of a field. 

Instead of this, following Leibniz, why not proposing that there is only one “true” entity 

(instead of ,.,,,,,, 0 gravitonsbosonsZWWleptonsgluonsphotons −+ ), which combines both 

attributes, “particle” and “living force (vis viva)” “within” one substance, which is the monad of 

Leibniz.  

G.W. Leibniz, Monadologie, Philipp Reclam Jun., Stuttgart. 

From [Fi] Fischer K. we recall a few statements: 

A substance (=monad=points de substance; monas, i.e gr. “entity”, “unique entity”, “Einheit”, 

“das Eine”) is a meta-physical point (points de métaphysiques). 

A physical point requires “extension” to explain mechanics (which is related to the 

mathematical concept of a metric); a mathematical point has no extension, but its real 

existence is missing (which is related the mathematical concept of a field). The monad fulfills 

both requirements. The force has to be seen as substance and the substance can only be 

thought as force. The force is transcendent, i.e. can not be observed and measured; only the 

action of force is an observable variable. In a pure world of bodies everything is 

mechanically. Force is therefore a term, which goes beyond this word (fons mechanismi). 

This concept has to be emdedded in the existing (gravitation) field concept, which is based 

on Einstein’s space-time struce, i.e. a 4 dimensional oriented and time-like oriented Lorentz 

manifold with a twofold, covariant   −C tensor field g . For every time-like vector x of such 

a Lorentz space (i.e. for every vector x  of the space-time structure, which fulfils  

0),( xxg ) the sub-space 

 0),(:: ==⊥ yxgEyx  , 

equipped with the metric  g− , is euclidical. For two future-oriented vectors x  and y  of a 

Lorentz space with 1),(),( == yygxxg  it holds 1),( yxg  
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Two types of “standard” forces 

1. There are forces which maintain the given kinematical conditions:  

Let  W  denote the work,  dtvsd


=  and the momentum (impulse) vmp


=  . The work of 

forces to a body is the same as the increase of body´s kinetic energy: 

dTdtpdtvmv
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I.e. W  gives all work, which all forces act in the time interval   21 , tt  .  

The analytical treatment of mechanics does not require knowledge of these forces. 

The total differential of the action as function of the coordinates and the time is a 1-form 

HdtdqpdS i

i −==   . 

Its differential 

dHdtdqdpd i

i −=   

is integral invariant, which is relevant for corresponding “Erhaltungsgrössen”, leading to the 

Lagrange identities. 

 

2. There are forces which come from an external field or from the mutual interaction of 

particles: 

The quantity of prime importance for the analytical treatment of mechanics is not a force, but 

the work done by impressed forces for arbitrary infinitesimal displacements. They are 

analytically defined as the coefficients of an invariant differential from of the first order, which 

gives the total work of all the impressed forces for an arbitrary infinitesimal change of the 

position of the system.  

A mathematical framework is required to bridge from Leibniz’s “monad” concept to monads 

as physical entities (with differential forms as mathematical counterpart). With that the 

monads would not only solve/unite Descartes’ matter-spirit issue/separation, but also the 

current inconsistencies between quantum and gravitation models. This would enable an 

unified quantum and gravitation field theory. There already exists a mathematical framework 

dealing with “monads”, which are the hyper-real numbers building the foundation of the non-

standard analysis. Therefore the required mathematical framework is likely to be built in a 

hyper-real (non standard analysis) variational theory framework, being consistent with 

Hamiltonian principle.  
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“Duality” is likely to be THE guiding principle to build an adequate mathematical model,  

- enabling a characterization of the 4 dimensional hyper-real Einstein space as THE 

valid  space-time continuum with appropriate hyper-real sherical waves 

- explaining the assymmetry of the time arrow in an only real 4-dim. Einstein space 

- explaining physical constants and “observed” particles as observations and 

measurerable quantities, when crossing the border from the “hyper-real” to the “real” 

(world) state. 

 

A standard physical principle for the Nature for our real world is “purpose” and “causality”, 

which are both from a mathematical point of view equivalent. This physical principle remains 

valid for the hyper-real world concerning “purpose”, while “causality” is out of scope of any 

measureable experience and observation capability, which is beyond the velocity of light (the 

latest experimental results about “superluminal barrier traversal” are explained and modelled 

by “virtual” photon on top of “real” photons” (!!!). 

The variational theory is likely also to be the appropriate framework for scattering and 

variance modelling. 

The harmonic (quantum) oscillator and the Hilbert transform 

In the one-dimensional case the concept of hyperfunctions enables a link between 

distributions and a holomorphic, i.e. a complex-analytical function, as any distribution f on R  

can be realized as the “jump” of the corresponding in RC −  holomorphic Cauchy integral 

function  

 −
==

xt

dttf

i
xFxf

)(

2

1
:)(:)(




 

across the real axis, given by 

dxxiyxFiyxFf )())()(lim),(  


−

−−+=     for +→ 0y  . 

A real function and its Hilbert transform together create a so called strong analytical signal. 

This signal can be written with an amplitude and a phase where the derivative of the phase 

can be identified as the instantaneous frequency. A function and its Hilbert transform are 

orthogonal. A function and its Hilbert transform have the same energy and therefore the 

energy can be used to measure the calculation accuracy of the approximated Hilbert 

transform. The Hilbert transform defined in the time domain is a convolution between the 

Hilbert transformer  
t

1
 and a function )(tf  . 
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The simplest version of the harmonic oscillator is the Hamiltonian system with Hamiltonian 

                          
)(

2

1
),( 222 qpqpH +=

   

and   pq = ,  qp −= , qq 2−=  

Identifying  CR 2  by putting qipz +=  a solution to  2

2

1
),( zqpH =

 

is given in the form 

tiCetz =)(  . 

The Hermite polynomials are used to model the energy states of the harmonic quantum 

oscillator. A complex function is called Hermitian if its real part is even and its imaginary part 

is odd. If )(tg  is a real function, then e.g. )(ˆ g  is Hermitian and therefore 
2

)(ˆ g  is even. A 

complex signal  u  is called a strong analytical signal if it holds   iuHu = . For strong 

analytical signals u  it holds  ))(Im())(Re( xuuH = , i.e. 

))(()()( tuiHtutz +=  

is a strong analytical signal. From this, the combination of Hermite polynomials with its 

Hilbert transforms in the form 

)()()( tittz nnn 


+= , 

define an alternative orthogonal system for the solution space of the harmonic quantum 

oscillator. This might provide an alternative model for the zero point energy of the harmonic 

quantum oscillator, which might overcome current inconsistencies between the Casimir effect 

i.e. existing radiation at absolute zero point of the temperature) and the calculated infinite 

energy density from the harmonic quantum operator model. The orthogonal system )(tzn can 

be calculated by the following recursion formulas: 

using the abbreviation
               

!

)!1(2
:

n

n
an

−
=

       
!

)!2(
:

n

n
bn

−
=  

the weighted Hermite polynomials (see section 9) 
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fulfill the recursion formula 
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The corresponding recursion formula for the Hilbert transforms of the Hermite polynomials is 

given by
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In any relativistic theory the vacuum, the state of lowest energy, if it exists in „reality“ (with its 

ir-rational numbers as model for physical points), has to have the energy zero (or has to have 

an infinitely small energy in a hyper-real world!!?!). 
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Introduction 

Both, gravitation theory and quantum theory provide an accurate model to describe “reality” 

within their own domain. The theories become inconsistent, when linking them together, i.e. a 

quantum gravitation theory, which unites both, is missing. In a jounalistic way the current 

unsolved answers and inconsistencies got the branding “particle-wave dualism”. From a 

philosophical point of view this is very much in line with Descartes’ philosophy. 

The key to solve current inconsistencies must be to drop or change one or more of the 

commonsense assumptions about Nature (see [Ka] Kaku M., 1.2) i.e. continuity, causality, 

unitarity, locality, point particles, based on which both theories have been constructed.  

From a philosophical perspective ([Fi] Fischer K.) the “particle-wave” “duality” is related to the 

contradictionary concepts of Plato (“ideal” world) and Aristoteles (“empirical” world). The later 

one provides our today’s state of the art to see and define science. Descartes accepted both 

“worlds”, but strictly separated between matter and spirit as two different “worlds” without any 

interacting relations.  

Leibniz united and solved Descartes’ “splitted matter and spirit world” into one consistent 

philosophical model, building on the concept of “monads” ([Fi] Fischer K.). The monads lead 

also to the “birth” of the mathematical calculus concept, in parallel to Leibniz driven from a 

physicist’s perspective by Newton leading to the great concept of classical mechanics. The 

success of the classical mechanics model, built on the concept of an existing “infinitesimal 

distance”, resulted into a widely acceptance of “real number” as “real” numbers, even those 

include irrational numbers and an only small part are rational numbers. In combination with 

the mathematical concept of a “function” related this enabled the definition of terms like 

“speed” and “momentum”, which lead the mathematical concept of “continuity”.  

To describe classical mechanics there are the two great (mathematically equivalent) 

formalisms: it’s the Lagrange (particle mechanics) and Hamiltonian (energy; analytical 

mechanics) formalism. Both formalisms are from a mathematical point of view “least action 

principles” or “variational principles” to model (continuous!) motions of particles.  

The key observation and “property” of the Hamiltonian formalism is, that the underlying 

“philosophical” principle of the “least action principle” is not about causality, but about 

“purpose”, i.e. minimizing action along an infinitesimal small distance. 

The “ dx ”-concept of differential calculus is only part of Leibniz’s solution of Descartes’ 

dualism concept. His “full” solution model, the “monad” concept, got in the meantime a 

mathematical description ([Ro] A. Robinson et. al), which is the non standard analysis, based 

on non-standard numbers (hyper-reals), which includes the real numbers. The concept of 

continuity (as most of all other standard mathematical concepts and theories) keeps being 

valid in that sense, that the restriction to only real numbers gives the “standard” continuity. 
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Our proposal to solve current particle-wave dualism in a hyperbolic Maxwell and Einstein 

world is the following: 

to apply Leibniz’s concept completely and consistently to the Hamiltonian formalism, based 

on an appropriate extension from “real” to “hyper real” world and based on a new physical 

principle, which is in line with the key proposition of Leibniz’s philosophy: 

 

 

1. to extent “particle”/“continuity” to the (trancendent) “hyper real” case 

Replace real number by “hyper real“ number to model a “particle”, still without 

any physical extension. As a consequence the definition (!) of “continuity in a 

standard sense” (which is to the author’s opinion not a philosophical principle, 

but only a term resp. definition) has to be replaced by “continuity in a non-

standard sense”.  

 

2. only assume “purpose”, not “causality” for the (trancendent) “hyper 

real” case 

modelled by hyperbolic PDE using variational principles (with its underlying 

concepts of actual and virtual displacements), i.e. “least action principle”. 
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This concept proposes 

 

A. a new (explicit transcendental) physical principle  ... 

There is only one force in a 4 dimensional (non-standard) space-time 

continuum, which unites the known existing 4 forces in the nature. The 

underlying source, which is at the same time the “basic” 

entity=quantum=inflaton is the “monad”, which has its “own” force (Leibniz’ “vis 

viva”, which is a transcentendal form). The measurable and realized force in 

our “real” world is a radiation out of the “monad”, mathematically described as 

a specific sherical wave as solution of a hyperbolic radiation equation in a non-

standard analysis framework. All, what’s within the monade, i.e. beyond the 

border from “real” to “hyper-real”, is “transcendent” in the sense of Kant, but 

there is still a principle of “purpose” valid, which garantuees the linkage to our 

world’s causality; as this “purpose” get its realization on this side of the border, 

both is valid, the same purpose, which now is equivalent to causality, i.e. 

Lagrange formalism becomes valid, too. 

 

B. ... a mathematical program for a consistent model combining quantum 

(particle) and gravitation (field) theory 

which neccessarily has to unite Maxwell and Einstein equation consistently, 

overcoming current inconsistencies about nesseccary singular behavior of 

electronic particle, solving a hyperbolic (radiation) differential equation 

described by “least action principles” (as Einstein’s gravitation equations) in a 

non-standard analysis framework, modelling a radiation acting out of 

“monades”, which fits to Maxwell’s and Einstein’s equations. In case this would 

be successful there then will be a direct link from Maxwell’s electron ( )1(U ) (in 

4 dimension time-space continuum) to Einstein’s graviton (in a 4 dimensional 

Einstein space), without having to go via )1()2( USU  and potential 

)10()2( OSU  models, in which case for each step the number of dimensions 

has to be increased to ensure consistency until eleven, at least. The field of 

real numbers R can be interpreted as the Lie algebra of the compact, one-

dimensional group )1(U , in which the only relevant attribute of an electron 

within the Maxwell theory – i.e. the electric charge - is modelled. For more 

complex particles, which requires additional defining attributes (e.g. color, 

taste), the “standard modelling approach” requires a higher dimensional Lie 

group (a Lie group is a group, which is at the same time a manifold to allow 

differential calculus, Lie derivatives are tensor fields which keep invariant under 

symmetry operations). 
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The divergence 

The concept of divergence is especially important in those areas concerned with the 

behavior of vector fields. The divergence of the energy-stress tensor is zero, which plays a 

key role, when defining Einstein’s gravitation equation. The divergence theorem (the flux of a 

vector field through a closed surface S  is equal to the integral of the divergence of that field 

over a volume V  for which S  is a boundary) plays a key role within the Maxwell equations.  

Positive divergence is associated with the “flow” of electric field lines away from positive 

charges. Flux is defined over an area, while divergence applies to individual points. In case 

of a fluid, the divergence at any point is a measure of the tendency of the flow vectors to 

diverge from that point; i.e. to carry out more “material” away from it than is brought towards 

to it. Those points of positive divergence are sources, while points of negative divergence are 

sinks.  

In case of a point charge at the origin, the flux through an infinitesimally small surface is 

nonzero only if that surface contains the point charge. Everything else, the flux into and out 

of that tiny surface must be the same, and the divergence of the electric field must be zero. 

The mathematical definition of divergence may be understood by considering the flux 

through an infinitesimal surface surrounding the point of interest. If you were to form the ratio 

of the flux of a vector field E


 through a surface S  to the volume enclosed by that surface as 

the volume shrinks towards zero, one would have the divergence of  E


 : 

=
S

danE
V

Ediv







1
lim  . 

This definition also states the relation between flux and divergence. Vector fields with zero 

divergence are called “solenoidal” fields. 

The Maxwell equations produce the wave equation, which is the basis for the 

electromagnetic theory of light. A phenomena of the Maxwell equations is the electromotive 

force (emf), involving movement of a charged particle through a magnetic field, defined by 

−=
S

danB
dt

d
emf





:  . 

The negative right hand side plays a key role in Lenz’s law, which is about the direction of 

the current induced by changing magnetic flux (flow always in the direction so as to oppose 

the change in flux). 

The flux (=”number of field lines”) of a vector field E


, which represents a “fluid flow/stream 

model to “which places” the fluid flow transports a particle along an integral curve   

(characterized by  ))(()( tEt 


=   during a certain time span ( )at ,0 ). For a point 

)0(=P this is mathematically described as bundle of functions  

)()( tPt =  . 
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In differential geometry, the Ricci flow is an intrinsic geometric flow—a process which 

deforms the metric of a Riemannian manifold—in this case in a manner formally analogous 

to the diffusion of heat, thereby smoothing out irregularities in the metric. It plays an 

important role in the proof of the Poincaré conjecture.  

Given a Riemannian manifold with metric tensor ijg the Riemann curvature (3,1) tensor can 

be expressed in terms of the second derivatives of the metric; in local geodesic normal 

coordinate system at a given point, the components of the Riemann tensor are given by  

)(
2

1
jkliilkjikljjlki

k

ikj ggggR −−+−=  

The Ricci (curvature) tensor in local coordinates is given by 

==
k

k

ikjij RRRic : ,   

so that Ricci is a trace of the Riemann tensor, i.e. it collects averages of sectional curvatures 

into a kind of "trace" of the Riemann curvature tensor. It is a symmetric bilinear form, as it is 

the metric. Beside multiples of the metric itself, it is the only such form depending on at most 

the second derivatives of the metric, and invariant under coordinate changes, i.e. a (2,0) 

tensor formed from the metric. 

If we consider the metric tensor (and the associated Ricci tensor) to be functions of a 

variable which is usually called "time" (but which may have nothing to do with any physical 

time), then the Ricci flow )(tg may be defined by the geometric evolution equation 

)(2)( tgRictg
dt

d
−=  . 

In suitable local coordinate system, thsi equation has a very natural form. Thus, at the “time” 

t, choose local harmonic coordinates so that the coordinate functions are locally defined 

harmonic functions in the metric )(tg . Then the “evolution” equation takes the form 

),( ggQgg
dt

d
ijijij +=   , 

where   is the Laplace-Beltrami operator on functions with respect to the metric )(tgg =   

and Q  is a lower-order term quadratic in  and its first-order partial derivatives. This is a non-

linear heat-type equation for ijg (see also section 9). 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Geometric_flow
http://en.wikipedia.org/wiki/Riemannian_manifold
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With respect to the Poincare conjecture and the Ricci flow we recall 

Grisha Perelman: the entropy formula for the Ricci flow and its geometric applications, 

(submitted on 11 Nov, 2002) 

Abstract: We present a monotonic expression for the Ricci flow, valid in all dimensions and without 

curvature assumptions. It is interpreted as entropy for a certain canonical ensemble. Several 

geometric applications are given. In particular, (1) Ricci flow, considered on the space of riemannian 

metrics modulo diffeomorphism and scaling, has no nontrivial periodic orbits (that is, other than fixed 

points); (2) In a region, where singularity is forming in finite time, the injectivity radius is controlled by 

the curvature; (3) Ricci flow can not quickly turn an almost euclidean region into a very curved one, no 

matter what happens far away. We also verify several assertions related to Richard Hamilton's 

program for the proof of Thurston geometrization conjecture for closed three-manifolds, and give a 

sketch of an eclectic proof of this conjecture, making use of earlier results on collapsing with local 

lower curvature bound. 

Some key terminologies from the Ricci calculus (physical view) and the differential forms 

(mathematical view) might be worth to highlight by a few examples. As partial derivatives of 

tensors are no longer tensor and alternative differential concept is required. This leads to the 

somehow variable conceptional piece of the space-time structure, the concept of (affine) 

connexions, putting euclidian tangential spaces at different space-time points of the 

riemannian space into relation. This is mainly about finding a coordinate independent 

method, to analyze if and how a tensor is changing moving from one point to another. 

It is possible to introduce an invariant type of differentiation on a manifold called covariant 

differentiation, and when this is done the manifold is said to have an affine connexions or to 

be affinely connected. An affine connexion can be obtainedquite naturally from a semi-

riemannian structure, or from other special structures such as a parallelization or as an atlas 

of affinely related coordinates. Sometimes it is convinient to choose an affine connexion to 

use as a tool. However, there is no unique affine connexion on a manifold. 

Affine connections arose historically as an abstraction of the structure of a riemannian space. 

The name may be due to the idea that nearby tangent spaces are connected together by 

linear transformations, so that differences between vectors in different spaces may be 

formed and the limit of difference quotients taken to give derivatives. Originally the operation 

of covariant differentiation was conceived of as a modification of partial differentiation by 

adding in corrective terms to make the result invariant under change of coordinates.  
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The affine connexions can be introduced also axiomatically in a somwaht broader context 

than is done classically. This additional generality is required to make covariant derivatives of 

vector fields along curves sensible. A preliminary discussion of vector fields over maps 

follows. A vector field along a curve is the special case, in which the map is a curve. 

Ricci calculus  Differential forms 

v      contravariant vector there is a vector field      =
k

vv
1



  

alternating (skew-symmetric) contravariant 

tensor k ...21  of degree k 
there is a dual k-form  

k

k

k







 


...
...

...

21

1

21  

a    covariant vector 
there is a 1-form          =

k

dxa
1



  

An alternating (i.e. skew symmetric) 

covariant tensor 
k ...21

 of degree k 

there is a dual k-form 

k

k

k
dxdx







 


....
...

...

21

1

21

 

A skew symmetric, twofold covariant field 

tensor F  

there is a 2-from  





 dxdxF
k
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Let V


 be a vector fields of a manifold
nM  and 

nMba →),(:  an integral curve of  V


 with 

tangential vector ))(()( tVt 


 = . Therefore there exists to every initial point nMx    an 

integral curce 
n

xxx Mba →),(:  with xx =)0(  . For   
xx

n

V
btaRxMxt = ),(:  

the mapping   

n

V
M→ :  

)(:),(:)( txtxt x==   

Is called the flow of the vector field V


.  

 

If V


 is a  C vector field, then V


 operates on C  scalar fields to give C  scalar fields. The 

Lie derivation 
V

L  with respect to V


 is an extension of this operation to an operator on all   

tensor fields which preserves type of tensor fields, i.e. 
V

L   is a tensor field of the same type 

asV


.  

 

The Lie derivation of a differential k-form k  by a related vector field is defined as follows: 

tdt

d
L

kk

t

t

k

t

k

V




−
== =

)(
lim))(()(

*

0

* 


  
for

  
0→t  . 

 

The Lie derivation of a k-form k  can be calculated by the Cartan derivative, i.e. 

))(()()( k

V

k

V

k

V
iddiL   +=  , 

whereby ),......,(:),......)(( 1111 −− = k

k

k

k

V
WWVWWi


   is the inner product of V


 and k  . 

 

The divergence of a vector field 
nMA   vanishes if and only if its flow consists of volume 

conserving diffoeorphisms. 
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Invarant vector and tensor fields, the flow of vector fields, Lie derivative and its geometric 

interpretation as divergence of vector fields as its infinitesimal volume deformation of its flow 

require an appropriate non-standard extension in the context of Leibniz’s “vis viva”. Leibniz 

formula is already giving non trivial differential calculus in the form 

dydxyxd +=+ )(                 ydxxdydxdyydxxdyxyd +=++=)(  . 

 

In standard analysis the term  dxdy   is neglected as infinitely small of second order (!). This 

might be a first opportunity, when extending k-forms into a non standard framework: 

Lagrange --> Hamilton:       ),(),(
dy

dL
xHyxL →  

The Legendre transformation (Lagrange --> Hamilton) of ),( yxf  is defined by    

),(),(:),(: yxfyxyfyyxgg −=−==   

Putting   
y

yxf
yx




==

),(
:),(:    the differential of ),( yxf  gives   

dydx
x

f
dy

y

f
dx

x

f
df +




=




+




=  

As holds     
 

y
yxy

=






 ),(
 and  dyyddy

y

y
d

y
yd 







 +=




+




=

)()(
)(    

it follows              )()()( dyddx
x

f
yddydx

x

f
dyyddfydgd  +




−=








+




−+=−=  . 

The product  dyd  is neglected to be zero in the standard theory as infinitesimal small of 

second order compared to dx . If one would neglected this and calculate in a non-standard 

way it would result into 

dx
x

f
ddyygd




−+= )()(  . 

Does this change the equivalence of Lagrange and Hamilton formalism and therefore enable 

an appropriate model, when “moving” from the real into the hyper-real world? 

 

 

 

Some first steps into Maxwell and Einstein equations 
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Basically the mathematical program B seems to be about a non-standard tensor analysis on 

manifolds. A first assessment might start with the Gauss and Stokes laws (in its integral 

forms) to model flux out of a monad triggered by a certain energy density “within” it: 

 =
S

encq
danE

0





 , 

whereby 
Vm

C12

0 10*8541878176.8 −=  is the di-electricity constant, giving the permittivity of 

free space, 
encq  the enclosed charge, S

danE





 the electric flux through a closed surface S, 

which is the number of filed lines of the (electric) vector field E


 penetrating the surface S. To 

include the weak forces and ending to the graviton it further needs a link to other physical 

constants, like the Planck’s action constant Js3410*0545727.1 −= , the speed c of a photon 

and the absolute temperature T , Stefan-Boltzmann constant 
42

810*67051.5
Km

W−=  which all 

should be realized somehow when crossing the border from hyper real into real state.  

 

We mention the relation 

=
S

danE
V

Ediv







1
lim  ,    0→V  , 

=
C

sdB
S

Bcurl







1
lim  ,    0→S , 

being B


 a field around a closed path. The magnetic field circulation is modelled by   

=
C

sdB





. Faraday’s law states that a circulating field is produced by a magnetic field that 

changes with time, i.e. 

t

B
Ecurl




−=



 . 

The divergence operates on a vector field and produces a scalar result that indicates the 

tendency of the field to flow away from a point: 

z

E

y

E

x

E
Ediv zyx




+




+




=


 . 

The curl operates on a vector filed and produces a vector result that indicates the tendency 

of the filed to circulate around a point and the direction of the axis of greatest circulation: 

k
y

E

x

E
j

x

E

z

E
i

z

E

y

E
Ecurl xyzxyz


)()()(




−




+




−




+




−




= . 
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Helmholtz’s theorem says that an arbitrary vector field u


 (assumed to be continuous and 

differentiable) can be resolved into the sum of gradient of a scalar field (“solenoidal field”) 

and the curl of a vector field (“vortex field”). This resolution is given in the entire space: 

(*)     Acurlgradu


+=   , 

where the vortex field A


 can be restricted by the condition  

.0=Adiv


 

Taking the divergence resp. the curl of (*) one obtains 

udiv


= 2
   , ucurlA


=− 2  . 

Both “Poisson’s” potential equations with a given right side have a unique solution provided 

that  u


 vanishes at infinity faster than 
1−r . 

Let Mk be the vector space of differential forms of order k (k-forms), ([1] Bishop R., 

Goldberg S.), A


 a differentiable vector field, M  a boundary manifold (
3RXM = ), 

)(XCf  then the vector valued line-, vector valued area- and scalar volume elements are 

given by differential forms 

M

dx

dx

dx

sd 1

3

2

1


















=
  ,  M

dxdx

dxdx

dxdx

ad 2

21

13

32
























=
  ,  MdxdxdxdV 3321 =  

and the following relations are fulfilled 

sgradfddf


=  ,  adAcurlsdAd


=)( ,  dVAdivadAd


=)(  . 

The Gauss law (divergence theorem) and Stokes theorem are given by 




=
33 MM

adAdVAdiv


   ,    


=
22 MM

sdAadAcurl


 . 

The circulation of a vector field over a closed path  
2M  is equal to the integral of the normal 

component of the curl of that field over a surface  
2M  for which 

2M   is a boundary. 

The classical electrodynamic is modelled by the Maxwell equations 

                            (1)             j
c

txBcurltxE
tc

 4
),(),(

1
−=−




 ,  4),( =txEdiv


 

                             (2)             0),(),(
1

=+



txEcurltxB

tc


 ,          0),( =txBdiv


 . 
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Multiplying equation (1) with E


 and equation (2) with B


 leads to 

)(
41

BcurlEEcurlBEj
c

B
t

BE
t

E
c


−−−=












+



 
 . 

The Polynting vector is defined by  

  ( )nBE
c

BEBE

BEBE

BEBE
c

BE
c

S





sin
444

:

1221

3113

2332

=
















−

−

−

==  . 

Its absolute value S


 gives the intensity (Leistungsdichte) of a wave or the momentum 

density of a wave multiplied by  2c .  

Using the relation 

  BcurlEEcurlBBEdiv


−=   

is leading to 

SdivEj
BE

t


−−=







 +





8

22

 . 

(just as a comment: at this point the quantum mechanics integrates by time dt  and/or by 

volume dV to model e.g. energy density or the flux through the surface of the volume, if it’s 

not the whole space; why not doing this integrated within a 4-dim. (Riemann) manifold, 

building on the Poincare conjecture and its positive answer?). 

Let ( )
ikFF =


 be the Faraday tensor, defined by 

( )





















−−

−−

−−
==

0

0

0

0

123

132

231

321

BBE

BBE

BBE

EEE

FF ik


 

and its corresponding Hodge-star tensor ( )
ikFF =


, which is the Maxwell tensor, given by 

( )





















−

−

−

−−−

==

0

0

0

0

123

132

231

321

EEB

EEB

EEB

BBB

FF ik


 . 

 

Then for the Maxwell equations (1) and (2) the folowing equivalent formulations are valid: 

(1)      IFd 4=


   ,     (2)      0=Fd


 . 
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We note the two Poicare lemmata: 

1. Poincare lemma: for each differential form F  it holds  0)( =dFd  

2. Poincare lemma: for each differential form F  with  0=dF  for an open domain of a point 

P  there exists a differential form G  with  FdG =  . 

 

From the second Maxwell equations (2) it follows the existence of a scalar potential ),( tx  

and a vector potential ),( txA


 fulfilling 

                                 (*)      ),( txAcurlB


=  and  ),(
1

),( txA
tc

txgradE





−−=   . 

The movement of particles in an electromagnetic field is described by 

                                 (**)      Acurlv
c

e
egradtxA

tc

e

dt

pd 

+−



−= ),(  . 

A field is characterized by the action it takes to the movement of charges. But the 

“movement” equation” (**) depends from the field forces E


  and B


, i.e. fields are physically 

identical in case of identical vectors E


  and B


. In case the potentials ),( tx  and ),( txA


 are 

given, the fields E


  and B


are determined. But to a given field there are different potentials, 

i.e. the relations (*) do not determine uniquely the potentials ),( tx  and ),( txA


 as for an 

arbitrary function  ),( txf  the (Eich-) transforms (of second kind) 

),(
1

txf
tc






+=→   ,   ),( txgradfAAA


−=→  

keeps both fields E


  and B


 unchanged. This leads to the additional physical request of “Eich 

invariance”, i.e. in a model like the above using potentials to describe observables all 

projections about those observables have to be invariant under such transforms. This 

degree of freedom might be used to define appropriately the monad’s vacuum density 

that it produces the key physical constants above.  

The Maxwell equations determine the electrical and magnetic fields E


  and B


 as vector-

valued functions on 
3R b y a given distribution of an electrical charge density   and electrical 

current density j


 . The underlying laws to which this electrical charge density   and 

electrical current density j


 are following are unknown.  
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The Maxwell equations are about two distinct phenomena: 

              - magnetic induction, involving a changing magnetic field 

              - electromotive force (emf), involving movement of a charged particle through a  

                 magnetical field 

−=
S

danB
dt

d
emf





:  . 

Changing magnetic flux through a surface induces an emf in any boundary path of that 

surrface, and a changing magnetic field induces a circulating electrical field. 

The energy density, giving the distribution of energy, is a tensor being known only outside 

the assumed electromagnetical “particles”. The energic factors, which give the structure of 

electricity of electronical particles with given size and charge, are not known.  

One standard assumption is: “Matter consists of “real” “particles”” 

Based on Maxwell’s equations those particles cannot be considered as 

electromagnetic fields without any singularities. Based on the assumptions of “real” 

particles it requires additional “energical” terms, which ensure that particles with same sort of 

charge keep together, although there is a “push off” action between them. Poincare assumes 

a sort of “negative pressure” inside those particles, which compensates push off forces. The 

standard models assume that this pressure cannot vanish outside of the particles, which e.g. 

lead to an additional “pressure” term in the stress-energy tensor (A. Einstein, Grundzüge der 

Relativitätstheorie, p. 106): 

pg
ds

dx

ds

dx
ggT ikkiik −=


   . 

The Poincare lemma transforms the Maxwell field as gauge curvature ([9] Penrose R., 19.4): 

If a formr −    satisfy   0=d , then locally there is always an formr −− )1(    for which it 

holds  d= . Moreover, in a region with Euclidian topology, this local result extends to a 

global one. 

The energy-stress tensor ikT  is a function of the Faraday tensor 

( )





















−−

−−

−−
==

0

0

0

0

123

132

231

321

BBE

BBE

BBE

EEE

FF ik


 

i.e.                                           
 

lm

ik

j

kijik FgFFT
4

1

4

1
+=


 . 
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The energy-stress tensor ikT is divergence free. According to Einstein’s graviation theory 

“matter tells space how to curve, and space tells matter how to move”, i.e. Einstein’s 

gravitation tensor has to fulfill 

ikik cTG =  . 

The fact is that the energy-stress tensor is divergence free. This is not true for the Ricci 

tensor, which leads to Einstein’s field equations for the tensor field in the form 

ikikik TWeylRicciRgRG −=+=−=
2

1
:         

with     gcmGc /10*86.18 272 −=   . 

 

The corresponding movement equations of a particle for the curve )(txx  = are given in the 

form 






















=







 xx

x

g

d

dx
g

d

d

2

1
,

 . 

This is now about 

- 10 equations with 10 potentials ik   

- a non-linear relation of the potentials, i.e. the gravitation potential is not the total of 

single gravitations. 

This is a circular structure, i.e. )( ikik Tf=  and )( ikfstructuretimespace =−− . The ikT  is 

measurable, which reflect the principle of energy-momentum conservation.  
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The  4n  condition within calculus analysis 

The solutions of a system of non-standard hyperbolic partial differential equations are 

expected to provide “sherical” non-standard (hyper-real) waves, solving a still unproven 

conjecture (see [CoHi] Courant R., Hilbert D., Methoden der Mathematischen Physik, II, 

chapter VI, §10) that sherical waves for arbitrary time-like lines do exist only in case of 

space-time dimension 2=n or 4=n  and only then, if the underlying differential equation is 

of type of the wave equation. This would characterize the 4 dimensional space-time 

continuum compared to all other dimensions. This might give arguments not too early 

increase the number of the space-time dimension (just to ensure model consistence between 

the two (SU(2),SU(3)) forces), while still struggling to integrate the last force, “explaining” the 

graviton by a “string” (which is nothing else than a solution of a wave equation (describing 

again a field!), “acting” in the very small, i.e. 1810−  environment). 

I.M. Singer, J. Thorpe (the curvature of 4-dimensional Einstein spaces, Global analysis, 

papers in honour of K. Kodaira, p. 355-365, Princepton Iniv. Press 1969) discovered a result 

of A. Einstein related to especially duality of 4 dimensional manifolds: 

Let  ),( gM  a  4  dimensional oriented Riemann manifold,   the self adjoint Hodge operator 

and  R  the (self adjoint) Riemann curvature tensor, then it holds   

),( gM  is an Einstein space          =  RR    . 

 

The  4n  condition within algebra 

Just searching for other mathematical areas, where  4n  and 4n  give some 

chracterisation, leads to the Galois theory.It provides a connection between field theory and 

group theory. Using Galois theory, certain problems in field theory can be reduced to group 

theory, which is in some sense simpler and better understood. 

Originally Galois used permutation groups to describe how the various roots of a given 

polynomial equation are related to each other. The modern approach to Galois theory, 

developed byR. Dedekind, L.Kronecker and Emil Artin, among others, involves studying 

automorhphisms and field extensions. 

Emil Artin, (1998). Galois Theory.  Dover Publications. ISBN 0-486-62342-4 (Reprinting of second revised edition 

of 1944, The University of Notre Dame Press, Indiana, USA, 1948); Galois Theorie, Verlag Harri Deutsch, Thun, 

Frankfurt a.M., 1988. 

If we are given a polynomial, it may happen that some of the roots of the polynomial are 
connected by various algebraic equations. For example, it may turn out that for two of the 

roots, say A  and B , the equation 75 32 =+ BA  holds. The central idea of Galois theory is to 

consider permutations (or rearrangements) of the roots having the property that any 
algebraic equation satisfied by the roots is still satisfied after the roots have been permuted. 
An important proviso is that one restricts to algebraic equations whose coefficients are 
rational numbers.  

These permutations together form a permutation group 
nS , also called the Galois group of 

the polynomial (over the rational numbers).  
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The notion of a solvable group in group theory allows one to determine whether a polynomial 
is solvable in the radicals, depending on whether its Galois group has the property of 

solvability. One starts with a field extension KL /  (read: L over K), and examines the group 

of field automorphisms of KL /  (these are mappings LL →:  with xx =)(  for all x  in K ). 

The coefficients of the polynomial in question should be chosen from the base field K. The 
top field L should be the field obtained by adjoining the roots of the polynomial in question to 
the base field. Any permutation of the roots which respects algebraic equations as described 

above gives rise to an automorphism of KL / , and vice versa. 

In essence, each field extension KL /  corresponds to a factor group in a composition series 

of the Galois group. If a factor group in the composition series is cyclic of order n, then if the 
corresponding field extension is an extension of a field containing a primitive root of unity, 
then it is a radical extension, and the elements of L  can then be expressed using the nth 
root of some element of K . 

If all the factor groups in its composition series are cyclic, the Galois group is called solvable, 
and all of the elements of the corresponding field can be found by repeatedly taking roots, 
products, and sums of elements from the base field (usually Q). 

One of the great triumphs of Galois Theory was the proof that for every 4n , there exist 

polynomials of degree n  which are not solvable by radicals. This is due to the fact that for 

4n  the symmetric group 
nS  , which is the corresponding Galois group 

 KxxxKAutGS nn ),...,( 21==   

containing a simple, non-cyclic, normal subgroup, which is basically defined by an arbitrary 
three-cycle permutation: 

. acba →→→  . 

The underlying theorem, from which Abel’s impossiblity theorem follows, is 

Theorem: If G  is a subgroup of the symmetric group  
nS  for 4n  containing all three-

cycles, that is, all cyclic permutations of the form acba →→→  of three distinct elements  

cba ,,  and if  N is a normal subgroup of G  with comutative quotient group NG / , then this 

normal subgroup also contains all the three-cycles. 

On the basis of the theorem above it now can be deduced step by step that every group in 
an ascending chain corresponding to a solution of the symmetric group 

nS  
must contain all 

three-cycles. The chain can therefore not end up in the trivial group containing a single 
element, and so the symmetric group cannot be solvable. 

Finally we note that a n-dimension Riemannian manifold can be embedded locally  into a N-
dimensional Euclidean space, if 

2

)1( +


nn
N

 

If a proper n-dimensional manifold has to be embedded into a 2n-Euclidean 

Lagrange/Hamiltonian (particle-momentum) framwork this leads to the condition 3=n . 
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Some general comments 

In the context of an appropriate vector and tensor analysis for monads the eigen differentials 

and wave packages, which are key concepts in quantum theory, would become new physical 

interpretations.  

The new concept above would be consistent with Huygens’ principles, putting another 

physical interpretation about the pointwise radiation along front lines and the model of shock 

waves, providing alternative interpretations of observed diffraction and scattering behaviors. 

The new physical principles might overcome current inconsistencies between obervations 

and quantum field theory projections ging the following explanations: 

The zero point energy is proposed to be the radiation out of the “monad”, which is the 

smallest entity, without any extension and relation to other monads (but “more” than an 

ideal/real point or a string). Using the word “quantum” for such a “monad” the energy density 

of such a quantum is called in other context as “quantum vacuum”. It contains all information 

and all patterns of dynamic energies of the universe. 

The Casimir effect shows a zero point radiation. As a request to an appropriate mathematical 

model the total energy of such a quantum vacuum should not be divergent.  

A photon does not realize any time; how it can act in such a case?  As a request to the 

appropriate mathematical model the asymmetry of “time” in a non-standard hyperbolic world 

should come out of the specific non-standard spherical “radiation” wave out of the monad. 

Hamiltonian principle is linked to skew symmetric bilinear forms. In case such bilinear forms 

are of maximal rank it’s called as symplectic form. 

Für die vergangene Singularität, den Urknall, muss in etwa die Bedingung WEYL = 0 gelten, 

für die zukünftigen Singularitäten, schwarze Löcher, grosses Zermalmen, muss WEYL gegen 

unendlich gehen. Die herkömmlichen und wohlbekannten Verfahren der Quantisierung 

lassen keinen Weg erkennen, eine zeitlich asymmetrische, quantisierte Theorie zu erzeugen, 

wenn die klassische Theorie, auf die diese Verfahren angewendet werden (die etablierte 

allgemeine Relativitätstheorie oder ihre entsprechenden Modifikationen) ihrerseits zeitlich 

symmetrisch ist. 

Einstein ist auf sein Konzept gekommen aufgrund der folgenden Frage, die er sich gestellt 

hat: „wenn er sich genau neben einem Lichtstrahl bewegt, wie sieht dann aus seiner Sicht 

der Lichtstrahl aus?“ Es müsste doch eigentlich so sein, dass der Lichtstrahl eine Folge von 

stationären Wellen gleicht, in der Zeit erstarrt, m.a.W. der Lichtstrahl müsste bewegungslos 

erscheinen. Wenn man ihm nacheilt, sollte man ihn als ruhendes, räumlich oszillierendes, 

elektromagnetisches Feld wahrnehmen. So etwas scheint es aber nicht zu geben, weder 

aufgrund der Erfahrung noch aufgrund der Maxwell-Gleichungen, die keine stationären, 

erstarrten Wellen zulassen. Aufgrund der Maxwell-Gleichungen müssten Elektronen ihre 

Energie in Sekundenbruchteilen verlieren.  

In any relativistic theory the vacuum, the state of lowest energy, if it exists in „reality“, 

has to have the energy zero. 
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Ebenso muß für freie Teilchen mit Impuls p


 
und Masse m

 
die Energie 2242 cpcmE


+=  

sein.  

Es gibt eine durch die ganze Literatur durchgängige Wahl, dem harmonischen Oszillator die 

Grundzustandsenergie 2/  zuzuordnen. Das wußte Planck bei der Ableitung seiner 

Strahlungsformel, mit der im Jahr 1900 die Quantenmechanik begann, schon besser: er 

ordnete Zuständen mit n Photonen die Energie n
 
zu und nicht den Wert )2/1( +n , der 

mit relativistisch kovarianter Beschreibung der Photonen unverträglich ist.  

Die Grundzustandsenergie ist grundsaetzlich unmeßbar, man verfügt daher über sie so, daß 

Berechnungen einfach und insbesondere daß sie endlich sind. Energien frei 

zusammengesetzter Systeme sollten additiv sein. Es gibt in jedem Hohlraum unendlich viele 

Frequenzen 
i
 
für Photonen. Ordnet man jeder Frequenz einen Beitrag 2/i zur 

Grundzustandsenergie zu, so hat schon der Grundzustand ohne Photonen unendlich viel 

Energie    =
i

i 2/ .  

Das Mißverständnis, die Grundzustandsenergie liege fest, beginnt in der klassischen 

Physik. Die Wahl der Hamiltonfunktion  

22
2

2

1

2
x

m

p
H +=  

verfügt über die klassisch nicht meßbare Grundzustandsenergie so, daß der Zustand 

niedrigster Energie, der Punkt )0,0( == px  im Phasenraum, die Energie 0 hat. Diese Wahl 

macht den algebraischen Ausdruck für die potentielle Energie )(xV  einfach, man hätte aber 

genauso gut 2/
2

1
)( 22  −= xxV  wählen können. 

In the following sections we put together several mathematical concepts. There is nothing 

new compared to e.g. the great book of R. Penrose, but there is some emphasize on specific 

mathematical aspects to underline the ideas from above. The intention is to give some 

guidance to move some next steps forward to the “road to reality”, developing the 

appropriate mathematical model (B). A validation procedure and proof of concept of it the 

model has to explain/”produce” the fundamental physical constants, which are somehow the 

gatekeepers to Leibniz’s (and Plato’s) transcendental (i.e. ideal) world.  

All of the following were taken from internet and literature; all references to the internet 

sources are omitted, as google search offers a really smart way to link directly and fast to 

any of those topics. A main source about variational theory and the physical concept about 

forces is the great book [LaC] Lanczos C. 
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1. Vectorial vs. analytical mechanics 

Descartes discovered that geometry may be treated as analytically. His geometry assumed 

the Euclidean structure of space. Riemann’s geometry is based on one single differential 

quantity called “line element”. 

The significance of this quantity is the distance between two neighboring points of “space”, 

expressed in term of the coordinates and their differentials. The quantity 2ds  has an 

absolute significance because the distance between two points does not change, no matter 

what coordinates are employed. It is an “absolute” or “invariant” quantity which is 

independent of any special reference system.  

The science of mechanics has developed along two main lines. One branch starts directly 

from Newton´s law of motion and is called „vectorial mechanics“. All forces are acting on any 

given particle; its motion is uniquely determined by known forces acting on it at every 

instance. The basis concern of vectorial mechanics is the analysis and synthesis of forces 

and velocity. The underlying mechanics is called „vectorial mechanics“. The action of a force 

is measured by the momentum produced by that force. 

Concerning infinitesimals, Newton, in 1669, defines the moment of x to be an "infinitesimal" 

increase in the value of a real number, x.  It appears to be indivisible, and thus something of 

an enigma. Leibniz, in the late 1600s, speaks of monads, ultimate infinitesimal particles from 

which nature arises. He used this idea in his mathematics, alluding to what we nowadays call 

the differential dx  as being not 0  but smaller than any finite quantity.  In parallel Leibniz 

developed infinitesimal calculus, already giving non trivial differential calculus in the form 

dydxyxd +=+ )(                 ydxxdydxdyydxxdyxyd +=++=)(  . 

 

In standard analysis the term  dxdy   is neglected as infinitely small of second order (!). This 

might be an opportunity, when extending k-forms into a non standard framework. 
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1.1 Transformation between Lagrange and Hamiltonian formalism 

Lagrange --> Hamilton:       ),(),(
dy

dL
xHyxL →  

The Legendre transformation of ),( yxf  is defined by    

),(),(:),(: yxfyxyfyyxgg −=−==   

Putting   
y

yxf
yx




==
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:),(:    the differential of ),( yxf  gives   
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It follows              )()()( dyddx
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−+=−=  . 

 

The product  dyd  is neglected to be zero in the standard theory as infinitesimal small of 

second order compared to dx . If one would neglected this and calculate in a non-standard 

way it would result into 

dx
x

f
ddyygd




−+= )()(  . 

Question: Does this change the equivalence of Lagrange and Hamilton formalism in that 

way, that now the Hamilton integral requires some non-standard variation calculus, which 

enables modeling also reactive forces (forces of constraints or Zwangskräfte). Zwangskräfte 

leisten keine Arbeit leisten (zumindest im Standard-Sinne!!) und stehen senkrecht auf der 

Fläche, auf der sich der Massepunkt bewegen soll ( 0=rZ


), d.h. die virtuelle Verrückung r


  

steht senkrecht bzgl Z


. Zwangskräfte halten einen Massepunkt auf der durch die (holonem-

skeleronomen) Nebenbedingungen vorgeschriebenen Bahn; z.B. 

rollende Billardkugeln auf einem waagrechten Tisch;  

ZFrm


 +=  . 

Nur eingeprägte Kräfte (impressed forces) F


 können zu echten Beschleunigungen führen. 

 

Leibniz advocated another quantity, replacing Newton´s „momentum“ as the proper gauge 

for the dynamical action of a force, which apart from a factor 2 today is called „kinetic 

energy“. At the same time he replaced the „force“by the „work of the force“(or „work 

function“). The underlying mechanics is called „analytical mechanics“. The basis concern of 
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analytical mechanics is the analysis and synthesis of equilibrium and motion on two 

fundamental scalar quantities, which are „kinetic energy“and „potential energy“. 

A tensor is defined by the components of an invariant differential form.  

A differential form of the first order defines a tensor of first order 

nndxFdxFdxFdW +++= ...2211  . 

The vector  iF  is called the “generalized force”. A differential form of the second order 

defines a tensor of second order, e.g. the special tensor ijg  , which is called the “metric 

tensor”, is given by 

=
ji

jiij dxdxgds
,

2  . 

 

1. There are forces which maintain the given kinematical conditions.  

Let  W  denote the work,  dtvsd


=  and the momentum (Impulse) vmp


=  . The work of 

forces to a body is the same as the increase of body´s kinetic energy: 

dTdtpdtvmv
m

ddtvdvmdtvdFsdFdW :)()
2

())(()( 2 =======


 

resp. 

21

2

1

2

2 )(
2

2

1

TTvv
m

sdFW

t

t

−=−== 


 

I.e. W  gives all work, which all forces act in the time interval   21 , tt  .  

The analytical treatment of mechanics does not require knowledge of these forces. 

 

2. There are forces which come from an external field or from the mutual interaction of 

particles  

The quantity of prime importance for the analytical treatment of mechanics is not a force, but 

the work done by impressed forces for arbitrary infinitesimal displacements. They are 

analytically defined as the coefficients of an invariant differential from of the first order, which 

gives the total work of all the impressed forces for an arbitrary infinitesimal change of the 

position of the system. The forces acting on a mechanical system fall automatically into two 

categories: 
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A. it is possible that all one can say about the work dW  is that it is a differential form of the 

first order 

B. it is possible that  dW  turns out to be a true differential of a certain “work function” 

),...,( 21 nqqqUU =  (which is the usual one in analytical problems), i.e. dUdW = with 

i

i
q

U
F




−= . 

There are forces in the nature which are derivable from a time-dependent work function 

),...,( 21 nqqqUU = , i.e. the generalized force possesses a work function without being 

conservative. An electronically charged particle revolving in a cyclotron returns to the same 

point with increased kinetic energy, so that energy is not conserved. This is not because the 

work does not exist, but because the work function is time-dependent. On the other hand, a 

generalized force may have no work function and still satisfy the conservation of energy, as 

for example the force which maintains rolling. 

There are two distinctive names for forces which are derivable from a scalar quantity, 

irrespective of whether they are conservative or not. The name “monogenic” (which means 

“single-generated”) for the category of forces, while forces which are not derivable from a 

scalar product, such as a friction, are called “polygenic”. The work function associated with a 

monogenic force is in the most general case a function of the coordinates and the velocities: 

);,...,;,...,( 2121 tqqqqqqUU nn
=  

For example the electro-magnetic force of Lorentz, which acts on a charged particle in the 

presence of an electronic and magnetic field, is derivable from a work function of this kind. 

Such forces are still susceptible to the variation treatment. 

 

1.2 Variational Principle 

The principle of virtual work for reversible displacements 

A particle is in equilibrium if the resulting force acting on that particle is zero: this form of 

mechanics isolates the particle and replaces all constraints by forces. The inconvenience of 

this procedure is obvious if one thinks of such a simple problem as the equilibrium of a lever, 

which is composed of infinity of particles and infinity of inner forces acting between them. 

The analytical treatment can dispense with all these forces and take only the external force 

into account (in the case of the lever the force of gravity. This is accomplished by performing 

only such virtual displacements as are in harmony with the given constraints. In variational 

treatment of mechanics the „forces of constraints“ (Zwangskräfte, reactive forces; e.g. 

Billiardtisch gegenüber rollender Billiardkugel auf waagrechtem Tisch)), which maintain 

certain given kinematical conditions are neglected. Only the work of the „impressed forces“ 

needs to be taken into account. One may eliminate the action of the inner forces, since the 

virtual displacements applied to the system are in harmony with the given kinematical 

conditions. 
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The principle of virtual work demands that for the state of equilibrium the work of the 

impressed forces is zero for any infinitesimal variation of the configuration of the system 

which is in harmony with the given kinematical constraints. For monogenic forces, this leads 

to the condition that, for equilibrium, the potential energy shall be stationary with respect to 

all kinematical permissible variations. 

The general kinematical possibilities of a rigid body are translation and rotation. The 

possibility of translation requires the sum of all forces to vanish, and the possibilities of 

rotation require the sum of all moments to vanish for equilibrium. 

D‘Alembert´s principle introduces a new force, the force of inertia, defined as the negative of 

the product of mass time’s acceleration. If this force is added to the impressed forces we 

have equilibrium, which means that the principle of virtual work is satisfied. The principle of 

virtual work is thus extended from the realm of static to the realm of dynamics. 

D‘Alembert´s principle requires a polygenic quantity in forming the virtual work of the forces 

of inertia; hence it cannot provide the same facilities in the analytical use of curvilinear 

coordinates as the principle of action. However, in problems which involve the use of 

kinematical variables (non-holonomic velocities) and the transformation to moving reference 

systems, d‘Alembert´s principle is eminently useful. 

In order to make the reference to the philosophy of Leibniz we recall: 

- “work” is no property of the body, the “work” is related to the interval  21 , tt  

- “kinetic energy” 2/: 2vmT


=  is a property of the body, which characterizes its actual 

momentum. 

 

1.3 Lagrange and Hamiltonian Principle 

 

Euler and Lagrange discovered the principle of „least action“. In the Lagrange formulation it’s 

about an analysis of the position and the velocity of a particle, i.e. it’s about equations of 

motions. The Hamiltonian formulation of this principle asserts that the actual motion realized 

in nature is that particular motion, for which this action assumes its smallest value. Its 

fundamental objects are the position and the momentum of a particle. The Noether theorem 

states, that if there is a continuous symmetry transformation, which keeps the action integral 

invariant, then there exists conservation variable. 

Lagrange formalism    Hamiltonian formalism 

(*)    Equation of motions    Action principle 

Causal      purpose 

The equivalence of (*) breaks down at the quantum level. Quantum mechanically, there is a 

fundamental difference between the two, with the equations of motion being only an 

approximation to the actual quantum behavior of matter. Thus the action principle is the only 

acceptable framework for quantum mechanics: classical mechanics assumes that a particle 
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executes just one path between two points based either on the equation of motion or on the 

minimization of the action. By contrast, quantum mechanics sums the contributions of 

probability functions (based on action) for all possible paths between two points. Although 

the classical path is the one most favored, in principle all possible paths contribute to the 

path integral. Thus, the action principle is more fundamental than the equations of motion at 

the quantum level. 

The formalism of path integrals is so versatile that it can accommodate both first quantized 

point particles and second quantized gauge fields with equal ease. 

The mathematical problem of minimizing an integral is dealt with in a special branch of the 

calculus, called „calculus of variation“. The variational theory, founded on Euler and 

Lagrange, bases everything on the two scalar quantities, „kinetic energy“ and „potential 

energy“. The variational approach assumes that the acting forces are derivable from a scalar 

quantity, the „work function“. Forces of frictional nature, which have no work function, are 

outside the realm of variational principles. 

  =
2

1

)),(),((

t

t

dtttqtqLqW                     −=
2

1

)),(),(()()(

t

t

dtttqtqLtqtqqW   

A variation means an infinitesimal change, in analogy with the d-process of ordinary calculus. 

However, contrary to the ordinary d-process, this infinitesimal change is not caused by the 

actual change of an independent variable, but is imposed on a set of variables as a kind of 

mathematical experiment. The term „virtual“ indicates that a displacement was intentionally 

made in any kinematic ally admissible manner. Such a virtual and infinitesimal change of 

position is called a „variation“ of the position.  A variation of the position is at disposal, but the 

corresponding change of the function (e.g. potential energy), which is called the „variation of 

the function“ is not at disposal. 

The principle of virtual work demands that for the state of equilibrium the work of the 

impressed forces is zero for any infinitesimal variation of configuration of the system which is 

in harmony with the given kinematical constraints. For monogenic forces, this leads to the 

condition that, for equilibrium, the potential energy shall be stationary with respect to all 

kinematic ally permissible variations. 

Since in problems involving the variation of definite integrals both types of change ( and d ) 

have to be considered simultaneously, the distinction is of vital importance. 
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2. Distribution solution of the 1D wave equation  

 

The  „vibration string“ equation 

02 =− xxtt uku  

has a solution )(),( ktxftxu −=  for any function of one variable f , which has the physical 

interpretation of a „traveling wave“ with „shape“ )(xf  moving at velocity k . 

There is no physical reason for the “shape” to be differentiable, but if it is not, the differential 

equation is not satisfied at some points. In order to not through away physically meaningful 

solutions because of technicalities, the concept of distributions can be applied. 

If the equation above is also meaningful, if u is a distribution, then u is called a weak solution 

of it. If u is twice continuously differentiable and the equation holds, one calls u a strong or 

classical  solution. Each classical solution is a weak solution. In case of the equation above 

it’s also the other way around. The same is NOT TRUE for the elliptic Laplace equation 

(counter example is the classical solution )log(:).( 22 yxyxu += , but not a weak solution as it 

holds there 4)log( 22 =+ yx ). In order to see this we show that for 

)()(:).( 21 RLktxfyxu loc−=  it holds 

(*)             0),( 2 =− xxtt uku  . 

From the following identities 

i)                dxdttkxfuu tttttt    −== )(),(),(

 

ii)              dxdttkxfuu xxxxxx    −== )(),(),(

 

it follows 

 dxdtktkxfuku xxttxxtt  22 )(),( −−=−    . 

Substituting the variable in the form ktxy −=  and ktxz +=  means 








 −
=





k

k

tx

zy

1

1
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),(
 and dydzkdxdt =2  .

 

From this it follows 

  
−



−

−=−=− dydzyfkdzdyyfkuku yzyzxxtt ))((2)(2),( 2  . 

As  0==
=

−=



−


z

zyyzdz  this proves (*) above.  
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3. Why Strings? 

While the Standard Model has been very successful in describing most of the phenomemon 

that we can experimentally investigate with the current generation of particle acceleraters, it 

leaves many unanswered questions about the fundamental nature of the universe. The goal 

of modern theoretical physics has been to find a "unified" description of the universe. This 

has historically been a very fruitful approach. For example Einstein-Maxwell theory unifies 

the forces of electricity and magnetism into the electromagnetic force. The Nobel prize 

winning work of Glashow, Salam, and Weinberg successfully showed that the 

electromagnetic and weak forces can be unified into a single electroweak force. There is 

actually some pretty strong evidence that the forces of the Standard Model should all unify as 

well. When we examine how the relative strengths of the strong force and electroweak force 

behave as we go to higher and higher energies, we find that they become the same at an 

energy of about GeV1610 . In addition the gravitational force should become equally 

important at an energy of about GeV1910 .  

 

 
 

The goal of string theory is to explain the "?" in the above diagram. 

 

The characteristic energy scale for quantum gravity is called the Planck Mass, and is given in 

terms of Planck constant, the speed of light, and Newton's constant,  

219 /10*22.1/ cGeVGcM Npl ==   

Physics at this high energy scale describes the universe as it existed during the first 

moments of the Big Bang. These high energy scales are completely beyond the range which 

can be created in the particle accelerators we currently have (or will have in the foreseeable 

future.) Most of the physical theories that we use to understand the universe that we live in 

also break down at the Planck scale. However, string theory shows unique promise in being 

able to describe the physics of the Planck scale and the Big Bang. 

In its final form string theory should be able to provide answers to answer questions like:  

• Where do the four forces that we see come from?  

• Why do we see the various types of particles that we do?  

• Why do particles have the masses and charges that we see?  

• Why do we live in 4 space-time dimensions?  

• What is the nature of space-time and gravity?  

http://www.sukidog.com/jpierre/strings/glossary.htm#standard
http://www.sukidog.com/jpierre/strings/glossary.htm#electro
http://www.sukidog.com/jpierre/strings/glossary.htm#ew
http://www.sukidog.com/jpierre/strings/glossary.htm#strong
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String Basics   

We are used to thinking of fundamental particles (like electrons) as point-like 0-dimensional 

objects. A generalization of this is fundamental strings which are 1-dimensional objects. 

They have no thickness but do have a length, typically 10-33 cm. This is very small 

compared to the length scales that we can reasonably measure, so these strings are so 

small that they practically look like point particles. However their stringy nature has important 

implications as we will see.  

 

Strings can be open or closed. As they move through space-time they sweep out an 

imaginary surface called a world-sheet.  

 

These strings have certain vibrational modes which can be characterized by various 

quantum numbers such as mass, spin, etc. The basic idea is that each mode carries a set of 

quantum numbers that correspond to a distinct type of fundamental particle. This is the 

ultimate unification: all the fundamental particles we know can be described by one object, a 

string!. A very loose analogy can be made with say, a violin string. The vibrational modes are 

like the harmonics or notes of the violin string, and each type of particle corresponds to one 

of these notes. 

As an example let's consider a closed string mode which looks like:  

 

This mode is characteristic of a spin-2 massless graviton (the particle that mediates the 

force of gravity). This is one of the most attractive features of string theory. It naturally and 

inevitably includes gravity as one of the fundamental interactions.  

Strings interact by splitting and joining. For example the anihilation of two closed strings into 

a single closed string occurs with a interaction that looks like:  

 

Notice that the worldsheet of the interaction is a smooth surface. This essentially accounts 

for another nice property of string theory. It is not plagued by infinities in the way that point 
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particle quantum field theories are. The analogous Feynman diagram in a point particle field 

theory is:  

 

Notice that the interaction point occurs at a topological singularity in the diagram (where the 

3 world-lines intersect). This leads to a break down of the point particle theory at high 

energies.  

If we glue two of the basic closed string interactions together, we get a process by which two 

closed strings interact by joining into an intermediate closed string which splits apart into two 

closed strings again:  

 

 

 
This is the leading contribution to this process and is called a tree level interaction.  To 
compute quantum mechanical amplitudes using perturbation theory we add contributions 
from higher order quantum processes.  Perturbation theory provides good answers as long 
as the contributions get smaller and smaller as we go to higher and higher orders.  Then we 
only need to compute the first few diagrams to get accurate results.  In string theory, higher 
order diagrams correspond to the number of holes (or handles) in the world sheet. 

 

 

 

The nice thing about this is that at each order in perturbation theory there is only one 
diagram.  In point particle field theories the number of diagrams grows exponentially at 
higher orders. The bad news is that extracting answers from diagrams with more than about 
two handles is very difficult due to the complexity of the mathematics involved in dealing with 
these surfaces.  Perturbation theory is a very useful tool for studying the physics at weak 
coupling, and most of our current understanding of particle physics and string theory is based 
on it.  However it is far from complete.  The answers to many of the deepest questions will 
only be found once we have a complete non-perturbative description of the theory. 

 

D-branes   
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Strings can have various kinds of boundary conditions. For example closed strings have 
periodic boundary conditions (the string comes back onto itself). Open strings can have two 
different kinds of boundary conditions called Neumann and Dirichlet boundary conditions. 
With Neumann boundary conditions the endpoint is free to move about but no momentum 
flows out. With Dirichlet boundary conditions the endpoint is fixed to move only on some 
manifold. This manifold is called a D-brane or Dp-brane ('p' is an integer which is the number 
of spatial dimensions of the manifold). For example we see open strings with one or both 
endpoints fixed on a 2-dimensional D-brane or D2-brane:  

 

D-branes can have dimensions ranging from -1 to the number of spatial dimensions in our 
spacetime. For example superstrings live in a 10-dimensional spacetime which has 9 spatial 
dimensions and one time dimension. Therefore the D9-brane is the upper limit in superstring 
theory. Notice that in this case the endpoints are fixed on a manifold that fills all of space so it 
is really free to move anywhere and this is just a Neumann boundary condition! The case p= 
-1 is when all the space and time coordinates are fixed, this is called an instanton or D-
instanton. When p=0 all the spatial coordinates are fixed so the endpoint must live at a single 
point in space, therefore the D0-brane is also called a D-particle. Likewise the D1-brane is 
also called a D-string. Incidently the suffix 'brane' is borrowed from the word 'membrane' 
which is reserved for 2-dimensional manifolds or 2-branes!  

D-branes are actually dynamical objects which have fluctuations and can move around. This 
was first shown by physicist Joseph Polchinski. For example they interact with gravity. In the 
diagram below we see one way in which an closed string (graviton) can interact with a D2-
brane. Notice how the closed string becomes an open string with endpoints on the D-brane 
at the intermediate point in the interaction.  

 

 
We now see that string theory is more than just a theory of strings! 

Supersymmetric Strings   

 
There are two types of particles in nature - fermions and bosons. A fundamental theory of 
nature must contain both of these types. When we include fermions in the worldsheet theory 
of the string, we automatically get a new type of symmetry called supersymmetry which 
relates bosons and fermions. Fermions and bosons are grouped together into 

http://www.sukidog.com/jpierre/strings/glossary.htm#fermions
http://www.sukidog.com/jpierre/strings/glossary.htm#bosons
http://www.sukidog.com/jpierre/strings/glossary.htm#supersym
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supermultiplets which are related under the symmetry. This is the reason for the "super" in 
"superstrings".  
A consistent quantum field theory of superstrings exists only in 10 spacetime dimensions! 
Otherwise there are quantum effects which render the theory inconsistent or 'anomalous'. In 
10 spacetime dimensions the effects can precisely cancel leaving the theory anomaly free. It 
may seem to be a problem to have 10 spacetime dimensions instead of the 4 spacetime 
dimensions that we observe, but we will see that in getting from 10 to 4 we actually find some 
interesting physics.  
In terms of weak coupling perturbation theory there appear to be only five different 
consistent superstring theories known as Type I SO(32), Type IIA, Type IIB, SO(32) 
Heterotic and E8 x E8 Heterotic.  

   

 Type 

IIB 
Type IIA 

E8 x E8 

Heterotic 

SO(32) 

Heterotic 

Type I 

SO(32) 

String Type Closed Closed Closed Closed 
Open   

(& closed) 

10d 

Supersymmetry 
N=2   

(chiral) 

N=2   

(non-

chiral) 

N=1 N=1 N=1 

10d Gauge groups none none E8 x E8 SO(32) SO(32) 

D-branes 
-

1,1,3,5,7 
0,2,4,6,8 none none 1,5,9 

   
Type I SO(32):  
This is a theory which contains open superstrings. It has one (N=1) supersymmetry in 10 
dimensions. Open strings can carry gauge degrees of freedom at their endpoints, and 
cancellation of anomalies uniquely constrains the gauge group to be SO(32). It contains D-
branes with 1, 5, and 9 spatial dimensions.  
   
Type IIA:  
This is a theory of closed superstrings which has two (N=2) supersymmetries in ten 
dimensions. The two gravitini (superpartners to the graviton) move in opposite directions on 
the closed string world sheet and have opposite chiralities under the 10 dimensional Lorentz 
group, so this is a non-chiral theory. There is no gauge group. It contains D-branes with 0, 2, 
4, 6, and 8 spatial dimensions.  
   
Type IIB:  
This is also a closed superstring theory with N=2 supersymmetry. However in this case the 
two gravitini have the same chiralities under the 10 dimensional Lorentz group, so this is a 
chiral theory. Again there is no gauge group, but it contains D-branes with -1, 1, 3, 5, and 7 
spatial dimensions.  
   
SO(32) Heterotic:  
This is a closed string theory with worldsheet fields moving in one direction on the world 
sheet which have a supersymmetry and fields moving in the opposite direction which have 
no supersymmetry. The result is N=1 supersymmetry in 10 dimensions. The non-
supersymmetric fields contribute massless vector bosons to the spectrum which by anomaly 
cancellation are required to have an SO(32) gauge symmetry.  
   
E8 x E8 Heterotic:  
This theory is identical to the SO(32) Heterotic string, except that the gauge group is E8 X E8 
which is the only other gauge group allowed by anomaly cancellation. 
We see that the Heterotic theories don't contain D-branes. They do however contain a 
fivebrane soliton which is not a D-brane. The IIA and IIB theories also contain this fivebrane 
soliton in addition to the D-branes. This fivebrane is usually called the "Neveu-Schwarz 
fivebrane" or "NS fivebrane".  

http://www.sukidog.com/jpierre/strings/glossary.htm#gauge theory
http://www.sukidog.com/jpierre/strings/glossary.htm#SO(N)
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It is worthwhile to note that the E8 x E8 Heterotic string has historically been considered to 
be the most promising string theory for describing the physics beyond the Standard Model.  It 
was discovered in 1987 by Gross, Harvey, Martinec, and Rohm and for a long time it was 
thought to be the only string theory relevant for describing our universe.  This is because the 
SU(3) x SU(2) x U(1) gauge group of the standard model can fit quite nicely within one of the 
E8 gauge groups.  The matter under the other E8 would not interact except through gravity, 
and might provide a answer to the Dark Matter problem in astrophysics.  Due to our lack of a 
full understanding of string theory, answers to questions such as how is supersymmetry 
broken and why are there only 3 generations of particles in the Standard Model have 
remained unanswered.  Most of these questions are related to the issue of compactification 
(discussed on the next page).  What we have learned is that string theory contains all the 
essential elements to be a successful unified theory of particle interactions, and it is virtually 
the only candidate which does so.  However, we don't yet know how these elements 
specifically come together to describe the physics that we currently observe.  
 

 

 
 
 
Extra Dimensions   
 
Superstrings live in a 10-dimensional spacetime, but we observe a 4-dimensional spacetime. 
Somehow we need to link the two if superstrings are to describe our universe. To do this we 
curl up the extra 6 dimensions into a small compact space. If the size of the compact space 
is of order the string scale (10-33 cm) we wouldn't be able to detect the presence of these 
extra dimensions directly - they're just too small. The end result is that we get back to our 
familiar (3+1)-dimensional world, but there is a tiny "ball" of 6-dimensional space associated 
with every point in our 4-dimensional universe. This is shown in an extremely schematic way 
in the following illustration:  

 

This is actually a very old idea dating back to the 1920's and the work of Kaluza and Klein. 
This mechanism is often called Kaluza-Klein theory or compactification. In the original work 
of Kaluza it was shown that if we start with a theory of general relativity in 5-spacetime 
dimensions and then curl up one of the dimensions into a circle we end up with a 4-
dimensional theory of general relativity plus electromagnetism! The reason why this works is 
that electromagnetism is a U(1) gauge theory, and U(1) is just the group of rotations around 
a circle. If we assume that the electron has a degree of freedom corresponding to point on a 
circle, and that this point is free to vary on the circle as we move around in spacetime, we 
find that the theory must contain the photon and that the electron obeys the equations of 
motion of electromagnetism (namely Maxwell's equations). The Kaluza-Klein mechanism 
simply gives a geometrical explanation for this circle: it comes from an actual fifth dimension 
that has been curled up. In this simple example we see that even though the compact 
dimensions maybe too small to detect directly, they still can have profound physical 

http://www.sukidog.com/jpierre/strings/glossary.htm#spacetime
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implications. Incidentally the work of Kaluza and Klein leaked over into the popular culture 
launching all kinds of fantasies about the "Fifth dimension"! 
 
How would we ever really know if there were extra dimensions and how could we detect 
them if we had particle accelerators with high enough energies? From quantum mechanics 
we know that if a spatial dimension is periodic the momentum in that dimension is quantized, 
p = n / R (n=0,1,2,3,....), whereas if a spatial dimension is unconstrained the momentum can 
take on a continuum of values. As the radius of the compact dimension decreases (the circle 
becomes very small) then the gap between the allowed momentum values becomes very 
wide. Thus we have a Kaluza Klein tower of momentum states.  

 

If we take the radius of the circle to be very large (the dimension is de-compactifying) then 
the allowed values of the momentum become very closely spaced and begin to form a 
continuum. These Kaluza-Klein momentum states will show up in the mass spectrum of the 
uncompactifed world. In particular, a massless state in the higher dimensional theory will 
show up in the lower dimensional theory as a tower of equally spaced massive states just as 
in the picture shown above. A particle accelerator would then observe a set of particles with 
masses equally spaced from each other. Unfortunately, we'd need a very high energy 
accelerator to see even the lightest massive particle.  
 
Strings have a fascinating extra property when compactified: they can wind around a 
compact dimension which leads to winding modes in the mass spectrum. A closed string can 
wind around a periodic dimension an integral number of times. Similar to the Kaluza-Klein 
case they contribute a momentum which goes as p = w R (w=0,1,2,...). The crucial difference 
here is that this goes the other way with respect to the radius of the compact dimension, R. 
So now as the compact dimension becomes very small these winding modes are becoming 
very light!  

 

 
Now to make contact with our 4-dimensional world we need to compactify the 10-
dimensional superstring theory on a 6-dimensional compact manifold. Needless to say, the 
Kaluza Klein picture described above becomes a bit more complicated. One way could 
simply be to put the extra 6 dimensions on 6 circles, which is just a 6-dimensional Torus. As 
it turns out this would preserve too much supersymmetry. It is believed that some 
supersymmetry exists in our 4-dimensional world at an energy scale above 1 TeV (this is the 
focus of much of the current and future research at the highest energy accelerators around 
the word!). To preserve the minimal amount of supersymmetry, N=1 in 4 dimensions, we 
need to compactify on a special kind of 6-manifold called a Calabi-Yau manifold.  
The properties of the Calabi-Yau manifold can have important implications for low energy 
physics such as the types of particles observed, their masses and quantum numbers, and 
the number of generations.  One of the outstanding problems in the field has been the fact 
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that there are many many Calabi-Yau manifolds (thousands upon thousands?) and we have 
no way of knowing which one to use.  In a sense we started with a virtually unique 10-
dimensional string theory and have found that possibilities for 4-dimensional physics are far 
from unique, at least at the level of our current (and incomplete) understanding. The long-
standing hope of string theorists is that a detailed knowledge of the full non-perturbative 
structure of the theory, will lead us to an explanation of how and why our universe flowed 
from the 10-dimensional physics that probably existed during the high energy phase of the 
Big Bang, down to the low energy 4-dimensional physics that we observe today. Possibly we 
will find a unique Calabi-Yau manifold that does the trick. Some important work of Andrew 
Strominger has shown that Calabi-Yau manifolds can be continuously connected to one 
another through conifold transitions and that we can move between different Calabi-Yau 
manifolds by varying parameters in the theory.  This suggests the possibility that the various 
4-dimensional theories arising from different Calabi-Yau manifolds might actually be different 
phases of an single underlying theory. 
 
 
String Duality   
 
The five superstring theories appear to be very different when viewed in terms of their 
descriptions in weakly coupled perturbation theory. In fact they are all related to each other 
by various string dualities. We say two theories are dual when they both describe the same 
physics.  
The first kind of duality that we will discuss is called T-duality. This duality relates a theory 
which is compactified on a circle with radius R, to another theory compactified on a circle 
with radius 1/R. Therefore when one theory has a dimension curled up into a small circle, the 
other theory has a dimension which is on a very large circle (it is barely compactified at all) 
but they both describe the same physics! The Type IIA and Type IIB superstring theories are 
related by T-duality and the SO(32) Heterotic and E8 x E8 Heterotic theories are also related 
by T-duality.  
The next duality that we will consider is called S-duality. Simply put, this duality relates the 
strong coupling limit of one theory to the weak coupling limit of another theory. (Note that the 
weak coupling descriptions of both theories can be quite different though.) For example the 
SO(32) Heterotic string and the Type I string theories are S-dual in 10 dimensions. These 
means that the strong coupling limit of the SO(32) Heterotic string is the weakly coupled 
Type I string and visa versa. One way to find evidence for a duality between strong and weak 
coupling is to compare the spectrum of light states in each picture and see if they agree. For 
example the Type I string theory has a D-string state that is heavy at weak coupling, but light 
at strong coupling. This D-string carries the same light fields as the worldsheet of the SO(32) 
Heterotic string, so when the Type I theory is very strongly coupled this D-string is becomes 
very light and we see the weakly coupled Heterotic string description emerging. The other S-
duality in 10 dimensions is the self duality of the IIB string: the strong coupling limit of the IIB 
string is another weakly coupled IIB string theory. The IIB theory also has a D-string (with 
more supersymmetry than the Type I D-string and hence different physics) which becomes a 
light state at strong coupling, but this D-string looks like another fundamental Type IIB string.  
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In 1995, physicist and mathematician Edward Witten pioneered the idea that Type IIA and E8 
x E8 string theories are related to each other through a new 11-dimensional theory which he 
called "M-theory". This revelation provided the missing link that related all of the superstring 
theories through a chain of dualities. The dualities between the various string theories 
provide strong evidence that they are simply different descriptions of the same underlying 
theory. Each description has its own regime of validity, and in certain limits another 
description takes over just when the original one is breaks down.   
 
What is this "M-theory" shown above?   
 
 
M-theory   
 
M-theory is described at low energies by an effective theory called 11-dimensional 
supergravity. This theory has a membrane and 5-branes as solitons, but no strings. How can 
we get the strings that we've come to know and love from this theory? We can compactify the 
11-dimensional M-theory on a small circle to get a 10-dimensional theory. If we take a 
membrane with the topology of a torus and wrap one of its dimensions on this compact 
circle, the membrane will become a closed string! In the limit where the circle becomes very 
small we recover the Type IIA superstring.  

 

How do we know that M-theory on a circle gives the IIA superstring, and not the IIB or 
Heterotic superstrings? The answer to this question comes from a careful analysis of the 
massless fields that we get upon compactification of 11-dimensional supergravity on a circle. 
Another easy check is that we can find an M-theory origin for the D-brane states unique to 
the IIA theory. Recall that the IIA theory contains D0,D2,D4,D6,D8-branes as well as the NS 
fivebrane. The following table summarizes the situation:  
   

M-theory on circle IIA in 10 dimensions 

Wrap membrane on circle IIA superstring 

Shrink membrane to zero size D0-brane 

Unwrapped membrane D2-brane 

Wrap fivebrane on circle D4-brane 

Unwrapped fivebrane NS fivebrane 

 
The two that have been left out are the D6 and D8-branes. The D6-brane can be interpreted 
as a "Kaluza Klein Monopole" which is a special kind of solution to 11-dimensional 
supergravity when it's compactified on a circle. The D8-brane doesn't really have clear 
interpretation in terms of M-theory at this point in time; that's a topic for current research!  
 
We can also get a consistent 10-dimensional theory if we compactify M-theory on a small line 
segment. That is, take one dimension (the 11-th dimension) to have a finite length. The 
endpoints of the line segment define boundaries with 9 spatial dimensions. An open 
membrane can end on these boundaries. Since the intersection of the membrane and a 
boundary is a string, we see that the 9+1 dimensional worldvolume of the each boundary can 
contain strings which come from the ends of membranes. As it turns out, in order for 
anomalies to cancel in the supergravity theory, we also need each boundary to carry an E8 
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gauge group. Therefore as we take the space between the boundaries to be very small we're 
left with a 10-dimensional theory with strings and an E8 x E8 gauge group. This is the E8 x 
E8 heterotic string!  

 

So given this new phase 11-dimensional phase of string theory, and the various dualities 
between string theories, we're led to the very exciting prospect that there is only a single 
fundamental underlying theory -- M-theory.  The five superstring theories and 11-D 
Supergravity can be thought of as classical limits.  Previously, we've tried to deduce their 
quantum theories by expanding around these classical limits using perturbation theory.  
Perturbation has its limits, so by studying non-perturbative aspects of these theories using 
dualities, supersymmetry, etc. we've come to the conclusion that there only seems to be one 
unique quantum theory behind it all.  This uniqueness is very appealing, and much of the 
work in this field will be directed toward formulating the full quantum M-theory.  

 

 

 

 

Black Holes   

The classical description of gravity known as General Relativity, contains solutions which are 
called "black holes". There are many different kinds of black hole solutions but they share 
some common characteristics. The event horizon is a surface in spacetime which, loosely 
speaking, divides the inside of the black hole from the outside. The gravitational attraction of 
a black hole is so strong that any object that crosses the event horizon, including light, can 
never escape out of the black hole. Classical black holes are therefore relatively featureless, 
but they can be described by a set of observable parameters such as mass, charge, and 
angular momentum.  
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A Penrose Diagram shows the global causal structure of a space-time.  It is a space-time 
diagram in which all light rays travel in 45 degree angles. Therefore massive particles must 
travel on trajectories that lie within the light cone which sits at every point in the diagram.  In 
the following diagram the causal structure of a spherically symmetric "Schwarzschild" type 
black hole is shown.  Only radial and time directions are represented while angular directions 
are suppressed.  Once inside the event horizon, the only way for a trajectory to escape to 
future infinity is if it travelled faster than light which is not possible according to the laws of 
special relativity.  Therefore all physical trajectories inevitably lead to the singularity.  
 
A Penrose diagram is not meant to accurately portray distances, only causal structure. 

Black holes turn out to be important "laboratories" in which to test string theory, because the 
effects of quantum gravity turn out to be important even for large macroscopic holes. Black 
holes aren't really "black" since they radiate! Using semi-classical reasoning, Stephen 
Hawking showed black holes emit a thermal spectrum of radiation at their event horizon. 
Since string theory is, among other things, a theory of quantum gravity, it should be able to 
describe black holes in a consistent way. In fact there are black hole solutions which satisfy 
the string equations of motion. These equations of motion resemble the equations of general 
relativity with some extra matter fields coming from string theory. Superstring theories also 
have some special black hole solutions which are themselves super-symmetric, in that they 
preserve some super-symmetry.  

 

One of the most dramatic recent results in string theory is the derivation of the Bekenstein-
Hawking entropy formula for black holes obtained by counting the microscopic string states 
which form a black hole. Bekenstein noted that black holes obey an "area law", dM = K dA, 
where 'A' is the area of the event horizon and 'K' is a constant of proportionality. Since the 
total mass 'M' of a black hole is just its rest energy, Bekenstein realized that this is similar to 
the thermodynamic law for entropy, dE = T dS. Hawking later performed a semi-classical 
calculation to show that the temperature of a black hole is given by T = 4 k [where k is a 
constant called the "surface gravity"].  Therefore the entropy of a black hole should be written 
as S = A/4.  Physicists Andrew Strominger and Cumrin Vafa, showed that this exact entropy 
formula can be derived microscopically (including the factor of 1/4) by counting the 
degeneracy of quantum states of configurations of strings and D-branes which correspond to 
black holes in string theory.  This is compelling evidence that D-branes can provide a short 
distance weak coupling description of certain black holes!  For example, the class of black 
holes studied by Strominger and Vafa are described by 5-branes, 1-branes and open strings 
traveling down the 1-brane all wrapped on a 5-dimensional torus, which gives an effective 
one dimensional object -- a black hole.  
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Hawking radiation can also be understood in terms of the same configuration, but with open 
strings traveling in both directions. The open strings interact, and radiation is emitted in the 
form of closed strings. The system decays into the configuration shown above. 

 

 

Explicit calculations show that for certain types of supersymmetric black holes, the string 
theory answer agrees with the semi-classical supergravity answer including non-trivial 
frequency dependent corrections called greybody factors. This is more evidence that string 
theory is a consistent and accurate fundamental theory of quantum gravity. 

 

 

 

 

Summary  

Superstring theory is a very exciting area of study because it has the serious potential to be 
the right theory for describing the fundamental nature of our universe.  All the elements are in 
there: quantum physics, bosons, fermions, gauge groups, and gravity.  In the last several 
years there has been great progress in understanding the overall structure of the theory 
including D-branes and string duality.  String theory has been applied with great success to 
the study of black hole physics and quantum gravity. However, there is much work yet to be 
done. 
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The “birthday” of the Superstring theory happened in 1968, when Gabriel Veneziano and 

Mahiko Suzuki came across using the Euler beta function to describe interactions of 

elementary particles: 

Consider an elastic scattering process with 2 incoming spinless particles of transverse 

momenta 
21 , pp , outgoing particles of momenta 43 , pp −− . With a metric with signature 

 ++++− ,...,,,  the mass squared of a particle is 
22 pm −= . The conventional Mandelstam 

variables are defined as 

2

21 )( pps +−=  , 
2
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which obey the one identity 
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The largest )(sJ =  value at given s with 22 )2( pms ==  the square of the energy in the center 
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r

pJ ==
2

2  formed the so-called “leading 

trajectory”. Experimentally, it was discovered that the leading trajectories were almost linear 

in s. 

In the field theory of the weak interactions the simplest model amplitude ),( tsA is 

constructed as a sum of s-channel & t-channel input diagrams in the form 
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that shows poles, where the resonance of the leading (Regge) trajectories )(s  is necessarily 

linear in s, i.e. )0()(  −= xx  with the “daughter trajectories” nss −−= )0()(  , (postulated 

by Veneziano),  to achieve, that the formula  is physically acceptable. )0(  depends on the 

quantum numbers such as strangeness and baryon number, but    appeared to be 

universal, approximately, i.e.     
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A resonance occurs at those s values where )(s  is a nonnegative integer (mesons) or a 

nonnegative integer plus ½ (baryons).   
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which gives some relation to our 
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4. Huygens’ Principle  

 

In 1678 the great Dutch physicist Christian Huygens (1629-1695) wrote a treatise called 

Traite de la Lumiere on the wave theory of light, and in this work he stated that the wave 

front of a propagating wave of light at any instant conforms to the envelope of spherical 

wavelets emanating from every point on the wave front at the prior instant (with the 
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understanding that the wavelets have the same speed as the overall wave).  An illustration of 

this idea, now known as Huygens' Principle, is shown below 

 

This drawing depicts the propagation of the wave “front”, but Huygens’ Principle is 

understood to apply equally to any locus of constant phase (not just the leading edge of the 

disturbance), all propagating at the same characteristic wave speed. This implies that a wave 

doesn't get "thicker" as it propagates, i.e., there is no diffusion of waves. For example, if we 

turn on a light bulb for one second, someone viewing the bulb from a mile away will see it 

"on" for precisely one second, and no longer. Similarly, the fact that we see sharp images of 

distant stars and galaxies is due to Huygens’ Principle. However, it’s worth noting that this 

principle is valid only in spaces with an odd number of dimensions. (See below for a detailed 

explanation of why this is so.) If we drop a pebble in a calm pond, a circular wave on the two-

dimensional surface of the pond will emanate outward, and if Huygens' Principle was valid in 

two dimensions, we would expect the surface of the pond to be perfectly quiet both outside 

and inside the expanding spherical wave. But in fact the surface of the pond inside the 

expanding wave (in this two-dimensional space) is not perfectly calm, its state continues to 

differ slightly from its quiescent state even after the main wave has passed through. This 

excited state will persist indefinitely, although the magnitude rapidly becomes extremely 

small. The same occurs in a space with any even number of dimensions. Of course, the 

leading edge of a wave always propagates at the characteristic speed c, regardless of 

whether Huygens' Principle is true or not. In a sense, Huygens' Principle is more significant 

for what it says about what happens behind the leading edge of the disturbance. Essentially 

it just says that all the phases propagate at the same speed. 

From this simple principle Huygens was able to derive the laws of reflection and refraction, 

but the principle is deficient in that it fails to account for the directionality of the wave 

propagation in time, i.e., it doesn't explain why the wave front at time tt +  in the above 

figure is the upper rather than the lower envelope of the secondary wavelets.  Why does an 

expanding spherical wave continue to expand outward from its source, rather than re-

converging inward back toward the source? Also, the principle originally stated by Huygens 

does not account for diffraction.  Subsequently, Augustin Fresnel (1788-1827) elaborated on 

Huygens' Principle by stating that the amplitude of the wave at any given point equals the 

superposition of the amplitudes of all the secondary wavelets at that point (with the 

understanding that the wavelets have the same frequency as the original wave).  The 

Huygens-Fresnel Principle is adequate to account for a wide range of optical phenomena, 

and it was later shown by Gustav Kirchoff (1824-1887) how this principle can be deduced 

from Maxwell's equations.  Nevertheless (and despite statements to the contrary in the 

literature), it does not actually resolve the question about "backward" propagation of waves, 

because Maxwell's equations themselves theoretically allow for advanced as well as retarded 

potentials.  It's customary to simply discount the advanced waves as "unrealistic", and to 

treat the retarded wave as if it was the unique solution, although there have occasionally 

been interesting proposals, such as the Feynman-Wheeler theory, that make use of both 

solutions.. 
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Incidentally , as an undergraduate, Feynman gave a seminar on this "new idea" at 

Princeton.  Among the several "monster minds" (as Feynman called them) in attendance was 

Einstein, to whom the idea was not so new, because 30 years earlier Einstein had debated 

the significance of the advanced potentials with Walther Ritz. In any case, the Huygens-

Fresnel Principle has been very useful and influential in the field of optics, although there is a 

wide range of opinion as to its scientific merit.  Many people regard it as a truly inspired 

insight, and a fore-runner of modern quantum electro-dynamics, whereas others dismiss it as 

nothing more than a naive guess that sometimes happens to work.  For example, in his 

excellent "Principles of Electrodynamics", Melvin Schwartz wrote: 

Huygens' principle tells us to consider each point on a wave front as a new source of radiation and add the 

"radiation" from all of the new "sources" together.  Physically this makes no sense at all.  Light does not emit light; 

only accelerating charges emit light.  Thus we will begin by throwing out Huygens' principle completely; later we 

will see that it actually does give the right answer for the wrong reasons. 

Whether we have now actually found the true "reason" for the behavior of light is debatable, 

and ultimately every theory is based on some fundamental principle(s), but it's interesting 

how widely the opinions on various principles differ.  (I'm reminded of the history of Fermat's 

Principle, and of Planck's reverence for the Principle of Least Action.) It could be argued that 

the “path integral” approach to quantum field theory – according to which every trajectory 

through every point in space is treated equivalently as part of a possible path of the system – 

is an expression of Huygens’ Principle. It’s also worth reflecting on the fact that the quantum 

concept of a photon necessitates Huygens’ Principle, so evidently quantum mechanics can 

work only in space with an odd number of dimensions. 

Setting aside these weighty considerations, it's interesting to review the mathematical 

content of Huygens' original principle.  The usual wave equation for a scalar field 
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We've chosen units of time and space so that the wave velocity is 1.) If we consider a 

spherically symmetrical wave we have ),( rx =  where  22
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Returning to the basic wave equation, and assuming   is strictly a function of r  and t , we 

have the following partial derivatives with respect to each of the space variables: 
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Since partial differentiation is commutative, the second factor in the last term of the right- 

hand equation can be written as 

2

2222

)()(
rx

r

xr

r

rx

r

rrxrxrrx jjjjjj 






+








=












=








=




=



 
 

Now, since 

0)(
2

=







=





r

r

xxr

r

jj

 

the preceding mixed partial is simply 
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Substituting back into the expression for the second partial derivative of   with respect to 

jx , we have 
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Summing all these partials for j = 1 to n gives 
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Hence the spherically symmetrical wave equation in n spatial dimensions can be written as 
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Now suppose we define a new scalar field by the relation ),(),( trrtr k = , where k is some 

fixed constant.  The partial derivative of this scalar field with respect to r are 
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Notice that if we set 2/)1( −= nk , and if we divide through this second partial by 
kr , we 

have 
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This is nearly the same as the left-hand side of the spherically symmetrical wave equation, 

except for the last term.  Hence we can write the wave equation in the form 
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Furthermore, we can multiply through by 
2/)1( −= nk rr  to put this in the equivalent form 
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If n equals 1, meaning that we have just a single space dimension, then 
1xr =  and  = , 

so we expect the second term on the left hand side to vanish identically, as indeed it does, 

leaving us with just the original one-dimensional wave equation, with the well-known general 

solution 

)()(),( trgtrftr ++−=
 

for arbitrary functions f and g.  However, we might not have anticipated that the second term 

in the transformed wave equation also vanishes if n equals 3, i.e., in the case of three spatial 

dimensions.  In this case the spherically symmetrical wave equation once again reduces to a 

one-dimensional wave equation, although in the modified wave function   r=  . Hence 

the general solution in three space dimensions is 
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The fact that this solution is divided by r signifies that the magnitude of the wave tends to 

drop as r increases (unlike the one-dimensional case, in which a wave would theoretical 

propagate forever with undiminished strength).   Focusing on just the "retarded" component 

of the wave, 
r

trf )( −
, the fact that the time parameter  t  appears only in the difference tr −  

implies that the (attenuated) wave propagates in time with a phase velocity of precisely 1, 

because for any fixed phase   we have =− tr  and so 
dt

dr
 for this phase point is 1.  

Consequently if  f  is a single pulse, it will propagate outward in a spherical shell at precisely 

the speed 1, i.e., on the light cone.  Conversely, it can be shown that the wave function at 

any point in space and time is fully determined by the values and derivatives of that function 

on the past light cone of the point.  Any wave equation for which this is true (i.e., for which 

disturbances propagate at a single precise speed) is said to satisfy Huygens' Principle.  The 

connection with Huygens' original statement about secondary wavelets is that each wavelet - 

with the same speed as the original wave - represents a tiny light cone at that point, and 

Huygens' principle asserts that light is confined to those light cones. 

It's worth noting that in the above derivation we were able to reduce the polar wave equation 

to a simple one-dimensional equation by taking advantage of the fact that an unwanted term 

vanished when the number of space dimensions is 3=n  (or 1=n ).  For the case of two 

dimensional space this doesn't work (nor would it work with four space dimensions).  We can 

still solve the wave equation, but the solution is not just a simple spherical wave propagating 

with unit velocity.  Instead, we find that there are effectively infinitely many velocities, in the 

sense that a single pulse disturbance at the origin will propagate outward on infinitely many 

"light cones" (and sub-cones) with speeds ranging from the maximum down to zero.  Hence if 

we lived in a universe with two spatial dimensions (instead of three), an observer at a fixed 

location from the origin of a single pulse would "see" an initial flash but then the disturbance 
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"afterglow" would persist, becoming less and less intense, but continuing forever, as slower 

and slower subsidiary branches arrive.   

It's interesting to compare and contrast this "afterglow" with the cosmic microwave 

background radiation that we actually do observe in our 3+1 dimensional universe. Could this 

glow be interpreted as evidence of an additional, perhaps compactified, spatial dimension? 

What would be the spectrum of the glow in a non-Huygensian universe? Does curvature of 

the spatial manifold affect Huygens’ principle? 

It turns out that Huygens' Principle applies only with one time dimension and n = 3, 5, 7.., or 

any odd number of space dimensions, but not for any even number of space dimensions. 

(The case n = 1 is degenerate, because a pulse has only one path to take.)  To see why, let's 

return to the general spherically symmetrical wave equation in n space dimensions 
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and consider a solution of the form )()(),( tgrftr = .  (Naturally not all solutions are 

separable in this way, but since the wave equation is linear, we can construct more general 

solutions by summing a sufficient number of solutions of the separable form )()( tgrf .)  

Inserting this into the wave equation and expanding the derivatives by the product rule gives 
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Dividing through by  fg   gives 
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Notice that the left hand side is strictly a function of r, and the right hand side is strictly a 

function of t.  Since r and t are independent variables, the left and right sides must both equal 

a constant, which we will denote by  .  Hence we have two separate ordinary differential 

equations 
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If   is positive or zero the right hand equation gives “run-away” solutions for )(tg , whereas if 

  is negative we can choose scaling so that 1−=  and then g(t) satisfies the simple 

harmonic equation, whose solutions include functions of the form )sin(ct  and )cos(ct . The 

left hand equation can be re-written in the form 

0)1(
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=+−+ rf
dr

df
n
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r

 

If we multiplied this through by r , it would be in the form of what is called Bessel's equation, 

named after Friedrich Wilhelm Bessel (1784-1846), the German astronomer who 

(incidentally) was the first person to determine the distance to a star (other than the Sun).  In 

1838 he determined the distance to the star called "61 Cygni" based on the parallax as 
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viewed from the Earth at six-month intervals.  Bessel functions are solutions of a standard 

Bessel equation, just as the ordinary trigonometric functions, sine and cosine, are solutions 

of the differential equation 0=+ yy . 

To solve the above equation we can assume a series solution of the form 

.....)( 2

2

1

10 +++= ++ qqq rcrcrcrf
 

for some integer q (which may be positive, negative, or zero) such that 0c  is non-zero.  The 

derivatives of this function are 

.....)2()1( 1
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dr
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Substituting these into the differential equation, and collecting terms by powers of r , we get 
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                                                                    ....)3)(1()2)(3( 2
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The coefficient of each power of r must vanish, and since 0c  is non-zero, the expression for 

the first coefficient implies 0)2( =+− nqq  .  This is called the indicial equation, because it 

determines the acceptable value(s) of  
q

.  In this case we must have either 0=q or else 

nq −= 2 .  If 0=q  then the coefficient of 
qr  equals )1(1 −nc , so either n = 1 or else 01 =c .  

On the other hand, if nq −= 2 , then the coefficient of 
qr equals )3(1 nc − , so either 3=n or 

else again 01 =c .  We've already seen that the original differential equation has a particularly 

simple analytical solution when n (the number of space dimensions) equals either 1 or 3, so 

we need not consider them here.  For all other value of n , we must have 01 =c .  (Of course, 

even with 1=n or 3=n , we are free to set 01 =c .) 

Now, examining the coefficients of the higher powers of r , we see that in general the 

coefficient of 
mqr +

 is of the form 

  
11)1)(1())(1( −+ +++−++++ mm ccmqnmqmq  

Inserting 0=q , setting the overall coefficient to zero, and solving for 1+mc  gives 
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for ...3,2,1,0=m  .  Since 0c  is, by definition, the first non-zero coefficient, it follows that 
1−c  is 

zero, and therefore 01 =c .  Moreover, applying the above formula recursively, we see that all 
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the jc  coefficients for odd indices j must vanish.  On the other hand, the coefficients with 

even indices are given recursively by 
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and so on.  Notice that if n = 1 the denominators are 1*2, 3*4, 5*6, ..., etc., so the general 

non-zero coefficient of the solution can be written simply as 
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giving the solution 

....)
!4

1

!2

1
1()( 42

0 −+−= rrcrf
 

Hence the solution is simply )cos()( 0 tcrf = .  Recall that )(tg has solutions of the form 

)cos(ct and )sin(ct , and we can create a solution given by the sum of two separable 

solutions, so, for example, one solution is 

)cos()sin()sin()cos()cos()()()()(),( 2211 ctrctrctrctgrfctgrftr −=+=+=
 

Similarly if 3=n the denominators of the recursive formulas are ,....7*6,5*4,3*2 etc., so the 

general non-zero coefficient is 
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giving the solution 
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so in this case we have rtcrf /)sin()( 0= .  Combining this with suitable solutions for )(tg as 

in the case of 1=n , we can arrive at overall solutions such as rctrtr /)cos(),( −= .  This 

shows (again) that the cases of 1 and 3 spatial dimensions lead to especially simple 

solutions. 

In general, for arbitrary positive integer n, the coefficient jc2  is of the form 
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Notice that for 1=n  the factors in the square brackets are consecutive odd integers, and 

they can be interleaved between the consecutive even integers to give a pure factorial 

product.  Likewise for 3=n the odd and even factors can be interleaved to give a pure 

factorial product.  For higher odd integers we can interleave the factors in the same way, 

although there will be a fixed number of leading even factors and the same number of trailing 
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odd factors that don't overlap.  For example, with 7=n   the coefficient 
12c  is as shown 

below, after re-arranging the six even and six odd factors in the denominator 

  )17)(15()13)(12)(11)(10)(9)(8).7)(6()4)(2(
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012
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Taking advantage of this interleaving, we can express the general coefficient (for sufficiently 

large j ) with odd 3n  in the form 
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For any fixed n, the first factor on the right is just a constant, and the second factor is just one 

over a polynomial of degree 2/)3( −n  in the index j.  Therefore, after some number of terms, 

the series solution goes over to a simple factorial form with a polynomial divisor.  It can be 

shown that the resulting function f(r) is such that Huygens' Principle is satisfied, so this 

implies that the principle is satisfied for any odd number of space dimensions. This gives a 

relation to spherical waves in higher dimensions. 

In contrast, if the number of space dimensions is even, we do not have interleaving of the 

factors in the denominator of the coefficients.  In this case we can only re-write (1) in the form 
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For example, in the case 2=n  (i.e., two spatial dimensions) we have the coefficients 
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This gives the function 
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This is the Bessel function of order zero, often denoted as 0J . A plot of this function is 

shown below. 
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For positive arguments r , the Bessel function )(0 rJ can be expressed as 




=
0

0 ))sin(cosh(
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drrJ
 

Multiplying through by the temporal solution )sin()( cttg =  gives 

 


+−−=
0

)cos(cosh)cos(cosh(
1

),( 


 dctrctrtr
 

Hence, instead of the solution being purely a function of ctr   as in the case of odd 

dimensions, we find that it is an integral of functions of  ctr cosh . Each value of   

corresponds to a propagation speed of  cosh/c , so the speeds vary from c  down to zero. 

This signifies that the wave function at any event is correlated not just with the wave function 

on its “light cone”, but with the wave function at every event inside its light cone. (However, 

as discussed in another note, we must be cautious about inferring causality relations from 

such formulas.) 

It would be interesting to work out the connections between Huygens' Principle and the zeta 

function (whose value can only be given in simple closed form for even arguments) and the 

Bernoulli numbers (which are non-zero only for even indices).  It's also interesting to note the 

analogy between Huygens' spherical wavelets centered on the boundary of the wave front 

and the technique of analytic continuation, by which we expand the boundary of an analytic 

region by means of disks of convergence centered on or near the boundary of the existing 

analytic region. 

Paul Dirac (1902-1984) gave an interesting general argument for a much stronger version of 

Huygens' Principle in the context of quantum mechanics.  In his "Principles of Quantum 

Mechanics" he noted that a measurement of a component of the instantaneous velocity of a 

free electron must give the value c , which implies that electrons (and massive particles in 

general) always propagate along null intervals, i.e., on the local light cone.  At first this may 

seem to contradict the fact that we observe massive objects to move at speeds much less 

than the speed of light, but Dirac points out that observed velocities are always average 

velocities over appreciable time intervals, whereas the equations of motion of the particle 

show that its velocity oscillates between c+ and c−  in such a way that the mean value 

agrees with the average value.  He argues that this must be the case in any relativistic theory 
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that incorporates the uncertainty principle, because in order to measure the velocity of a 

particle we must measure its position at two different times, and then divide the change in 

position by the elapsed time.  To approximate as closely as possible to the instantaneous 

velocity, the time interval must go to zero, which implies that the position measurements 

must approach infinite precision.  However, according to the uncertainty principle, the 

extreme precision of the position measurement implies an approach to infinite indeterminacy 

in the momentum, which means that almost all values of momentum - from zero to infinity - 

become equally probable.  Hence the momentum is almost certainly infinite, which 

corresponds to a speed of c .  This is obviously a very general argument, and applies to all 

massive particles (not just fermions). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Spherical Waves and the Telegraph Equation  

 

The propagation of the spherical electromagnetic (or sound) wave has been given in a 

system  by the following equation  
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0. 22222 =−++ tczyx  

The „vibration string“ equation with a solution in the form  )(),( 22 ktxftxu −= , 1)0( =f for any 

function of one variable f has the from 

uuku xxtt

22 =−
 

For the telegraph equation 

  ).(: yxgcuuuL xy =+=
 

the corresponding Riemann function is given by 

))((4),;,( 0  −−= yxcJyxv  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Wellenausbreitung in drei Dimensionen  
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Wir betrachten zuerst den Fall 3-dimensionaler Wellenausbreitung, da die 2D-Greenfunktion 

im Zeitbereich leicht aus der 3D-Greenfunktion abgeleitet werden kann. Im 3D-Fall lautet die 

Wellengleichung  
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Wir betrachten einen Vollraum mit einer Punktquelle im Ursprung. Zur Darstellung der 

Punktquelle benötigen wir eine Definition der Deltafunktion in drei Dimensionen. Die 

Selektionseigenschaft der Deltafunktion soll nun lauten  
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Wir suchen wieder die Greensche Funktion, d. h. die Lösung der Gleichung  
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mit 0)0( =tq und den Anfangsbedingungen 0)0,,()0,,( 00 == rrGrrG


. Um wieder eine 

alternative Formulierung des Problems zu finden, wird über eine Kugel mit Radius 

integriert. Dabei kommt uns zugute, daß )( GG = , und der Gaußsche Satz angewendet 

werden kann. Unter der Voraussetzung, daß das Volumenintegral über 
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Die alternative Problemstellung ist demnach: 
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Wir haben es jetzt nicht wie im 1D-Fall mit einer Unstetigkeit der Ableitung der Greenschen 

Funktion zu tun, sondern mit einer Singularität der Greensche Funktion im Ursprung, die so 

geartet ist, daß obiges Oberflächenintegral einen endlichen Wert hat.  

Da die Welle sich kugelförmig vom Herd ausbreitet, hängt die Greensche Funktion nur vom 

Abstand von der Quelle ab. Man arbeitet daher am besten in Kugelkoordinaten. Der Laplace-

Operator lautet in Kugelkoordinaten  
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sodaß unser Problem nun lautet:  

)
),(

(
1),( 2

2

2

2

2

r

trG
r

rrt

trG








=






    

0r
 

)(
1

)4lim(
2

2 tq
r

G
r


 −=




 

Mit der neuen Variable rG=  erhält man daraus für 0r  die 1D-Wellengleichung  
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und die Bedingung  
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Das dreidimensionale Problem ist auf ein eindimensionales reduziert worden. Allerdings 

sieht die Zusatzbedingung an der Quelle völlig anders aus als im 1D-Fall. Wir werden 

deshalb auch eine völlig andere Lösung bekommen.  

Da die Quelle im Ursprung liegt, kommen nur auslaufende Wellen in Frage. Wir machen den 

Ansatz  

)(),( trftr −=  

Die Zusatzbedingung liefert  
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woraus folgt  
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Die Greensche Funktion lautet demgemäß ganz einfach  
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Erstaunlicherweise erhält man die einfachste Lösung im 3D-Fall. Das Signal ist identisch mit 

der Quellfunktion, während es im 1D-Fall eine integrierte Version des Quellsignals war. Die 

Kausalität ist offensichtlich, da für tr  das Argument von q negativ ist und somit   0=q . 

Eine Besonderheit ist der Amplitudenabfall mit r-1. Man nennt diesen Faktor auch das 

geometrische Spreading. Geht man davon aus, daß der Energiefluß durch eine Kugelschale 

proportional zum Quadrat der Amplitude ist, so folgert man aus der Energieerhaltung  
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tconstrG tan),(4 22 =  

woraus folgt, daß G  mit 1−r abfallen muß.  

Interessant ist, daß im 3D-Fall die Impulsantwort keine Sprungfunktion sondern eine 

Deltafunktion ist;  
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Das heißt, ein Impuls, der bei 0= abgeschickt wird, kommt zurzeit 
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=  unverändert am 

Empfänger an.  

Die Greensche Funktion im Frequenzbereich erhalten wir einfach durch Fouriertrans-

formation der Greensche Funktion im Zeitbereich  
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man sich den Zeitfaktor tie −  hinzu, sieht man, daß wir es wie erwartet mit einer 

auslaufenden, harmonischen Kugelwelle zu tun haben. 

 

Sphärische Wellen (Kugelwellen) sind Lösungen der Gleichung 
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Mittel dem Ansatz )( ctrfrE =  ergibt sich 
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Zylinderwellen sind Lösungen der Gleichung 
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Es ergibt sich 
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The Helmholtz equation with space dimension n

 

is given by  
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where i  represents the Dirac delta function at the source point i corresponding to the 

fundamental solution. The domain   can be unbounded or bounded with or without 

boundary conditions; x denotes the n-dimensional coordinate variable and 
kk xxr −=:

 

The kernel wavelet basis functions are
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where nh  comply with the divergence (conservation) theorem 
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and nh  satisfy the Sommerfeld radiation condition at infinity 
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The link to the density function (2.1) below is given by     
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With reference to fractional mathematics we note that 
4

1
:=  in (2.1) would correspond to a 

fractional dimension of space of 5.2=n . 

Using the Hankel functions  
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Putting )(:)(
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1 xx = ...... can be re-formulated to  
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which might motivate an alternative or additional “polar” coordinate transformation in the 

context of Riemann manifolds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Spherical waves, Cauchy and radiation problem, Huygens 

principle in space dimension m=3 

 

This section is referring to Courant-Hilbert, Methods of mathematical physics II, chapter VI, 

§5.6, §10.3. being m  die space dimension and 1+= mn .  
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Huygens principle is valid for odd m  under the same condition as both, Cauchy’s initial 

value problem and the radiation problem, which we recall in the following, whereby we 

restrict to 3=m : 

Being   =++= 22233 ),,( zyxRzyxB  the ball with center 0  and radius  and  

r
ngradu

n








==




,

 
 the differentiation in the direction of the external normal. With the 
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being )(tg  the intensity of the radiation. 

The solution of this radiation problem is spherical waves of order 
2

1−n  with the wave form 
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for 3m , m  odd. 

 

There is an unproven hypothesis in the following sense: 

Spherical wave are characterized by both, for any time like lines only existing for 

21 =+= mn  or 41 =+= mn  and only for wave equation like differential equations. 

8. Fourier analysis for the wave equation 

 

The solution of the distribution equation 
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is called Green’s function (or propagator in physics). Using the Fourier transform 


−= dxdtextSkS ikxti ),(),(ˆ

 


+−= dxdtekSxtS ikxti

m




),(ˆ
)2(

1

2

1
),(  

leads to an algebraic equation in the form
 

1),(ˆ)(
22 =− kSk   . 

These results into 

(*)    
+−

−
= dxdte

k
xtS ikxti

m



 )(

1

)2(

1

2

1
),(

22  

which first requires an analysis of the integral for fixed k? 
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In den Fällen  0t  und  0t  fällt der Integrand exponentiell ab falls  0)Im(   

nach   −  bzw.    strebt.  Man kann das −  Integral in der unteren bzw. in der 

oberen komplexen Halbebene schliessen. Damit erhält man ein geschlossenes 

Konturintegral, das mit Hilfe des Residuensatzes gelöst werden kann. Allerdings 

sind die Pole des Integranten reell und liegen damit genau auf dem Kontur, d.h. 

folgendes: wählt man unterschiedliche Pole um die Pole herum, so ändert sich 

der Wert des Integrals um ein Vielfaches der Residuen bei k=  . Damit wird 

das Integral (*) um einen Beitrag 
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mit komplexen Koeffizienten 2/1c   abgeändert, which are plane waves and 

solutions- of the homogene wave equation, heisst sie fallen heraus aus der 

obigen Distributionsgleichung. This means that the Green function is not unique. 

To get specific solutions one chooses specific contours around the poles. The 

technique doing is, is to shift the pole by an   and let get  0→  . The way how 

making this infinite shift determines different Green functions. The Green 

functions of special interest are avancierte bzw. Retardierte Green’sche 

Funktionen, i.e. 
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whereby )(t  is the Heaviside function, i.e. 
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9. Magical Lagrange and Hamilton analytical mechanics 

 

Lagrange vs. Hamiltonian formalism are two sides of the same coin, same underlying 

calculus concept to handle infinitesimal actual (!) “distances”  dx  to model momentum and 
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action. Impressed forces are accepted, but within the variation concept ..... heben sich 

gegenseitig auf bzw. erzeugen keine Wirkung  --> ignored. 

In  Leibniz’s philosophy the “force” (impressed force only?) is equivalent to an “active 

substance”=”monad”, which is at the same time a “substance” in Plato’s ideal world, with no 

extension, i.e. an “existing point in space” (Penrose 3.3), where from a physical point of view, 

there is no evidence for its existence. Point particles, path integrals, gauges theory, Leibniz 

assumes that the whole of mathematics is found inside us. 

In the one-dimensional case the concept of hyperfunctions enables a link between 

distributions and a holomorphic, i.e. a complex-analytical function, as any distribution f on R  

can be realized as the “jump” of the corresponding in RC −  holomorphic Cauchy integral 

function  

 −
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xt

dttf

i
xFxf

)(

2

1
:)(:)(




 

across the real axis, given by 

dxxiyxFiyxFf )())()(lim),(  


−

−−+=     for +→ 0y  . 

The Hilbert transform H gives a Cauchy principle-valued function with Fourier terms  

  uiHu )sgn()( −=  . 

The study of the Hilbert transform and the study of operational calculus for non-commuting 

operators in quantum mechanics (e.g. the Weyl operator) contain some of the basic 

ingredients of the theory of pseudo differential operators ([BPe] B. E. Petersen, 3.1). 

Freeding the Hilbert transform from its too intimate link connection with complex variables 

techniques Calderon and Zygmund introduced the algebra of singular integral operators 

(modulo compact operators) based on salient features of the Hilbert transform ([BPe] B. E. 

Petersen, 2.9). This also stimulated the study of the algebra generated by singular differential 

operators and partial differential operators ([BPe] B. E. Petersen, 4.1ff), which all leads into 

the concept of pseudo differential operator. 

The Hilbert transform, which is a classical Pseudo differential operator, transforms the 

Gauss-Weierstrass density function into a “P.v. distribution” ([24] B. E. Petersen, 1.7, ) in the 

form 

(*)                                         
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 . 

We mention Euler’s famous formula ([NNi] N. Nielsen, chapter IX, §51) 
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As link to a well known Zeta function constant we mention ([BPe] B. E. Peterson, 1.15, [RBr] 

R. P. Brent)  

 log22
1

.. −−=













x
fP

    , 

whereby  P.f. denotes Hadamard’s “partie finie” or “finite part”. The P.v. distribution (*) can be 

calculated, which we state in  

To make a rigorous presentation of the Hilbert transform theory one have to apply distribution 

theory. We state some main properties of the Hilbert transform in 

Lemma: For the Hilbert transform it holds 

   i)  1=H  ,
 

HH −=*
 ,

 
IH −=2

, 
31 HH =−

 
,  

ii)  gHfHgfgfH **)*( ==  ,  HgHfgf ** −=  

iii)  If  ( )
Nnn 

  is an orthogonal system, so it is for the system ( ) NnnH )(  , i.e. 

        ( ) ( ) ( )nnnnnn HHH  ,,, 2 =−= . 

iv)   
22

uHu = , i.e. if 
2Lu   then 

2LHu  . 

For other properties related e.g. to rotations we refer to [St] E.M. Stein. 

The specific properties of the Hilbert operator  we summaries in 

 

Lemma: The Hilbert Operator fulfills 

i)  The Fourier term for 0=  is 0)( 0 =Hu  

ii)   


−
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iii)
 
for odd functions  it hold
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                       v)  If  
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Lemma: The Hilbert transform of the Gauss-Weierstrass density function 
2

:)( xexf −= and its 

related Fourier transform are given by 

i) 
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ii)                                       
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Proof: 

i) The Fourier transform of   2/4/1

0

2

:)( tet −−=   is given by  2/4/1

0

2

2:)(ˆ  −= et  . From this we get   

  )(ˆ)sgn()()( 00  iH −=


 . 

Applying the inverse Fourier transform then gives 
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With    )2()( 0

4/1 xxf =  it follows  
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Substituting the variables     2=  then leads to 

    dxexfH )2sin(4)()(
0
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−=  . 

Using    ))(()((  fFourierixfFourier =    the same argument leads to the Hermite 

transform of )(1 t  . 

 

ii) We recall the Fourier transforms 
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which leads to ii)  

iii) As )(xf is an even function is follows that   )()( xfH is even. From the previous lemma it 

then follows  
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The weighted Hermite polynomials (e.g. [St]  R.S. Strichartz, 7.6) 
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form  a set of orthonormal functions in ),(2 −L , i.e. the Hermite polynomials have only real 

zeros. The relation to the Gauss-Weierstrass density function is given by 

)2()( 0

4/1 xxf =  .

 

The Hermite polynomials )(xHn
 fulfill the recursion formula 
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from which the recursion formula for the corresponding Hilbert transforms of the Hermite 

polynomials can be derived, i.e.
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The simplest version of the harmonic oscillator is the Hamiltonian system with Hamiltonian 

                          
)(

2

1
),( 222 qpqpH +=

   

and  pq = ,  qp −= , qq 2−=  

Identifying  CR 2  by putting qipz +=  a solution to  2

2

1
),( zqpH =

 

is given in the form 

tiCetz =)(  . 

The Hermite polynomials are used to model the energy states of the harmonic quantum 

oscillator.  

A complex function is called Hermitian if its real part is even and its imaginary part is odd. If 

)(tg  is a real function, then e.g. )(ˆ g  is Hermitian and therefore 
2

)(ˆ g  is even. 

A complex signal  u  is called a strong analytical signal if it holds   iuHu = . For strong 

analytical signals u  it holds  ))(Im())(Re( xuuH = , i.e. 

))(()()( tuiHtutz +=  

is a strong analytical signal. From this, the combination of Hermite polynomials with its 

Hilbert transforms in the form 

)()()( tittz nnn 


+=  

defines an alternative orthogonal system for the solution space of the harmonic quantum 

oscillator. This might provide an alternative model for the zero point energy of the harmonic 

quantum oscillator, which might overcome current inconsistencies between the Casimir effect 

(i.e. existing radiation at absolute zero point of the temperature) and the calculated infinite 

energy density from the harmonic quantum operator model. 

 

 

The Maxwell equations follow the U(1)-symmetry. It basically says that a photon is symmetric 

to itself. U(1) is diffeomorph to the unit circle, consisting of all complex numbers with absolute 

value 1 under the multiplication operation. U(1) is the rotation group in the (q,p)-plane, which 

plays a key role for the quantum harmonic oscillator. The invariance of U(1) gives the root 

cause of the existence of the Leiter (creation or annihilation) operators: 

aaixpixpH klassig
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+=+= AAQPH quantum
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1 *22
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 . 

From [RSt]  R.S. Strichartz, 7.6, we recall the  
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Lemma A.1: Suppose   is an eigenfunction of H  with eigenvalue  . Then *A  is an 

eigenfunction with eigenvalue 2+ , and A  is an eigenfunction (as long as 0 ) with 

eigenvalue 2−  . 

 

The link of “Hamiltonian function” to (complementary) variational principles referring to [Ve] 

W. Velte, 6.2.4, which is called the method of Noble.  

Let ),,(E and ( )),,(E   be Hilbert spaces and  EET →:  , EET →:*  linear operators 

fulfilling ( ) uuTTuu ,, * =  and let RxEEW →:  a functional fulfilling 

u

uW
T




=

),(     and    
u

uW
T




=

)(.,*  

i.e. the operators T  and 
*T  are deviations from  (.,.)W   in the sense of Gateaux, i.e. 

)(
)()(

lim vF
t

vFtvuF
u=

−+  for all Ev   . 

Putting  )(),(
2

1
:),( uFuuuuW −=   the minimization problem 

(*)        min)(2),(:)( →+= uFTuTuuJ EUu   

leads to uTu =  and ( ) (.),.*

uFuT −=  and therefore to 

 

Lemma A.2 (method of Noble): If (.)F  is a convex functional it follows that ),( uuW   is convex 

concerning  u  and concave concerning   u . The minimization problem (*) is equivalent to 

the variational equation 

0)(),( =+  uFTv   for all U    resp.   )(),( *  uFvT −=  for all U  . 

i.e. there is a characterization of the solution of (*) as a saddle point. 

 

 

 

 

 

 

 

10. Lie Groups, fundamental forces and “particle physics” 
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There are 4 fundamental forces of Nature:  

the weak, electromagnetic, strong and gravitational forces. 

All of them are handled within the domain of “particle physics”, i.e. the action of forces are 

studied and modelled in relation to particles (accelerations). Current gauge theories are 

based on the concept of Lie groups, trying to unite all fundamental forces of Nature in one 

unified field theory: 

1. Maxwell theory, based on )1(U , unites electricity & magnetism, 

2. Weinberg-Salam model, based on )1()2( USU  , unites the weak force with the electricity 

force, 

3. GUTs, based on )10()5( OSU   or larger groups, are proposed as candidate to unite the 

strong force with electroweak force, 

4. Superstrings are under discussion to unite gravity with the rest of the particle forces. The 

naive merger of general relativity and quantum mechanics produces a divergent theory, 

quantum gravitation, which assumes that gravitation is caused by the exchange of particle-

like gravitons. Superstring theory proposes that the gravitation is caused by the exchange of 

closed strings instead. 

  Unitäre Matrizen                        n

T EAAnnMACnU == *),(),(  

Spezielle unitäre Matrizen        1det),(),( == ACnUACnSU  

)()()1( nUnSUU =  

 

 1),1( ECSU =   ,      CnSUnUZRezCzSRcisCU i === )(/)(/)(),1( 1   ,   

 

















−+

−
===

321

213
1______),2(

xixx

ixxx
XvalueabsoluteofsquaternionofgroupCSU  
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hermitisch, complex, 2 invariants: 22
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),3( CSU  “Farb” bzw “flavor” group of the order 3, baryons interaction 

),5( CSU  Gruppe der grossen Vereinigung der Wechselwirkungen der Ordnung 5 
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),( dV  unitärer Vektorraum über komplexem Zahlenkörper C , (*,*)d  positive definit, 

hermitisch; jede unitäre Matrix  A  lässt sich zerlegen in  

)2()1()2(12 SUUUAeA i == 
 

 

                        

SU(2) 

Die nächst höhere Symmetrieart ist SU(2): group of quaternions of absolute value =1, 

diffeomorph to the 3-shere; 

Die elektroschwache Theorie stellt ein Beispiel für diese Symmetrieart dar, den diese 

Symmetrie ermöglichst den Austausch von Elektronen und Neutrinos, ohne dass dabei die 

Gleichungen verändert werden. Zwischen Elektronen und Neutrinos besteht also Symmetrie. 

Und weil diese Theorie auch die Maxwellsche Theorie mit einbezieht, kann sie sich durch die 

kombinierte  )2()1()2( SUUU =  Symmetrie beschreiben lassen. Diese Symmetrie erlaubt 

praktisch den Austausch von Elektronen, Neutrinos und Photonen, ohne dass dabei die 

Gleichungen verändert werden. Zwischen Elektronen, Neutrinos und Photonen existiert also 

eine Symmetrie. 

SU(3) 

Die starke Kraft (QCD) kann wiederum durch die SU(3)-Symmetrie beschrieben werden, weil 

diese Symmetrieart drei Teilchen austauschbar macht. Dabei handelt es sich um die drei 

Farbladungen (rot, blau, grün) des Quarks.  

SU(5) 

Die SU(5)-Symmetrie ermöglicht schliesslich die Austauschbarkeit von fünf Teilchen (das 

Elektron, das Neutrino und die drei Farbladungen des Quarks), ohne dass dabei die 

Gleichungen verändert werden. 

The goal of string theory is to explain the "?" in the above diagram. 

The characteristic energy scale for quantum gravity is called the Planck Mass, and is given in 

terms of Planck constant, the speed of light, and Newton's constant,  

219 /10*22.1/ cGeVGcM Npl ==   
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While the Standard Model has been very successful in describing most of the phenomenon 

that we can experimentally investigate with the current generation of particle accelerators, it 

leaves many unanswered questions about the fundamental nature of the universe. The goal 

of modern theoretical physics has been to find a "unified" description of the universe. This 

has historically been a very fruitful approach. For example Einstein-Maxwell theory unifies 

the forces of electricity and magnetism into the electromagnetic force. The Nobel prize 

winning work of Glashow, Salam, and Weinberg successfully showed that the 

electromagnetic and weak forces can be unified into a single electroweak force. There is 

actually some pretty strong evidence that the forces of the Standard Model should all unify as 

well. When we examine how the relative strengths of the strong force and electroweak force 

behave as we go to higher and higher energies, we find that they become the same at an 

energy of about 1016 GeV. In addition the gravitational force should become equally 

important at an energy of about 1019 GeV.  

 

Scattering 

Example: Coulomb-Streuung von Elektronen an einem negativ geladenen Streuzentrum.  

Betrachte dazu folgende Abbildung. Zuerst wird ein Teilchen mit Stoßparameter b  (rote 

Bahn) gestreut, dann das gleiche Teilchen mit Stoßparameter dbb +  (grüne Bahn). 

 

Man erkennt, dass eine Vergrößerung des Stoßparameters um db  zu einer 

Streuwinkelverkleinerung d  führt.  

Betrachten wir nun die Situation in Flugrichtung. Neben einer Vergrößerung db (red) des 

Stoßparameters könnte man die Bahn des Elektrons auch so ändern, dass es an der Stelle 

durch die Zielscheibe fliegt, die durch eine Drehung um den Winkel d  (green) aus der 

ursprünglichen Stelle hervorgeht (in Abbildung rechts als Drehung um d  (green) nach 

rechts dargestellt).    

http://www.sukidog.com/jpierre/strings/glossary.htm#standard
http://www.sukidog.com/jpierre/strings/glossary.htm#electro
http://www.sukidog.com/jpierre/strings/glossary.htm#ew
http://www.sukidog.com/jpierre/strings/glossary.htm#strong
http://www.sukidog.com/jpierre/strings/glossary.htm#GeV
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Fasst man alle Kombinationen der beiden Änderungen db  und d  (oder kleinere) 

zusammen, kann man auch eine kleine Fläche d  als mögliche Menge aller Änderungen 

betrachten. (siehe Abbildung links; Blick in Flugrichtung!). d  stellt eine kleine Änderung des 

Wirkungsquerschnitts dar. Die Länge des kleinen Kreisbogens (grüner Pfeil in Abb. rechts) 

ist bd . Somit gilt:   

d = b.d . db  

 

         

          

Wohin wird ein Teilchen gestreut, wenn seine Flugrichtung wie in rechter Abb. um d  

verändert wird?    

Wenn wir voraussetzen, dass das für die Streuung verantwortliche Potential 

radialsymmetrisch ist, also nur vom Abstand abhängt, ändert sich nichts! 

! Das Teilchens beschreibt auch nach der Streuung eine Flugbahn, die gegenüber der 

unveränderten Bahn um d  verdreht“ ist.  

Wohin wird ein Teilchen gestreut, dessen Flugbahn durch d geht?   

Dazu betrachten wir kurz die Abbildungen rechts. Die linke Abbildung zeigt die Ebene 

senkrecht zur Flugrichtung, durch die das Teilchen vor der Streuung fliegt. Wir nehmen an, 

dass das Teilchen irgendwo durch die orange Teilfläche fliegt. Die rechte Abbildung steht 

hinter dem Streuzentrum und stellt sozusagen eine Zielscheibe dar. Teilchen, die vorne 

durch die orange Teilfläche geflogen sind, treffen im Ziel alle in die rote Teilfläche.  

 

 

 

 

 

 

 

http://www.xplora.org/downloads/Knoppix/Teilchenphysik/grundl_d_tph/lexikonqt.html#radialsymmetrisch
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Geht nun ein Teilchen durch d (hellblaue Teilfläche vorne), so wird es schwächer gestreut. 

Es muss also im Bereich der dunkelblauen Teilfläche auf die Zielscheibe treffen. 

 

 

 

 

 

 

Im direkten Vergleich der beiden Fälle sieht man, wie sich die Streurichtung verändert, wenn 

ein Teilchen durch d fliegt. Dazu sind im unteren Abbildungspaar jeweils beide Teilflächen 

eingezeichnet. Folgende Flächen gehören zusammen:   
orange zu rot und hellblau zu dunkelblau. 

 

 

 

 

Statt den Abstand zweier 
Flugbahnen in einer bestimmten 
Entfernung vom Streuzentrum 

Differenz d  anzugeben, gibt man die 

der beiden Streuwinkel an.   
Analog dazu gibt man statt einer Teilfläche in einer bestimmten Entfernung vom 
Streuzentrum einen sogenannten Raumwinkel an.    
Einen Raumwinkel bestimmt man dadurch, dass man alle Punkte des Randes einer Fläche 
(z.B. 

DA  , siehe rechts) mit dem Mittelpunkt verbindet.    

Ist r  der Radius der Kugel, auf deren Oberfläche man die Teilfläche AD betrachtet, so gilt 

für den Raumwinkel  der Zusammenhang:  

                                                                                                                                                                                           

 

 

 

 

 

 

 

                                                          = AD /r2 

Für ein (infinitesimal) kleines Raumwinkelelement schreibt man d .   

http://www.xplora.org/downloads/Knoppix/Teilchenphysik/grundl_d_tph/lexikonqt.html#Raumwinkel
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Die zentrale Aussage über die Flugbahn eines Teilchens lautet:   

Teilchen, die durch d fliegen, werden in ein Raumwinkelelement d  gestreut. 

Die folgende Abbildung veranschaulicht eine entsprechende Flugbahn, man blickt dabei von 

der Seite auf die Bahn (rot). 

 

 

Wie kann man aus der Kenntnis des Streuwinkels   auf die Größe des 

Stossparameters b  schließen? 

Das Coulomb-Potential )(rU  ist bekannt. Zwei Ladungen ( q  und q ), die Vielfache der 

Elementarladung e sind ( Zeq = und eZq = ), besitzen folgende potenzielle Energie:   

r

eZZ
rV

0

2

4
)(




=  

0  ist die elektrische Feldkonstante. Durch geometrische Überlegungen und die Benutzung 

der Energieerhaltung (Anfangsenergie  const
mv

E ==
2

2

) errechnet man folgenden 

Zusammenhang: 

)
2

cot(
8 0

2 

 E

eZZ
b


=  

Da eZZ ,,   und E  Konstanten sind gilt:    

)
2

cot(


b
 

Der Stoßparameter ist proportional zum Kotangens des halben Streuwinkels! 

Man kann den Zusammenhang leicht umformen: 

)
2

cot(
8

2

0 
=

eZZ

E
b  

Daran kann man folgendes erkennen:   

a) Erhöht man nur die Energie E , wird die linke Seite der Gleichung größer, damit auch der 

)
2

cot(


. Das bedeutet aber, dass   kleiner werden muss (siehe Abbildung rechts). 

Anschaulich kann man es sich so vorstellen, dass je schneller das Teilchen ist, desto 
weniger wird es gestreut.  
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b) Erhöht man nur Z  oder Z  , nimmt also stärker geladene Teilchen, so wird die linke Seite 

kleiner, da Z und Z‘ im Nenner stehen, damit muss  größer werden. Anschaulich bedeutet 

dies, dass das die Streuung umso größer ist, je stärker die Teilchen oder das Target geladen 
sind. 

 

 

Das beschriebene Verhalten entspricht den Erwartungen, die man an die Coulomb-Streuung 
stellt.  

 

Was bedeutet dies für die Auswertung der Messergebnisse? 

Im Prinzip ist es ganz einfach. Betrachten wir dazu den Rutherfordschen Streuversuch. Bei 

der Streuung der − Teilchen ( 2=Z ) an Goldatomen ( 79=Z ) muss man die Energie E 

der − Teilchen und den zugehörigen Streuwinkel    bestimmen. Daraus kann nach 

obigem Zusammenhang der Stossparameter berechnet werden.  
Man fand Abweichungen vom Streugesetz für ganz kleine Stoßparameter. Daraus schloss 
man, dass für kleine Stoßparameter etwas „Neues“ passiert. Dies war ein Hinweis auf die 
Größe der Teilchen. Sie „berühren“ sich und verändern damit das aufgrund des 
Streugesetzes erwartete Ergebnis. 

 

 

 

 

 

 

Der Stoßparameter b  kann aus der Messung der Teilchenenergie und des Streuwinkel    

bestimmt werden. Der Stoßparameter ist proportional zum Kotangens des halben 
Streuwinkels. 

 

 

 

 

 

 

http://www.xplora.org/downloads/Knoppix/Teilchenphysik/grundl_d_tph/lexikonac.html#Coulomb-Streuung
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Diffraction 

If we look at the shadow cast by an opaque object, we would find that it is very intricate. In 
fact, the shadow would consist of bright and dark regions which are not expected from 
everyday geometrical optics. This is known as diffraction, and it was first shown in the 1600s 
to be a general characteristic of wave phenomenon which occurs whenever a portion of a 
wavefront is obstructed in some way. In particular, if a wave encounters an obstacle, then 
diffraction occurs when a region of the wavefront is altered in amplitude or phase.  

It is important to realize that there is not physical difference between interference and 
diffraction. However, it is traditional to consider a phenomenon as interference when it 
involves the superposition of only a few waves, and as diffraction when a large number of 
waves are involved. Another aspect that is important to understand is the fact that every 
optical instrument only uses a portion of the full incident wavefront. Because of this, 
diffraction plays a significant role in the detailed understanding of the light train through the 
device. Even in all of the potential defects in the lens system were eliminated, the ultimate 
sharpness of the image would be limited by diffraction.  

In order to begin to understand diffraction, let’s return to Huygen’s principle. Recall that this 
told us that each point on a wavefront can be viewed as a source of secondary spherical 
wavelets. From this, the progress of the wavefront as it moves through space can 
theoretically be determined. At any particular time, the shape of the wavefront is made up 
from the envelope of the secondary wavelets. There is a problem with this approach. In only 
considering the envelope of the secondary wavelets, Huygen’s principle ignores most of the 
secondary wavelet and retains only the portion which is common to the envelope. As a result 
of this, Huygen’s principle is unable to account for the details of the diffraction process. An 
example of this can be seen by comparing radio and visible light waves. Radio waves are 
seen to “bend” around large objects, such as buildings and telephone poles, but visible light 
creates a fairly distinct shadow. Huygen’s principle is independent of any wavelength 
consideration and predicts the same wavefront configuration in both situations.  

This problem was resolved when Fresnel added to Huygen’s principle with the idea of 
interference. The resulting principle, known as the HuygensFresnel principle, states that 
every unobstructed point of a wavefront, at a given instant in time, serves as a source of 
spherical secondary wavelets, with the same frequency as that of the primary wave. The 
amplitude of the optical field at any point beyond is the superposition of all these wavelets, 
taking into consideration their amplitudes and relative phases. As an example of this, 
consider the following drawing  

                                             

Define the maximum optical path length difference as BPAP −=max    . Assume that  

maxAB . Then when AB , we also have that max . Since the waves were 
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initially in phase, they must all interfere constructively, no matter where P happens to be. On 

the other hand, when AB , the area where max  is limited to a small region 

extending out directly in from of the aperture, and it is only there that all of the wavelets 
interfere constructively. Beyond this region, some of the wavelets can interfere destructively. 
This is the geometric shadow. Remember that the idealized geometric shadow corresponds 

to 0→ .  

 

The Circular Aperture 

Fraunhofer diffraction through a circular aperture can be found in a manner similar to that 
used for the rectangular aperture. In this case, instead of using rectangular coordinates, the 
symmetry of the situation dictates the use of cylindrical coordinates. It holds  
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is known as a Bessel function of the first kind. Comparing it to the azimuthal integral above 
we see that  
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Using the recurrence relationship for Bessel functions,  
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where the relationship 
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=sin   was used. The irradiance becomes  
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 At the center of the aperture, the irradiance is  
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11. Differential forms, duality relation between Cartan and Co-

derivatives 

 

Examples for q-forms in 
3RM = ( ( ),...,, kba are functions of zyx ,,  ) are: 

0-form    ),,( zyx = ,              dz
z

f
dy

y

f
dx

x

f
d




+




+




=  

1-form    cdzbdyadx ++=      ,                     dxdy
y

a

x

b
dzdx

x

c

z

a
dydz

z

b

y

c
d )()()(




−




+




−




+




−




=  

2-form    dyhdxdxgdzdzfdy ++=   ,   dxdydz
z

f

y

f

x

f
d )(




+




+




=  

3-form     dzdykdx = ,                           0=d  

k-forms ( 3q ) 0= .    (general form    k

k

k
dxdxdx







 =  ...2

21

1

21

......

......  ).     

With the notation ),,( cbaa =


, ),,( hgfv =


, ),,( dzdydxxd =


, ),,( dxdydzdxdydxdA = ,  

dxdydzdV =  this gives (note dffd = ) 

0-form    )(x


 = ,              xdgradd


 =  

1-form    xda


=  ,                      dAarotd


=  

2-form    dAv


= ,      dVvdivd )(


= . 

 

For the polar coordinates in dimension 4, given by 

 sincossin* 1 rerx ==

 
 sinsinsin* 2 rery ==

 

 sincos* 3 rerz ==
 

cos* 4 rerw ==

 

it holds                                        


23 sinsin
),,,(

),,,(
r

rd

wzyxd
= ,      

 dddrdrdV 23 sinsin=             dddr
dr

dV
dA 23 sinsin==  .                                         
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Let M  be a n-dimension, oriented semi-Riemann manifold and Mk  be the vector space of 

the differentiable k-forms on M  (note that )(0 MCM = ). Each Mk  is a skew 

symmetric −),0( k  tensor on M , i.e. a  ),0( kC −
 tensor field on M .   

Especially a −)2,0(  tensor on M  is a symmetric, positive definite bilinear form, which is also 

called the metric tensor (the fundamental tensor or the metric), i.e. a  )2,0(−C  (i.e. twofold 

covariant) tensor field on M .   

Let 
M  the volume form of M . The pointwise building of the scalar product of two forms   

Mk, defines a function )(, MC . It integration over  M  (with compact 

intersection of thier support) via the volume form 
M  gives a real number, i.e. 

=
M

M ,:,  . 

For every k  there is a linear mapping  MM knk −→ :  that for all  Mk,   it holds 

M ,=  

This operator is called the Hodge operator. It holds 

Id=
    

 and      0=dd 
  
. 

The electromagnetic field is described by the Faraday tensor:  

Let ( )
ikFF =


 be the Faraday tensor, defined by 

( )
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==
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FF ik


 . 

Applying the Hodge operator to this tensor ( )
ikFF =


, which is the Maxwell tensor, keeps 

the full information about the field, because the Hodge poperator is an isomorphism: 

( )





















−

−

−

−−−

==

0

0

0

0
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132

231

321

EEB

EEB

EEB
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FF ik


 . 

Both tensors are differential form of order 2. For the Maxwell equations (1) and (2) the 

following equivalent formulations are valid: 

(1)      IFd 4=


   ,     (2)      0=Fd


 . 
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We note the two Poicare lemmata: 

1. Poincare lemma: for each differential form F  it holds  0)( =dFd  

2. Poincare lemma: for each differential form F  with  0=dF  for an open domain of a point 

P  there exists a differential form G  with  FdG =  . 

 

The Co derivation  MM knkn 1: −−− →  , defined by 

1)1(: −−= dk  

is the formal adjoint (dual) operator of d, i.e. it holds 

Theorem (duality equation for the Cartan derivative): For Mk  and Mk 1+  with 

compact intersection of their support in MM −  it holds 

 ,, −=d  . 

For 
3RM =  it holds  

i)  MdVdzdydx 31 ==  (and therefore  1= dV ). 

ii) dzdydx =  ,  dxdzdy =  ,  dydxdz =  .   

 

For vector fields v  and  w  it holds in local coordinates 





 wvwvgwv v ==:,  . 

For 1-forms   and   it holds in local coordinates 




  vg==,  ,     especially        vgdxdx  =,  .         

 

 

 

 

 

 

A symplectic manifold is a pair ),( 2 mM , where 
mM 2

 is a manifold with an even dimension 

and  a closed, 2-form, i.e. 0=d  and 0......: =  m
 with its volume m2 -form 
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m
mm

m

m
dM 

!

)1( 2/)1(
2

−−
=  

It relation to Hamilton is given by  =
m

ii

mm dqdpRM
1

22 ),(:),(   given  

 mm

mmm qpdqdqdpdpdpm −= − ............)1(! 2121

2/)1(  . 

The term 

)(
1 iii

m

i pq

H

qp

H








−








  

motivates the definition a symplectic gradient for a function RMH m →2:   on a symplectic 

manifold: 

The symplectic gradient )(Hgrads −  is the vector field on 
mM 2

 defined by 

)(:))(,( VdHHgradsV


=−  . 

 

Invariant vector and tensor fields, flow of vector fields, Lie derivative and its geometric 

interpretation as divergence of vector fields as its infinitesimal volume deformation of 

its flow 

Let V


 be a vector fields of a manifold
nM  and 

nMba →),(:  an integral curve of  V


 with 

tangential vector ))(()( tVt 


 = . Therefore there exists to every initial point nMx    an 

integral curce 
n

xxx Mba →),(:  with xx =)0(  . For 

 
xx

n

V
btaRxMxt = ),(:  

the mapping   

n

V
M→ :  

)(:),(:)( txtxt x==   

Is called the flow of the vector field V


.  

 

If V


 is a  
C vector field, then V


 operates on 

C  scalar fields to give 
C  scalar fields. The 

Lie derivation 
V

L  with respect to V


 is an extension of this operation to an operator on all   

tensor fields which preserves type of tensor fields, i.e. 
V

L   is a tensor field of the same type 
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asV


. The Lie derivation of a differential k-form k  by a related vector field is defined as 

follows: 

tdt

d
L

kk

t

t

k

t

k

V




−
== =

)(
lim))(()(

*

0

* 


  
for

  
0→t  . 

The Lie derivation of a k-form k  can be calculated by the Cartan derivative, i.e. 

))(()()( k

V

k

V

k

V
iddiL   +=  , 

whereby ),......,(:),......)(( 1111 −− = k

k

k

k

V
WWVWWi


   is the inner product of V


 and k  . 

The divergence of a vector field 
nMA   vanishes if and only if its flow consists of volume 

conserving diffoeorphisms. 

Examples of invariant vector fields 

 

Invariant (translation parallel (a), senkrecht (b) to the vector field, rotation (c)) vector fields in 
2R  

 

Invariant symmetric tensor field of second order: Indicatrix field of the stress??  tensor of a liquid in the gravitation 

field 

 

Theorem of Liouville: Let H  be a function RMH m →2:   on a symplectic manifold and its 

symplectic gradient )(Hgrads −  a complete vector field on 
mM 2

 with the flow 

mm

t MM 22: →  then it holds: 

i) the Lie derivative  0)()( =− HgradsL   vanishes 
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ii) the flow keeps the symplectic volume, i.e.  =
)(

22

A

m

A

m

t

dMdM


 . 

 

In the Ricci calculus the Cartan derivative MMd kk 1: +→   of a k-form and the volume 

form of M is given by 
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For a 1-form  M1  the term   is called the divergence of the vector field 

 =v  . 

It holds   

M

n

g
g

d  


 )(

1

1


=

=      and       )(
1  g
g

=  . 

 

For functions (i.e. 0-forms  f=0 ) the relation to the Laplace operator is given by 

Theorem: The Laplace operator MMd 00::  →==   with 

dfddff K −== +1)1(  

applied to functions on a semi-Riemann manifold is given in local coordinates by 

)(
1

1,

f
x

gg
xg

f
n







 







= 

=

  . 

The Laplace operator for function on 2S  in sherical coordinates is given by  

)(sin
sin

1

sin

1
22

2

22




 






+




=

S
  . 

For 
1+nR  with its n-dimensional sub manifold  

 1: 1 == + xRxS nn
 

and the pseudo-euclidian scalar product with signature )1,(n , the Hodge-Laplace operator is 

given by 
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Theorem (Stokes): Let M  be a n-dimension, oriented semi-Riemann manifold and 

Mn 1−   have a compact support. Then it holds 




=
MM

d      . 

 

3RM   :  


=
22

22 ,,
MM

MdTarotdMNarot

    

,

    




=
22 MM

sdaAdarot


 . 

  . 

 

Theorem (Satz vom gekämmten Igel): Ein stetig gekämmter Igel hat mindestens einen 

Glatzpunkt. Every differentiable vector field on a even-dimensional sphere has at least one 

zero (or a even-dimensional sphere has no vector field without any zero). 

 

I.M. Singer, J. Thorpe (the curvature of 4-dimensional Einstein spaces, Global analysis, 

papers in honour of K. Kodaira, p. 355-365, Princepton Iniv. Press 1969) discovered a result 

of A. Einstein related to especially duality of 4 dimensional manifolds: 

Let  ),( gM  a  4  dimensional oriented Riemann manifold,   the self adjoint Hodge operator 

and  R  the (self adjoint) Riemann curvature tensor, then it holds   

),( gM  is an Einstein space          =  RR    . 

In the framework of the differential form calculus the Maxwell equations are given in the form 

)(
1

BE
tc

d 



−=

   

,

   

0)( = Bd   

JEB
ctc

d 



4

)(
1

+



=

   

,

   

34)( dRd E  =  . 
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12. Variation principle and principle of relativity 

 

Minimizing a certain quantity ( 0=W ) as principle seems to bring a purpose to the causal 

description of things. In the light of the discoveries of relativity, the variational foundation of 

mechanics deserves more than purely formalistic appraisal. The following points suggest the 

supremacy of the variational method: 
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1. The principle of Relativity requires that the laws of nature shall be formulated in a 

„invariant“ fashion, i.e. independently of any special frame of reference. The method 

of the calculus of variations automatically satisfies this principle, because the 

minimum of a scalar quantity does not depend on the coordinates in which that 

quantity is measured. While the Newtonian equations of motion did not satisfy the 

principle of relativity, the principle of least action remain valid, with the only 

modification that the basic action quantity had to be brought into harmony with the 

requirement of invariance. 

2. The Theory of General Relativity has shown that matter cannot be separated from 

field and is in fact an outgrowth of the field. Hence the basic equations of physics 

must be formulated as partial differential equation (Nahwirkungstheorie). While 

Newton´s particle picture can hardly be brought into harmony with the field concept, 

the variational methods are not restricted to the mechanics of particles but can be 

extended to the mechanics of continua. 

3. The Theory of General Relativity is automatically satisfied if the fundamental „action“ 

of the variational principle is chosen as an invariant under any coordinate 

transformation. Since differential geometry of Riemann furnishes such invariants, 

there are no difficulties in setting up the required field equations. Apart from this, the 

present knowledge of mathematics does not give any clou to the formulation of a co-

variant, and at the same time consistent, system of field equations. 

 

Hence in the light of relativity the application of the calculus of variations to the laws 

of nature assumes more than accidental significance. 

0)( =



= 




f
f  virtuelle Verschiebung, for ),( vvf   

vd
v

f
dv

v

f
df 




+




=             and         v

v

f
v

v

f
f 




+




=   

i.e. Variation f  einer Funktion ),( vvf   wird also in derselben Weise gebildet wie ihr 

vollständiges Differential. The displacement of the position x  is intentionally made in any 

kinematic ally admissible manner. 

Unter einer virtuellen Verschiebung versteht man eine gedachte sehr kleine Verschiebung 

x  . Während wirkliche Verschiebungen immer in einer bestimmten Zeit  dt erfolgen, wird die 

virtuelle Verschiebung als zeitlos angesehen, 0=t . Variationen von Kurven werden so 

gewählt 0)()( 21 == trtr ii


    Die Zeit wird nicht mit variiert: 0=t  , d.h. jeder Zeitpunkt der 

Variationskurven entspricht nur einem Zeitpunkt der Referenzkurve. 

r
dt

d
r =→   

Das Hamilton’sche Prinzip ist äquivalent zu dem d’Alembertschen Prinzip. 
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In Lorentz-invarianten Feldtheorien ist es üblich, Feldgleichungen nicht einfach zu 

postulieren, sondern aus einem Variationsprinzip herzuleiten. Dadurch wird automatisch die 

Existenz von Erhaltungssätzen gesichert (Noether-Theorem) und ausserdem eine Grundlage 

für die Quantisierung (Schwingersches Variantionsprinzip, Feynmannsches Wegintegral) 

geschaffen. 

With Lorentz-invariant field theory one tries to derivate field equation out of variation 

principle. Then Noether‘s theorem is valid, which ensure conservation laws.  

For Einstein’s vacuum equation in the gauges this leads to expressions in the form 

 −=−= xdgRgxdgRW ik

ik

metric

44  , 

with  

ikgggR −=−  , 
ik

ik RgR =  

The general field equations of the Theory of General Relativity say, that the action 

      ,, gWgWgW mattermetric +=  

is stationary for all fields  , varying over all metrics, which vanish outside bounded domains. 

The action is local, i.e. an integral over a Lagrange density and invariant for variable 

transforms. 

The choice of spherical wave coordinates x  for Einstein’s vacuum equation in the gauges is 

given by the wave equation relative to the background metric g, i.e.  

 0
1

== 



 xgg

g
g

 . 

Applying the principle of least action, i.e. 

       0,, =+=  gWgWgW mattermetric  

leads to (  8= ) 

0
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1
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3

=−







−−−  xdggT
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k
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k

c ik

ikikik 



 . 

As  
ikg  is arbitrarily this gives Einstein’s field equation in the form 

 
ik

ik

ik T
c

g
RRG

4

8

2


=−=    resp.    k

i

k

i

k

i T
c

RR
4

8

2

1 
 =−  . 

Proof: 

In order to show the above we first calculate 
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   −=−== xdgRgxdgRWgW ik

ik

gmetric

44  

  −+−+−= xdRggggRggRW ik

ikik

ik

ik

ikg

4  
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ik

ik gggg
g

g  −−=
−

−=−
2

1

2

1   

it follows  

 −+−







−−= xdgRgxdggRggRW ik

ikik

ikikg
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1
  . 

The Grössen 
i

kl nämlich bilden keinen Tensor, wohl hingegen 
i

kl  was mach ausnutzt, um 

ikR  zu berechnen. Es ist nämlich 
l

k

i

kl dxA  die Änderung eines Vektors bei der 

Parallelverschiebung von irgendeinem Punkt P  zum infinitesimal benachbarten P . Daher 

stellt  
l

k

i

kl dxA  die Differenz zweier Vektoren dar, die bei den zwei Parallelverschiebungen 

(mit nichtvariierten und mit variierten 
i

kl  ) von P  nach demselben Punkt P  erhalten 

werden. Die Differenz zweier Vektoren im gleichen Punkt ist aber ein Vektor; 
i

kl  ist somit 

ein Tensor. 

Ein lokalgeodätisches Koordinatensystem zugrundegelegt, für das in einem vorgegebenem 

Punkt alle  0=i

kl  sind, ergibt sich aufgrund von 
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Das Thema ist Materie und Bewegung, genauer: Energie und Impuls; Energie und Impuls 

hängen wegen der Relativität der gleichförmigen Bewegung untrennbar zusammen. 

Die Struktur der Raum-Zeit bestimmt ihren Inhalt, aber auch ihr Inhalt legt die Struktur fest; 

Struktur und Inhalt hängen also wechselseitig voneinander ab. 

Der Wechsel von Newton bezieht sich auf einen Wechsel von der Potentialgleichung für das 

Gravitationsfeld: 

k4=  

und die zugehörigen Bewegungsgleichungen eines Massenpunktes 

−= grad
dt

xd
2

2 
 

hin zu Einsteins Feldgleichungen für das tensorielle Gravitationsfeld 

ik

ik

ik T
g

RRG −=−=
2  

und die zugehörigen Bewegungsgleichungen für die Bahn )(txx  = eines Massenpunktes 






















=







 xx
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d

dx
g

d

d

2

1
,

  .. 

Riemann curvarture tensor is defined by 

r

ji

s

kr

r

ki

s

jr

s

jkk

s

kij

s

iijkk
R  −+−=  . 

This curvature tensor has  25644 =  components.  

It about 

- 10 Gleichungen mit 10 Potentialen ik  anstelle von einer Gleichung 

- nicht-linearer Zusammenhang, d.h. das Gravitationspotential ist keine Summe von 

Einzelgravitationen 

 Zirkuläre Struktur, d.h. )( ikik Tf=  und )( ikfStrukturZeitRaum =−− . Die ikT  sind 

Grössen, die das Prinzip der Energie- und Impulserhaltung widerspiegeln. 

Die Materie, beschrieben mit dem Energie-Impuls-Tensor T, erzeugt also über die 

Einsteinsche Feldgleichung 
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ikikik TWeylRicciRgRG −=+=−=
2

1
:         

wobei      gcmGc /10*86.18 272 −=  eine Krümmung der Raumzeit, und Teilchen 

bewegen sich dann entlang von Geodäten. Die Gleichung, die Materie und Krümmung in 

Beziehung setzt, muss tensorieller Natur sein. Zur Beschreibung der Materie steht der 

Energie-Impuls-Tensor zur Verfügung. Da dieser zweifach covariant ist, muss zur 

Beschreibung der Krümmung auch ein (0,2)-Tensor verwendet werden. Zunächst bietet sich 

der Ricci-Tensor ikR  an. Im Gegensatz zum Energie-Impuls-Tensor ist dieser aber nicht 

divergenzfrei. Dieser Mangel lässt sich beheben, indem ein geeignetes Vielfaches von 

gR * subtrahiert wird. Damit erweist sich G als divergenzfrei und ist mit dem Energie-Impuls-

Tensor in Beziehung zu setzen. Im Vergleich mit der Newtonschen Mechanik ergibt sich 

 8= . Divergenzfrei ware auch 

g
g

RRG ik
ik −−=

2
 

Warum der Term 
2

ikg
R−   ?  Es gilt   

dSRgdiv =)(   und 
2

)(
dS

Rdiv ik =  

und damit 

2
)(

2

1
)(

dS
RgdivRdiv ikik =−  . 

Der Weyl-Tensor 
2

ikg
R  beschreibt den „Gezeiten-Effekt“, während der Ricci-Tensor die 

Energie beschreibt. Weyl ist eine Art „Gravitationsgegenstück“ zur Grösse des 

elektromagnetischen Feldes. Somit stellt Weyl in gewisser Weise ein Mass für das 

Gravitationsfeld dar. Die „Quelle“ für Weyl ist der Tensor=Energie (=Ricci), analog zur 

Maxwellschen Theorie, wo die Quelle für das elektromagnetische Feld ( )BE, durch ( )j, , die 

Gesamtheit der Ladungen und Ströme, gegeben ist.  

Es gilt u.a.:          

ikgggR −=−  , 
ik

ik RgR =  

Die Divergenz von 
pA  ist die Verjüngung der kovariaten Ableitung bzgl. qx d.h. die 

Verjüngung von 
p

qA,  

 k

k

p Ag
dx

d

g
ADiv −

−
=

1
)(

 

13. Singularitäten in der Allgemeinen Relativitätstheorie 

H.-J. Treder 
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Zentralinstitut für Astrophysik der Akademie der Wissenschaften der DDR  
(eingegangen 5 Juli 1979) 

 

Das “potentialtheoretische” Problem der Existenz überall regulärer Lösungen der 

Einsteinschen Vakuum-Feldgleichungen 0=ikR  (Einsteins “Partikel-Problem”) ist von der 

Frage des Auftretens dynamischer Singularitäten in der ART sehr verschieden. Wenn die 

Einsteinschen Gleichungen  

ikikik TRgR −=−
2

1  

als Definitionsgleichungen für den Materie-Tensor ikT  aufgefaßt werden, so treten an die 

Stelle der 10 Feldgleichungen nur noch 2 Ungleichungen 0R  , TR
2

10

0   die die Kausalität 

der Zustandsgleichungen für die Materie verlangen, wegen der 0T , TT
2

10

0   sein muß. 

Aber genau diese Ungleichungen für die Raumkrümmung ergeben den Kollaps; bzw. Anti-

Kollaps der Sterne, Systeme und des Kosmos (“Big bang”). 

“Regular solutions of Einstein equations” mean very different things. In the case of the 

empty-space equations, 0=ikR , such solutions must be metrics )( l

ik xg  without additionally 

singular “field sources” (Einstein’s “particle problem”) - However the “phenomenological 

matter” is defined by the Einstein equations   

ikikik TRgR −=−
2

1  

itselves. Therefore if 10 regular functions )( l

ik xg are given (which the inequalities of Lorentz-

signature fulfill then these ikg define 10 functions )( l

ik xT without singularities. But, the matter-

tensor ikT  must fulfill the two inequalities 0T , TT
2

10

0   only and therefore the Einstein 

equations with phenomenological matter  mean the two inequalities 0R  , TR
2

10

0    which 

are incompatible with a permanently regular metric with Lorentz-signature, generally. But 

exactly this inequations for the curvature of the space give the collapse resp. the anti 

collapse of stars and systems of the universe (“big bang”). 

 

 

 

 

 

14. Ueber das Gravitationsfeld eines Massenpunktes nach der 

Einsteinschen Theorie, K. Schwarzschild 
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Die Schwarzschild-Geometrie eignet sich, um in erster Näherung das Gravitationsfeld von 

Sternen relativistisch zu beschreiben. Die äussere Schwarzschild-Geometrie  beschreibt das 

Feld eines Massepunktes ausserhalb des Sternes und ist die Metrik nicht rotierender, 

ungeladener Schwarzer Löcher. Der Massepunkt mit Masse M ist idealisiert, weil seine 

Masse in einem beliebig kleinen Punkt komprimiert ist. Das schwarze Loch vom 

Schwarzschild-Typ hat hier eine zentrale, punktförmige Krümmungssingularität. 

Die Metrik ist statisch und kugelsymmetrisch. Der metrische Tensor ist wie die Minkowski-

Metrik diagonal, aber die Einträge sind nicht konstant, sondern koordinatenabhängig und 

divergieren bei r=0 in der zentralen Singularität. 

Nach dem Birkhoff-Theorem ist jede sphärische symmetrische Vakuumlösung 

(Vakuumlösung= ein verschwindender Energie-Impulstensor) der Einsteinschen 

Feldgleichungen notwendigerweise statisch. Das gilt also im Speziellen für die äussere 

Schwarzschild-Lösung. 

Eine Folge dieser Metrik ist: 

Wenn die Masse eines Sternes in einer sphärischen Region konzentriert ist, die so klein ist, 

dass die Masse geteilt durch den Radius einen bestimmten kritischen wert übersteigt, ist die 

resultierende Raumzeitkrümmung so stark, das ALLES, auch das Licht, sich der 

Gravitationsanziehung nicht mehr entziehen kann --> schwarze Löcher  

> alles was den Ereignishorizont (=dunkler Kreis) überschreitet  --> puff 

Die innere Schwarzschild-Geometrie beschreibt das innere Feld unterhalb der 

Sternoberfläche.  

Schwarzschild-Lösung kann in einer Vielzahl von Koordinatensystemen diskutiert werden. 

Ein Punkt bewegt sich gemaess der Forderung 

(1)                                       0
4

1,

==  
=

 dxdxgds
ji

 

Die Ausführung der Variation ergibt die Bewegungsgleichungen des Punktes 

(2)                                             =







,
2

2

)(
ds

dx

ds

dx
x

ds

xd
  

wobei 

(3)                            
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−=

 












x

g

x

g

x

g
gx

2

1
)(  

 

Dies ist nach Einstein dann die Bewegung eines masselosen Punktes in dem 

Gravitationsfeld einer im Punkt  0321 === xxx   befindlichen Masse, wenn die 
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Komponenten des Gravitationsfeldes   überall, mit Ausnahme des 

Punktes 0321 === xxx , den Feldgleichungen 

(4)                             0)()(
)(

,

=+



 

 












xx
x

x


  

genügen und wenn gleichzeitig die Determinantengleichung 

(5)                                           1−=g  

erfüllt ist. 

Die Feldgleichungen in Verbindung mit der Determinantengleichung haben die fundamentale 

Eigenschaft, dass sie ihre Gestalt behalten bei der Substitution beliebiger anderer Variablen 

an der Stelle von 4321 ,,, xxxx  falls nur die Substitutionsdeterminante gleich 1 ist. 

Sollen 321 ,, xxx  rechtwinklige Koordinaten, 
4x  die Zeit bedeuten, soll ferner die Masse im 

Nullpunkt zeitlich unveränderlich sein, und soll die Bewegung im Unendlichen gleichförmig 

gradlinig sein, so sind noch folgende Forderungen zu erfüllen: 

1. alle Komponenten sind von der Zeit  
4x  unabhängig 

2.die Gleichungen 044 == ii gg  gelten exakt für 3,2,1=i  

3. die Lösung ist räumlich symmetrisch um den Anfangspunkt des Koordinatensystems in 

dem Sinne, dass man wieder auf dieselbe Lösung stösst, wenn man 321 ,, xxx  einer 

orthogonalen Transformation (Drehung) unterwirft 

4. die g  verschwinden im Unendlichen mit der Ausnahme folgender vier von Null 

verschiedener Grenzwerte:  1,1 33221144 −==== gggg  

Diese Bedingungen führen auf die Schwarzschild-Metrik  

)sin(
1

1

)1( 2222

2

2

22
2

22 



ddR

x

dx
R

R

dR
dt

R
ds +−

−
−

−

−−=  

Herleitung: Für ),,,(:),,,( 4321 tzyxxxxx = ist das allgemeinste Linienelement, das (1)-(3) 

erfüllt 

222222 )()( zdzydyxdxHdzdydxGFdtds ++−++−=  

Wobei  F,G,H Funktionen von 222 zyxr ++= sind. 

Forderung (4) verlangt   0)(,1)()( === HGF  

Wenn man zu Polarkoordinaten übergeht gemäss 
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 cossin* 1 rerx ==  

 sinsin* 2 rery ==  

cos* 3 rerz ==  

















−

−

==

0sincos

cossinsincossinsin

sinsincoscoscossin

),,(

),,(
:








r

rr

rr

rd

zyxd
J  and   


sin

),,(

),,( 2r
rd

zyxd
=  

Dann lautet dasselbe Linienelement 

222222222 )sin( drHrdrdrdrGFdtds −++−= 
 

)sin()( 22222222  ddGrdrHrGFdtds +−+−=
 

Das Volumenelement in Polarkoordinaten ist gleich    ddrdr 22 sin  d.h. die 

Funktionaldeterminanten der alten noch der neuen Koordinaten 22 sinr  ist von 1 

verschieden. Es würden also die Feldgleichungen nicht in unveränderter Form bestehen, 

wenn man mit Polarkoordinaten rechnen würde, und man muesste eine umständliche 

Transformation ausführen. Ein einfacher Kunstgriff gestattet jedoch, diese Schwierigkeite zu 

umgehen. Man setze 

3

3

1

r
x =    ,  cos2 =x   , =3x  

Dann gilt für das Volumenelement  

321

22 sin dxdxdxddrdr =  

d.h. die neuen Koordinaten sind Polarkoordinaten von der Determinante 1. Sie haben alle 

Vorzüge von Polarkoordinaten für die Behandlung des Problems, und zugleich bleiben für 

sie, wenn man 
4dxt =  hinzunimmt, die Feldgleichungen und die Determinantengleichung in 

unveränderter Form erhalten. 

In den neuen Polarkoordinaten lautet das Linienelement 









−+

−
−+−= )1(

1
)( 2

232

2

22

1244

2 xdx
x

dx
Grdx

r

H

r

G
Fdxds  

bzw. 

(*)   )1()(
1

)()()( 2

23132

2

2

12111414

2 xdxxf
x

dx
xfdxxfdxxfds −−

−
−−=  . 

 

)(),()(),( 14131211 xfxfxfxf =  müssen folgenden Bedingungen genügen: 
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1. für →1x     3/4

1411 3
1

)(
−

== x
r

xf ,   3/2

1

2

1312 3)()( xrxfxf === ,  14 =x  

2. die Determinantengleichung:  1)()()()( 14131211 =xfxfxfxf  

3. die Feldgleichungen 

4.die f stetig, ausser für 01 =x  

(*)  and  
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g
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g
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2

1
)(       leads to 

1

1

1

1

11

1

2

1
)(

x

f

f
x




−=  ,  

2

1

2

1

1

22

2
1

11

2

1
)(

xx

f

f
x

−


+= , )1(

1

2

1
)( 2

1

2

1

1

33 2
x

x

f

f
x −




+= , 

1

4

1

1

44

1

2

1
)(

x

f

f
x




−=  

1

2

2

2

21

1

2

1
)(

x

f

f
x




−= ,

2

2

1

2

22

2
1

1
)(

x

x

f
x

−
−= , )1()( 2

2

2

33 2
xxx −−= , 

1

2

2

3

31

1

2

1
)(

x

f

f
x




−= ,

2

23

32

2
1

)(
x

x
x

−
+= , 

1

4

4

4

41

1

2

1
)(

x

f

f
x




−=  

Die Ausrechnung der Feldgleichungen (o.B.d.A.  11 2

2
=− x ) 

0)()(
)(

,

=+



 

 












xx
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liefert 

a)                           

2

1

4

4

2

4

2

2

2

1

1

11

1

11

1

2

111

2

11
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fx
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b)                                               
2

1

2

211

2

11

1
2

1












+=

















x

f

ffx

f

fx

 

c)                                               

2

1

4

411

4

11

11












=

















x

f

ffx

f

fx
 . 

 

 

Ausser diesen drei Gleichungen a)-c) haben die Funktionen )(),()(),( 14131211 xfxfxfxf =  
noch die Determinantengleichung zu erfüllen  
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d)                      1)()()()( 14131211 =xfxfxfxf      bzw.    0
121

1

4

42

2

21

1

1

=



+




+





x

f

fx

f

fx

f

f
 

Aus a), c) und d) folgt 

)c
                                        

1

4

1

1

411

4

41

11

x

f

x

f

ffx

f

fx 






=
















 

Woraus sich durch Integration ergibt: 

)c                                                    
1

1

4

4

1
f

x

f

f
=




 

a) und )c  addiert gibt 

2

1

4

41

1

1
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4

41
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11

11

2

1111
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f
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Verbunden mit d) folgt 

2

1

2

21

2

21

1
3

1
2 












=
















−

x

f

fx

f

fx
 . 

Integriert ergibt sich 

22

3

1

1
1

1

2

2


+=




x

x

f

f

        bzw.       
+

=




11

2

2 3

21

xx

f

f

 

Nochmals integriert ergibt sich          
3/2

112 )3()(  += xxf  . 

Die Bedingung 
3/2

12 )3()( xf =  ergibt  1=  . 

Aus d) folgt      
)(

)()(
1

2

2

1411
xf

xfxf


 =  

  Zusammen mit    )c  ergibt sich   
3/4

11

2

2

41

1

4

)3()( 




+
===





xxf
ff

x

f
 

Integriert in Rücksicht auf die Bedingung im Unendlichen 

3/1

1

14
)3(

1)(




+
−=

x
xf  

Wiederum aus d) folgt dann      

3/1

1

3/4

1

1

2

214

11

)3(
1

)3(

1

)()(

1
)(







+
−

+
==

x

x

xfxf
xf

 . 

Das allgemeine Ergebnis ist also 
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3/1

1

3/4

1

11
)3(1

)3(
)(

−

−

+−

+
=





x

x
xf  

3/2

11312 )3()()( +== xxfxf  

3/1

1

14
)3(

1)(




+
−=

x
xf  . 

Damit sind alle Forderungen erfüllt bis auf die Stetigkeitsbedingung. Es wird )( 11 xf unstetig, 

wenn   0)3(1 3/1

1 =+− − x  (d.h.  −= 2

13x )  gilt. Damit diese Unstetigkeit mit dem 

Nullpunkt zusammenfällt, muss gelten    =2
 . Die Unstetigkeitsbedingung verknüpft also 

in dieser Weise die beiden Integrationskonstanten   
 und   . 

Mit der Hilfsgrösse  
3/12

1

3/1

1 )3()3(:  +=+= xxR  ergibt sich als Resultat 

R

R
xf


−

=

1

11
)(

411
 

2

1312 )()( Rxfxf ==  

R
xf


−= 1)( 14

 

bzw.   

)1(
1

1

11
)1( 2

23

2

2

2

22

144

2 xdxR
x

dx
Rdx

R

R
dx

R
ds −−

−
−

−

−−=


  

bzw. mit           
3

3

1

r
x =      cos2 =x    

=3x
 

)sin(
1

1

)1( 2222

2

2

22
2

22 



ddR

x

dx
R

R

dR
dt

R
ds +−

−
−

−

−−=   . 

 

 

 

15. The elasticity (boundary value) problem, variational 

formulation 

 

In this section we refer to the [Fi1/2] , [FrK], [Pa], [Ve]. Let 
2R  be a bounded domain with 

boundary   sufficiently smooth (such sufficient conditions could be either i) continuously 
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differentiable or ii) a polygon in two dimensions or iii) Lipschitz bounded).. We will work with 

vectors ),(: 21 vvv = . We write 
22221 :),(: LLLvvv ==  in case of )(22 LLvi = . The meaning of  

1

2
W etc. in analogue. For simplicity we will use the notation 

1

21 :


WH =  , 
2

212 : WHH = . 

Correspondingly we define 

),(:),( ii vuvu =  and  ),(: uuu =  

),(:),(
kiki

vuvu =  and  ),(: uuu =  

using the usual summation convention throughout this section. We denote with  

iX ,
 the partial derivatives , with  ik  the Kronecker symbol and with  ,  the 

Lame constants. To a displacement vector  v  are associated the two tensors 

:)(v
    ikkiik vvv ,,)(2 +=  

:)(v    
ikikjjik vv  2)()( , +=    . 

The first boundary value problems of elasticity is: 

given  
221 ),(: Lfff =  find   

2

212 : WHHu =  

such that  

 (*)   fu =− )(        
i.e.    

ikik fu =− )(,    in     
i  

It holds the following shift theorem: For 
221 ),(: Lfff =  the solution   

2Hu   

exists uniquely and 

2

2

2 LW
fcu   . 

The solution of the boundary problem above is equivalently characterized by 

1Hu  :      ),(),(0 vfvua =
    

1Hv  

with 

(2)                   dxwvwvwvwva ikikkkiiikik  +==


)()(2)(())(),((:),( ),,0   . 

The form 0a is symmetric, bounded and because of Korn’s inequality coercive in 

1H .  

As long as we are in  
1

21 :


WH =  the form can be modified without influencing the 

solution by (whereby n   is the normal vector of  ) 
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(2)                          


+−=


dsvwwvnwvawva kikkiki )()(),(:),( 01 
 

leading to  

 

Lemma: Let  
1Hu    be the solution of (*) and 

1

2
Ww , then  

),(),(1 wfwua =
   . 

 

Within the framework of Hilbert space theory the corerciveness of the bilinear 

form (1) in the space 
1

21 :


WH =  is essential. This means that there is a constant   

1c independent of 
1

21 :


WH =  such that 

(3)                          2

1

2
),(

1

uuuacu
H

+    for all   
1Hu   . 

Korn’s first inequality states the validity of   

(4)                          22

2

2
)(

1

uucu +        
for 1



Hu 
 

even without the second term on the right side. Korn’s second inequality is 

refering to the general case, i.e. (3) for all   
1Hu   .  

Beside certain regularity assumption the least square method and the energy 

minimization method are equivalent [Ve]. For the energy the method the energy 

functional minimization 

min),(2),(:)( →−= ufuuauJ  

and the variation formulation (see Lemma above)  

),(),( vfvua =
 

are equivalent. Non linear problem can be handled in the same framework, but 

now the symmetric bilinear from has to be replace by a convex functional.     

 

To extend this ideas to the gravitation theory we recall from section 11: 

Let 
M  the volume form of M . The pointwise building of the scalar product of two forms   

Mk, defines a function )(, MC . It integration over  M  (with compact 

intersection of thier support) via the volume form 
M  gives a real number, i.e. 
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=
M

M ,:,
 . 

For every k  there is a linear mapping  MM knk −→ :  that for all  Mk,   it holds 

M ,=  

This operator is called the Hodge operator. It holds 

Id=
    

 and      0=dd 
  
. 

This differential from framework in combination with the euclidean variational (Hilbert space 

based) theory might enable a corresponding “action minimizing” principle on proerly defined 

manifolds, building on an appropriate coercive bilinear form, defined by  2-forms, which 

describe the curvatures of a 3-Lorentz-hypersurface (i.e. a semi riemannian 3-manifold 

embedded in the euclidean 4-space) modelling the gravitation (boundary or intial value ?) 

problem and providing a link to the wave problem in the 1+= mn  euclidean 4-space. 

 

Hypersurface 

From H. Flanders, “Differential Forms with Applications to the Physical Science”  we recall 

some studies of surfaces of higher dimension than 1, which is about an m-dimensional 

manifolds M embedded in 
1+mR , which is called a hypersurface M. 

A moving point on M is denoted by x and a definite unit normal at each point x  of M is 

denoted by n. The map  nx →  is a smooth map on M into mS . If M is orientable this can be 

done globally on a hypersurface M). The tangent space at x is an n-dimensional Euclidean 

space (let ie  its ONS). Thus at x , the vectors neee n ,....., 21   make up an orthogonal basis of 

1+mR . Since dx  is in the tangent space it holds 

mm eexd  ++= .......11  

where 
m ,....,1

 are 1-forms on M. From the relations 

ikki ee =    ,   0=nei   ,   1=nn  

one deduces that 

0=+ kiki edeeed    ,  0=+ ndened ii  ,  1=ndn  

and so 

need ijiji
 −=     ,  ii end =   

where ij , i  are 1-forms on M and 

0=+ jiij   . 
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From the matrix mjiij ,....1,)(: ==   one defines a skew-symmetric matrix of 2-form 

2

,..1,)(:  −== = dmjiij  

By taking exterior derivatives ( 0)( =xdd ) (omitting the symbol   ) one obtains integrability 

conditions 

ijiid  =      ,   0=+ jiij    ,    = 0ii   ,  = ijiid    ,  0=+ jiij   . 

The 
m ,....,1

 form a basis for 1-forms on M, hence we have relations 

= jiji b   . 

Because   = 0ii  the ijb   must be symmetric, i.e. jiij bb =  . 

The mean curvature H and Gaussian curvature K are defined by 

= iib
m

H
1

 

,

   

ijbK =    . 

How does an observer constrained to M observe the motion of =
ii ecv  ? 

A vector function for which the equations 

0=+  ijii cdc   

are valid is said to move by parallel displacement. 

The elements 
ij  of the curvature matrix    are curvature forms. One may write 

lkijklij R  =2  

defining the Riemann curvature tensor ijklR  of the hypersurface. Because of the relation 

0=+ jiij   

and 

lkjkiljliklkjlikji bbbbbb   −== )(22  

we have 

0=+
jljk

ilik

ijkl bb

bb
R   . 

Algebraic consequences of these formulas are the following: 
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0=+ ijlkijkl RR  , 0=+ jiklijkl RR  , 0=++ iljkikljijkl RRR  ,  klijijkl RR =  . 

The Riemann tensor is independed of how M is embedded in 
1+mR  so that these relations 

are particularly interesting, connecting the intrinsic Riemann tensor with the quantities ijb , 

which clearly depend on the embedding. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               
 

16. The Poincare conjecture 
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Poincare‘s Fragestellung war: Ist das Universum eine 3-dimensionale Mannigfaltigkeit? 

Wenn jede Schlaufe darin auf einen Punkt geschrumpft werden kann, ist es dann eine 

Sphäre analog der Vorstellung von Kugeloberfläche vs. Torus für den 2-dim-Fall? 

Es gibt ausser der 3-Sphäre keine 3-dimensionale geschlossene Mannigfaltigkeit, in denen 

jeder geschlossenen Weg sich auf einen Punkt zusammenziehen lässt, also einfach 

zusammenhängend ist; d.h. die 3-Sphäre ist durch ihre Fundamentalgruppe charakterisiert, 

d.h. die Fundamentalgruppe ist die Identität. 

Die Fundamentalgruppe einer Mannigfaltigkeit ist definiert als die Menge aller Schleifen in 

einem Punkt, wobei zwei Schleifen als dieselben betrachtet werden, wenn sie ineinander 

umgeformt werden können. Die Identität ist die Schleife, die an einem einzigen Punkt bleibt 

und nirgendwo sonst verläuft. Eine Schleife ist der Identität äquivalent, wenn und nur wenn 

sie auf einen Punkt geschrumpft werden kann. 

Jede einfach zusammenhängende 3-dimensionale Mannigfaltigkeit, die keinen Rand hat und 

die nicht unendlich ist (der Begriff ist hier „kompakt“), ist eine dreidimensionale Sphäre. 

Im 4-Raum gibt es unendlich viele nicht äquivalente differenzierbare Strukturen. Es gibt 

unendlich viele inkompatible Möglichkeiten der Infinitesimalrechnung im Vier-Raum. Das 

steht im Gegensatz zu allen anderen Dimensionalitäten: mit Ausnahme der Dimension vier 

gibt es für alle anderen nur eine differenzierbare Struktur auf dem Raum, der dem 

euklidischen Raum dieser Dimension zugrunde liegt. 

Jede Oberfläche hat eine natürliche Geometrie, die eine hyperbolische ist. Jede 

hyperbolische Geometrie hat konstante negative Krümmung. 

 

Poincare Vermutung für vier und mehr Dimensionen 

Milnor bewies fuer alle Dimensionen > grösser als 4 das Analogon der Poincare´schen 

Vermutung, d.h. für jede Dimension n grösser als vier ist eine einfach zusammenhängende, 

n-dimensionale Mannigfaltigkeit, die keinen Rand hat und nicht unendlich ist und diesselbe 

Homologie hat wie die n-dimensionale Sphäre, eine n-dimensional Sphäre. 

Für n=4 wurde es bewiesen von Michael Freedman (20 Jahre später): er konnte alle einfach 

zusammenhängenden, kompakten 4-dimensionalen Mannigfaltigkeiten charakterisieren. 

 

Perelman’s Lösungskonzept für die Dimension 4 

Arbeitet mit dem Ricci-Fluss, der sich von Gleichungen zur Temperaturverteilung in festen 

Körpern her ableitet, basierend auf der Quantifizierungsregel, dass Hitze von wärmeren in 

kältere Bereiche strömt. Im Fall von Krümmung ist der Ricci Tensor das Analogon der 

Wärmeleitungsgleichung, das spezifiziert, dass Mannigfaltigkeiten sich entsprechend der 

Temperaturverteilung entwickeln. 

Given a Riemannian manifold with metric tensor ijg , we can compute the Ricci tensor ijR , 

which collects averages of sectional curvatures into a kind of "trace" of the Riemann 

curvature tensor. If we consider the metric tensor (and the associated Ricci tensor) to be 

http://en.wikipedia.org/wiki/Riemann_curvature_tensor
http://en.wikipedia.org/wiki/Riemann_curvature_tensor
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functions of a variable which is usually called "time" (but which may have nothing to do with 

any physical time), then the Ricci flow may be defined by the geometric evolution equation. 

Informally, the Ricci flow tends to expand negatively curved regions of the manifold, and 

contract positively curved regions. 

Examples 

- if the manifold is Euclidean space, or more generally Ricci-flat, then Ricci flow 

leaves the metric unchanged. Conversely, any metric unchanged by Ricci flow is 

Ricci-flat. 

- if  the manifold is a sphere (with the usual metric) then Ricci flow collapses the 

manifold to a point in finite time. If the sphere has radius 1 in n dimensions, then after 

time t the metric will be multiplied by ))1(21( −− nt , so the manifold will collapse after 

time ))1(2/1( −n . More generally, if the manifold is an Einstein manifold (Ricci = 

constant×metric), then Ricci flow will collapse it to a point if it has positive curvature, 

leave it invariant if it has zero curvature, and expand it if it has negative curvature. 

- For a compact Einstein manifold, the metric is unchanged under normalized Ricci 

flow. Conversely, any metric unchanged by normalized Ricci flow is Einstein. 

In particular, this shows that in general the Ricci flow cannot be continued for all time, but will 

produce singularities. For 3 dimensional manifold, Perelman showed how to continue past 

the singularities using surgery on the manifold. 

- A significant 2-dimensional example is the cigar soliton solution which is given by the metric 

)/()( 22422 yxedydx t +++

 

on the Euclidean plane. Although this metric shrinks under the 

Ricci flow, its geometry remains the same. Such solutions are called steady Ricci solutions. 

An example of a 3-dimensional steady Ricci soliton is the "Bryant solution", which is 

rotationally symmetric, has positive curvature, and is obtained by solving a system of 

ordinary differential equations. 

 

Relationship to uniformization and geometrization 

The Ricci flow was introduced by Richard Hamilton in 1981 in order to gain insight into the 

geometrization conjecture of William Thurston, which concerns the topological classification 

of three-dimensional smooth manifolds. Hamilton's idea was to define a kind of nonlinear 

diffusion equation which would tend to smooth out irregularities in the metric. Then, by 

placing an arbitrary metric g on a given smooth manifold M and evolving the metric by the 

Ricci flow, the metric should approach a particularly nice metric, which might constitute a 

canonical form for M. Suitable canonical forms had already been identified by Thurston; the 

possibilities, called Thurston model geometries, include the three-sphere S3, three-

dimensional Euclidean space E3, three-dimensional hyperbolic space H3, which are 

homogenous and isotropic, and five slightly more exotic Riemannian manifolds, which are 

homogeneous but not isotropic. (This list is closely related to, but not identical with, the 

Bianchi classification of the three-dimensional real Lie algebras into nine classes .) 

Hamilton's idea was that these special metrics should behave like fixed points of the Ricci 

http://en.wikipedia.org/wiki/Ricci-flat_manifold
http://en.wikipedia.org/wiki/Ricci-flat_manifold
http://en.wikipedia.org/wiki/Einstein_manifold
http://en.wikipedia.org/wiki/Compact
http://en.wikipedia.org/wiki/Einstein_manifold
http://en.wikipedia.org/wiki/Richard_Hamilton_(professor)
http://en.wikipedia.org/wiki/Geometrization_conjecture
http://en.wikipedia.org/wiki/William_Thurston
http://en.wikipedia.org/wiki/Homeomorphism
http://en.wikipedia.org/wiki/Heat_equation
http://en.wikipedia.org/wiki/Canonical_form
http://en.wikipedia.org/wiki/Homogenous
http://en.wikipedia.org/wiki/Isotropic
http://en.wikipedia.org/wiki/Bianchi_classification
http://en.wikipedia.org/wiki/Lie_algebra
http://en.wikipedia.org/wiki/Fixed_point
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flow, and that if, for a given manifold, globally only one Thurston geometry was admissible, 

this might even act like an attractor under the flow. 

Hamilton succeeded in proving that any smooth closed three-manifold which admits a metric 

of positive Ricci curvature also admits a unique Thurston geometry, namely a spherical 

metric, which does indeed act like an attracting fixed point under the Ricci flow, renormalized 

to preserve volume. (Under the unrenormalized Ricci flow, the manifold collapses to a point 

in finite time.) This doesn't prove the full geometrization conjecture because the most difficult 

case turns out to concern manifolds with negative Ricci curvature and more specifically those 

with negative sectional curvature. (A strange and interesting fact is that all closed three-

manifolds admit metrics with negative Ricci curvatures! This was proved by L. Zhiyong Gao 

and Shing-Tung Yau in 1986.) Indeed, a triumph of nineteenth century geometry was the 

proof of the uniformization theorem, the analogous topological classification of smooth two-

manifolds, where Hamilton showed that the Ricci flow does indeed evolve a negative curved 

two-manifold into a two-dimensional multi-holed torus which is locally isometric to the 

hyperbolic plane. This topic is closely related to important topics in analysis, number theory, 

dynamical systems, mathematical physics, and even cosmology. 

Note that the term "uniformization" correctly suggests a kind of smoothing away of 

irregularities in the geometry, while the term "geometrization" correctly suggests placing a 

geometry on a smooth manifold. Geometry is being used here in a precise manner akin to 

Klein's notion of geometry (see Geometrization conjecture for further details). In particular, 

the result of geometrization may be a geometry that is not isotropic. In most cases including 

the cases of constant curvature, the geometry is unique. An important theme in this area is 

the interplay between real and complex formulations. In particular, many discussions of 

uniformization speak of complex curves rather than real two-manifolds. 

The Ricci flow does not preserve volume, so to be more careful in applying the Ricci flow to 

uniformization and geometrization one needs to normalize the Ricci flow to obtain a flow 

which preserves volume. If one fail to do this, the problem is that (for example) instead of 

evolving a given three-dimensional manifold into one of Thurston's canonical forms, we might 

just shrink its size. 

It is possible to construct a kind of moduli space of n-dimensional Riemannian manifolds, and 

then the Ricci flow really does give a geometric flow (in the intuitive sense of particles flowing 

along flowlines) in this moduli space. 

Man spezifiziert, dass sich die Temperatur in Richtung auf die Durchschnittstemperaturen 

auf einer kleinen Sphäre um den Punkt herum verändert: das nennt man 

Wärmeleitungsgleichung. Im Fall der Wärmeleitungsgleichung spezifiziert man, dass die 

Veränderungsrate der Temperatur im Hinblick auf die Zeit dem negativen Laplace-Operator 

proportional ist. Der Laplace-Operator mittelt die Grössen auf kleinen Sphären um einen 

Punkt herum: als eine Krümmung bezeichnet man den Mechanismus als Ricci-Fluss, der der 

Temperaturgleichung entspricht:  

Um eine Analogie der Wärmeleitungsgleichung für die Krümmung zu generieren, muss man 

die unterschiedlichen Zahlen, die die Krümmung codieren, zu etwas kombinieren, das 

unabhängig von der Wahl der Koordinaten sinnvoll ist und eine Formel aufstellen, die die 

Veränderungsrate beschreibt. Wenn ein Gegenstand an verschiedenen Stellen 

unterschiedlich heiss ist, dann beginnen Energieströme zu fliessen, so lange, bis es überall 

http://en.wikipedia.org/wiki/Attractor
http://en.wikipedia.org/wiki/Uniformization_theorem
http://en.wikipedia.org/wiki/Felix_Klein
http://en.wikipedia.org/wiki/Erlangen_program
http://en.wikipedia.org/wiki/Geometrization_conjecture
http://en.wikipedia.org/wiki/Isotropic
http://en.wikipedia.org/wiki/Moduli_space
http://en.wikipedia.org/wiki/Geometric_flow
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gleich warm ist. In ähnlicher Weise soll der Ricci-Fluss die Buckel und Dellen eines Drei-Dim-

Körpers auf die Dauer ausgleichen, bis er einer von wenigen Standardformen gleicht. Unter 

anderem sollen so alle einfach zusammenhängenden Körper zu einer Sphäre werden. Das 

klappte in vielen Fällen (wie Hamilton gezeigt hat), nur manchmal bildeten sich 

Singularitäten, Punkte an denen die Dichte des Flusses plötzlich unendlich grosse Werte 

annimmt. Perelman zeigte eine Strategie, mit der man diese Singularitäten so behandeln 

kann, dass sie sich auf „gutartige“ Weise aus dem Körper herausschneiden lassen können 

und beantwortet damit auch die Poincare’s Vermutung positiv. 

Der Ricci-Tensor ist einer der wenigen Objekte, das von der Wahl der Koordinaten 

unabhängig ist. Man erhält ihn aus dem Riemann’schen Krümmungstensor, indem man 

unterschiedliche Kombinationen von Krümmungen in unterschiedlichen Richtungen mittelt.  

Hamilton hat für 2-dim-Oberflächen u.a. gezeigt, dass der Ricci-Fluss schliesslich eine Metrik 

von konstant positiver Krümmung liefert. Irgendeine kompakte 2-dim. Oberfläche wird sich, 

wenn sich ihre Krümmung gemäss des Ricci-Flusses entwickelt, letztlich zu einer konstant 

gekrümmten Oberfläche entwickeln. Die Krümmung breitet sich aus, bis sie konstant wird. 

Dies ergab einen konzeptuellen Beweis, dass jede 2-dim. Mannigfaltigkeit eine einzigartige 

Geometrie trägt. Allerdings gilt im 3-dim. Fall, dass der Ricci-Fluss im allgemeinen zu 

Singularitäten führt, wenn die Zeit gegen uenendlich geht. 

Perelman zeigte, dass solche Regionen aber auf kontrollierbare Weise kollabieren und dies 

reicht aus, um daraus topologische Schlüsse zu ziehen. Der Parameter ist jetzt nicht mehr 

die Zeit, sondern die Skalierung und der Raum (Raum-Zeit-Kontinuum)  wird nicht von einer 

Mannigfaltigkeit mit einer Metrik beschrieben, sondern von einer Hirarchie von 

Mannigfaltigkeiten und Metriken, die durch den Ricci-Fluss miteinander verbunden sind. 

„man beachte, dass wir hier ein Paradoxon haben: die bei einer grossen Entfernungsskala 

weit voneinander entfernt zu sein scheinen, können bei kleinerer Entfernungsskala einander 

näher kommen; wenn wir darüber hinaus den Ricci-Fluss durch Singularitäten zulassenm 

können Regionen, die bei groser Entfernungsskala in untersciedlich zusammenhängenden 

Komponenten sind, zu Nachbarn werden ...“ 

„ .... wie auch immer, dieser Zusammenhang zwischen Ricci-Fluss und dem Fluss der 

Renormierungsgruppe lässt darauf schliessen, dass der Ricci-Fluss einem Gradienten 

gleichen muss.“ 

Perelman fand unerwartete Regelmäsigkeiten, wenn die Krümmung so gross wurde, dass 

der Raum sich aufzulösen drohte, und er führte neue math. Methoden ein, um den 

potentiellen Zusammenbruch zu messen. Er zeigte, dass es einen Typ von Singularitäten 

überhaupt nicht geben konnte und dass andere sich auf sehr kontrollierte Weise verhielten: 

er zeigte die grundlegende geometrische Struktur des Ricci-Flusses in der Nähe von 

Singularitäten. Die Stellen im Fluss, an denen es Singularitäten gibt, sind Stücke, die aus der 

ursprünglichen mannigfaltigkeit herausgeschnitten werden können und die hohogene 

Geometrien im Sinne Thurstons haben. Nach dem Rausschneiden kann man den ricci-fluss 

neu starten und ihn laufen lassen, bis sich neue Singularitäten bilden und mit ihnen neue 

Regionen mit homogenen Geometrien. Dann diese Regionen wieder rausschneiden und den 

Fluss von neuem starten (→ eine enge Wechselwirkung von Geometrie und Topologie). 
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Der Ricci-Fluss  ist eine Maschine, die die Mannigfaltigkeiten bearbeitet, sie streckt und formt 

und Stücke mit homogenen Geometrien abschneidet, um letztlich die gesamte 

Mannigfaltigkeit in homogene Abschnitte/Geometrien zu zerlegen. 

Kochrezept: Starte mit einer Drei-Mannigfaltigkeit M ohne Rand, die endlos weitergeht und 

gib ihr mit Standardmethoden der Differentialtopologie eine geometrische Struktur. 

„Entwickle“ diese Mannigfaltigkeit mit dem Ricci-Fluss. Wenn diese Mannigfaltigkeit einfach 

zusammenhängend ist, dann glättet der Ricci-Fluss (nach ein paar harmlosen Operationen) 

die Extreme der Krümmung so, dass sich eine Mannigfaltigkeit mit konstant positiver 

Krümmung ergibt, die der ursprünglichen homömorph ist. Das muss dann eine 

dreidimensional Sphäre sein, wie man seit langem weiss (→ mit ein paar Collapsing-

Resultaten die Geometrisierung bewiesen!!!). 

Poincare´s (Temperatur-) Modell des dreidimensionalen hyperbolischen Raumes kann man 

sich z.B. als eine in eine grosse Kugel eingeschlossene Welt denken, die folgenden 

Gesetzen unterworfen ist: 

die Temperatur ist darin nicht gleichmässig verteilt; sie ist im Mittelpunkte am höchsten und 

vermindert sich in dem Masse, als man sich von ihm entfernt, um auf den absoluten 

Nullpunkt herabzusinken, wenn man die Kugel erreicht, in der die Welt eingeschlossen ist. 

Man bestimmt das Gesetz, nach welchem diese Temperatur sich verändern soll, noch 

genauer. Sei R der Halbmesser der begrenzten Kugel, sei r die Entfernung des betrachteten 

Punktes vom Mittelpunkte dieser Kugel, dann soll die absolute Temperatur proportional zu 
22 rR − sein. Man setzt weiter voraus, dass in dieser Welt alle Körper denselben 

Ausdehnungskoeffizienten haben, so dass die Länge irgendeines Line- als seiner absoluten 

Temperatur proportional sei. 

Des weiteren setzt man voraus, das ein Objekt, welches von einem Punkte nach einem mit 

verschiedenen Temperaturen übertragen wird, sich sofort ins Wärme-Gleichgewicht mit 

seiner neuen Umgebung setzt. Nichts ist dieser Hypothese widerspruchsvoll oder 

undenkbar. 

Ein bewegliches Objekt wird also immer kleiner in dem Masse, wie es sich der 

begrenzenden Kugel nähert. Beachten wir vor allem, dass diese Welt ihren Einwohnern 

unbegrenzt erscheinen wird, wenn sie auch vom Gesichtspunkt unserer gewöhnlichen 

Geometrie aus als begrenzt gilt. 

Wenn diese Einwohner sich in der Tat der begrenzten Kugel nähern wollen, kühlen sie ab 

und werden immer kleiner. Die Schritte, welche sie machen, sind also auch immer kleiner, so 

dass sie niemals die begrenzte Kugel erreichen können. 

Wenn für uns die Geometrie nur das Studium der Gesetze ist, nach welchem die festen, 

unveränderlichen Körper sich bewegen, so wird sie für diese hypothetische Wesen das 

Studium der Gesetze sein, nach denen sich die (für jene Einwohner scheinbar festen) Körper 

bewegen, welche durch die soeben besprochenen Temperatur-Differenzen deformiert 

werden. 

Ich werde noch eine andere Hypothese aufstellen: ich setze voraus, dass das Licht 

verschieden brechende Medien durchdringt, und zwar so, dass der Brechungsindex zu  
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22 rR −   umgekehrt proportional sei. Es ist leicht zu ersehen, dass die Licht-Strahlen unter 

diesen Bedingungen nicht gradlinig, sondern kreisförmig sein werden... 

Wenn diese hypothetischen Wesen eine Geometrie begründen, so wird diese nicht wie die 

unsrige das Studium der Bewegung unserer festen Körper sein; es wird vielmehr das 

Studium derjenigen Orts-Veränderungen sein, welche sie so von den übrigen unterschieden 

haben und welche keine anderen als die „nicht-euklidischen Ortsveränderungen“ sind, es 

wird die nicht-euklidische Geometrie sein. 

So werden uns ähnliche Wesen, deren Erziehung in einer solchen Welt bewerkstelligt wäre, 

nicht dieselbe Geometrie wie wir haben. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17. Infinitesimals and Hyperreals 
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Do infinitesimals and even hyperreals “exist”?  Is a “ir-rational” number   more “real” than a 

“hyper-real” number ir +  ? 

 

... perhaps only in the minds of certain mathematicians (but then with the same rational as   

or complex numbers). Nevertheless, they are a fascinating concept. But first, a brief look at 

the history and structure of the real numbers.  Today we think of this set as equivalent to the 

set of points of the real line - a sort of ruler extending endlessly in both directions from the 

point corresponding to zero.  To the ancient Greeks, there were only points corresponding to 

rational numbers (ratios of whole numbers, e.g., 2/5) and between any two points on a line 

there were only a finite number of such rational "points". When irrational numbers were 

discovered, they were deemed "incommensurable", meaning they could not be expressed as 

such ratios and, in a sense, were non-measurable.  

 

As mathematical sophistication increased during the next two centuries, the ideas of Cauchy, 

Weierstrass and others took hold, and monads and moments - in their original guise - faded 

away. In the Standard Analysis that derived from their work, all real numbers were either 

rational or irrational, and "infinitesimal" came to mean simply very, very small, but real.   

There is an effective limit to the measurability of distances between points that are extremely 

close together. So, in a sense, there are "spaces" around points in which infinitesimals might 

reside. Perhaps aspects of logic break down, as they seem to in quantum mechanics, when 

dealing with microcosmic worlds.  

 

Rules for combining reals and non-traditional reals include:   

(A) the sum of two infinitesimals is infinitesimal, as is the product;  

(B)  the product of a finite real number and an infinitesimal is an infinitesimal;  

(C) the product of an infinitesimal and an infinite number may be finite or infinite, depending 

upon the numbers involved,  etc. We can also write  ba   ("a approximates b")  if ba −  is 

an infinitesimal. Hence, an infinitesimal 0 .   

Abraham (1966):  ". . . we observe that the non standard analysis is presented naturally, 
within the framework of contemporary mathematics, and thus appears to affirm the existence 
of all sorts of infinitely entities. . . . it appears to us today that the infinitely small and infinitely 
large numbers of a non-standard model of Analysis are neither more nor less real than, for 
example, the standard irrational numbers."  
 

 

 

 

1. Diagonal paradoxon 
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A very old example related to the one given above, one that confounded mathematicians at 
the beginning of the 20th century - until they decided to ignore it - is the Diagonal Paradox : 

 

 

The large square is one unit on a side. The "stair steps" going from the bottom left corner to 
the top right corner contain n=5, n=20, and n=110 steps, respectively. The length of each 
such staircase curve is exactly 2 units. But as n becomes infinite, the polygonal curves 
approach a straight line: the diagonal of the large square, which is the square root of 2 
(approximately 1.414) units long.  Again, as we pass from the finite to the infinite, the result is 
a diagonal line of no thickness, 2 units long, trapped within an interval 1.414 units long, and 
sheathed in a halo of infinitesimal points.  
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Due to a result from Lagrange we know, that a periodically structure is given only by the 

quadratic irrationals, i.e. real numbers of the form (Penrose 3.2). 

ba +  

Vardi Ilan (Paris) has an interesting comment about this kind of paradox: 

Vardi Ilan: "Regarding the notion of finite curves of infinite length, I have studied the works of 
Archimedes and I am fairly convinced that he had some notion of this possibility, because in 
his works he is very careful to set up axioms for length, in particular, his axiom that if two 
convex curves have the same endpoints and one is inside the other, then the inside one will 
be shorter. Otherwise, you do get problems." 

 

 

 

 

2. Infinitesimals 
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There have been philosophical speculations about whether infinitesimals do actually 

correspond to points on a line (or in the complex plane). A point is dimensionless, so perhaps 

there are "positions" for both standard and non-standard real numbers on our ruler. After all, 

irrational numbers are never used in measurements by empirical scientists - all 

measurements are ultimately rational. One simple arithmetic operation involving the decimal 

forms of true irrational numbers would take an infinite amount of time to complete - even on 

the hypothetically best computers. It would take an eternity to even fully and completely 

describe the decimal forms. So, are the irrationals as abstract and strange as infinitesimals? 

Not quite, but there's more to them than one normally thinks. 

 

Nowadays, we think of the real numbers as composed of both rationals and irrationals, "filling 

up" the real line.  Between any two real numbers, a and b, are both a rational and an 

irrational, and, therefore, and infinite number of each in the interval [a,b]. Whereas the 

rationals can be shown to be "countable" (a discrete scheme for counting them can be 

devised), the irrationals are known to be "uncountable" (no such scheme can, in principle, 

exist).  

 

A famous mathematician once compared the stars in the night sky to be like the rational 

numbers, and the blackness between them, the irrational numbers. Together they constitute 

the entirety of the numbers we use in the every-day world.  In terms of familiar decimal 

representations, the rationals are all either terminating (e.g., 2/5 = .4) or non-terminating but 

repeating (e.g., 3/11 = .27272727. . .). Those decimal expansions that neither terminate nor 

repeat represent irrationals (e.g., .....14159.3= ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Hyperreals 
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Let us call this new expanded real number system R*
.  A  function  in R*

 is a set (finite or 

infinite) of ordered pairs of numbers such that no two pairs have the same 1st element, but 

different 2nd elements.  Note that in *R, we might have, e.g.,   

 ),1(),,(),,3(),7,1( += F  

Assuming that x and a are in the domain of a bounded function G and that a is a standard 

real number, we can say that  G  is continuous at a  provided  G(a) ≈ G(x)  whenever  x ≈ a. 

 The area under a positive, continuous curve, given by f(x) on the interval  [a,b], can be 

defined as the infinite sum of areas of rectangles constructed by subdividing [a,b] into an 

infinite number of subintervals, each of which is of infinitesimal width, and height the value of 

f(x) for some x in that subinterval. This is similar to the definition of an integral given in a 

calculus course, except that the thin rectangles are now very thin indeed!  

 

Suppose f(x) is a real valued function defined on the interval (a,b), with a and b standard 

reals. Let  ζ , a standard real, be in the interior of (a,b). Then the derivative of f(x) at x = ζ 

 may be expressed as   



 )()( ff −+ , 

for all infinitesimals ε.   

For example, let 2)( xxf =   .  Then   
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Summary and geometrical interpretation of Hyper-reals:  

),*,,(* +R  ist ein angeordneter Körper mit RR *  und RR *  . Es sind +,*,  in R*
 

Fortsetzungen von +,*,  in R . R*
 enthält unendliche Elemente und von Null verschiedene 

infinitesimale Elemente. Endliche Elemente von   sind infinitesimal benachbart zu einer 

reellen Zahl.  

Ähnlich wie man sich R  als Zahlengerade vorstellt, gibt es ein geometrisches Bild von R*
 . 

R*
 besteht aus endlichen und unendlichen Elementen. Da R*

 total geordnet ist, ist ein 

unendliches Elemente entweder  0  oder 0  . Im ersten Fall liegt es dann links jeder 

negativen reellen Zahl, in zweiterem Fall recht jeder positiven reellen Zahl. R*
 zerfällt damit 

in folgende drei disjunkte Bereiche: negativ unendliche Elemente, endliche Elemente, positiv 

unendliche Elemente. Der Bereich der endlichen Elemente von R*
 zerfällt weiter in die 

disjunkten Bereiche der zu den verschiedenen reellen Zahlen infinitesimal benachbarten 

Elementen, in die sogenannten Monaden 
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 00:)( = rrm  , Rr  . 

Das ist eine sinnvolle Definition, weil zwei verschiedene reelle Zahlen nie infinitesimal 

benachbart sein können! Es ist, als ob sich der Punkt Rr , wie durch ein Mikroskop mit 

unendlichem Auflösungsvermögen betrachtet, in R*
 zu einer Monade )(rm vergrössert. 

Hierbei besitzt die Monade )(rm der unendlich nahe bei r  liegenden Elemente kein kleinstes 

und kein grösstes Element, da mit  0   auch  02   ist. Ferner enthält )(rm  mit zwei 

Elementen auch sämtliches dazwischen liegende Element. Sind  
21 , rr  zwei reelle Zahlen 

mit
21 rr  , so liegt die gesamte Monade )( 1rm  links von der gesamten Monade )( 2rm  . Da 

)(rm  für jedes Rr  durch Verschiebung um r  aus der Monade )0(m der infinitesimalen 

Elemente hervorgeht, bieten die Monaden bei der Betrachtung durch das Mikroskop alle 

dasselbe Bild. 

Then, in the early 1960s, Abraham Robinson and others demonstrated that there exists a 

kind of extension of the real number system that includes non-traditional "real" elements: 

 infinitesimals, ,  where r ,   for all positive real numbers, r .  Robinson showed that all 

the rules of arithmetic and algebra apply to this new, enlarged system, which includes, as 

well,  numbers that are infinite. I.e.,  numbers of the form   , where for each such  ,  

n  for all standard integers n .  The normal rules for inequalities hold, so that  ∞+1 > ∞, 

and so on.  It follows that  /1  is an infinitesimal, and 1/ε is infinite (except that division by 0 

is not allowed).  Robinson resurrects the word monad (of x) to mean all real numbers 

infinitely close to x ; i.e., of the form +x . Other authors use pleasing terms like "mist" or 

"cloud" or "halo" to describe this concept. 

Mathematicians who explore these strange worlds are frequently specialists in mathematical 

logic and set theory. And they have had some success at conceiving and describing 

infinitesimals and infinities in the context of Hyperreal Numbers. To the layman (even the 

non-specialist mathematician) often these results seem a bit contrived and don't coincide 

with intuition - but then intuition doesn't necessarily lead one to reality, whatever that is! 

 

One way of constructing a system incorporating non-standard reals is to define "numbers" 

 as infinite sequences of reals (or equivalence classes thereof). For example, let the number 

3.27 be interpreted as  (3.27, 3.27, 3.27, . . .) ad infinitum. Each real number is expressed as 

a constant, infinite sequence. Thus a "number"   

),,,,2.....2,2,2,2,2( 43210 n−−−−−−

 

is non-real. If one further defines various operations and relations on these new numbers, 

corresponding to the operations and relations we are familiar with, it's possible to exhibit 

infinitesimals. E.g. , define "<" to mean that for "most" terms of two sequences, this order 

exists between corresponding elements; then we have   

,.....),....,,(),,,,2.....2,2,2,2,2(,.....)0,....0,0,0( 43210 realrealrealrealn  −−−−−−  

for all positive reals - showing that the middle "number" is indeed "infinitesimal". There's 
much more to this, of course, and proper constructions require the use of ultra filters and 
other tools of set theory. But you get the idea. 
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Is the Line Segment  [0,1]  Infinite? 

 

Consider the sequence of functions: 

 )(xfn    where  )sin(
10

1
:)( xn

n
xf n =  

Each defined on [0,1].  The graphics above show functions with   n = 2, n = 10, and n = 100. 
It is easy to prove that  the sequence converges uniformly to the straight line segment [0,1]. 
 It is also straightforward to demonstrate that  the length of each curve is 

→
5

)(
n

xLn
   as   →n  

At any fixed degree of magnification, there is an n so large that the nth curve appears as a 
straight line. (Mathematicians routinely dismiss this sort of seeming paradox by simply citing 
"length" as a feature that is not preserved under uniform convergence.) 

Note, that for each n the maximum distance of the curve from the line segment [0,1] is 
1/10√n .  So for any positive real number  r  there is an  n  such that 0 < 1/10√n < r .  As we 
pass from the finite to the infinite, entering the strange world of  *R, the resulting object is an 
infinite line of no thickness - trapped in the interval [0,1] and having a "cloud" of infinitesimal 
points cloaking it, above and below.   

In the complex plane, infinitesimals may be of the form  iba +  , or ba, ,  where a and b are 

real infinitesimals.  The "halo" or "complex monad" of a standard z becomes two 
dimensional. 

 

 

 

 

 

4. A valid Dirac FUNCTION 
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Die Nichtstandard-Analysis ermöglicht es, die Dirac-„Funktion“ RR →:  , die als solche 

nicht existiert, aber als lineares Funktional über einem geeigneten Raum stetiger Funktionen 

definiert werden kann, als Funktionen von RR *→  einzuführen, die beliebig oft −*
 

differenzierbar sind und die das −*
 Integral 1 besitzen: 

 Definition: ( Funktionen−  als Abbildung von RR *→ ) Eine Funktion )(* RC  mit 0  

heisst Funktion−  , falls gilt: 

i)     =1)(
*

dxx  

ii)    
−







 1)(

*

dxx  für ein infinitesimales 0  

 

Lemma: (Erzeugung von Funktionen−  aus stetigen Funktionen) Sei  )(RCf   mit 0f  

und  =1)( dxxf  . Dann gilt für jedes NNh −* :   

)(:)( hxhfx =  ,  Rx *  ist eine   Funktion−  

und es ist )()(* RC k  , falls )()( RCf k  ist für   Nk  .  

 

Lemma: (Zentrale Eigenschaft von Funktionen− )  

Sei  RR *: →  eine Funktion−  und )()(

0 RC   . Dann gilt: 

  )0()()(
*

 dxxx  . 

Consider the Dirac Delta Function, δ(x) , using *R.  This "function" is not really a function at 

all, and it can be described as a distribution in standard analysis, or as a  measure, but 

roughly speaking, 

0

00
)(

=








=

x

x

for

for
x      and          1)( =



−

dxx  

 

 That is to say, the function is "so infinite" at 0=x  that the "area" it encompasses above the 

x-axis is exactly 1. 
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This is a "working function" used in physics and engineering, but it clearly makes little sense 

in R, the standard reals.  However, there is a simple and playful  heuristic description in *R 

that is appealing: 


















=

x

x

for

for
x

2

1
0

)(                   where  ε  is some positive infinitesimal. 

The "area" under the curve, above the x-axis, is  1)2)(
2

1
( =


. Lots of luck, however, trying 

to visualize this rectangle with infinitesimal width and infinite height!  
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18. Hyperfunctions  

 

We recall from [BPe] Petersen B.E., chapter 1, §15:  

Let  
zgz →  be a function defined on a open subset CU   with values in the distribution 

space.  Then 
zg  is called a holomorphic in CU  (or 

zgzg =:)(  is called holomorphic in 

CU    in the distribution sense), if for each   cC  the function   ),( sgz →  is holomorphic 

in CU    in the usual sense.  

Hyperfunctions are distributions, allowing to treat “functions” by Fourier transform, which can 

transmit unexpected (non-analytic!) signals, represented by a Laurent-series description with 

vanishing constant “Fourier term” ([RPe] R. Penrose, 9.2). In the one-dimensional case 

hyper-functions are the distributions of the dual space −C  of the real-analytical functions of 

a real variable C , defined on some connected segment R  ([RPe] R. Penrose, 9.7, [  ] B. 

E. Petersen, 1.16) and appendix). This gives the link of our approach to Penrose’s thoughts 

and ideas moving forward “the road to reality”. In the one-dimensional case the concept of 

hyperfunctions enables a link between distributions and a holomorphic, i.e. a complex-

analytical function, as any distribution f on R  can be realized as the “jump” of the 

corresponding in RC −  holomorphic Cauchy integral function  

 −
=

xt

dttf

i
xF

)(

2

1
:)(


 

across the real axis, given by 

dxxiyxFiyxFf )())()(lim),(  


−

−−+=     for +→ 0y  . 

The principle value )/1.(. xvP
 
of the not locally integrable function x/1  is the distribution g  

defined by ([BPe] B. E. Petersen, 1.7) 




−

== dxxx
x

dx
xg

x

)(log)(lim:),( 


       for each  cC  . 

The relation of this specific principle value to the Fourier transform is given by ([BPe] B. E. 

Petersen, 2.9) 

)sgn()
1

.(. si
x

vP −=









   and    )
1

.(.2)
1

.(.
x

vP
x

vP −=









. 

In the one-dimensional case hyperfunctions are the distributions of the dual space 
−C  of 

the real-analytical functions of a real variable 
C , defined on some connected segment 

R .  Any real-analytical function is 
C , but not every function 

C is analytical, e.g. it 

holds 
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=


= C

x

x
exe

x

0

0

0

:)(
2

1

 but  
Cxe )(  .   

From 0)0()( =ne  for all n  for the Taylor series it follows 0
!

0

0

=


nx
n

, what’s different to )(xe  

except at 0=x  , i.e. 
Cxe )( is not an analytical function. The situation is different in case 

of complex-analytical functions, which are holomophic and analytical at the same time.  

 

In the one-dimensional case the concept of hyperfunctions (see e.g. [BPe] B. E. Petersen, 

1.16) enables a link between distributions and a holomorphic, i.e. a complex-analytical 

function, as any distribution f on R  can be realized as the “jump” of the corresponding in 

RC −  holomorphic Cauchy integral function  

 −
==

xt

dttf

i
xFxf

)(

2

1
:)(:)(




 

across the real axis, given by 

dxxiyxFiyxFf )())()(lim),(  


−

−−+=     for +→ 0y  . 

This means that the dual (distribution) space −C  of the space of the real-analytical functions 
C  characterizes the so-called hyperfunctions  [[  ] R. Penrose, [  ] B. E. Petersen). 

A hyperfunction of one variable )(xf on an open set R  is a formal expression of the form   

)0()0( ixFixF −−+ −+
, where )(zF

is a function holomorphic on the upper, respectively 

lower, half-neighborhood  0)Im( = zzUU , for a complex neighborhood U    

satisfying = RU . The expression )(xf is identified with 0 if and only if )(zF
agrees on   

as a holomorphic function. 

If the limits exist in distribution sense, the formula gives the natural imbedding of the space of 

distributions into that of hyperfunctions. Hyperfunctions can be defined on real-analytic 

manifolds. Fourier series are typical examples of hyperfunctions on a manifold:  

(*)  
Z

xiea





converges as a hyperfunction    if and only if   )(


 eOa =   for all 0 . 

Some examples of generalized functions interpreted as hyper functions are 

a. Dirac’s delta function          


−=








−
−

+
−=

0

coslim
0

1

0

1

2

1
)( kxdke

ixixi
x ak


  , 0→a  

b. Heaviside’s function             )log(
2

1
)0log()0log(

2

1
)( z

i
ixix

i
xY −−=+−−−−−=


 .           

The Heaviside function can be characterized ([BPe] B. E. Petersen, 1.16) by 
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Yixiyx ˆlog)log(lim +=+   for +→ 0y   and  )()(ˆ xYxY −=  

c.                                        





sin2

)(

i

z
x


=

               for Z  

)ln()(
2

1
zz

i
x mm 


=

    for Zm=  

d. the Feynmann propagator (Green’s function) is the solution  )(
2

1  − SS
i  

of the distribution wave equation 

                                                  )()(),()(
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xtxtS
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=

+−


))((
),()2(2








ikik

dkde
xtS

ikxti
m

 

  +−+−
=

+−


))((
),()2(2








ikik

dkde
xtS

ikxti
m      . 
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19. Hermitian Operator and Physical Observabales  

 

The spectrum of a hermitian, positive definite operator  

HADA →)(:
 

with domain )(AD in a complex-valued Hilbert space H is discrete. This property enables an 

axiomatic building of the quantum mechanics, whereby, roughly speaking, physical states 

are modeled by the elements of the Hilbert space, observables of states by the operator A 

and the mean value of the observable A at the state   with   is given by 

 ,A  . 

 In other words, the expectation value of an operator Â  is given by  

= rdrArA


)(ˆ)(*   

and all physical observables are represented by such expectation values. Obviously, the 

value of a physical observable such as energy or density must be real, so it’s required A  to 

be real. This means that it must be 
*

AA = , or  

  ===
**

* )()(ˆ)(ˆ)( ArdrrArdrArA


  

Operators , which satisfy this condition are called Hermitian. One can also show that for a 

Hermitian operator,  

  = rdrrArdrAr


)()(ˆ)(ˆ)( 2

*

12

*

1   

for any two states  
1  and  

2 . 

For the eigenvalue problem of a self-adjoint, positive operator A  

 =A  

the eigenvalues    are the discrete spectrum n  with either finite or countable infinite set of 

values  

nnA  =    ,  1
2

=n  

In this case the mean value of A is given by 

 AA ,:=  . 

Let nw  the probability, that the eigenvalue occurs of a measurement of the observables A 

then it holds for the mean value of  A 
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i.e.                                                      
22

, nnnw ==  . 

The general solution of the Schrödinger equation is given by 

)(),( xectx
n

n

ti

n
n

 


−
=    . 

In case the operator A is only hermitian (without being positive definite) Hilbert, von 

Neumann and Dirac developed a corresponding spectral theory. This leads to a continuous 

spectrum )( , indexed by a continuous  . In this case );(  x  denotes an eigen function to 

the eigen value )( . The norm of this function is infinite, i.e. the function is not an element 

of the Hilbert space. An approximation to this function with finite norm is given (with suffiently 

small  ) by the eigen differential  


+

−





=(

2/

2/

);(
1

);





 


 dxx   .  

All for the Hilbert space related properties are valid for the eigen differentials, but not for the 

eigen function itself. The scalar product of the eigen function is normed to a Dirac -function:  

)();(),;(  −= xx  . 

The norm of the eigen differentials is given by: 

















=((  

+

−

+

−



2/

2/

2/

2/

);();(
1

);),; ddxdxxx  














−


=((  

+

−

+

−



2/

2/

2/

2/

)(
1

);),; ddxx  

The integral is 1 for  =   (with appropriate norm factor) and 0 if   − .  

In case if   is a momentum the eigen differential gives a wave package with finite distance  

  in the momentum space and therefore with finite distance 



1

x
  in the particle space. 

Such a package can normed to the value 1 (1 particle). x  (and correspondingly  ) has to 

be larger than all other typical distances of the problem. In this sense eigen differentials 

correspond to the formalism of wave package modelling. 
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The eigen functions of the discrete and continuous spectrum build an extended Hilbert sapce 

to ensure that for every   it holds 

  +=
n

nn dxcxcx  );()()()(  

with  

)(),( xxc nn =  

and  

)(),;()( xxc  =  

It holds the Parceval identity:  

  +=
n

n dcc 
22

)(,   

and the eigen differential are orthogonal wave packages. 

If for every function 
2L such a representation is possible, one call the system.     a 

complete orthogonal system. Such a complete orthogonal system is not uniquely defined. 

There is always the degree of freedom 

- to choose arbitrarily the phase of each eigen function  

- the set of the non-standard eigenvalues can be orthogonalized on different ways 

- to replace the index   of the continuous spectrum by an index )( with 

−)( differentiable, monotone function of  . Then  






dd

x
x

/

);(
);( = . 

For not all hermitian operators there exist a complete orthogonal system of eigen functions. 

For all operators, which represent physical observables, there exist a complete orthogonal 

system. 
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20. Power Series 

Functions analytic in a neighborhood of 0=z , can be expanded as power series (Taylor's 

Series) there: 

....)( 3

3

2

210 ++++= zazazaazF  

with radius of convergence     

n

na
Rz

/1)sup(lim

1
=  

 
Within the circle of convergence, the series converges uniformly to F(z), and outside the 
circle, it diverges. The convergence behavior on the circumference of the circle varies with 
the function.  
 
The following graphics show the regions of convergence of several functions, and how well 
the truncated series match the various functions, with darker hues indicating best 
approximations, and light hues, either divergence or poorer approximations. 

 

Example 1 

 

....1
1

1
)( 32 ++++=

−
= zzz

z
zF             1z  

 

 
n = 10   and  Image radius 4 
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Example 2 

 

 .......
321

1
ln)(

32

+++++=
−

=
n

zzz
z

z
zF

n

            1z  

 

 

n = 50   Center of Image: 1+0i   Image radius  1 

Dark points are anomalies slightly outside circle of convergence,  
showing better approximations than expected. 
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Example 3 

 ...
)!2(

)1(....
!4!2

1)cos()(
242

+−+−+−==
n

zzz
zzF

n
n             z  

 

 

 
n = 5 (Polynomial of degree 10)    Image Radius 30; Red spots indicate better 
approximations than usual for that radius -  blue shows poorer approximations 

 

 
n = 10  (Polynomial of degree 20)     Image Radius 30 
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21. Continued Fractions - Analytic Theory 

 

Continued Fractions are algebraic constructions of the form 

.

3

3

2

2

1

1

+
+

+

b

a
b

a
b

a  

If this process does not terminate, the CF is said to be infinite, in the same way a non-

terminating series is said to be infinite.  If the )(zan and )(zbn  are functions of a complex 

variable, z , and ω is another such variable, we have 

.
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Called the normal nth convergent of the infinite CF when ω = 0.  Simpler notational formats 
include the following: 
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=
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n

n
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It is possible to expand complex functions as continued fractions using a number of distinct 
algorithms. This variety of expansion formats, plus a bewildering assortment of convergence 
theorems, contrasts strongly with the relative simplicity of power series expansions and their 
convergence criteria. Why then bother with CFs? Two reasons: (1) frequently CF expansions 
converge more rapidly than the series (although not always), and, (2) CF expansions may be 
valid in a much larger domain than power series. As a simple - even trivial - example,  

z
zzzzF

−
=++++=

1

1
....1)( 32  

The series on the left converges in a disc about the origin of radius 1. It diverges outside this 
disc. The expression on the right is, in fact, a finite CF, converging instantly for all values of  
z  with the exception of  z = 1.   

 

We begin with graphics, looking at a convergent of the periodic CF, 
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Going down to the nth level. This convergent is a rational function of degree n, having both 
fixed points and poles. Here we see how the nth convergent displaces points in the z-plane, 
with little or no displacement = dark and high displacement = light: 

 

 

 

The point 0=z  is, of course, a fixed point ( zzF =)( ). The graph of the 50th convergent 

shows a series of alternating poles and what appear to be fixed points along the negative 
real axis (a portion of which is actually the branch line for the single valued function of which 
this is a CF expansion).  The image is centered at  z = 0  and extends 2 units to the right and 
left. 

Next, we expand the function  F(z) = p.v. √z , about z = 0, obtaining another periodic CF:  
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Comparing graphically the 10th convergent with the value of the function )(zF , we have the 

following, where darkest hues indicate strong approximations ( 510− ), and light hues, poor 

approximations: 

 

 

 
The graph is centered at the origin, extending 10 units to the right and left. The branch line of 
the function extends from the origin along the negative real axis. Poles of the rational 
approximation appear faintly as light spots along the branch line. 
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22. Analytic Theory of Continued Fractions 

 
As an example of expansion into a CF of an analytic function, consider: )arctan()( zzF =  . 

From  Continued Fractions: Analytic Theory and Applications, by W. Jones and W. Thron 
(1980), we have the following (written using a common format for CFs):   

...7

3

5

2

3

1

1
)arctan(

222222

++++
=

zzzz
z

 

Valid nearly everywhere in the complex plane as the single-valued branch of the analytic 
function with branch points at  iz = and iz −= and branch lines north of  i ,  and south of   -i . 

 To compute  )1arctan(4/ =  to seven decimal places requires merely going out to the 9th 

convergent of the CF. Whereas, using the standard power series expansion: 

.....
753

)arctan(
753

+−+−=
zzz

zz                 1z     iiz − ,  

Valid only within the unit disc, one needs to employ (approximately) the first 500,000 terms of 
the series. Thus this example demonstrates the two previously stated reasons for using Cfs 
as functional expansions: greater speed of convergence  and  enhanced region of 
convergence.   

 

 
The speed of convergence of the CF expansion of Arctan(z), showing results for the 15th 
convergent vs the 30th convergent. Graph is centered at the origin, extending 10 units right 
and left ; branch lines above iz = and below  iz −=  are clearly shown. The convergent is, of 
course, a rational function approximation to the Arctangent, and poles are illuminated along 
the branch lines. Dark areas indicate rapid convergence of the CF. 
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A CF expansion of the function   )1ln()( zzF −−=  
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converges and represents a single-valued branch of the function in the complex plane, with 
branch cut along the real axis to the right of  1=z .  The speed of convergence is displayed 
in the following graphic, where we compare the 10th convergent to the 30th. As usual, dark = 
rapid, light = slow. Since any convergent is merely a rational approximation to the function, 
poles are seen illuminated along the branch cut. The scope of the figure is |x|, |y| < 10. 

 

 

 
As we have seen before, the power series expansion of this function about  1=z fails to even 
converge outside of the unit disc. 
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23. Monadentheorie 

Leibniz entwickelte die Monadentheorie als Gegenentwurf zu den zeitgenössischen 

Strömungen. Die Philosophen des 17. Jahrhunderts arbeiteten in der Regel entweder eine 

neue Substanztheorie aus oder sie entwickelten die Atomtheorie nach neuzeitlichen 

Maßstäben weiter. Leibniz befriedigte keine dieser Auffassungen. Er nennt die Philosophie 

der Atomisten eine „faule“ Philosophie, da diese Auffassung, welche die Atome als letzte 

Bausteine ansieht, die lebendige, sich verändernde Welt nicht tiefgründig genug analysiere. 

Entgegen atomistischer Zeit- und Raumauffassungen, die diese Existenzformen der Materie 

mit einem leeren Gefäß vergleichen, vertritt Leibniz eine dialektische Konzeption, in der 

Raum und Zeit Ordnungsbeziehungen in der materiellen Welt sind. Der Raum ist die 

Ordnung der zur gleichen Zeit existierenden Dinge, die Zeit die Ordnung ihrer 

kontinuierlichen Veränderungen. 

Den Monadenbegriff greift er aus der neuplatonischen Tradition auf. Der Begriff Monade, 

„Einheit“, stammt aus der Stoicheiosis theologike des spätantiken Philosophen Proklos. 

Wenn man die unendliche Substanz Baruch de Spinozas und des Mathematikers Blaise 

Pascal in unzähligen Punkten repräsentiert findet, deren jeder das Universum enthält, dann 

hat man ein Bild für das Bewusstsein, das in seinem Ichpunkt das ganze All umfasst: dann 

hat man die Leibnizschen Monaden. 

Eine Monade – der zentrale Begriff der Leibnizschen Welterklärung – ist eine einfache, nicht 

ausgedehnte und daher unteilbare Substanz, die äußeren mechanischen Einwirkungen 

unzugänglich ist. 

Das gesamte Universum bildet sich in den von den Monaden spontan gebildeten 

Wahrnehmungen (Perzeptionen) ab. Sie sind eine Art spirituelle Atome, ewig, unzerlegbar, 

einzigartig. Die Idee der Monade löst das Problem der Wechselwirkung von Geist und 

Materie, welches dem System René Descartes' entspringt. Ebenso löst sie das Problem der 

Vereinzelung, welches im System Baruch Spinozas problematisch erscheint. Dort werden 

einzelne Lebewesen als bloß zufällige Veränderungen der einzigen Substanz beschrieben. 

Ein Beispiel: Eine Substanz kann ohne Denken existieren, aber das Denken nicht ohne 

Substanz. 

Da Leibniz die Grundfrage der Philosophie idealistisch löst und die Materie für ihn nur ein 

„Anderssein der Seele“ ist, verwirft er den absoluten Charakter von Raum und Zeit. Raum 

und Zeit werden in der Leibnizschen Metaphysik als Ordnungsbeziehungen zwischen 

Entitäten der materiellen Welt verstanden. Die Theorie der Substanz von Leibniz schließt die 

Möglichkeiten der allseitigen Entwicklungen ein. Obwohl die Monaden in ihren Keimen 

identisch sind, entwickeln sie sich verschieden. Entwicklung bedeutet nach Leibniz nicht das 

Entstehen von grundsätzlich Neuem, sondern nur die Entfaltung des Vorhandenen. Leib, 

Seele und Geist sind nicht grundsätzlich verschieden, sie sind bloß unterschiedlich 

entwickelt. Leibniz löst das Problem der Verbindung von Körper und Seele, indem er darlegt, 

dass alle Monaden, obwohl sie keinen gegenseitigen Einfluss auf ihre innere Struktur 

ausüben, koordiniert wirken. Er behauptet, dass Gott beim Schaffen der Monaden ihre 

Einheit und koordinierte Wirkung gesichert habe. Er kennzeichnet diesen Zustand mit dem 

Begriff der „prästabilierten Harmonie“. Trotz des idealistisch-teleologischen Wesens dieser 

Anschauung ist das Bemühen zu spüren, die Einheit der Welt nachzuweisen und die in ihr 

wirkenden Gesetzmäßigkeiten aufzudecken. 

http://de.wikipedia.org/wiki/Neuplatonismus
http://de.wikipedia.org/wiki/Proklos
http://de.wikipedia.org/wiki/Baruch_Spinoza
http://de.wikipedia.org/wiki/Blaise_Pascal
http://de.wikipedia.org/wiki/Blaise_Pascal
http://de.wikipedia.org/wiki/Perzeption
http://de.wikipedia.org/wiki/Geist
http://de.wikipedia.org/wiki/Ren%C3%A9_Descartes
http://de.wikipedia.org/wiki/Baruch_Spinoza
http://de.wikipedia.org/wiki/Substanz
http://de.wikipedia.org/wiki/Monade_(Philosophie)
http://de.wikipedia.org/wiki/Leib
http://de.wikipedia.org/wiki/Seele
http://de.wikipedia.org/wiki/Geist
http://de.wikipedia.org/wiki/Teleologie
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24. Black-body radiation 

A famous usage of Dirichlet’s series is in the context of Planck’s black-body radiation 

function  
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This describes the total radiation and its spectral density at the same time, i.e. 
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The weak formulation (and the positive Berry conjecture answer) should enable an 

alternative model for the total radiation and its spectral density. 
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25. Wavelets 

A wavelet transform is similar as a Fourier transform, which delivers the frequency spectrum 

of a timely signal f(t) without any loss of information, although the Fourier transform itself 

gives the frequencies without any information about the points in time, when the frequencies 

occur. The wavelet transform delivers this sort of information in a better distinguishing form: 

one gets both the frequency analysis and the points in time, when those frequencies happen, 

similar like the written notes, which results into the music of an orchestra, which are 

described in form of a wavelet transform on a 2-dimensional paper ([23] M. du Sautoy: “the 

primes have music in them”) 

A wavelet is a function )()( 2 RLx   with a Fourier transform which fulfills  
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−
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2
)(ˆ
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The wavelet transform of a function )()( 2 RLxf   with the wavelet )()( 2 RLx 
 
is the function 

  


−



−

−
== dt

a

bt

a
tf

c
dtttf

c
bafW ab )(

1
)(

1
)()(

1
:),( , 



 ,     RbRa − ,0  

For a wavelet  )()( 1 RLx   its Fourier transform is continuous and fulfills   
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The wavelet transform to the wavelet )()( 2 RLx 
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is isometric and for the adjoint operator 
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The continuous wavelet transform is known in pure mathematics as Calderón’s reproducing 

formula, i.e. for )()( 1

nRLx   real and radial with vanishing mean, i.e.   
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It holds for )(
1

:)(
a

x

a
x

na  =  Calderón’s formula, i.e. 

a

da
ff aa



=
0

**  . 

Classical Hilbert spaces in complex analysis are examples of wavelets, like Hardy space of 

2L  functions on the unit circle with analytical continuation inside the unit disk. 

We note that )( 2x  has a similar structure than the Mexican hut, which is a continuous 

wavelet function (see remark 1.16 below) )()1()( 2

2/22/
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fulfilling  
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