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ON THE SUMMATION FORMULA OF VORONOI 0
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C. NASIM

Abstract. A formula involving sums of the form 2 d(n)f{n) and 2 d(n)g(n) is

derived, where d(ri) is the number of divisors of n, andf(x),g(x) are Hankel transforms

of each other. Many forms of such a formula, generally known as Voronoi's summa-

tion formula, are known, but we give a more symmetrical formula. Also, the reciprocal

relation between f(x) and g(x) is expressed in terms of an elementary kernel, the

cosine kernel, by introducing a function of the class L2(0, no). We use L2-theory of

Mellin and Fourier-Watson transformations.

Introduction. In 1904 Voronoi [10] published the following general formula:

If t(«) is an arithmetic function and f(x) is continuous and has a finite number of

maxima and minima in a<x<b, then analytic functions a(x) and 8(x), dependent

on t(w), can be determined such that

\ ^ mm +1 Uf <n)f(n) = \"f{x) 8(x) dx + 2n f r(n) \"f{x)a{nx) dx.
^n>a ^ n^a Ja n = l Ja

One of the better known special cases of this formula is when T(n) = d(n), the

number of divisors of n, and

a(x) = (2l7r)K0(4nX112)- Y0(4ttx112),      8(x) = log x + 2y,

y being Euler's constant and Y0, K0 denote Bessel functions of second and third

kinds respectively, of order zero. This special case is generally known as Voronoi's

summation formula. Later, this formula received considerable attention as a

result of which many modifications were put forth by A. L. Dixon and W. L.

Ferrar [2], J. R. Wilton [13], A. P. Guinand [3] and others. Most of the authors

used complex analysis and in all the new forms of the Voronoi formula, the kernel

used was a combination of the Bessel functions Y0(x) and K0(x).

Our object in this paper is to obtain a more symmetric and simplified form of

Voronoi's formula, which holds under simple conditions. We state below the main

result. First, a definition, due to Miller [6] and Guinand [4].
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Definition. A function f(x) e Gj^O, oo) if and only if, for a fixed \>l/p and

p > 1, there exists almost everywhere a function fa)(x), such that

(i) f(x) = ̂  J" (? - xy - y«xt) dt, x>o,

and

(ii) xKfM(x) £ Lp(0, oo).

The function fa)(x) is the Ath derivative (apart from a factor (— 1)*) off(x) when

A is an integer. It can be shown that iff(x) e G2(0, oo), then

(1.1) xr + ll2fM(x)-+0   asx-^Ooroo,   0 ^ r < A,

and that Gf is a subclass of L2. In this paper we shall use the class G2(0, co). The

properties (i) and (ii), in this case, simply mean that (i) f(x) is the integral of its

derivative f'(x) (apart from the factor — 1) and (ii) xf'(x) eL2(0, co).

Main Theorem. Let <f>(x) e G2(0, oo). Then there exist functions f(x) and g(x),

both 6 G2(0, oo), defined by

fix) = 2 J   4>(t) cos 2nxt dt,      x > 0,

and

g(jc) = 2 J  7 ̂ (7) cos 27rX? *k>     * > 0,

lim { f </(«)/>)- ["(log ; + 2y)/(0
N_> co   1.71 = 1 JO J

= lim {I d(«)g(n)-fVgf + 2y)g(r)A},

w/iere y is Euler's constant.

This symmetric form of Voronoi's formula could be derived from a general

formula [3] of A. P. Guinand, if we had used the kernel - Y0(4ttxu2) + (2Itt)

K0(4ttx112) and employed sophisticated order results. In our proof we make use

of easily derived and elementary results, using the theory of mean convergence of

functions of L2(0, 00).

Definition 2. A kernel k(x) e D2 if and only if

(i) there is defined a.e. in (—00, 00) a function K(\ + it), such that \KQ + it)\ = 1,

K(i+it)KQ-it)=t;
(ii) the function kx(x), defined a.e. by

kx(x)     1 ..     Cll2+iTK(s)  _s ,
—= — l.i.m. y-^ x s ds,

X       2irt T-nx, Ji/2-ir 1 '
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1972] ON THE SUMMATION FORMULA OF VORONOI 37

may be chosen, so that

(a) kx(x) is differentiable, kx(x) = Jg k(t) dt,

(b) kx{x) is 0(x112), x -> oo, and 0(jc1,a), x -* 0,

(c) £(x) e L(l/«, «), for all finite n > 0.

Such a class of kernels is due to J. B. Miller [7].

The following results can be deduced from the functional relations and expan-

sions of Bessel functions Yn(x) and Kn(x) [12, pp. 62-80]. If Ln(x)= — Yn(x)

-(2lv)Kn(x) and Mn(x)= - Yn(x) + (2lir)Kn(x), then

(1.2) (dldx^xL^x)} = xM0(x).

(1.3) L^x) = 0(x-112), asx^-oo,

and = 0(x log x), as x -> 0.

2. Preliminary results.  Consider the function

(2.1) h{x) = 4n)-x(logx+2y-l))x-1.
Infix J

Since [8, p. 262]

2 </(«) - x(log x + 2y -1) = 0(x112),      x -> 00,

therefore

A(jc) = Of*"1'2), x->oo,
(2.2)

= 0(log x), x-+0.

Then its Mellin transform

H(s) = J   ÄW^"1 dx     (s = o + it)

exists for 0<o-<^. Or

H(s) = j h(x)xs-1 dx+j h(x)xs~1 dx,      0 < a < |,

3 S Jx

This gives the analytic continuation into a<0. Now

r* 00 /» 00 /* 00

«(x)xs"1Jx=      2 d(n)xs-2dx-\   (log x + 2y-l)xs~1 dx.
Jl Jl   »Sl Ji

By splitting the range of integration (1, 00) into (1, 2), (2, 3),... and solving, we get

H 2 wa<fc = 7^- 2 4«)«5-1 = ^r^>
Jl   nSx 1— in = l 1 —A

where £(z) is the Riemann-zeta function.
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Now, for a < 0,

1 2y-l
J   (logx + 2y-l)xs-1 dx =

s

Hence, by analytic continuation, we obtain

(2.3) H(s) = £2(1 s)l(l-s)      (0 < c < i).

Since x"~1h(x) el2(0, co), 0<o-<|, by Mellin's inversion formula

j        C+iT Pd-s)
\{h{x+0) + h(x - 0)} =      lim        ^ ;     ; x -5 ds.

Next we shall show that H(s) eL2( — oo, oo) on s = ^ + z7 and deduce that

/z(x)eL2(0, co).

Now [8, p. 92]

C(i+»0 = 0(r1/6logr), r^oo.

Therefore £2(1 — s)/(l — s) eL\\ — /co, ^ + /oo) and has a Mellin transform /^(x),

say, belonging to L2(0, oo), defined by

1-112+iT £2(1 _-\

h^x) =     l.i.m. ^ Y    } x-° ds

a.e. for x > 0. Let C be the contour (o- - »T, 4. - iT, i+iT, a+iT, a - iT). By Cauchy's

i2a-s)

Theorem

■ x~s ds = 0,     0 < o- < i,

the integrals along the lines (a—iT, -1—zT) and (i + zT, o+iT) vanish as r->co,

since [8, p. 82] ttp+it)=0(tm~'»% 0<<t<1.

We have then

l.i.m. 4 Y      x'sds = lim        ^ S)x-°ds
r-.oo Ji/2-ir    1—J r-.ooJ(j-(r l—S

a.e. Or, /z1(x)=/z(x) a.e. and hence h(x) eL2(0, oo).

Let us define a function

(2.4) ,4(x) = l.i.m. x1"5 ds,
T-,oo .'l/2-rT l—S

where Jf (,*) = </< 1 -s)l<(i(s) and <A(j) = 2n=i <**(«)«"*■

Thus ^(j) = ^2(ä) and using the functional equation

£(j) = 2s7rs-1(sinij7r)r(l-i)£(l-j)
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we obtain

(2.5) Jf (s) = 4(2tt) - 2sT2(s) cos2 \stt.

Now

(2.6) r*Xi+ft)| = 1,     3PQ+it)3r{i-it) = 1

and consequently, on the line s = \ + it, |Jf(y)/(l — s)\ = 0(t'1) and thus belongs to

L2( — oo, oo) when integrated with respect to t. Hence the integral (2.4) converges in

mean square. Also, x'1A(x) eL2(0, oo) and A(x) is a Fourier kernel in Watson's

sense [11].

Substituting the value of Ct(s), obtained above, in (2.4), we have

(2.7) A(x) = l.i.m. 4(2tt)-2sT(s)T(s- 1) cos2 ^stt-x1'5 ds.
r->oo 2tti Ji/2-ir

We shall now evaluate the above integral. It is known [9, p. 195] that for

1 <<t<i

r + "° (ny^lTry-^Tis^is-I) cos 7rs-x-sds = x-^Y^ttx112).
2tI Ja-too

Moving the line of integration to cr = +_ and by applying the theory of residues we

get

0 ~. P'2 + i™ (tt)-\2rry-2°r(s)T(s- 1) COS tts-x~sds
(Z.ÖJ ^Jl/2-ioo

= x-llzY1(47TXll2) + (27T2xy1.

Also, [9, p. 197] for a > 1

JL f + i°°(77)-1(27r)1-2sr(j)r(5-l)x-s& = -X-1'2K1(4ttX112).

Moving the line of integration to a = \, we have

1     fl/2 + ioo 1r-l/2

(2.9) (7r)-1(27r)1-2sr(5)r(j- l)x~s ds = —-K1(47tx1I2)-(2tt2x)-1.
Jl/2-ioo t

Now from (2.8) and (2.9),

1     ("1/2 +(oo t

- (27r)1-2sr(j)r(j-1) cos2 7ts-x-s ds
2nl Jl/2-ioo

= - x-1/2{ ^(W8) + (2/7r)A:1(47rx1'2)}.

Thus (2.7) yields A{x) = x + 1,2L1(4irx112).

Note that y4(x) is differentiable, and let A{x) = \x x(t) dt, from whence x(x) =

2ttM0(4ttx112) by (1.2). From (1.3) and (2.6) we see that all relevant conditions are

satisfied and therefore x(x) belongs to the kernel class D2.

Further, let

i_r2+ir sjt(s) ^_tjs1 fl/2H

(2.10) F(x) = U.m.^-\
-a (\-s){2-s)
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From (2.6), \sJf(s)l(\-s)(2-s)\ =0(/"1), therefore the integral (2.10) converges

in mean square and x~1F(x) e L\0, oo). Thus F(x) is a generalized Hankel kernel

[11].

Lemma 2.1. Let h(x) be defined by (2.1). Then

where F{x) is the generalized Hankel kernel defined by (2.10).

Proof. Applying Parseval's theorem to L2-functions h{x) and x~1F(x), we have

x}0 m   t   dt    2mi}w.lea (1-*X2-*) X dS'

which, by (2.3) and (2.5), is

2tt/j1/2_i0o (l-s)(2-s) Jo

as required.

Thus we can say that h{x) is the F-transform of itself.

Lemma 2.2. Let f(x) e G2(0, oo). Then there exists g(x) e Gf(0, oo), such that

x > 0,

x > 0.

Further xf'(x) and xg'(x) are F-transforms of each other. Here x(x) = 2ttM0(4ttx112).

Proof. The first part is immediate by a result due to J. B. Miller [6], since the

kernel v(x) e D2. The second part can be proved by the same method as used in

the proof of Lemma 2.1.

Lemma 2.3. Let </>(x) e G2(0, co) and define f(x) by the equation

/* oo

(2.11) f(x) = 2     <f>(t) cos 2nxt dt,      x > 0.
.'o

Then f(x) e Gf(0, oo). Further, if a function g(x) is defined by

(2.12) g(x) = 2 J™ j <f>(jj cos 2-rrxt dt,     x > 0,

then g(x) e G\(0, oo).

Proof. It can be seen that 2 cos 2nx e D2. Thus by Theorem I of J. B. Miller

[6], f(x) e Gf(0, oo), since <j>(x) e Gf(0, oo). Similarly g(x) e Gf(0, oo), provided we

and

g(x) = 2*£f(tMxt)dt,

f(x) = 2n [ g(t)x(xt) dt,
Jo
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can show that (I jx)<j>{\ jx) e G?(0, oo) when <f>(x) does. Now,

Since <f>(x) e Gf, by property (ii), (1/*)<£( l/x) and (l/x2)^'(l/x) belong to L2(0, oo),

and using Minkowski's inequality, we can show that x(djdx){(\jx)4>(llx)} also

belongs to L2(0, oo).

Also,

1 f * d
<Kx) =-J  jt{t<f>{t)} dt.

Or,

Mi) =|o1,xwo+^'(0}^

Thus (1/x)<z>(1/jc) is the integral of its derivative, and hence (l/x)0(l/x) e c72(0, co).

This proves the lemma.

3. The Main Theorem. Applying Parseval's theorem [1] for the two pairs h(x),

h(x) and xf'(x), xg'(x) of F-transforms of the class Lz(0, co), we have

(3.1) f00 xh(x)f'(x) dx = r xh(x)g'(x) dx.
Jo Jo

The left-hand side is

["{2 rf(«)-x(logx + 2y-l)W)^
Jo    KnSx J

= lim {[{j d(n)-x(\ogx+2y-\)\f(x)\N
W-.00  ^lAnSx J Jo

-£/(*) ̂ (nJ/(«)) +J"Vg *+W(*) dx}.

Since/(x) and /z(x) satisfy (1.1) and (2.2) respectively, the integrated term vanishes

at both limits, and the above expression reduces to

lim { - f d(n)f(n)+r (log x + 2y)f(x)dx\.
W-.00   I    n = l Jo J

Treating the right-hand side of (3.1) in the same manner, we obtain

Theorem 3.1. Let f(x) e G2(0, co). If g(x) is defined by

g(x) = 2tt^ f(t)x(xt) dt
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then g(x) belongs to G2(0, oo), where x(x) = 2ttM0(4ttx112). Further

lim { f d(n)f(n)- f"(log x + 2y)f(x) dx)
AT-»oo  Kn = l jo J

= lim {2 dtogi»)-f Gog *+2y)g(x) <**]■•

Theorem 3.2. Le/ </>(x) e Gf(0, 00). zTiere exist functions f(x) and g(x) defined

by the equations (2.11) and (2.12), then the equations

fix) = I"" *(0x(*0 *,    g(x) = f00 /(0x(*0 dt
Jo Jo

hold for x>0, where x(x) = 2ttM0(4ttx112).

Proof. Integrating by parts the integral in (2.11), we get

.     [",•> sin 2tt.xZ1 -MX>    C00 ,,. . sin 2ttx? ,
/(*) =  #0-—      -    f (0      „ *

^ 2) L ttx   ] _o    Jo w*

sin 2ttx/ ,
dt.- mo

Jo nXt

The integrated term vanishes by (1.1) since <f>(x) e Gf(0, 00). If <t>(s) denotes the

Mellin transform of 4>(x), then -j<D(i) is the Mellin transform of x<f>'(x). Now,

we know that t<p'(t) and (sin 2Trxt)\nxt both belong to L2(0, 00). Therefore by

applying, to the right side of (3.2), the Parseval theorem for Mellin transforms of

L2-functions, we obtain

(3.3) f(x) = --. f1/2+,°05<D(j)(27rx)s-1r(-5) sin $sv ds.
""I Ji/2-ico

Now, from (2.12),

Let G(s) be the Mellin transform of gix). It can be shown easily that <£(1 —s) is the

Mellin transform of (l/x)^(l/x) and xs/s is the Mellin transform of the function

1, 0<m<x; 0, u>x. Applying the Parseval theorem for Mellin transforms to both

sides of the last equation, we get

1     j"l/2 + ioo v1_s _1 /"1/2+lm

Gis)j— ds = —r\ 0>(J )(2tt) " sT{s -1) cos \s-n • x1"s ds.
2"!Tl Jl/2-(eo l—S tri Jl/2-iooJl/2

Or,
1     /*l/2+f<x> Y1-5

±-. {Gis) - 2(2tt) -sO(j)r(j) cos 7— <fr = 0,
2rrZji/2-(0o 1—5

and, by Mellin inversion formula,

(3.4) Gis) = 2(2tt) - s®isMs) cos ijTr
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a.e. on R(s)=%. Substituting the value of 0(s) in (3.4) and using the functional

equation F(.s)r(l — s) = tt cosec tts, we obtain from (3.3)

fix) = -^.[ll2 + iX-i2n)2s-1Ti-s)Ti\-s)sm2\sTTXs-1sG{s)ds
2lTl Jl/2-ioo 7r

1     /"1/2 + ioo

= ~\        sGis)J?il-s) ds,

say, where

SC{s) = (2/rr)(27r)1-2sr(5)r(j-l)cOS2ij77X-s.

It can be easily deduced from the value of the integral in (2.7) that &is) is the

Mellin transform of -(x/)1,2L1(47r(xr)1'2), when considered as a function of t. Now

xg\x) and x-^L^x112) both belong to L2(0, 00) due to (1.1), as g(x) e Gl, and

(1.3). Thus applying Parseval's theorem to the above pair of L2-functions, we

obtain

c 00 _1 /> 1/2 + (<»

(3.5)     -    tg'iOixty^L^Trixt)112) dt = =—7 sGis)£Cil-s) ds = f{x).
Jo 27TI Jl/2-ioo

Integrating the left4iand side by parts, we can write (3.5) as

fix) = -[x-^2git)L^{xty>2)^+2n f ™git)M0iATrixty<2) dt.
Jo

The integrated term vanishes at both the limits by (1.1) and (1.3). Hence

fix) = 2tt    git)M0i47T{xt)112) dt,      x > 0,

= J git)xixt)dt,

as required. Similarly

/* oo

gix) =     fit)xixt) dt, x>0.
Jo

Finally, the main theorem stated in the introduction follows by combining the

results obtained in Theorems 3.1 and 3.2.

4. An example. Let

fix) = KQi2nzx),      Riz) > 0.

Then

/* 00

<f>ix) = 2 J   K0(2irzt) cos 2nxt dt

= iriz2 + x2)-112,     cf. [12, p. 388].
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Now define a function

g(x) = 2 j" j <j>^jj cos 2-rrxt dt

= f<V1(z2 + >-2)-1,2cos27rx/<# = ^ (l+z2t2y1'2cos2nxtdt
Jo Jo

= z-^a+u2)-1'3^2-^^ = z^Ko^Y      R(z) > 0,

cf. [12, p. 434]. Also,

K0(x) = 0(x-ll2e-x), x^ao,

(4.1)
= 0(log x), x^O.

Thus Kq(2ttzx) and z~1KQ(2-Trxjz), as function of x, satisfy the conditions of the

main theorem, which yields the formula

co /*go

2 d(n)K0(27Tzn) -    (log / + 2y)A"0(27rzO dt
n = l Jo

(4-2) = '-\%**ffl-'-iE<to<+**&) *■
We shall now evaluate the two integrals in (4.2). First consider

f* co

A =     (log t + 2y)K0(2TTZt) dt
Jo

= 2^ |(2y — log 2ttz) j K0(u) du + j  log uKQ(u) du).

Now [12, p. 388]

(4.3) ^K0(u)du = ^.

Let Jq" log uK0(u) du = I, say.

It is known that [12, p. 172] K0(z) = j? e-zt(t2-l)-112 dt. Therefore

/=     log u du [X e-ut(t2-\)~ll2dt = f"\t2-\y112 dt r \ogue~ut du.
Jo Jl Ji Jo

The inversion of order of integration is justified by absolute convergence.

Now
/* co

J   logue~utdu = log(e70»

y being Euler's constant. Thus

/= -|CO?-1('2-l)-1,2log(e"0^

(4.4) = -yj™ t-1(t2-l)~1i2dt-j'° t-\t2-\yll2logtdt

it it
= -y---log2.
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Hence from (4.3) and (4.4)

h = 2^{(2y-log27rz)~(y + log2)} = (4z) " \y - log 4rrz}.

Next consider

h = z~1\o (log t+2y)K°^r)dt

1 / 1tt\ C ̂  If00
= 2rr \2y ~l0g ~Z~) J dU + 2rrJ    l0g UK°^ dU

= i(2y-log(27r/z))-i(y + log2),

by (4.3) and (4.4). Thus 72=i(y —log (4tt/z)). Substituting the values of the integrals

/x and 72 in (4.2) and rearranging the terms, we obtain

co co /9ttm\

2 d(n)K(2nzn)-z-- 2 4«)*oF^  = i^y-log Arrz)-\(y-log (4tt/z)),
n = l n = l \  2 /

which is a known formula due to N. S. Koshliakov [5].

Acknowledgement. The author wishes to thank Professor A. P. Guinand for

suggesting the problem and for his valuable advice. Also, thanks are due to the

referee, for drawing attention to a number of errors and omissions in the earlier

drafts of this paper.

References

1. I. W. Busbridge, A theory of general transforms for functions of the class L"(0, oo),

(1 <pS2), Quart. J. Math. Oxford Ser. (2) 9 (1938), 148-160.

2. A. L. Dixon and W. L. Ferrar, On the summation formulas of Voronoi and Poisson, Quart.

J. Math. Oxford Ser. (2) 8 (1937), 66-74.

3. A. P. Guinand, Summation formulae and self-reciprocal functions. I, Quart. J. Math.

Oxford Ser. (2) 9 (1938), 53-67.

4. -, General transformations and the Parseval theorem, Quart. J. Math. Oxford Ser.

(2) 12 (1941), 51-56. MR 2, 361.
5. N. S. Koshliakov, On VoronoVs sum-formula, Messenger Math. (2) 58 (1928), 30-32.

6. J. B. Miller, A symmetrical convergence theory for general transforms, Proc. London Math.

Soc. (3) 8 (1958), 224-241. MR 20 #3430.

7. -, A symmetrical convergence theory for general transforms. II, Proc. London Math.

Soc. (3) 9 (1959), 451-464. MR 22 #878.

8. E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford,

1951. MR 13, 741.

9.-, Introduction to the theory of Fourier integrals, 2nd ed., Clarendon Press, Oxford,

1948.

10. G. Voronoi, Sur une fonction transcendante et ses applications ä la sommation de quelques

series, Ann. Sei. Ecole Norm. Sup. (3) 21 (1904).

11. G. N. Watson, General transforms, Proc. London Math. Soc. (2) 35 (1933), 156-199.

12. -, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press,

Cambridge, 1944. MR 6, 64.

13. J. R. Wilton, VoronoVs summation formula, Quart. J. Math. Oxford Ser. (2) 3 (1932),

26-32.

Department or Mathematics, University of Calgary, Calgary, Alberta, Canada

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


