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Albert Einstein, "we can't solve problems by using the same kind of thinking we used when 

we created them", 
 

Wolfgang E. Pauli, "all things reach the one who knows how to wait". 

 

This homepage addresses the following three Millennium problems (resp. links to 

corresponding homepages): 

 

A. The Riemann Hypothesis (RH) 

B. The 3D-Navier-Stokes equations (NSE) 

C. The Yang-Mills equations (YME) 

 

 

A first helicopter view 

 

From a helicopter point of view there is a common denominator of all solution concepts of 

this homepage: it is about a common mathematical frame to govern the "infinitesimal 

small" with respect to truly infinitesimal small "elements" and related "functions" and truly 

geometrical (i.e. equipped with an inner product) "function spaces", enabling a truly 

geometrical mathematical modelling framework with corresponding operators (including well 

defined domains and ranges).  
 

Regarding the RH the "infinitesimal small" is about the challenge to represent the entire 

Zeta function as a (Mellin-) transform of a self-adjoint operator ([EdH] 10.3). The Hilbert 

transform is the proposed tool to build a self-adjoint operator enabling the Berry-Keating 

(Hilbert-Polya) conjecture, because of its property that any Hilbert transformed function has 

a vanishing constant Fourier term (see also Polya’s Bessel function based alternative entire 

Zeta function representation, [EdH], 12.5). 
 

Regarding the NSE and YME, beside the n-dimensional counterpart of the Hilbert transform, 

the Riesz transforms,  the two applied central "objects" are the well-established 

"differentials" and the distributional "Hilbert scale" concept enabling Pseudo-Differential and 

Fourier multiplier (weak and strong singular integral) equations (Calderón) and the related 

(Stieltjes integral like) spectral representation of Hermitian operators. 
 

In the context of the newly proposed “energy-space”  𝐻1/2 = 𝐻1 + 𝐻1
¬ we also refer to the 

Bose-Einstein Condensation (BEC), where below the critical temperature 𝑇𝐶 BEC “normal 

gas” particles coexist in equilibrium with “condensed” particles. Unlike a liquid droplet in a 
gas, here the “condensed” particles are not separated in space (𝐻−1/2 = 𝐻0 + 𝐻0

¬) from normal 

particles. Instead they are separated in standard momentum space 𝐻1, which is a closed, 

compactly embedded subspace of the newly proposed “energy-space”  𝐻1/2. The condensed 

standard particles all occupy a single quantum state of zero momentum, while normal 
standard particles all have finite momentum with respect to the 𝐻1 − norm. 
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A. The Riemann Hypothesis 

 

All nontrivial zeros of the analytical continuation of the Riemann zeta function have a real 
part of 1/2. The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the 

Zeta function corresponds to eigenvalues of an unbounded self adjoint operator.  

 

We provide a solution for the RH building on a new Kummer function based Zeta function 

theory, alternatively to the current Gauss-Weierstrass function based Zeta function theory. 

This primarily enables a proof of the Hilbert-Polya conjecture (but also of other RH criteria 

like the Bagchi formulation of the Nyman-Beurling criterion or Polya criteria), whereby the 

imaginary parts of the zeros of the corresponding alternative Zeta function definition 

corresponds to eigenvalues of a bounded, self adjoint operator with (newly) distributional 

Hilbert space domain. 

 

The proposed framework also provides an answer to Derbyshine's question, ("Prime 

Obsession")  

 

... “The non-trivial zeros of Riemann's zeta function arise from inquiries into the distribution 

of prime numbers. The eigenvalues of a random Hermitian matrix arise from inquiries into 

the behavior of systems of subatomic particles under the laws of quantum mechanics. What 

on earth does the distribution of prime numbers have to do with the behavior of subatomic 

particles?" 

 

The answer, in a nutshell: 

 

"identifying "fluids" or "sub-atomic particles" not with real numbers (scalar field, I. Newton), 

but with hyper-real numbers (G. W. Leibniz) enables a truly infinitesimal (geometric) 

distributional Hilbert space framework (H. Weyl) which corresponds to the Teichmüller 

theory, the Bounded Mean Oscillation (BMO) and the Harmonic Analysis theory. The 

distributional Hilbert scale framework enables the full power of spectral theory, while still 

keeping the standard L(2)=H(0)-Hilbert space as test space to "measure" particles' 

locations. At the same time, the Ritz-Galerkin (energy or operator norm minimization) 

method and its counterpart, the methods of Trefftz/Noble to solve PDE by 

complementary variation principles (A. M. Arthurs, K. Friedrichs, L. B. Rall, P. D. Robinson, 

W. Velte) w/o anticipating boundary values) enables an alternative "quantization" method of 

PDE models (P. Ehrenfest), e.g. being applied to the Wheeler-de-Witt operator. 

 

Regarding the proposed alternative quantization approach we also refer to the Berry-

Keating conjecture. This is about an unknown quantization H of the classical Hamiltonian 

H=xp, that the Riemann zeros coincide with the spectrum of the operator 1/2+iH. This is in 

contrast to canonical quantization, which leads to the Heisenberg uncertainty principle and 

the natural numbers as spectrum of the harmonic quantum oscillator. The Hamiltonian 

needs to be self-adjoint so that the quantization can be a realization of the Hilbert-Polya 

conjecture. 
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The challenge to represent to entire Zeta function as a (Mellin-) transform of a self-adjoint 

operator is explained in [EdH], 10.3: 

 
Let 𝛾(𝑠), 𝑍(𝑠), 𝑧(𝑠) denote the Gamma function, the entire Zeta function ([EdH] 1.8 (1)) and 

the Zeta function ([EdH] 1.4 (3)) 
 

𝑧(𝑠) =
𝛾(1−𝑠)

2𝜋𝑖
∫

(−𝑥)𝑠

𝑒𝑥−1

𝑑𝑥

𝑥

+∞

+∞
, 

 

which is analytic at all points of the complex s-plane except for a simple pole at 𝑠 = 1. It is 

equal to the Dirichlet function 
 

𝑧(𝑠) = ∑
1

𝑛𝑠
∞
𝑛=1   for   𝑅𝑒((𝑠) > 1 . 

 

Let further denote 𝑓(𝑥) ≔ 𝑒−𝜋𝑥2
 denote the Gaussian function (with mean value 𝑓(0) = 1) and 

 

𝑀[𝑓](𝑠): = ∫ 𝑓(𝑥)𝑥𝑠∞

0

𝑑𝑥

𝑥
=

1

2
𝛾(

𝑠

2
)𝜋−𝑠/2  ,  𝐺(𝑥) ≔ ∑ 𝑓(𝑛𝑥)∞

𝑛=1 . 

 

Then it holds ([EdH] 1.6 (5), 12.5) 
 

(*)      
1

2
𝛾 (

𝑠

2
)𝜋−

𝑠

2𝑧(𝑠) =
1

2
𝛾 (

1−𝑠

2
)𝜋−

1−𝑠

2 𝑧(1 − 𝑠) 
 

 

(**)     𝑍(𝑠) =  
1

2
∫ 𝑥1−𝑠 𝑑

𝑑𝑥
(𝑥2 𝑑

𝑑𝑥
𝐺(𝑥))

∞

0

𝑑𝑥

𝑥
 . 

 

The function on the left hand side of (*) has poles at 𝑠 = 0,1 ([EdH] 1.8), whereby the pole 

at 𝑠 = 0 is caused by the Gamma function. Therefore, Riemann multiplies it by 𝑠(𝑠 − 1) to 

define the entire function 𝑍(𝑠); that is an analytical function, which is defined for all values 

of 𝑠 , and the functional equation of the Zeta function is equivalent to 𝑍(𝑠) = 𝑍(1 − 𝑠).  

 

The functional equation is derived from the summation formula 
 

∑ 𝑒−𝑡|𝑢|2 = (
𝜋

𝑡
)𝑛/2

𝑢∈𝑍𝑛 ∑ 𝑒−|𝜋𝑢|2/𝑡
𝑢∈𝑍𝑛   , 𝑡 > 0  . 

 

It is an example applied to the Gaussian function of the general Poisson summation formula 

([PeB], Corollary11.9) 

 
∑ 𝜑̂(2𝜋𝑢) =𝑢∈𝑍𝑛 ∑ 𝜑(𝑢)𝑢∈𝑍𝑛  and  ∑ 𝜑(2𝜋𝑢) =𝑢∈𝑍𝑛 (2𝜋)−𝑛 ∑ 𝜑̂(𝑢)𝑢∈𝑍𝑛   . 

 

The functional equation is applied to derive the Riemann (error) function for the density 

function ([EdH] 1.13) 
 

𝐽(𝑥) =
1

2𝜋𝑖
∫ 𝑙𝑜𝑔𝑧(𝑠)𝑥𝑠 𝑑𝑠

𝑠

𝑎+𝑖∞

𝑎−𝑖∞
. 

 

 

The factor (𝑠 − 1) leads to the Li-function, while the factor 
𝑠

2
 is anticipated in the function 

𝛾 (1 +
𝑠

2
) leading to the famous Riemann error function ([EdH] 1.16). Its convergence 

property jeopardizes a proof of the RH criterion 
 

𝜋(𝑥) = 𝐿𝑖(𝑥) + 𝑂(√𝑥𝑙𝑜𝑔𝑥) = 𝐿𝑖(𝑥) + 𝑂(𝑥
1

2
+𝜀)  ,  𝜀 > 0 . 

 

 

 

 



4 

Our proposed Kummer function based Zeta function theory is based on the Hilbert 

transform of the Gaussian function, which is the Dawson function  
 

𝐹(𝑧) ≔ 𝑒−𝑧2
∫ 𝑒−𝑡2

𝑑𝑡
𝑧

0
  resp.  √𝜋𝑓𝐻(𝑥) ≔ 𝐹(√𝜋𝑥) 

 

and its corresponding Mellin transform 
 

𝑀[𝑓𝐻](𝑠) = 𝜋(1−𝑠)/2tan (
𝜋

2
𝑠)𝛾

𝑠

2
. 

 

We note that 𝐹(𝑧) satisfies the differential equation 𝐹′(𝑧) + 2𝐹(𝑧) = 1, leading to the 

(polynomial) asymptotic 𝐹(√𝑥) = 𝑂(𝑥−
1

2), alternatively to the asymptotic 𝑓(√𝑥) = 𝑂(𝑒−𝑥). 

 

With respect to Riemann’s “trick” above to build an entire function, this corresponds to an 

alternative multiplication with the factor (𝑠 − 1)tan (
𝜋

2
𝑠) of (*). 

We note the identity tan (
𝜋

2
𝑠) = cot (

𝜋

2
(1 − 𝑠)); on the critical line (𝑠 =

1

2
+ 𝑖𝑡, 𝑡 ∈ 𝑅) it holds 

(tan (
𝜋

2
𝑠) = cot (

𝜋

2
𝑠̅) (see also ([EdH] 10.2, 10.3, 10.10).  

 
Related to the cot(πz) −function L. Kronecker provided some representation of series by 

integrals ([HeK] p. 42 ff): 

 
via integration of the function πcot(πz) 𝑓(𝑧) along of two parallel abscissa axis (with 

corresponding domain and convergence assumptions regarding the function f(z)) it holds the 

partial fraction expansion 
 

πcot(πz) 𝑓(𝑧) = ∑
𝑓(𝑘)

𝑧−𝑘

∞
𝑘=−∞   . 

 

Also via integration along two parallel axis of ordinates there is a corresponding 

representation in a different form given by 
 

1

2
{ ∑ 𝑓(𝑘)

𝑥0<𝑘<𝑥1

+ ∑ 𝑓(𝑙)

𝑥0≤𝑙≤𝑥1

} = −
1

2
∫ (−1)𝛼𝜋 cot(𝑥𝛼 + 𝑖𝜀𝑦) 𝑓(𝑥𝛼 + 𝑖𝜀𝑦)𝑑𝑦

∞

0

 

 

with 𝛼 = 0,1, 𝜀 = −1,1 whereby (𝑥0, 𝑥1) , (𝑦0, 𝑦1) are the two abscissa resp. ordinates values 

with (𝑥0 <𝑥1 , 𝑦0 <𝑦1). 

 

From [EdH] 1.11 we recall the Stieltjes integral representation with the integrant of the log-

Zeta function given by  
 

∫ 𝑥−𝑧𝑑𝐽(𝑥)
∞

0
=

1

2
∫ 𝑥−𝑧𝑑

∞

0
{∑

1

𝑛𝑝𝑛<𝑥 + ∑
1

𝑙𝑝𝑙≤𝑥 } . 
 

With respect to (**) above it formally also holds ([EdH] 10.3) 
 

(***)    
𝑍(𝑠)

𝑠(𝑠−1)
= 

1

2
∫ 𝑥1−𝑠𝐺(𝑥)

∞

0

𝑑𝑥

𝑥
 

 

that is, the function is formally the transform of the operator 

 

𝑔(𝑠) → ∫ 𝑔(𝑥𝑠)𝐺(𝑥)𝑑𝑥
∞

0
. 

 
But the above operator has no transform at all, as the integral does not converge for any 𝑠.  
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Nevertheless, this statement can be given substance as follows ([EdH] 10.5), which 

motivated our proposed alternative transform representation below: 
 

A continuous analog of Euler’s ludicrous formula 
 

∑ 𝑥𝑛 = (1 + 𝑥 + 𝑥2 +

∞

𝑛=−∞

… ) + (𝑥−1 + 𝑥−2 + ⋯) =
1

1 − 𝑥
+

1

𝑥 − 1
= 0 

is 

∫ 𝑥1−𝑠∞

0

𝑑𝑥

𝑥
= ∫ 𝑥1−𝑠1

0

𝑑𝑥

𝑥
+ ∫ 𝑥1−𝑠∞

1

𝑑𝑥

𝑥
=

1

1−𝑠
+

1

𝑠−1
= 0 . 

 

This is, of course, nonsense because the values of 𝑠 for which the above integrals converge 

are mutually exclusive – the first one being convergent for 𝑅𝑒(𝑠) < 1 and the second one 

being convergent for 𝑅𝑒(𝑠) > 1, but it does suggest that the formal transform of  𝑔(𝑥) →

∫ 𝑔(𝑢𝑥)𝑑𝑥
∞

0
 is zero. 

 

In order to anticipate the non-vanishing constant Fourier term of the Gaussian function, 

Riemann modified the above Mellin transform representation in the form ([EdH] 10.3) 
 

𝑍∗∗(𝑠) =
1

2
∫ 𝑥1−𝑠 𝑑

𝑑𝑥
(𝑥2 𝑑

𝑑𝑥
(𝐺(𝑥) − 1))

∞

0

𝑑𝑥

𝑥
  

 

leading to representations in the form ([EdH] 10.5) 
 

𝑍(𝑠)

𝑠(𝑠−1)
= 

1

2
∫ 𝑥1−𝑠[𝐺(𝑥) − 1]

∞

0

𝑑𝑥

𝑥
     for 𝑅𝑒(𝑠) < 0 

 

𝑍(𝑠)

𝑠(𝑠−1)
= 

1

2
∫ 𝑥1−𝑠 [𝐺(𝑥) − 1 −

1

𝑥
]

∞

0

𝑑𝑥

𝑥
   for 0 < 𝑅𝑒(𝑠) < 1 

 

𝑍(𝑠)

𝑠(𝑠−1)
= 

1

2
∫ 𝑥1−𝑠 [𝐺(𝑥) −

1

𝑥
]

∞

0

𝑑𝑥

𝑥
     for 1 < 𝑅𝑒(𝑠)  , 

 
 

while destroying the (only formally valid) self-adjoint transform representation (***) above 

(see also ([EdH] 12.5 for Polya’s  alternative, entire Zeta function definition linked to the 

Bessel functions). 
 

As any Hilbert transformed function has a vanishing constant Fourier term the Hilbert 

transform is the proposed additional tool to overcome the above challenge to build a self-

adjoint operator enabling the Berry-Keating (Hilbert-Polya) conjecture, based on the Hilbert 

transformed Gaussian function, which is the Dawson function with the asymptotic 
 

𝑓𝐻(√𝑥) = 𝑂(𝑥−
1

2) , 𝑥 → ∞ . 
 

This (polynomial) convergence behavior is supposed to enable a verification of the RH 

according to the following convergence RH criterion: 
 

RH is true   if and only if    𝜋(𝑥) = 𝐿𝑖(𝑥) + 𝑂(𝑥
1

2𝑙𝑜𝑔𝑥)   if and only   if 𝜋(𝑥) = 𝐿𝑖(𝑥) + 𝑂(𝑥
1

2
+𝜀) 

 

In fact we claim that our alternatively proposed entire Zeta function 𝑍∗(𝑠) below enables an 

alternative prime number counting function 𝜋∗(𝑥) fulfilling the following RH criterion 
 

RH is true   if and only if    𝜋∗(𝑥) = 𝐿𝑖∗(𝑥) + 𝑂(𝑥
1

2)   if and only   if  𝜋∗(𝑥) = 𝐿𝑖∗(𝑥) + 𝑂(𝑥
1

2) . 
 

Putting 𝑔(𝑥): = 𝑒−𝑥 and 𝐼(𝑥):= ∫
𝑔(𝑡2)

𝑥−𝑡

∞

−∞
𝑑𝑡, this leads to the corresponding Mellin transforms 

replacements of 𝑀[𝑔](𝑠) being replaced by 𝑀[𝐼(√𝑥)](𝑠). i.e. 
 

    𝑀[𝑔](𝑠) = 𝛾(𝑠)           →          𝑀[𝐼(√𝑥)](𝑠) = 𝜋 ∙ tan (𝜋𝑠) ∙ 𝛾(𝑠). 
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The definition of the entire Zeta function ([EdH] 1.8 (1)) 
 

𝑍(𝑠): = (𝑠 − 1)𝜋−
𝑠
2𝛾 (1 +

𝑠

2
) 𝑧(𝑠) 

is based on the identities 
 

𝑀 [−𝑥
𝑑

𝑑𝑥
𝑓(𝑥)] (𝑠) = 𝑠𝑀[𝑓](𝑠) = 𝜋−

𝑠
2𝛾(1 +

𝑠

2
) 

 

𝑀 [−
𝑑

𝑑𝑥
(𝑥2 𝑑

𝑑𝑥
(𝑓(𝑥))] (𝑠) = (𝑠 − 1)𝑠𝑀[𝑓](𝑠) = (𝑠 − 1)𝜋−

𝑠

2𝛾(1 +
𝑠

2
) . 

 

With 

𝑀 [−
𝑑

𝑑𝑥
(𝑥𝑓𝐻)] (𝑠) = (𝑠 − 1)𝑠𝑀[𝑓𝐻](𝑠) = 𝑐1

𝑡𝑎𝑛
𝜋

2
𝑠

𝜋

2
𝑠

(𝑠 − 1)𝜋−
𝑠

2𝛾(1 +
𝑠

2
) , 

 

the corresponding alternative entire Zeta function definition is given by  
 

𝑍∗(𝑠): = 𝑐1
𝑡𝑎𝑛

𝜋

2
𝑠

𝜋

2
𝑠

𝑍(𝑠) = 𝑐1
cot (

𝜋

2
(1−𝑠)

𝜋

2
𝑠

𝑍(𝑠) = 𝑐2 [−
𝜋

2
(1 − s)cot (

𝜋

2
(1 − 𝑠))] 𝜋−

𝑠

2𝛾(
𝑠

2
)𝑧(𝑠)  

 

with a related Mellin transform representation in the form 
 

𝑍∗(𝑠) =
1

2
∫ 𝑥1−𝑠 𝑑

𝑑𝑥
(𝑥𝐺𝐻(𝑥))

∞

0

𝑑𝑥

𝑥
 . 

 

Considering the above replacement −
𝑑

𝑑𝑥
(𝑥2 𝑑

𝑑𝑥
(𝑓(𝑥)) → −

𝑑

𝑑𝑥
(𝑥𝑓𝐻(𝑥)) we note the following rule 

for the Mellin transform 
 

𝑀 [
𝑑

𝑑𝑥
[𝑥ℎ(𝑥]] (𝑠) = (1 − 𝑠)𝑀[ℎ](𝑠) . 

 

This results into  
 

−𝑀 [
𝑑

𝑑𝑥
(𝑥𝑓𝐻(𝑥))] (𝑠) = (𝑠 − 1)𝑀[𝑓𝐻](𝑠)  . 

 

 

The fractional part function 
 

    )1,0(
2sin

2

1
::)( #

2

1

L
x

xxxx  







 

is linked to the Zeta function by  
 

    )1()()1()1()1(  sxxMsMss   

 

The Hilbert transform of the fractional part function is given by 
 

)1,0()sin(2log
12cos

)( #

2

1

Lx
x

xH 








 ,  0)0(ˆ H   ,  #

1 HH  

   
Applying the idea of above leads to the replacement  
 

  )1()1()( ssxxM                     )1()(  sxM H
 

 

 
s

s
s

ss
s

x
MsxM H

)(
)()

2
()

2

1
(2)1()

2cos
)1()( 1

1







 











 




 

 

with same zeros as )1( s . 
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The Gaussian function and its Hilbert transform are norm-equivalent with respect to the 
𝐿2 = 𝐻0 −norm, i.e. both are equal in a weak 𝐿2 −sense. The convergence of the transform 

representations in the critical stripe resp. on the critical line is ensured in a weak 𝐻−𝛼 −sense 

([EdH] 9.7, 9.8).  
 

Both functions, 𝑍(𝑠), 𝑍∗(𝑠) do have the same zeros. Therefore, in case the function 𝜃∗(𝑡) ≔

𝑍∗ (
1

2
+ 𝑖𝑡) can be realized as a convolution 𝜃(𝑡) ≔ (𝐺 ∗ 𝑑𝐹)(𝑡) this would prove the RH 

([CaD]). 

 

The proposed Hilbert space framework of this paper provides corresponding PDO with 

appropriate symbols, which goes in line with corresponding convolution integral operators. 
 

The Berry conjecture is that the nonimaginary solutions 𝐸𝑛 of the zeros 𝑧𝑛 = 1/2 + 𝐸𝑛 of the 

Riemann Zeta function are the eigenvalues of an appropriate Hermitian operator 𝐻 , 

providing a model for the quantum chaos [BeM]. The definition of an appropriate operator 

requires always TWO elements: the definition of the mapping itself AND the definition of the 

underlying operator domain. The considerations above were all about the mapping definition 

only.  

 

As the Gaussian function (resp. the fractional part function) and its Hilbert transform are 
equal in a weak 𝐿2 −sense, i.e.  
 

(𝑓, 𝑣) = (𝑓𝐻 , 𝑣)  ,  (𝜌, 𝑣) = (𝜌𝐻 , 𝑣)   ∀𝑣 ∈ 𝐿2 . 
 

this indicates a domain definition of the to be built Hermitian operator in a weak 𝐻𝛼 −sense 

with 𝛼 ≤ 0. 
 

The newly proposed Hilbert space Hilbert space for a quantum state Hilbert space 

framework is about a replacement of 𝐿2 → 𝐻−1/2 with a corresponding replacement of the 

(energy space) domain of corresponding Schrödinger operator (in weak variation 
representation) 𝐻1 → 𝐻1/2.  
 

In a variational Hilbert space framework the proposed replacement above enables an in 

parallel reduction of the underlying Hilbert scale domains (in a weak variational 
representation) from 𝛼 → 𝛼 − 1/2.  
 

With respect to the entire Riemann Zeta function 𝑍, the 𝑐𝑜𝑡 − function and the Hermite 

polynomials ℎ𝑛 (with ℎ𝑛̂(𝜔) = (−𝑖)𝑛ℎ𝑛) we note that 𝑍 ∈ 𝐻−1, 𝑐𝑜𝑡 ∈ 𝐻−1
#  , ℎ𝑛 ∈ 𝐿2 , i.e. 

(𝑍, 𝑙𝑜𝑔𝑠𝑖𝑛)−1/2 , (𝑍 − 𝑐𝑜𝑡, 𝑙𝑜𝑔𝑠𝑖𝑛)−1/2, (𝑍, ℎ𝑛)−1/2 , (𝑍 − 𝑐𝑜𝑡, ℎ𝑛)−1/2 are defined. In this context we 

refer to 
 

- the Bagchi reformulation of the Beurling RH criterion, as the 𝐻−1/2 −Hilbert space is 

dense in 𝐻−1 with respect to the ‖ ‖−1 norm 

- the wavelet related section below  

- the theory of cardinal series ([WhJ] §11). 
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The approach above is basically about the definition of a “differential operator” in a weak 

Hilbert scale framework. Its counterpart in quantum mechanics is about a correspondingly 

defined Schrödinger momentum operator in the harmonic quantum oscillator model. 
 

In the context of Pseudo-Differential operators this leads to the Calderón-Zygmund integral-

differential operator with symbol 
 

|ω| = ∑ωk

n

k=1

ωk

|ωk|
 

 

defined on corresponding domain given by ([EsG] example 3.4, [LiI] example 3.1.4, 3.1.6) 

 

L[u] ≔ ∑YkDku = ∑
γ(

n + 1
2

)

π
n+1
2

n

k=1

n

k=1

p. v. ∫
xk − yk

|x − y|n+1

∂u(y)

∂yk

∞

−∞

dy 
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where Yk denote the Riesz operators, which are the n-dimensional generalizations of the 

Hilbert transform.  
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B. The Navier-Stokes Equations 

 

The Navier-Stokes equations describe the motion of fluids. The Navier–Stokes existence and 

smoothness problem for the three-dimensional NSE, given some initial conditions, is to 

prove that smooth solutions always exist, or that if they do exist, they have bounded energy 

per unit mass. 

 
We provide a global unique (weak, generalized Hopf)  H−1/2-solution of the generalized 3D 

Navier-Stokes initial value problem. The global boundedness of a generalized energy 
inequality with respect to the energy Hilbert space H1/2 is a consequence of the Sobolevskii 

estimate of the non-linear term (1959). 

 

The "standard" weak Hopf solution is not well posed due to not appropriately defined 

domains of the underlying velocity and pressure operators. Therefore, this is also the case 

for the corresponding classical solution(s). 

 

The proposed solution also overcomes the "Serin gap" issue, as a consequence of the 

bounded non-linear term with respect to the appropriate energy norm. 

 

The Navier-Stokes Equations (NSE) describes a flow of incompressible, viscous fluid. The 

three key foundational questions of every PDE is existence, and uniqueness of solutions, as 

well as whether solutions corresponding to smooth initial data can develop singularities in 

finite time, and what these might mean. For the NSE satisfactory answers to those 

questions are available in two dimensions, i.e. 2D-NSE with smooth initial data possesses 

unique solutions which stay smooth forever. In three dimensions, those questions are still 

open. Only local existence and uniqueness results are known. Global existence of strong 

solutions has been proven only, when initial and external forces data are sufficiently 

smooth. Uniqueness and regularity of non-local Leray-Hopf solutions are still open 

problems.  

 

Basically the existence of 3D solutions is proven only for “large” Banach spaces. The 

uniqueness is proven only in “small” Banach spaces. The question of global existence of 

smooth solutions vs. finite time blow up is one of the Clay Institute millennium problems.   

 

The existence of weak solutions can be provided essentially by the energy inequality. If 

solutions would be classical ones, it is possible to prove their uniqueness. On the other side 

for existing weak solutions it is not clear that the derivatives appearing in the inequalities 

have any meaning. 

 

Basically all existence proofs of weak solutions of the Navier-Stokes equations are given as 

limit (in the corresponding weak topology) of existing approximation solutions built on finite 

dimensional approximation spaces. The approximations are basically built by the Galerkin-

Ritz method, whereby the approximation spaces are e.g. built on eigen-functions of the 

Stokes operator or generalized Fourier series approximations.  

  

It has been questioned whether the NSE really describes general flows: The difficulty with 

ideal fluids, and the source of the d'Alembert paradox, is that in such fluids there are no 

frictional forces. Two neighboring portions of an ideal fluid can move at different velocities 

without rubbing on each other, provided they are separated by a streamline. It is clear that 

such a phenomenon can never occur in a real fluid, and the question is how frictional forces 

can be introduced into a model of a fluid. 
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The question intimately related to the uniqueness problem is the regularity of the solution. 

Do the solutions to the NSE blow-up in finite time? The solution is initially regular and 

unique, but at the instant T when it ceases to be unique (if such an instant exists), the 

regularity could also be lost. Given a smooth datum at time zero, will the solution of the 

NSE continue to be smooth and unique for all time?  

  

There is no uniqueness proof for weak solutions except for over small time intervals. The 

simplest possible model example how a singularity can appear, is the ODE 

 

)()( 2 tyty   0)0( yy 
 

with its solution 
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y
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which becomes infinite in finite time. For n=3 every positive solution of  
 

)()( 3 tcyty 
 

 

blows up, i.e. there is no global estimate by this method.  

 

The global boundedness of our solution is a consequence of the Sobolevskii-estimate of the 

non-linear term enabling the generalized energy inequality 
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ensuring global boundedness by the a priori energy estimate provided that 𝑢0 ∈ 𝐻0 . 
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C. The Yang-Mills Equations 

 

The YME are concerned with quantum field theory. Its related Millennium problem is about 

an appropriate mathematical model to govern the current "mass gap" of the YME, which is 

the difference in energy between the vacuum and the next lowest energy field. 
 

The classical Yang-Mills theory is a generalization of the Maxwell theory of electromagnetism 

where the chromo-electromagnetic field itself carries charges. For given distributions of 

electric charges and currents the Maxwell equations determine the corresponding 

electromagnetic field. The laws by which the currents and charges behave are unknown. 

The energy tensor for electromagnetic fields is unknown for elementary particles. Matter is 

built by electromagnetic particles, but the field laws by which they are constituted are 

unknown, as well.  The original inertia law (before Einstein's gravity theory) forced to 

attribute physical-objective properties to the space-time continuum. Analog to the Maxwell 

equations (in the framework of a short distance theory) Einstein considered the inertia law 

as a field property of the space-time continuum. 

 

As a classical field theory the Maxwell equations have solutions which travel at the speed of 

light so that its quantum version should describe massless particles (gluons). However, the 

postulated phenomenon of color confinement permits only bound states of gluons, forming 

massive particles. This is the mass gap. Another aspect of confinement is asymptotic 

freedom which makes it conceivable that the quantum Yang-Mills theory exists without 

restriction to low energy scales. The problem is to establish rigorously the existence of the 

quantum Yang-Mills theory and a mass gap. The being challenged concept is about the 

concept of a displacement current, which is “just” about a mathematical requirement to 

enabled consistent mathematical data model. 
 

Based on an  H1/2 energy Hilbert space we propose (analog to the NSE solution) a 

corresponding (weak) variation Maxwell equation representation. Its corresponding 

generalization (as described above) leads to a modified QED model. In the same manner as 

the Serrin gap issue has been resolved (as a result of the reduced regularity requirements) 

the chromo-electromagnetic field /particles can now carry charges. The open "field law" 

question above and how "particles" are interacting with each other to exchange energy are 

modeled in same manner as the coherent/incoherent turbulent flows of its NSE counterpart. 

The corresponding "zero state energy" model is no longer built on the Hermite polynomials 

but on its related Hilbert transformed Hermite polynomials, which also span the L2 − Hilbert 

"test" space.  
 

This provides a truly infinitesimal geometry (H. Weyl), enabling the concept of Riemann that 

force is a pseudo force only, which results from distortions of the geometrical structure. 

The baseline is a common Hilbert space framework (for all (nearby action) differential 

equations) 
 

- providing the mathematical concept of a geometrical structure, while Riemann's manifold 

concept provides only a metric space and related affine connections  
 

- building an integrated (no longer "force" dependent dynamical matter-field interaction 

laws) universal field model (including the gravity "force"), while replacing "force type" 

specific gauge fields and its combination model(s) for the electromagnetic, the strong and 

the weak nuclear power "forces" 
 

As a consequence there are no "mass" and therefore no (YME-) "mass gap" anymore, but 

there is an appropriate vacuum (Hilbert) energy space, which is governed by the Heisenberg 

uncertainty principle. 
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In Plemelj’s concept of an alternative simple and double layer potential ([PlJ]) with reduced 

regularity requirements to the underlying domains the corresponding differentials are 

named as “mass elements/ particles” in opposite to mass densities. The rotation invariance 

property of the Riesz operator ensures the “rotation invariance” of the considered 

differentials. 
 

This concept leads to alternative Schrödinger momentum operator definition, which then 

also provides additional evidence to the famous constant −
1

𝑖
= 𝑖 of the Schrödinger 

momentum operator in its classical form. For space dimension m = 1 it is given by u(x) →

𝑃∗[𝑢](x) ≔ −i
d

dx
H[u](𝑥) = −iH[𝑢𝑥](𝑥) ([MeY], 7.1) with domain 𝐻1/2 = 𝐻0 + 𝐻0

¬ and a 

corresponding alternative ground state energy model with non-integer Hilbert space domain 
([BrK1], [BrK2]). With respect to the 𝐻−1/2 −inner product it holds (𝑃∗[𝑢], 𝑣)−1/2 ≅ (𝑢, 𝑣)0.  
 

In the context of section D below (following the notation in [ShF] p. 393) we mention the 
Vlasov formula for the plasma dielectric for longitudinal oscillations 𝜀 with 
 

𝜀 = 1 −
𝜔𝑝𝑒

2

𝑘2 𝑊(
𝜔

𝑘
)  and   𝑊 (

𝜔

𝑘
) : = −𝐻[𝜑0

, ] (
𝜔

𝑘
) in same form as the operator above. 

 

Vlasov’s assumption was that longitudinal oscillations set up initially in plasma with a non-

pathological electron distribution function should be able to persist forever in the absence of 
dissipative collisions, i.e. it should be possible to consider real values for both 𝜔 and 𝑘. 
 

Landau proved based on classical Laplace transform analysis that Vlasov’s assumption was 

erroneously. The weak definition of the above alternative Schrödinger operator is proposed 

to be applied for a corresponding anaylsi in its related distribution Hilbert space framework. 
 

The extension to space dimension m > 1 leads to the Pseudo differential operator 
 

L[u] ≔ ∑YkDku = ∑
γ(

n + 1
2

)

π
n+1
2

n

k=1

n

k=1

p. v. ∫
xk − yk

|x − y|n+1

∂u(y)

∂yk

∞

−∞

dy 

and  
(𝑃∗[𝑢], 𝑣)−1/2 ≔ (−𝑖L[𝑢], v)−1/2  ∀𝑣 ∈ 𝐻−1/2 . 

 

In the context of the newly proposed “energy-space”  𝐻1/2 = 𝐻1 + 𝐻1
¬ we also refer to the 

Bose-Einstein condensation, where below the critical temperature 𝑇𝐶 BEC “normal gas” 

particles coexist in equilibrium with “condensed” particles. Unlike a liquid droplet in a gas, 
here the “condensed” particles are not separated in space (𝐻−1/2 = 𝐻0 + 𝐻0

¬) from normal 

particles. Instead they are separated in momentum space. The condensed particles all 

occupy a single quantum state of zero momentum, while normal particles all have finite 

momentum. 
 

In case the domain of such a compact operator is the 𝐿2 Hilbert space the corresponding 

eigenfunctions build the basis of this Hilbert space. The concept of "wave package" enables 

also continuous spectra. Therefore, such "wave packages" require a domain extension (e.g. 

L2 → H−1/2) in order to ensure convergent inner products and related norms. "Wave 

packages" are also called "eigen-differentials" (H. Weyl), playing a key role in quantum 

mechanics in the context of the spectral representation of Hermitian operators (D. Hilbert, J. 

von Neumann, P. A. M. Dirac). 
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C.1 Some mathematical aspects regarding “differentials” and “distributional 

Hilbert scale” 

 

The current quantum state Hilbert space is identical with the "measurement /observation 
/statistical" function space L2. The newly proposed distributional Hilbert spaces are H−1/2 and 

H−1.  The corresponding inner product ((𝑥, 𝑦)−1 can be put into relation to an inner product in 

the form ((𝑑𝑥, 𝑑𝑦)). The role of the  L2 as the quantum state Hilbert space is being replaced 

by H−1/2.  

 
As the L2 is a closed, compactly embedded subspace of H−1/2 with respect to the H−1/2-norm, 

resp. as the H−1/2 is a closed, compactly embedded subspace of H−1  with respect to the H−1-

norm, compactness arguments can be applied in combination with corresponding Garding 
type inequalities of related operator representation in the form 𝐵 = 𝐴 + 𝐾 ([AzA], [BrK]).  

 

The differential “objects” can be interpreted as “ideal point” (non-standard numbers, 

“monads”), which then are going to replace the real numbers. Both fields do have the same 

cardinality, but the non-standard numbers allow infinitesimal small number “objects” in the 

neighborhood of each “real” number. In a certain sense the field of real numbers is 

compactly embedded into the field of non-standard numbers. The Riesz theorem below 
provides the corresponding relationship to a closed subspace 𝑋0 of a Hilbert space 𝑋. 

 

In [GeR] ideal point for the space-time are considered to model “singular points” and 

“points at infinity”. It leads to the notions of “indecomposable past-set (IP)”, with the two 

categories of proper IP (PIP) and terminals IP (TIP), defining the ideal points of the future. 

 

The advantages with respect to the three considered problems are the following 

 

1. the "measurement of real numbers is already an approximation by rational numbers, i.e. 

truly "observations" of irrational number "objects" are not possible; each irrational number 

is already a full universe, i.e. an approximation of an infinite numbers of rational numbers; 

extending those number field to ideal numbers is just the same mystery with same 

cardinality; the key differentiator is related to a measurement of length axiom by given 

"unit of measure" length 

 

2. the H−1/2 Hilbert space provides an alternative model to the current H0 = 𝐿2 “quantum 

state” Hilbert space, which avoids the Dirac “function” concept with its handicap of space 
dimension depending regularity requirements (𝛿 ∈ H−

n

2
−ε, 𝜀 > 0) 

 
3. The physical “observation” L2 Hilbert space (supporting also statistical analysis) is still 

valid and applicable; it is a subspace of H−1/2, whereby its corresponding complementary 

closed subspace 𝐻0
¬ of  𝐻−1/2 = 𝐻0 + 𝐻0

¬ = 𝐿2 + 𝐿2
¬ enables an alternative modelling of “wave 

packages” (“eigen-differentials”) 

 
4. the Zeta function 𝑍 on the critical line is an element of the H−1 Hilbert space. Therefore, 

the proposed framework enables the Bagchi-Beurling (density) criterion, as both, the 

fractional part function 𝜌 (𝑥) and the log (sin (𝑥)) function, are elements of the Hilbert space L2, 

i.e. the inner products (𝑍, 𝜌)−1/2 , (𝑍, log (𝑠𝑖𝑛))−1/2 are defined, and as the Hilbert space 𝐻−1/2 

is dense in 𝐻−1 

 



14 

5. the H−1/2 Hilbert (“fluid”) space enables the Sobolevskii-estimate of the non-linear term of 

the 3-dimensional, non-stationary, non-linear variation NSE representation, leading to the 

bounded, generalized energy inequality 
 

2

12/12/1

2

2/1

2

2/1
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2
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uucuBuuu

dt
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for 𝑢 ∈ H1. 

 

The theorem of Riesz ensures "quasi-optimal" approximation properties of each "object" of a 
closed subspace 𝑋0 of a Hilbert space 𝑋: 
 

Theorem (Riesz):  For each 𝜀 with 0 < 𝜀 < 1 there exists a 𝑦 = 𝑥𝜀 ∈ 𝑋 with ‖𝑦‖ = 1  and  
 

𝑖𝑛𝑓{‖𝑥 − 𝑦‖ |𝑥 ∈ 𝑋𝑜} ≥ 𝜀 
 

Remark 1: A separable Hilbert scale can be built from the solutions of an eigenvalue 

equation  
 

Kx = σx 
 

where 𝐾 denotes a symmetric and compact operator:  

 
Lemma: for no more than countable values 𝜎𝑖 the equation 𝐾𝑥 = 𝜎𝑥 possesses non-trivial 

solutions 𝑥𝑖  and 𝑙𝑖𝑚𝑖→∞ 𝜎𝑖 = 0. 

 

 

Remark 2: as 0 is an element of 𝑋0 this means that the inf-term above is at most equal 1; 

therefore the theorem states that this value can be arbitrarily close approximated. This can 

be interpreted as counterpart of the approximation of an irrational number by rational 

numbers. 

 

Remark 3: Regarding “ideal points in space-time” we refer to [GeR], where …”a 

prescription is given for attaching to a space-time M, subject only to a causality condition, a 

collection of additional “ideal points”. In particular, for any asymptotically simple space-

times, the ideal points can be interpreted as the boundary at conformal infinity. The concept 

makes possible an extension of the domain-of-dependence concept to causal spaces. … 

Some of these ideal points can be interpreted as singular points of M, others as points of 

infinity.” In [PeR] the concept of a “conformal cyclic cosmology (CCC)” in combination with 

a revisited second principle of thermodynamics is proposed. 

 

 
Theorem:  Let 𝐻1 and 𝐻0 be Hilbert spaces (𝐻1 being a subspace of 𝐻0) with 
 

i) ‖𝑥‖0 ≤ ‖𝑥‖1 for 𝑥 ∈ 𝐻1 
 

ii) 𝐻1 is dense in 𝐻0 
 

iii) the unit ball of 𝐻1 is relatively compact in 𝐻0 . 

 
Then there exists an operator 𝐴 with 𝐷(𝐴) = 𝐻1 , 𝑅(𝐴) = 𝐻0  and ‖𝑥‖1 = ‖𝐴𝑥‖0, whereby 

the operator 𝐴 is  

 

i) positive definite, self-adjoint  
 

ii) 𝐴−1 is compact. 
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The corresponding eigenvalue problem  
 

𝐴𝜑𝑖 = 𝜎𝑖𝜑𝑖 

 

has infinite solutions {𝜎𝑖,𝜑𝑖} with 𝜎𝑖 → ∞ and (𝜑𝑖 , 𝜑𝑘) = 𝛿𝑖,𝑘 , and for each element 𝑥 ∈ 𝐻1 =

𝐴−1𝐻0 it holds the representation 
 

𝑥 = ∑(𝑥, 𝜑𝑖)

∞

𝑖=1

𝜑𝑖 

Inner products with corresponding norms of a distributional Hilbert scale can be defined 

based on the eigen-pairs of an appropriately defined operator in the form 
 

     



i

iiii

i

ii yxyxyx 
  ,,:,

   
 

Additionally, for 𝑡 > 0 there can be an inner product resp. norm defined for an additional 

governing Hilbert space with an “exponential decay” behavior in the form 
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The distributional H−1/2 − Hilbert space is proposed to model quantum states, alternatively to 

the Hilbert space H0. A mathematical (wavelet microscopic) analysis of those states is then 

about an analysis of the “objects” 
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As it holds for any t, δ, α > 0 and 1  the inequality 
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the following inequality is valid for any ∈ 𝐻0 , governing the approximation “quality” of a 

quantum state with respect to the norm of H0: 
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It balances the “continuous” view of the overall state with its “discrete” components. 
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C. 2 The Maxwell equations: baseline for the Yang-Mills and the gravity field 

equations 

 

[PeR] p. 141: “Mathematically, Yang-Mills theory is basically just Maxwell theory with some 

“extra internal indices”, so that the single photon is replaced by a multiplet of particles. In 

the case of strong interactions, things called quarks and gluons are respective analogues of 

the electrons and photons of electromagnetic theory. The quarks, but not the gluons, are 

massive, with masses considered to be directly linked to the Higgs. In the standard theory 

of weak interactions, the photon is considered to be part of a multiplet containing three 

other particles, all of which are massive, referred to as W+, W-, and Z. Again, these masses 

are considered to be coupled to that of the Higgs. Thus, according to current theory, when 

that mass – providing ingredient is removed, at the extremely high temperatures back near 

the Big Bang …. Then full conformal invariance should be restored.” 
 

The Maxwell equations (and its related (complementary) variational principles with its 

underlying 𝑈(1) symmetry group) build the baseline for all related SMEP Lagrange density 

formulations and the Einstein field equations.  
 

[EiA] p. 52 ff: „die Maxwellschen Gleichungen bestimmen das elektrische Feld, wenn die 

Verteilung der elektrische Ladungen und der Ströme bekannt sind. Die Gesetze aber, nach 

denen sich Ströme und Ladungen verhalten, sind uns nicht bekannt. Wir wissen wohl, dass 

die Elektrizitäten in Elementarkörperchen (Elektronen, positiven Kernen) bestehen, aber wir 

begreifen es nicht vom theoretischen Standpunkt aus. … Wir kennen daher, falls wir 

überhaupt die Maxwellschen Gleichungen zugrunde legen dürfen, den Energietensor für die 

elektromagnetischen Felder nur außerhalb der Elementarteilchen. …. Wir wissen heute, daß 

die Materie aus elektrischen Elementarteilchen aufgebaut ist, sind aber nicht im Besitz der 

Feldgesetze, auf welchen die Konstitution jener Elementarteilchen beruht. Wir sind daher 

genötigt, uns bei deren Behandlung der mechanischen Probleme einer ungenauen 

Beschreibung der Materie zu bedienen, welche der von der klassischen Mechanik 
verwendeten entspricht. Die Dichte 𝜎 der ponderablen Substanz und die hydrodynamischen 

Druckkräfte (Flächenkräfte) sind die Grundbegriffe, auf die eine derartige Beschreibung sich 

stützt“.  
 

[HaS] p. 72: “Force-carrying particles can be grouped into four categories (gravitational 

force, electromagnetic force, weak nuclear force, strong nuclear force) according to the 

strength of the force that they carry and the particles with which they interact. It should be 

emphasized that this division into four classes is man-made; it is convenient for the 

construction of partial theories, but it may not correspond to anything deeper. Ultimately, 

most physicists hope to find a unified theory that will explain all four forces as different 

aspects of a single force.” 
 

Schrödinger E.: “Indeed there is no observation concerned with the geometrical shape of a 

particle or even with an atom.” 
 

Gravitational force: it is universal, that every particle feels the force of gravity, according to 

its mass or energy 
 

Electromagnetic force: it interacts with electrically charged particles like electrons and 

quarks, but not with uncharged particles such as gravitons 
 

Weak nuclear force: it is responsible for radioactivity and which acts on all matter particles 

of spin ½, but not on particles of spin 0, 1, or 2 
 

Strong nuclear force: it holds the quarks together in the proton and neutron, and it holds 

the protons and neutrons together in the nucleus of an atom. 
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In classical electromagnetic field theory one deals with the following quantities: E = electric 

field, H = magnetic field, B = magnetic induction, J = electric current density, D = dielectric 

displacement 𝜌 = charge density. In the language of exterior forms this leads to ([FlH], 4.6) 
 

𝑑𝛼 = 0  ,  𝑑𝛽 = −4𝜋𝛾   (𝛼 = 𝛼𝐸,𝐵, 𝛽 = 𝛽𝐻,𝐷) 
 

while 𝑑𝛾 = 0 corresponds to 𝜌̇ + 𝑑𝑖𝑣𝐽 = 0( 𝛾 = 𝛾𝐽,𝜌). Maxwell equations in free spaces are 

simply 
𝑑𝛼 = 0   𝑑 ∗ 𝛼 = 0 . 

 

With respect to the “rotation” invariance topic of this paper we note the integrated Maxwell 

field equations by Lorentz ([WeH] §20) based on the assumption that the distribution of 

charges and currents are known:  
 

The equation 𝑑𝑖𝑣𝑩 = 0 is satisfied by setting −𝑩 = 𝑐𝑢𝑟𝑙𝒇 in which 𝒇 is the vector potential. By 

substituting this in the first Maxwell equation 𝑐𝑢𝑟𝑙𝑬 +
𝟏

𝒄

𝜕𝑩

𝜕𝑡
= 0 one gets that 𝑬 −

𝟏

𝒄

𝑑𝒇

𝑑𝑡
= 0 is 

irrotational so that one can set 𝑬 −
𝟏

𝒄

𝑑𝒇

𝑑𝑡
= 𝑔𝑟𝑎𝑑𝜑 in which 𝜑 is the scalar potential. Finally the 

vector and scalar potential are defined by correspond wave equations in the following form 

(based on the differential form representation of the Maxwell equations) 
 

1

𝑐2 𝜑̈ − ∆𝜑 = −𝜌 ,  
1

𝑐2 𝒇̈ − ∆𝒇 = −𝒔  . 
 

We note that the Klein-Gordon equation is the relativistic counterpart of the wave equation. 

The Maxwell equations reflect Faraday’s near action theory approach. They are based on 

Gauss’s law for electric fields, which are formulated in integral and differential form 

requiring different regularity assumptions for the different domains of the corresponding 

operators. Therefore, the first step to enable a “rotation invariance” principle based on 

common domains for all SMEP affected operators, is to consider only the integral form of 

the Gauss’s electric fields, i.e. 
 

∮ 𝐸⃗ °𝑛⃗ 𝑑𝑎 =
𝑞𝑒𝑛𝑐𝑙

𝜀0𝑆

 

 

with the electric field 𝐸⃗ , the permittivity of free space (or “vacuum permittivity”) 𝜀0, the 

amount of the enclosed contributing charge 𝑞𝑒𝑛𝑐𝑙 and Maxwell’s displacement current  
 

𝐼𝑑 ≔ 𝜀0
𝑑

𝑑𝑡
∮ 𝐸⃗ °𝑛⃗ 𝑑𝑎
𝑆

. 
 

The second (main) step is to apply Plemelj’s alternative definition of simple and double layer 

potentials (to further reduce regularity requirements of the affected operator domains), 

which goes along with Plemelj’s revisited definitions of “mass & flux” vs. “mass densities” 

(see also the problem B related homepage: www.navier-stokes-equations.com). Plemelj’s 

key concept (for space dimension 𝑛 = 2) replaces the normal derivative concept by the 

integral (𝜎, 𝜎0 elements of the boundary!) 
 

𝑈(𝜎) = −∫
𝑑𝑈

𝑑𝑛
𝑑𝑠

𝜎

𝜎0
, 

 

whereby 𝑑𝑈(𝜎) may be defined, but not 
𝑑𝑈

𝑑𝑛
= −

𝑑𝑈(𝜎)

𝑑𝜎
. The new term is named “current 

strength” flowing through the corresponding boundary piece, also called “current or flux”.  
 

In case of the logarithmic potential (for space dimension 𝑛 = 2) the current is determined by 

a simple measure: it is the change of the conjugate potential (which is related to the Hilbert 

transform) between the points 𝜎0, 𝜎. The generalization to the space dimensions 𝑛 > 2 is 

provided in [StE] based on the Riesz operator concept. With respect of the relationship of 

the YME and the Hilbert transform we refer to [DuR]. 

http://www.navier-stokes-equations.com/
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Plemelj’s quotes [PlJ]: §5: “es handelt sich hier um eine Verallgemeinerung, wie es die 

Erweiterung differentiierbarer Funktionen auf die stetigen ist”. §8: „Bisher war es üblich für 

das Potential 𝑉(𝑝) die form 
 

∫ 𝑙𝑜𝑔
1

𝑟𝑝𝑠

𝜇́(𝑠)𝑑𝑠 

 

vorauszusetzen, wobei dann 𝜇́(𝑠) die Massendichtigkeit der Belegung genannt wurde. Eine 

solche Annahme erweist sich aber als eine derart folgenschwere Einschränkung, dass 

dadurch dem Potentiale der größte Teil seiner Leistungsfähigkeit hinweg genommen wird. 

Für tiefergehende Untersuchungen erweist sich das Potential nur in der (Stieltjes-schen) 

Form 

∫ 𝑙𝑜𝑔
1

𝑟𝑝𝑠

𝑑𝜇𝑠 

verwendbar. 

 

It enables a replacement of the 
 

- “Dichte (density) 𝜎 = 𝜇(𝑠)𝑑𝑠 der ponderablen Substanz“ ([EiA] p. 52) by the Plemelj 

“mass element 𝑑𝜇𝑠” 
 

- “hydrodynamischen Druckkräfte (Flächenkräfte (area forces))“ ([EiA] p. 52) by the 

Plemelj „current“ 
 

- co-variant (Maxwell electromagnetic potential) vector by the Plemelj “potential”. 
 

In other words, Plemelj’s (Stieltjes integral based) mass element and potential definitions 
transform Newton’s (Lebesgue integral based) mass density 𝜇(𝑠)𝑑𝑠 and potential definition 

moving from a far distance action theory to a near action theory. In combination with a 

correspondingly defined (rotation invariant) inner product for those “mass elements” an 

adapted variational representation of the Maxwell equations is proposed as model to 

describe the behavior of currents and charges of an electromagnetic field. We note that the 

co-variant derivative of a scalar field corresponds to the partial derivative. 
 

In the appendix we briefly sketch the relationship of Plemelj’s alternative potential 

definition, the Hilbert transform and the Laplacian equation, which may be solved using 

simple layer potential. The 3-D analogy of the Cauchy-Riemann differential equations is 

provide in [RuC]. The Riesz transforms on spheres are provide in [ArN]. 
 

 

The achieved regularity reduction, while the Green formula keep still valid, enables a 
redefined Dirichlet (energy) integral 𝐷(𝑢, 𝑣) ≔ (∇𝑢, ∇𝑣) in the form (𝛼 = 0 being replaced by 

𝛼 = −1/2)  

(𝑢, ∆𝑣)𝛼 + (∇𝑢, ∇𝑣)𝛼 = (𝑢, ∆𝑣)𝛼 + (𝑢, 𝑣)1∗𝛼 = 〈𝑢, 𝑣𝑛〉𝛼 . 
 

 

With respect to the Lorentz integration of the Maxwell equations above this goes along with 

a variational representation in case of the first wave equation (which denotes a wave 
disturbance travelling with velocity 𝑐) in the form  
 

𝜑 ∈ 𝐻1/2 ∶     
1

𝑐2 (𝜑̈, 𝜗̇)−1/2 + (𝜑, 𝜗)1/2 + 〈𝜑𝑛 , 𝜗〉−1/2  = −(𝜌, 𝜗)−1/2  ∀𝜗 ∈ 𝐻1/2  
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The wave equation plays also a key role in the harmonic quantum oscillator analysis. The 

variational representation is basically about hyper-singular integral equations. In [WeP], 

[WeP1] the Laplace operator with respect to electric and magnetic boundary conditions is 

analyzed. In [ChF] a method is introduced and analyzed allowing appropriate 

approximations w/o the necessity of a Lagrange multiplier.  

 

The corresponding Klein-Gordon equation [
1

𝑐2

𝜕2

𝜕𝑡2 − ∆ +
𝑚2𝑐2

ℎ2 ] 𝜑(𝑥) = 0 is derived from the 

energy-momentum equality 
 

(*)   
1

𝑐2 𝐸2 − 𝑷2 = 𝑚2𝑐2𝐼 
 

whereby 𝐸:= 𝑖ℎ
𝜕

𝜕𝑡
 and 𝑷:= −𝑖ℎ∇ denotes the standard Schrödinger operator. Dealing with the 

quadratic terms of (*) leads to also negative energy values 𝐸 ([HeW] (134)).  
 

Replacing the standard Schrödinger operator in (*) by the proposed one of this paper, leads 

to 𝑷∗𝟐 = −ℎ𝐻2 [
𝑑2

𝑑𝑥2] = ℎ
𝑑2

𝑑𝑥2 (because of 𝐻2 = −𝐼) and therefore, to 
 

(**)   
1

𝑐2 𝐸2 + 𝑷∗2 = 𝑚2𝑐2𝐼 
 

which indicates a Helmholtz type equation given by 
 

−∇2u − 𝜇2𝑢 = {    𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑑𝑜𝑚𝑎𝑖𝑛0
𝛿𝑖  

 

(𝛿𝑖 denotes the Dirac function at source i corresponding to the fundamental solutions vs. 

zero for the general solution) with its underlying distance variable (Hankel function based) 

solutions governed by the divergence (conservation) theorem and the Sommerfeld radiation 

condition at infinity ([BrK4], [KyP]). It enables the so-called distance function wavelet 

analysis based on Helmholtz-Fourier transforms and corresponding Helmholtz-Fourier series 

(e.g. [AmS], [ChW]). For its related Riesz transforms on spheres we refer to [ArN]. 
 

We mention that the Helmholtz (decomposition) theorem states that any sufficiently 

smooth, rapidly decaying vector field in three dimensions can be resolved into the sum of an 

irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field. 
 

The Helmholtz equation is e.g. used to approximate model wave propagation in 

inhomogeneous media or for the determination of a radiation field surrounding a source of 

radiation. The corresponding Cauchy problem is ill posed in the sense of [HaJ]), i.e. in 

general the Cauchy problem suffers nonexistence and instability of the solution. A similar 

situation is given in the context of linear and non-linear parabolic equations, in case certain 

compatibility relations of the initial value function are not given ([BrK5], [BrK6]). In case of 

the Cauchy problem for the Helmholtz equation at a fixed frequency 
 

                                    ∆u(t, x) + 𝜇2𝑢(𝑡, 𝑥) = 0       , 𝑥 ∈ 𝑅𝑛  , 𝑡 ∈ (0,1) 
 

                                    u(0, x) = 𝑔(𝑥) , 𝑢𝑡(0, x) = 0 , 𝑥 ∈ 𝑅𝑛 
 

(∆:=
𝜕2

𝜕𝑡2 + ∑
𝜕2

𝜕𝑥𝑘
2)

𝑛
𝑘=1  and its corresponding Fourier transformed equation  

 

û𝑡𝑡(t, ω) + (𝜇2 − |𝜔|2)𝑢̂(𝑡, 𝜔) = 0 
 

                                    û(0, ω) = 𝑔̂(𝜔) , 𝑢̂𝑡(0, ω) = 0 , 𝜔 ∈ 𝑅𝑛 
 

the solution is given by 
 

u(t, x) =
1

(2𝜋)𝑛/2 ∬𝑒𝑖𝑥𝜔 cosh(𝑡√|𝜔|2 − 𝜇2) 𝑔̂(𝜔)𝑑𝜔. 
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Its kernel cosh(𝑡√|𝜔|2 − 𝜇2) increase rapidly with exponential order as |𝜔| → ∞ , by which 𝑔̂(𝜔)  

must decay rapidly. In order to enable a corresponding analysis to [BrK7] we propose a 

governing Hilbert space framework with an “exponential decay” inner product as provided in 

the previous section, given by 
 

((u, v))𝑘.(𝑡) = ∑𝜎𝑖
𝑘𝑒−√𝜎𝑖𝑡(𝑢, 𝜑𝑖)(𝑣, 𝜑𝑖)

∞

𝑖=1

 

 

‖|𝑢|‖𝑘.(𝑡)
2 = ((u, u))𝑘.(𝑡)

2   . 

 
The considered eigenvalues 𝜎𝑖 are still to be defined properly. The underlying Hilbert space 

construction of [BrK1] is based on the eigen-pair solutions of the Laplacian operator, resp. 

the corresponding boundary integral operators (single layer potential, double layer potential 

and the normal derivative of the double layer potential) which are strongly elliptic 

pseudodifferential operators of integer orders. The corresponding Galerkin approximation 

theory is provided in [BrK8]. In the considered case above the corresponding eigen-pair 

solution of the Helmholtz operator should be the preferred one. In [AmS] a corresponding 

overview is given, including the corresponding eigen-pair solutions for the Helmholtz 

operator, as provided in [KrR]: while for the Laplacian model problem on the unit circle the 

eigenvalues for the common eigen-functions 𝑒±𝑖𝑚𝑡 are given by 
 

(1) 𝜔𝑚 = { 1

2|𝑚|

0
𝑚≠0
𝑚=0   ,  (2)  𝜔𝑚 = { 0

−1/2
𝑚≠0
𝑚=0   ,  ,  (3)  𝜔𝑚 = { |𝑚|/2−

0
𝑚≠0
𝑚=0  

 

the corresponding eigenvalues for the Helmholtz operator, depending also on the wave 

number 𝜇, are given by 
 

(1) 𝜔𝑚 =
𝑖𝜋

2
𝐽𝑚(𝜇)𝐻𝑚(𝜇)  ,  (2)  𝜔𝑚 = −

1

2
+

𝑖𝜋

2
𝑘𝐽𝑚(𝜇)𝐻𝑚(𝜇)  ,  ,  (3)  𝜔𝑚 = −

𝑖𝜋

2
𝜇2𝐽𝑚(𝜇)𝐻́𝑚(𝜇) 

 

In [ChS] the behavior, in the important high frequency limit 𝜇 → ∞, with respect to the 

standard 𝐿2 − norm is considered. 

 

[KiA] p. 6/9: A solution of the Maxwell equation system in a vacuum can be described by a 

divergence free solution of one of the two vector valued wave equations and defining the 

other field by Amperes Law or by Faraday’s Law of Induction, respectively In case the fields 

allow a Fourier transformation in time in the form 
 

𝑬̂𝑡(𝑥, 𝜔): = ∫ 𝐸(𝑥, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
𝑅

 

 

one speaks of time-harmonic fields. Those fields are then complex valued. In a vacuum 

without external current density this results into the vector Helmholtz equations 
 

∆𝑬̂𝑡(𝑥, 𝜔) + 𝜇2𝑬̂𝑡(𝑥, 𝜔) = 0  and   ∆𝑯̂𝑡(𝑥, 𝜔) + 𝜇2𝑯̂𝑡(𝑥, 𝜔) = 0 . 
 

A vector field 𝑬̂𝑡(𝑥, 𝜔) combined with 𝑯̂𝑡(𝑥, 𝜔) ≔
1

𝑖𝜔𝜀0
𝑐𝑢𝑟𝑙𝑬̂𝑡(𝑥, 𝜔) provides a solution of the 

time-harmonic Maxwell equations (w/o external current density) if and only if 𝑬̂𝑡(𝑥, 𝜔) is a 

divergence free solution of the vector Helmholtz equations, that is 
 

∆𝑬̂𝑡(𝑥, 𝜔) + 𝜇2𝑬̂𝑡(𝑥, 𝜔) = 0  and  𝑑𝑖𝑣𝑬̂𝑡(𝑥, 𝜔) = 0  . 

 
Analogously, a divergence free solution of the vector Helmholtz equation 𝑯̂𝑡(𝑥, 𝜔) combined 

with 𝑬̂𝑡(𝑥, 𝜔) ≔ −
1

𝑖𝜔𝜀0
𝑐𝑢𝑟𝑙𝑯̂𝑡(𝑥, 𝜔) leads to a solution of Maxwell’s equations in vacuum. 
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C. 3 A "helicopter view" regarding Schrödinger's "purely quantum wave" vision  

 

The Schrödinger (differentiation) operator is not bounded with respect to the norm of L2, 
i.e. only on a dense subspace of 𝐿2 a corresponding spectral representation of this operator 

can be defined. The not vanishing constant Fourier term of the baseline Hermite polynomial 

(which is the Gaussian function) leads to mathematical challenges with respect to the 

creation and annihilation operators of the related Hamiltonian operator of the quantum 

oscillator model. The Hilbert transform of a function f has always vanishing constant Fourier 

terms. As a consequence, the Hilbert-transformed Schrödinger operator form with extended 
domain H−1/2 is bounded (with respect to the norm of L2) leading to a bounded Hermitian 

operator with corresponding spectral form representation. 
 

Based on the newly defined common Hilbert space domain spectral theory can be applied, 

while 
 

- the (physical) test space keeps the same, i.e. 𝐿2 = 𝐻0 

- the current domains of the considered operators are extended to enable a 
(convergent) energy norm ‖𝑥‖1/2 and a corresponding weak variation representation 

of the considered operator equations with respect to the inner product (𝒙, 𝒚)−𝟏/𝟐 . 
 

The corresponding notions from variation theory are “energy norm” and “operator norm” 

with correspondingly defined minimization problems (“energy” resp. “action” minimization 
problems). The corresponding eigenvalue problem of an operator 𝑇 is then related to the 

inner product (𝑇𝑥, 𝑥)−1/2.  
 

With respect to the newly proposed Pseudo-differential and Fourier multiplier operators with 

extended fractional Hilbert scale domain we note the following: 
 

- The Maxwell equations are represented by differential equations or integral 

equations. Both representations are considered as equivalent. 
 

- The Lagrange (“force”) and the Hamiltonian (“energy”) formalisms are considered as 

equivalent. The mathematical proof is based on the Legendre transform, i.e. the 

equivalence is only valid if the assumptions of the Legendre transform are fulfilled. 
 

In both cases, corresponding (mathematical) regularity assumptions are required to enable 

those propositions. A restriction of the domain regularity of the considered operators leads 

to no longer well-defined classical differential equations resp. to no longer valid Lagrange 

formalism. In other words, the provided consistent model in the distributional framework 

represents the mathematical/transcendental view of the considered physical world, while 

the corresponding classical solutions of the several differential equations are mathematical 

approximations to those physical models. This concept also overcomes the “physical 
interpretation” challenge of the “Neumann PDE” representation of the pressure 𝑝 in the NSE 

model. 
 

As a consequence there is only a “one-energy” (field) concept and corresponding (PDE 

specific) manifestations/ forms of considered “Nature forces”. 
 

The proposed variation Hilbert space frame is built on the space-time frame with dimension 
𝑛 = 𝑚 + 1 = 4. Therefore the Huygens’ Principle (which is also valid for the initial value 

problem of the wave equation) is valid for all considered “wave” PDE, overcoming e.g. the 

𝑛 > 10 requirement of the string theory. At the same time, the characteristics roles of a 

space-time dimension = 4 is also underlined by the specific role of undistorted spherical 

travelling waves (Courant-Hilbert, “methods of mathematical physics”, II, VI, §10.3). 
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Schrödinger's "purely quantum wave" vision is about half-odd integers, rather than integers 

to be applied to wave-mechanical vibrations which correspond to the motion of particles of a 

gas resp. the eigenvalues and eigen-functions of the harmonic quantum oscillator still 
governed by the Heisenberg uncertainty inequality. The alternatively proposed H1/2 energy 

space enables Schrödinger's vision ([ScE] (7.23) ff): 

 
let  𝜔 denotes the angular frequency, ℎ the (h-bar) Planck constant and  
 

e ≔
ωh

2
 

 

Then Schrödinger's "half-odd integer vision" is about the following replacement: 

 
 𝑛 = 0        𝐸0 = 𝑒        →    𝐸1/2 = 1 ∗ 𝑒   

 𝑛 > 0     𝐸1 = 1 ∗ 𝜔ℎ       →      𝐸3/2 = 2 ∗ 𝑒 

 𝐸2 = 2 ∗ 𝜔ℎ       →      𝐸5/2 = 3 ∗ 𝑒 

  ... 
𝐸𝑛 = 𝑛 ∗ 𝜔ℎ       →      𝐸(2𝑛+1)/2 = (𝑛 + 1) ∗ 𝑒, 𝑛 = 0,1,2,... 

… 
 

As a consequence the corresponding eigenvalue and eigenfunction solutions of the number 
operator (i.e. the product of generation and annihilation operators) start with index 𝑛 = 1, 

not already with 𝑛 = 0. 
 

With respect to the ladder operators of the harmonic quantum 0scillator the proposed 

alternative quantum state and related energy Hilbert scales can be visualized by 
 

 

                             
 

(Hilbert scale:  𝐻
−

1

2
,
, 𝑯𝟎,, 𝐻1

2
,
) 

 

Corresponding Hermite polynomials being linked to Weber’s (Whittaker’s) parabolic 

cylindrical polynomials by ([AbM] (13.1.32) [BuH] p. 215) are provided in section G. 

 

We note that both, the Hermite polynomial system and the Hilbert transformed Hermite 
polynomial system build orthogonal systems of the Hilbert space 𝐻0, = 𝐿2. Therefore, 

generation and annihilation operators can be defined accordingly, whereby corresponding 

Hermite polynomials (original and Hilbert transform) are orthogonal with respect to the 
𝐻0, = 𝐿2 inner product, as a consequence of the corresponding Hilbert transform property. 
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C. 4 The “Higgs field” and “Kant’s ether field” 

 

The gauge invariance is the main principle in current SMEP theory.  

 

[BlD] 10.3: “It is fine that the gauge field of electromagnetism has zero mass because there 

the force is mediated by photons, which are massless. However, Yang-Mills type forces must 

arise from the exchange of massive particles because of the observed short range of these 

forces. The Higgs mechanism helps in two ways. First, gauge fields can acquire mass by the 

symmetry breaking. Second, the undesirable Goldstone bosons (which arise in the 

symmetry-breaking process) can be usually gauged away.” 

 
The Higgs effect (or mechanism) builds on an extended from global to local  𝑈(1) 
transformations symmetry group of the underlying Lagrangian. It explains the mass of the 

gauge W- and Z-(weak interaction) bosons of the weak “nuclear-force”.  

 

[HiP]: “Within the framework of quantum field theory a “spontaneous” breakdown of 

symmetry occurs if a Lagrangian, fully invariant under the internal symmetry group, has 

such a structure that physical vacuum is a member of a set of (physically equivalent) states 

which transform according to a nontrivial representation of the group. This degeneracy of 

the vacuum permits non-trivial multiplets of scalar fields to have nonzero vacuum 

expectation values (or “vacuons”), whose appearance leads to symmetry-breaking terms in 

propagators and vertices. … When the symmetry group of the Lagrangian is extended from 

global to local transformations by introduction of coupling with a vector gauge field the 

original scalar massless boson as a result of spontaneous breakdown of symmetry then 

becomes the longitudinal state of a massive vector (Higgs) boson whose transverse state 

sare the quanta of the transverse gauge field. A perturbative treatment of the model is 

developed in which the major features of these phenomena are present in zero order.” 

 

The Higgs boson is supposed to be a heavy elementary particle (with non-zero rest mass of 

about 125 GeV with spin 0). The Higgs field is supposed to fill the whole universe interacting 

with each particle, which “moves” through it by a kind of frictional resistance, i.e. which has 

kinetic energy. Therefore, the Higgs effect (i.e. generating mass particles) requires a Higgs 

field with not vanishing amplitudes in the ground state. The corresponding Lagrange density 

is described by the (Lorentz-invariant) Klein-Gordon equation (i.e. it is about a relativistic 

theory) equipped with the Higgs potential, which is a “special” “Mexican hat” potential in the 

form 
 

𝑉(𝜑) ≔ 𝜇2φ𝜑∗ + 𝛽(𝜑𝜑∗)2. 
 

The corresponding local gauge invariant quantum field theory is about the related Lagrange 
density, which is invariant under a local 𝑈(1) gauge transformation, i.e. there is an 

infinitesimal symmetry transformation of matter & gauge fields (fermions & bosons).  

The Higgs effect overcomes the issue of the weak nuclear power SM model that there can 

be existed no particles with mass w/o violating the gauge invariance of the describing 

Lagrange density.  
 

The current understanding of all known "particles" in the universe is, that there is a split 

into two groups of those "particles" to overcome the contact body (body-force interaction) 

problem 
 

1. spin(1/2)-"matter"-"particles", which are "objects" with a spin(1/2), i.e. those 

"objects" look the same only after the second rotation 
 

2. spin(0,1,2)-"force"-"particles", which are "objects" with spins 0,1,2, interacting with 

spin(1/2)-"matter" "objects". 
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The first group goes back to Dirac, who introduced this purely mathematical concept to 

"explain" why spin(1/2)-"matter"-"particles", especially the electrons, can exist as 

"separate" "objects", while not merging to one big "soup" ("object"?). Dirac's theory enables 

consistency of the quantum mechanics and the special relativity theory. 
 

In order to avoid the same ("soup" disaster) effect Pauli postulated his exclusion principle in 

order to ensure that spin(1/2)-"matter"-"particles" under the influence of spin(0,1,2)-

"force"-"particles" do not collapse to a state of extremely high density. 
 

We mention the following open challenges: 
 

- the Higgs effect still leads to oppositions for energies not in the range of  7𝐺𝑒𝑉 <
𝑚𝐻 < 1𝑇𝑒𝑉 

- the gauge invariance principle based on the Lagrange formalism leads to bosons with 

mass to generate fermions, while the original concept of fermions and bosons was to 

distinguish between particle with mass (fermions) and mass-less “force” interaction 

particles between them (bosons) 

- a “gravitation” “boson” is not possible the be adapted to the SMEP, while with the 

Higgs boson there is now a “particle” included, which “acts” in the whole universe, 

especially in the vacuum (which fills most of the space, in the cosmology world, but 

also in the quantum world), but only affecting weak nuclear-forces and its related W- 

and Z-bosons 

- generally, the Higgs boson combines the existence of mass together with the action 

of the weak force. But why it provides it especially to the quarks that much mass, is 

still a mystery. 
 

The alternative approach of this paper is about a replacement of the gauge invariance 

principle per defined (problem specific) Langrage density by a “rotation invariance” principle 

per defined Hilbert space framework (which is common for all physical problem specific 

Langrage density representations). The beauty of the gauge methodology to gauge away 

undesirable (e.g. Goldstone) bosons has its counterpart in the Einstein field equation by the 

covariant derivative concept going in line with differentiable manifolds (whereby the 

differentiability requirement is w/o any physical meaning). The corresponding concept, 

which replaces the inertial system concept of the Newton gravity model, is an infinitesimal 
displacement (tensor) fields 𝐴𝑗

𝑘 with 𝑑𝐴𝑘 − 𝛿𝐴𝑘 = 𝐴𝑗
𝑘𝑑𝑥𝑗. Our alternative approach avoids the 

above purely mathematical model driven concepts, which are w/o any physical meaning.  

 

As a consequence, the proposed perturbative treatment of the Higgs model ([HiP]) is 

replaced by a corresponding approximation analysis of compactly embedded closed spaces 

in the considered Hilbert space framework (see e.g. ([AzA], [CoD]).  

 

The mass of a proton consists nearly exclusively of the energy of the gluons, which are the 

interconnection particles, which hold together the quark. In this sense, mass is essentially 

the manifestation of the vacuum energy (which could be interpreted as a projection 

operator from a “vacuum” field into a “matter field). The “Higgs” field, interpreted as a kind 

of ether which exists in the whole universe, goes along with “Kant’s conception of Ether as a 

field” ([WoW]), and his ontology of space, which is anti-Newtonian in the sense that space 

is not an object, but the form of representing a physical object. As there is only about 10% 

of matter of the universe “covered” by (obviously inconsistent) mathematical physics 

models (e.g. quantum and gravitation field theory) while about 90% of the remaining 

matter is unknown “dark” matter with not-known form and substance “embedded (?)” in a 

“universe space”, which mainly “contains” “vacuum” besides the above 100% matter it is 

might be worth to review Kant’s dynamic view of space ([FöE]). 
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With respect to the alternative proposed “quantum state” Hilbert space model of this paper 

(where the “Higgs” particles might be just another name of those quantum particles) we 

note that it enables 
 

- a projection operator 𝑃:𝐻−𝛼 → 𝐻0 to model “matter creation” (“mass being considered 

as condensed energy”) from purely mass-less generalized “wave/energy” quantum 
states out of the complementary closed space 𝐻−𝛼 − 𝐻0 
 

- the Hamiltonian formalism based on the variational “energy” representation of 

appropriate PDO equations with reduced regularity requirements compared to the 

Lagrange formalism; in those cases the Legendre (“contact” (!)) transformation 

cannot be applied to prove the equivalence of both formalisms 
 

- an infinitesimal rotation invariant symmetry (invariance), based on a variational 

(weak) Hamiltonian formalism, i.e. any “renormalization” requirements based on 

local, (only) affine infinitesimal transformations are not required anymore. 
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D. A combined  𝐿2 − based Fourier wave and (𝐻−1/2 − 𝐻0) − based Calderón 

wavelet (Non-standard MEP) analysis tool and the Landau damping 

 

The purpose of the section is threefold: 
 

1. leverage on variation space-time integrator concept for Maxwell equations 
 

2. suggest a combined (wave (𝐿2 ) & wavelet (𝐿2
¬)) analysis technique for the “fluid” 

Hilbert space 𝐻−1/2 = 𝐿2𝑥𝐿2
¬ for a Landau equation based proof of the (non-linear) 

Landau damping effect, anticipating the physical explanation of the by experience 

verified phenomenon 
 

3. enable a proof of the Landau damping phenomenon, which is about verifying of a 

quantum physical (plasma fluid) effect, as described by the Landau equation, 

alternatively to the proof of [MoC], [ViC]  applying analytical norms based on the 

classical PD Vlasov equation with its incorporated analytical distribution functions(*). 

The Landau damping phenomenon is about “wave damping w/o energy dissipation 

by collisions in plasma”, because electrons are faster or slower than the wave and a 

Maxwellian distribution has a higher number of slower than faster electrons as the 

wave. As a consequence, there are more particles taking energy from the wave than 

vice versa, while the wave is damped ([BiJ]). 
 
*) The proof of the proposition that “the Euler constant is an irrational number with a probability of  100%” is 

straightforward in an analytical (distribution function) Banach space framework, as the set of rational numbers is  a 

zero (sub) set of the field of real numbers with respect to the 𝐿2  (Lebesgue) inner product. 
 

A L2 − based Fourier wave analysis is the baseline for statistical analysis, as well as for PDE 

and PDO theory. There are at least two approaches to wavelet analysis, both are addressing 

the somehow contradiction by itself, that a function over the one-dimensional space R can 

be unfolded into a function over the two-dimensional half-plane (see appendix). The Fourier 
transform of a wavelet transformed function f is given by ([LoA], [MeY]): 
 

Wϑ[f]̂(a, ω) ≔ (2π|a|)
1

2c
ϑ

−
1

2ϑ̂(−aω)f̂(ω)  . 

 
For φ, ϑ ∈ L2(R), f1, f2 ∈ L2(R), 

0 < |cϑφ| ≔ 2π |∫
ϑ̂(ω)φ̅̂(ω)

|ω|
dω

R

| < ∞ 

 

and |cϑφ| ≤ cϑcφ one gets the duality relationship ([LoA]) 
 

(Wϑ 𝑓1,Wφ
∗𝑓2)𝐿2(𝑅2,

𝑑𝑎𝑑𝑏
𝑎2 )

= cϑφ(𝑓1, 𝑓2)𝐿2
 

i.e. 

Wφ
∗Wϑ [f] = cϑφf   in a L2 −sense.   

 
For φ, ϑ ∈ L2(R), f1, f2 ∈ L2(R), 

0 < |cϑφ| ≔ 2π |∫
ϑ̂(ω)φ̅̂(ω)

|ω|
dω

R

| < ∞ 

 

and |cϑφ| ≤ cϑcφ one gets the duality relationship ([LoA]) 
 

(Wϑ 𝑓1,Wφ
∗𝑓2)𝐿2(𝑅2,

𝑑𝑎𝑑𝑏
𝑎2 )

= cϑφ(𝑓1, 𝑓2)𝐿2
 

i.e. 

Wφ
∗Wϑ [f] = cϑφf   in a L2 −sense.   
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This identity provides an additional degree of freedom to apply wavelet analysis with 

appropriately (problem specific) defined wavelets in a (distributional) Hilbert scale 

framework where the "microscope observations" of two wavelet (optics) functions ϑ, φ can 

be compared with each other by the above "reproducing" ("duality") formula. The prize to 

be paid is about additional efforts, when re-building the reconstruction wavelet. We further 

note that for a convenient choice of the two wavelet functions the Gibbs phenomenon 

disappears ([HoM] 2.7). 
 

We note the Gaussian function related “Mexican hat” (wavelet) function 
 

𝑔(𝑥) ≔ −
𝑑2

𝑑𝑥2 (𝑒−
𝑥2

2 ) = (1 − 𝑥2)𝑒−
𝑥2

2 . 
 

being successfully applied e.g. in wavelet theory (see also below section D), as well as the 

Poisson wavelet  ([HoM], example 7.0.2). We further mention that the Hilbert transform of 

a wavelet is again a wavelet. 

 
The proposed alternative quantum state Hilbert space H−1/2 provides an alternative concept 

to the “Dirac function” calculus. This overcomes current handicaps concerning the regularity 
of the Dirac function, which depends from the space dimension, i.e. δ ∈ H−s(𝑅

𝑛) for s > n/2. 
 

The alternatively proposed Hilbert space H−1/2 provides a truly “microscopic” mathematical 

frame (independently from the space dimension), while still supporting the existing physical 

observation (statistical analysis) subspace. It is also proposed to replace the (continuous & 

differentiable) manifold concept (and exterior products of differential forms) in Einstein’s 

field theory. 

 

The extended admissibility condition above indicates that wavelet “pairs” in the form 
(𝜑, 𝜗) ∈ 𝐿2𝑥𝐻−1 ≅ 𝐻−1/2𝑥𝐻−1/2 would be an appropriate good baseline to start from, when 

analyzing in the Hilbert space frame 𝐻−1/2 = 𝐿2𝑥𝐿2
¬, , resp. 𝐿2

¬, where 𝐿2
¬ denote the 

complementary space of 𝐿2  with respect to the 𝐻−1/2 −norm, while still analyzing the 

“observation measurement” Hilbert space 𝐿2  by Fourier waves. 

 
In line with the proposed distributional H−1/2 −Hilbert space concept of this paper, we 

suggest to define “continuous entropy” in a weak H−1/2 − frame in the form 

 

h(X): = (f, log
1

f
)−1/2 , 

 
where X denotes a continuous random variable with density f(x). In this case it can be 

derived from a Shannon (discrete) entropy in the limit of n, the number of symbols in 

distribution P(x) of a discrete random variable X ([MaC]): 

 

H(X): = ∑ P(xi)log (
1

P(xi)
)i  . 

 
This distribution P(x) can be derived from a set of axioms. This is not the case, in case of the 

standard entropy (which cannot be derived from dynamic laws (!), anyway, [PeR]) in the 

form 

 

h(X): = (f, log
1

f
)0. 

 

Plasma is the fourth state of matter, where from general relativity and quantum theory it is 

known that all of them are fakes resp. interim specific mathematical model items. Plasma is 
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an ionized gas consisting of approximately equal numbers of positively charged ions and 

negatively charged electrons. One of the key differentiator to neutral gas is the fact that its 

electrically charged particles are strongly influenced by electric and magnetic fields, while 

neutral gas is not. As a consequence the quantitative fluid/gas behavior as it is described by 

the Euler or the Navier-Stokes equations cannot be applied as adequate mathematical 

model. Even it would be possible there is no linkage to the quantitative fluid/gas/plasma 

behavior and its corresponding turbulence behavior as it is described by the Euler or the 

Navier-Stokes equations. The approach in statistical turbulence is about low- and high-pass 

filtering Fourier coefficients analysis which is about a “local Fourier spectrum” analysis. 

As pointed out in [FaM] this is a contradiction in itself, as, either it is non-Fourier, or it is 

nonlocal. The proposal in [BrK7] is about a combination of the wavelet based solution 
concept of [FaM], [FaM1], with a revisited CLM equation model in a physical H−1/2 Hilbert 

space framework.  
 

In fluid description of plasmas (MHD) one does not consider velocity distributions. It is 

about number density, flow velocity and pressure. This is about moment or fluid equations 

(as NSE and Boltzmann/landau equations), which got new opportunities with respect to still 
open problems regarding the proposed concepts of this paper (𝐻−1/2 −based variational 

theory &  Maxwell/Helmholtz/Sommerfeld/Plemelj PDO equations): 

 

The 2nd topic above enables a turbulent H−1/2 signal which can be split into two components: 

coherent bursts and incoherent noise. Additionally the model enables a localized Heisenberg 
uncertainty inequality in the closed (“noise”/”wave packages”) subspace H−1/2 − H0, while 

the momentum-location commutator vanishes in the (coherent bursts) test space H0. As a 

first trial we propose the Morlet wavelet, which is a sin wave that is windowed (i.e. 

multiplied point by point) by a Gaussian, having a mean value of zero. 
 

The proposed 3D-Navier-Stokes equations (NSE) solution of this paper is based on a 

distributional Hilbert space concept to derive appropriate energy norm estimates of 

the non-linear, non-stationary 3-D-Navier-Stokes equations. In [BrK3] we propose 

problem adequate norms to derive corresponding adequate a priori estimates for the 

transport equation, which are in line with the results of [LiP], [LiP1]. 
 

With respect to the previous sections we note that the Hilbert transform operator (which is 

valid for every Hilbert scale) is the "natural" partner to the wavelet-transform operator, as it 

is skew-symmetric, rotation invariant and each Hilbert transformed "function" has vanishing 

constant Fourier term. The example in the context above is the Hilbert transform of the 

Gaussian distribution function, the (odd) Dawson function, with the "polynomial degree" 

point of zero at +/- infinite. 
 

With respect to the variational space-time integrators for Maxwell’s equations we refer 

to [StA]: The concept combines spatial and time discretization in developing geometric 

numerical integrators. The approach preserve, by construction, various geometric 

properties and invariants of the continuous physical systems that they approximate. 

With respect to “the nonlinear Landau damping for general interaction” we note that 

the variational space-time integrators concept treats electromagnetic Lagrange density 

as a discrete differential 4-form in space-time, while in [MoC], [ViC] the analysis is 

concerned  
 

1. with Fourier analysis with respect to the space dimension in combination with 
𝐶0/𝐿∞ −estimates with respect to the time dimension. It ends up in “analytical 

norm” estimates requiring mathematical regularity assumptions, which are not 

appropriate for the underlying physical (plasma) models (e.g. KAM theory). 
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2. with different regularity requirements concerning the most critical underlying 
interaction potential 𝑊 (𝑊 ∈ 𝐻−1/2−𝜀 , 𝑊 ∈ 𝐻−1) of the Vlasov-equation. 

 

The Boltzmann equation is a (non-linear) integro-differential equation which forms the basis 

for the kinetic theory of gases. This not only covers classical gases, but also electron 

/neutron /photon transport in solids & plasmas / in nuclear reactors / in super-fluids and 

radiative transfer in planetary and stellar atmospheres. The Boltzmann equation is derived 

from the Liouville equation for a gas of rigid spheres, without the assumption of “molecular 

chaos”; the basic properties of the Boltzmann equation are then expounded and the idea of 

model equations introduced. Related equations are e.g. the Boltzmann equations for 

polyatomic gases, mixtures, neutrons, radiative transfer as well as the Fokker-Planck and 

Vlasov equations. The treatment of corresponding boundary conditions leads to the 

discussion of the phenomena of gas-surface interactions and the related role played by 

proof of the Boltzmann H-theorem. 
 

The Landau equation (a model describing time evolution of the distribution function of 

plasma consisting of charged particles with long-range interaction) is about the 

Boltzmann equation with a corresponding Boltzmann collision operator where almost 

all collisions are grazing (based on a Fourier multiplier representation ([LiP1]) in line 

with Oseen kernels, Laplace and Fourier analysis techniques [LeN] and scattering 

problem analysis techniques based on Garding type (energy norm) inequalities (like 

the Korn inequality). Its solutions enjoy a rather striking compactness property. 
 

The collision operator is given by 
 

𝑄(𝑓, 𝑓) =
𝜕

𝜕𝑣𝑖

{∫ 𝑎𝑖𝑗(𝑣 − 𝑤) [𝑓(𝑤)
𝜕𝑓(𝑣)

𝜕𝑣𝑗

− 𝑓(𝑣)
𝜕𝑓(𝑤)

𝜕𝑤𝑗

]
𝑅𝑁

𝑑𝑤} 

with  

𝑎𝑖𝑗(𝑧) =
𝑎(𝑧)

|𝑧|
{𝛿𝑖𝑗 −

𝑧𝑖𝑧𝑗

|𝑧|2
} =

𝑎(𝑧)

|𝑧|
𝑃(𝑧) ≔

1−[1−𝑎(𝑧)]

|𝑧|
[𝐼𝑑 − 𝑄](𝑧)  𝑄(𝑧) ≔ (𝑅𝑖𝑅𝑗)1≤𝑖,𝑗≤𝑁 

 

and a(z) symmetric, non-negative and even in z and Ri denote the Riesz operators. 
 

A variation theory approach in appropriately defined Hilbert spaces is proposed to prove the 

Landau damping based on the Landau equation. A weak variational representation (which is 

anyway the proper framework for quantum theory) would overcome Vlasov’s mathematical 

argument against the Landau equation that “this model of pair collisions is formally (!) not 

applicable to Coulomb interaction due to the divergence of the kinetic terms”. At the same 

point in time the “analytical norm” based proof of the Landau damping ([MoC]) is based on 

the Vlasov equation, which does not reflect the underlying physical explanation of this 

effect. This is about “wave damping w/o energy dissipation by collisions in plasma”, because 

electrons are faster or slower than the wave and a Maxwellian distribution has a higher 

number of slower than faster electrons as the wave. As a consequence, there are more 

particles taking energy from the wave than vice versa, while the wave is damped ([BiJ]). 

Technically, Villani’s proof is based on the Vlasov’s formula for the plasma dielectric for the 

longitudinal oscillators based on the integral ([ShF] p. 392)  
 

𝑊 (
𝜔

𝑘
) = −∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

∞

−∞
  . 

 

This model overlooks the important physical phenomenon of electrons travelling with 

exactly the same material speed 
𝜔

𝑘
 and the wave speed 𝑣. This is about the pole of the 

above integral, when the path of integration lies on the x-axis. Mathematically, this issue 

can be addressed by the “principle-value integral”, which still would neglect the underlying 

physical interpretation issue. In ([ShF] p. 395&) the correct definition for the correct 
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classical definition is given (as provided by Landau), which is basically a threefold integral 
definition depending from the value 𝜔𝐼 (<0,=0,>0), the imaginary part of 𝜔 = 𝜔𝑅 + 𝑖𝜔𝐼: 
 
 

𝑊 (
𝜔

𝑘
) = −∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

∞

−∞
      for 𝜔𝐼 < 0 

 

𝑊 (
𝜔

𝑘
) = −𝑝. 𝑣. ∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

− 𝜋𝑖
∞

−∞
𝐹0′ (

𝜔

𝑘
) 𝑠𝑔𝑛(𝑘)   for 𝜔𝐼 = 0 

 

𝑊 (
𝜔

𝑘
) = −∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

− 2𝜋𝑖
∞

−∞
𝐹0′ (

𝜔

𝑘
) 𝑠𝑔𝑛(𝑘)   for 𝜔𝐼 > 0 

 

If 𝜔𝐼 were to continue and become positive (damped disturbance), then analytical 

continuation yields, in addition to the integral along the real line (which also presents no 

difficulty of interpretation), a full residue contribution.  
 

Needless to state that in the proposed (distributional) Hilbert space framework the Hilbert 

transform based interpretation becomes now valid also from a physical interpretation 

perspective, in line with our proposed NMEP and the underlying alternative Schrödinger 

momentum operator given by 
 

u(x) → 𝑃∗[𝑢](x) ≔ −i
d

dx
H[u](𝑥) = −iH[𝑢𝑥](𝑥) 

 

with domain 𝐻1/2 = 𝐻0 + 𝐻0
¬. The corresponding formulation with respect to Plemelj’s mass 

element concept results into a (weak variational) representation with respect to the 𝐻−1/2 − 

inner product of the Stietjes integral operator 
 

𝑊𝐹0 (
𝜔

𝑘
) = −𝑝. 𝑣. ∫

𝑑𝐹0(𝑣)
𝜔

𝑘
−𝑣

∞

−∞
  . 

 

For a variational formulation of the plasma physics model we propose to consider the 

Landau equation starting with a “model problem” collision operator given by 
 

𝑄̃(𝑓, 𝑓) =
𝜕

𝜕𝑣𝑖

{∫ 𝑎𝑖𝑗(𝑣 − 𝑤) [𝑓(𝑤)
𝜕𝑓(𝑣)

𝜕𝑣𝑗

− 𝑓(𝑣)
𝜕𝑓(𝑤)

𝜕𝑤𝑗

]
𝑅𝑁

𝑑𝑤} 

with  

 (*)  𝑎𝑖𝑗(𝑧) =
1

|𝑧|
{𝛿𝑖𝑗 −

𝑧𝑖𝑧𝑗

|𝑧|2
} =≔

1

|𝑧|
[𝐼𝑑 − 𝑄](𝑧)  𝑄(𝑧) ≔ (𝑅𝑖𝑅𝑗)1≤𝑖,𝑗≤𝑁 

 

(where the Ri denote the Riesz operators) in combination of the Riesz operators based 

alternative Schrödinger operator, building on the Calderón-Zygmund operator.  
 

Obviously the operator 𝑄̃ enables an inner product definition related to the 𝐻−1/2 − 

inner product in the form 
 

(𝑄̃𝑣, 𝑤)0 ≅ (𝑣, 𝑤)−1/2  . 
  
The remaining part to the collision operator Q given by 
 

[1−𝑎(𝑧)]

|𝑧|
[𝐼𝑑 − 𝑄](𝑧)  . 

 

It can be interpreted as a compact disturbance, which is governed by the Garding type 

inequality (as e.g. also Korn’s second inequality) following standard functional analysis 

techniques (e.g. [AzA], [BrK8], [LeN]). For corresponding (complementary) variational 

methods (e.g. the method of Noble) we refer to [ArA], [VeW], but lso to [BrA]. 

Consequently, the analysis of the related Cauchy problem follows the same approach 

as for the NSE (section B) and the Helmholtz equations (section C). 
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E. A (truly infinitesimal geometry) Hilbert space based quantum gravity 

theory 

 

The relativistic cosmology is based on the three assumptions, the cosmological principle, the 

Weyl postulate and the GRT. The GRT is based on the Riemann geometry with its underlying 

mathematical axiom, that the Pythagoras theorem is valid only for the case when two points 

are infinitely near.  

 

We note that the Legendre (contact body) transform, which is applied to prove the 

equivalent of the Lagrange and Hamiltonian formalism, applied to differentials, is neglecting 

the 𝑑𝑥𝑑𝑦 term in  
 

𝑑(𝑥 + 𝑦) = 𝑑𝑥 + 𝑑𝑦  ,  𝑑(𝑥𝑦) = 𝑥𝑑𝑦 + 𝑦𝑑𝑥 + 𝒅𝒙𝒅𝒚 = 𝑥𝑑𝑦 + 𝑦𝑑𝑥 
 

which is kind of contradiction to the Pythagoras axiom above. 
 

The framework of the GRT is the affine connected manifolds ([WeH] p. 123). The metric 

character of a manifold is characterized relatively to a system of reference (= (1) co-

ordinate system + (2) calibration) by two fundamental forms, namely a (1) quadratic 

differential form and a (2) linear one. They remain invariant during transformations to new 

co-ordinate systems. 
 

The Weyl curvature tensor is a measure of a pseudo-Riemann manifold. It expresses the 

“tidal force” that a body feels when moving along a geodesic. It conveys the information 

how the shape of the body is distorted by this “tidal force”. The Ricci curvature tensor, 

which expresses the trace components of the Riemann curvature tensor, contains the 

information about how the volumes change in the presence of “tidal forces”, so the Weyl 

tensor is traceless component of the Riemann tensor. It is a tensor that has the same 

symmetries as the Riemann tensor with the extra condition that it be trace-free. The Weyl 

curvature is the only component of curvature for Ricci-flat manifolds and always governs the 

characteristics of the field equations of an Einstein manifold. 
 

[WeH] p. 91: The transition from Euclidean geometry to that of Riemann is founded in 

principle on the same idea as that which led from physics based on action at a distance to 

physics based on infinitely near action The Ohm Law find by the observation, that the 

current flowing along a conducting wire is proportional to the difference of potential between 

the ends of the wire. Also the Coulomb Law deals with “actions at a distance”. In order to 

model the physical model in its most general form, one accordingly deduces this law by 

reducing the measurements obtained to an infinitely small portion of wire. This results in 

the expression 
 

𝑐𝑢𝑟𝑙𝐸⃗ = 0  ,  𝑑𝑖𝑣𝐸⃗ = 𝜌 
 

on which Maxwell’s theory is founded. Proceeding in the reverse direction, one derives from 

this differential law by mathematical processes the integral law, which we observed directly, 

on the supposition that conditions are everywhere similar (homogeneity). … The 

fundamental fact of Euclidean geometry is that the square of the distance between two 

points is a quadratic form of the relative co-ordinates of the two points (Pythagoras 

Theorem). 
 

We propose a replacement of the “Pythagoras theorem” in the infinitesimal small by the 

concept of “rotating differentials”, leveraging on the Riesz operators property to be rotation 

invariant. This goes along with reduced regularity requirements to the corresponding 

operator domain. It also anticipate Leibniz’ living force concept (see below).  
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At the same time it enables a replacement of the affine connected manifolds concept and its 

underlying invariant exterior (covariant) derivative concept (of p-forms) (e.g. enabling 

Hodge’s potential theory of closed Riemann manifolds based on differential forms w/o vector 

fields) by a distributional Hilbert space concept with a corresponding inner (differential) 

derivative product (defining a corresponding (norm-) metric). The p-forms representations 

of the Riemann curvature tensor are e.g. given in ([FlH]). The Riemann geometry requires 

differentiable manifold w/o any physical meaning. The alternative (distributional) Hilbert 

space framework avoids this purely mathematical requirement, enabling also an alternative 

“orthogonality concept” as being applied in the Weyl postulate, where the world lines of the 

fluid particles, which act as the source of the gravitational field and which are often taken to 

model galaxies, should be hypersurface orthogonal. 

 
In the context of the newly proposed “energy-space”  𝐻1/2 = 𝐻1 + 𝐻1

¬  (where 𝐻1
¬ represents 

the vacuum energy space) we note that already for the vacuum field equations (𝑅𝛼,𝛽 = 0) 

there are two solutions, the Minkowski and the Schwarzschild metrics. Therefore those 

metrics are not compatible with the uniquely defined Hilbert space metric/norm. Gödel’s 

example of a new type of cosmological solutions with non-vanishing density of matter (and 
with a cosmological term ≠ 0) of Einstein’s field equations provides a system with a rotation 

of matter relatively to the compass of inertia. This solution, or rather the properties of the 

four-dimensional space it defines are also provided ([GöK]). 

 

The complementary variational analysis is proposed to characterize the solutions of the 

quantum gravitational field equations ([ArA]). The method of Noble is based on a system of 

two operator equations, which is analogue to the Euler differential equations, covering not 

only (non-linear) partial differential equations, but also integral equations. It is basically 

about a characterization of the solution as a saddle point of a minimization functional based 

on a “Hamiltonian” function 𝑊(𝑢,, 𝑢), which is convex with respect to 𝑢,, and concave with 

respect to 𝑢 ([VeW] 6.2.4). 

 

In continuum mechanics, the infinitesimal strain theory is about the deformation of a solid 

body. The displacement gradient is a 2nd order tensor, where is it possible to perform a 

geometric linearization of any one of the (infinitely many possible) strain tensors, e.g. the 

(Lagrange) strain tensor. Considering the linearized strain tensor as the “primary” unknown, 

instead of the displacement in the pure traction problem of three-dimensional linearized 

elasticity leads to a well-posed minimization problem, constrained by a weak form of the St 

Venant compatibility conditions. This approach also provides a new proof of Korn’s 

inequality ([CiP]). 

 

Regarding the NSE and YME the "infinitesimal small" of “fluids” and “quanta” is and will be 

all the time out of scope for any human observations. Mathematics is a purely descriptive 

science with well-established concepts to deal with any kind and "size" of "infinity" (e.g. 

Cauchy, Dedekind, Bolzano, Weierstrass, Kronecker, Cantor, Gödel, Brouwer). The 

mathematical tool managing physical "observations" are Partial Differential Equations (PDE), 

mathematical statistics and approximation theory. Those concepts are also applied in 

quantum mechanics and quantum field theory. The essential mathematical "objects" are the 

real numbers (while "nearly all" of those objects are far away from being "real") and the 

Lebesgue integral building the Lebesgue (Hilbert) space 𝐿2, where all rational numbers build 

a null set measured by its corresponding norm. 
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F. A "helicopter view" on the unknown mathematical model of a “big bang” 

conform initial or radiation PDO equation model  
 

Regarding the “big bang” singularity for 𝑡 → 0 and the newly proposed Hilbert space 

framework H−1/2 we note that already the solution of the initial value problem of the 

(simplest, purely parabolic, linear) heat equation diverges for 𝑡 → 0 in case the initial value 

function is measurable, i.e. 𝑢0 ∈ H0 = 𝐿2 (‖𝑢‖𝑘 ≤ 𝑐𝑡−𝑘/2‖𝑢0‖), while with reduced regularity 

assumption (𝑢0 ∈ H−1/2) it holds ‖𝑢‖𝑘 ≤ 𝑐‖𝑢0‖−1/2. The corresponding situation is valid for the 

non-stationary Navier-Stokes equations and the (free boundary) Stefan problem. 
 

Beside the (well established) theory of initial value (parabolic) PDE problems there is the 

still open “Courant-Hilbert” conjecture concerning the most simple (hyperbolic, linear) initial 

value wave equation. The Huygens principle is valid under the same prerequisites for the 

initial value problem, as well as for the corresponding radiation problem ([CoR] VI, §9.1, 

§10.3). The “Courant-Hilbert conjecture” is about the reverse, i.e. distortion-free, 

progressive, spherical waves do only exist, if the Huygens principle is valid. In combination 

with the Hadamard conjecture ([CoR] §9.1) this would characterize the 4-dimensional 

space-time continuum and its related Maxwell theory. 
 

Having in mind that already each irrational number is its own mathematical universe (i.e. it 

is defined by a sequence of an infinite numbers of rational numbers) the solution of the 

problem above seems to be a necessarily question to be answered, before a mathematical 

model of the “big bang” “situation” can be formulated. 
 

In [PeR] a revisited entropy concept is proposed leading to a proposed conformal cycle 

cosmology, which is basically a periodical solution of a corresponding mathematical model, 

that the universe as a whole is to be seen as an extended conformal manifold consisting of a 

(possible infinite) succession of aeons, and each appearing to be an entire expanding 

universe history ([PeR]p. 147): 
 

“According to current particle-physics about how to masses of basic particles actually come 

about, a particle’s rest-mass ought to arise through the agency of a special particle (or 

perhaps a family of such special particles) referred to as a Higgs boson(s). … In the very 

early universe, when the temperature (=energy form !!) was so high as to have provided 

energies greatly in excess of this Higgs value, all particles would then, according to standard 

ideas, indeed become effectively massless, like a photon.” 
 

The physical field, of which photons provide the quantum constituents, is the Maxwell 

electromagnetic field. It is completely conformal invariant. 
 

In [FrH] the “hyperboloidal initial value” problem for Einstein’s conformal vacuum field 

equations (reduced to Cauchy problems for first order quasilinear symmetric hyperbolic 

systems) is considered. For initial data of the class Hs, 𝑠 ≥ 4  , there is a unique development 

which is a solution of the conformal vacuum field equations of class Hs, 𝑠 ≥ 4. This provides a 

solution of Einstein’s vacuum field equations which has a smooth structure at past null 

infinity (note that according to the Sobolev embedding theorem it holds that the Hilbert 
space Hs 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝐶0 𝑓𝑜𝑟 𝑠 > 𝑛/2. The regularity of this solution is still a strong PDE 

solution, i.e. the correspondingly defined weak solution would even allow even in the 

standard case (w/o the proposed alternative energy space framework) regularity 

assumption of the class Hs, 𝑠 ≥ 2 , which is still more regular than in the above considered 

parabolic initial value problems (heat equation and Stefan problem, as well as the NSE). 
 

In [TaN] the theory of Cauchy problems for solutions of elliptic equations is provided 

covering PDO in the space of distributions on closed sets, generalized form of capacity 

associated with a semi normed space applied to systems of differential equations with 

injective (surjective) symbols. 
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The analogue concept of the Riemann curvature tensor in elasticity theory is the fourth-rank 
(elasticity) tensor, which links the stress tensor to the strain tensor by Hook’s law 𝜎𝑗𝑘 =

𝑐𝑗𝑘𝑚𝑛𝜀𝑚𝑛.  
 

The first boundary value problem of elasticity is given by ([FiG]) 
 

given 𝑓 ∈ 𝐿2 find 𝑢 ∈ 𝐻2 such that 
 

−∇𝜎(𝑢) = 𝑓 ;  −(𝜎𝑖𝑘,𝑘(𝑢) = 𝑓𝑖 
 

It holds the shift theorem: for 𝑓 ∈ 𝐿2 the solution 𝑢 ∈ 𝐻2 exists uniquely and ‖𝑢‖
𝐻2

≤ 𝑐 ‖𝑓‖
𝐿2

, 

i.e. the operator −∇(𝜎(𝑢) behaves like the Laplacian operator. The corresponding weak 

variational representation of the boundary value problem is given by (Nitsche’s method for 

contact problems) 
 

𝑎(𝑢, 𝑤) = (𝑓, 𝑤) ,  𝑤 ∈ 𝐻1 

with 

𝑎(𝑣, 𝑤): = (𝜎𝑖𝑘(𝑣), 𝜀𝑖𝑘(𝑤) + ∮𝑛𝑖{𝜎𝑖𝑘(𝑣)𝑤𝑘 + 𝜎𝑖𝑘(𝑤)𝑣𝑘}𝑑𝑠 . 

  

In [ShI] necessary and sufficient solvability conditions of ill-posed non-homogeneous 

Cauchy problems for PDE (as the Cauchy problem for the Lamé operator) with injective 

symbol of order ≥ 1 are provided.  
 

In [CiP] an approach to the purely traction problem of the 3-dimensional linearized elasticity 

problem is provided, whose novelty consists in considering the linearized strain tensor as 

the “primary” unknown, instead of the displacement itself as is customary. The approach 

leads to a well-posed minimization problem, constrained by a weak form of the St Venant 

compatibility conditions. The corresponding complementary extremal problem (as 

alternative to the minimization problem of the potential energy) is based on the principle of 

Castigliano leading to the quadratic form 𝑊(𝜀) =
1

2
𝑐𝑗𝑘𝑚𝑛𝜀𝑗𝑘𝜀𝑚𝑛 ([VeW] 4.2.6). 

 

With regards to the Maxwell equations we note that the components of the electric and 
magnetic field forces  𝐸  , 𝐻  build the 4-dimensional electromagnetic field force tensor 

𝐹𝑖𝑘 = (𝐸,𝐻). The Maxwell stress tensor is given by 
 

𝜎𝑖𝑘 =
1

4𝜋
{−𝐸𝑖𝐸𝑘 − 𝐻𝑖𝐻𝑘 +

1

2
𝛿𝑖𝑘(𝐸

2 + 𝐻2)}. 
 

With regards to “initial data for the Cauchy problem in general relativity” we refer to the 

corresponding lecture notes [PoD]: 
 

Lecture 1: Introduction to Lorentzian geometry and causal theory 
 

Lecture 2: The Einstein equations from a PDE perspective. The constraint equations and the 

local existence theorem of Choquet-Bruhat 
 

Lecture 3: Solving the constraint equations via conformal method 
 

Lecture 4: Topological censorship from the initial data point of view. 

 

We further note the Weyl tensor representation 
 

𝐶𝑖𝑘𝑙𝑚 = 𝑅𝑖𝑘𝑙𝑚 −
1

2
𝑅𝑖𝑙𝑔𝑘𝑚 +

1

2
𝑅𝑖𝑚𝑔𝑘𝑙 +

1

2
𝑅𝑘𝑙𝑔𝑖𝑚 −

1

2
𝑅𝑘𝑚𝑔𝑖𝑙 +

1

6
𝑅(𝑔𝑖𝑙𝑔𝑘𝑚 − 𝑔𝑖𝑚𝑔𝑘𝑙)  . 

 

The reduced Einstein equations representation are given by ([PoD] lecture 2) 
 

𝑅𝛼,𝛼𝛽
𝐻 : = −

1

2
𝑔𝛾,𝛾𝑔𝛼𝛽,𝛾𝛿 + 𝑄(𝑔. 𝜕𝑔) = 0 .  
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G. Some comments regarding related philosophical concepts 

 

We can think (hear and watch) the Yoda quote "may the FORCE be with us" and 

mathematics can model this FORCE/POWER/ENERGY in a way that all corresponding 

physical (law) models are consistent; ...  the bad (or good?) news is, that's it and that's all! 

From a philosophical perspective we are back to 

 

- Leibniz’s ontology of force (e.g. “Fünf Schriften zur Logik und Metaphysik” and 

“Monadologie”) 
 

“the primitive active and passive forces, the form and matter are in the monadological view understood as 
features of the perceptions of the monads … in this way the notion of force, … loses its foundational status: 
primitive force gets folded into the perceptual life of non-extended perceiving things”, Garber’s monograph: 
Leibniz: Body, Substance, Monad, 2009) 
 

- Kant's conception of physical matter and the existence of ether, which fills the whole 

space and time with its moving forces ([WoW]) 
 

“it is the moving forces of the ether that affect us”; …”There exists a matter, distributed in the whole 
universe as a continuum, uniformly penetrating all bodies, and filling (all spaces) (thus not subject to 
displacement). Be it called ether, or caloric, or whatever…”, … “space is hypostatically”, …” Space which can 
be sensed (the object of the empirical intuition of space) is the complex of moving forces of matter – 
without which, space would be no object of possible experience”, …”Matter does not consist of simple paets, 
but each part is, in turn, composite…”, Each part of matter is a quantum; i.e. matter does not consist of 
metaphysically simple parts, and Laplace’s talk of material points (which were to be regarded as parts of 
matter) would, understood literally, contain a contradiction.” … “Atomism is a false doctrine of nature”, 
…forces  “fill a space (both) extensively and intensively”, … 

 

- Schrödinger’s “(my) view of the world” with respect to “reasons for abandoning the 

dualism of thought and existence, or mind and matter” 
 

"The objective world has only been constructed at the prize of taking the self, that is, mind, out of it 
remaking it; mind is not part of it; obviously, therefore, it can neither act on it nor be acted on by any of its 
parts. If this problem of the action of mind on matter cannot be solved within the framework of our scientific 
representation of the objective world, where and how can it be solved?"   ...   "No single man can make a 
distinction between the realm of his perceptions and the realm of things that cause it, since however 
detailed the knowledge he may have acquired about the whole world, the story is occurring only once and 
not twice. The duplication is an allegory suggested mainly by communication with other beings." 
 
A TENTATIVE ANSWER:'"A single experience that is never to repeat itself is biologically irrelevant. Biologic 
value lies only in learning the suitable reaction to a situation that offers itself again and again, in many 
cases periodically, and always requires the same response if the organism is to hold its ground." ... But 
whenever the situation exhibits a relevant differential - let us say the road is up at the place where we used 
to cross it, so that we have to make a detour - this differential and our response to it intrude into 
consciousness, from which, however, they soon fade below the threshold, if the differential becomes a 
constantly repeating feature. .... Now in those fashion differentials, variants of response, bifurcations, etc., 
are piled up one upon the other in unsurvey able abundance, but only the most recent ones remain in the 
domain of consciousness, only those with regard to which the living substance is still in the stage of learning 
or practicing. 
 
... I would summarize my general hypothesis thus: consciousness is associated with the learning of living 
substance; it’s knowing how (Können) is unconscious” 

 

- Heidegger’s notion of „mathematical“ physics (“Holzwege, die Zeit des Weltbildes” 

(72) ff: die neuzeitliche Physik heisst mathematische, weil sie … eine ganz bestimmte 

Mathematik anwendet. … Keineswegs wird das Wesen des Mathematischen durch das 

Zahlenhafte bestimmt. … Durch sie (math. Physik) und für sie wird in einer betonten 

Weise etwas als das Schon-Bekannte im vorhinein ausgemacht.   Der sich 

geschlossene Bewegungszusammenhang raum-zeitlich bezogener Massenpunkte. … 

Kein Zeitpunkt hat vor einem anderen einen Vorzug. Jede Kraft bestimmt sich nach 

dem, … was sie an Bewegung  ..in der Zeiteinheit zur Folge hat. 
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Appendix 

 

 

 

Some formulas 

 

Let H and M denote the Hilbert and the Mellin transform operators. For the Gaussian function  
f(x) it holds 
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The corresponding entire Zeta function is given by 
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The central idea is to replace  
 

    )()()()( sxfMsxfxM H  

by 

  )
2

tan()
2

()(),
2

3
,1(2)()( 2

1

2

11 s
s

sxFxMsxfM

s

H


 










  

 

This enables the definition of an alternative entire Zeta function in the form 
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with same zeros as )(s . 

  

 

We briefly sketch the relationship of Plemelj’s alternative potential definition, the Hilbert 

transform and the Laplacian equation, which may be solved using simple layer potential: 
 

For the fundamental solution of the Laplacian 
 

 𝛾(𝑠 − 𝑡): = −
1

𝜋
𝑙𝑜𝑔|𝜃(𝑠) − 𝜃(𝑡)| 

the potential  

𝑣(𝑠) = ∫𝛾(𝑠 − 𝑡)𝑢(𝑡)𝑑𝑡  

is replaced by 
𝑣(𝑠) = ∫𝛾(𝑠 − 𝑡)𝑑𝑢(𝑡). 

 

By partial integration one gets 
 

𝑣(𝑠) = −∫𝜕𝑡𝛾(𝑠 − 𝑡)𝑢(𝑡) 𝑑𝑡 

For smooth boundaries one gets 
 

𝜕𝑡𝛾(𝑠 − 𝑡) =
1

2𝜋
𝑐𝑜𝑡

𝑠 − 𝑡

2
+ 𝑔(𝑠, 𝑡) 

 

where 𝑔(𝑠, 𝑡)  is correspondingly regular. 
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The half-odd integers are related to the Fourier coefficients of the convolution (integral) 

equation 
Gu = f 

where 
 

G[u](y) ≔ ∫ g(y − x)u(x)dx
∞

−∞
 ,  g(x) ≔

1

cosh (x)
  

 

with the secans hyperbolicus function ([GrI], 1.232, 1.411) 
 

g(x) ≔ sech(x) ≔
1

cosh(x)
= cn(x; 1) = dn(x; 1) = 2 ∑(−1)𝑛

∞

𝑛=0

𝑒−(2𝑛+1)𝑥

= −2 ∑(−1)𝑛−1
(𝑛 +

1
2
)𝜋

(𝑛 +
1
2
)2𝜋2 + 𝑥2

= 1 + 2 ∑
𝐸2𝑛

(2𝑛)!
𝑥2𝑛

∞

𝑛=1

∞

𝑛=0

 

 

defining a distribution function similar to the normal distribution function.  

 
The Mellin, the Hilbert and the Fourier transforms of g(x) are given by ([GrI], 3.523, 3.981) 
 

                         M[𝑔](s) = ∫ 𝑔(𝑡)𝑡𝑠 𝑑𝑡

𝑡
=

∞

0
21−𝑠𝛾(𝑠) 𝐹11 (−1; 𝑠;

1

2
),       (where γ denotes the Gamma function) 

 
 

                         H[𝑔](x) = 2π∫
sin (2𝜋𝑥𝑦)

coth (
𝜋

2
𝜋𝑦)

𝑑𝑦 =
1

𝜋

sinh (4𝑥)

1+cosh (4𝑥)
=

∞

0

1

𝜋

cosh(4𝑥)−1

𝑠𝑖𝑛h (4𝑥)
 

 

= −2 ∑(−1)𝑛−1
𝑥

(𝑛 +
1
2
)2𝜋2 + 𝑥2

∞

𝑛=0

 

 

                         F[𝑔](x) ≔ ĝ(ω) ≔ ∫ 𝑔(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 = ∫
𝑒(1−𝑖𝜔)𝑡

𝑒2𝑡+1
𝑑𝑡 =

∞

−∞

∞

−∞
2

π

2

cosh(
π

2
ω)

 

 

= 𝜋𝑔(
𝜋

2
𝜔) = −2 ∑(−1)𝑛−1

(𝑛 +
1
2
)

(𝑛 +
1
2
)2 + (

1
2
𝜔)2

∞

𝑛=0

 

 

where 
 

𝑧𝑛 ≔ −iπ(
1

2
+ 𝑛) , nϵZ 

 

are the simple poles of the integrand above with the residuals 

 
 

𝑅𝑒𝑠𝑧=𝑧𝑛

𝑒(1−𝑖𝜔)𝑧

𝑒2𝑧 + 1
=

𝑒(1−𝑖𝜔)𝑧𝑛

𝑒2𝑧𝑛 + 1
=

𝑖

2
(−1)𝑛𝑒−𝜋𝜔(𝑛+

1
2
) 

 

The solution of the above integral equation is then given by 

 

u(x) =
1

4𝜋
[
2

𝜋
cosh (

𝜋

2
𝜔)𝑓(𝜔)] (−𝑥) . 
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The generalized Hermite polynomials satisfy different differential equations for even and odd 

polynomials enabling corresponding spectral analysis ([KrA]). For the special case of the 

Schrödinger differential equation the spectrum of its related Schrödinger equation operator 

L is discrete, consisting of the odd integers. The corresponding eigen-functions form a 

complete orthogonal set in the weighted-𝐿2 space ([DaD]).  
 

The Galois group of the equations 𝐾𝑛
(𝑖)(𝑥) = 0, 𝑖 = 0,1, is the symmetric group 𝑆𝑛, where 

 

𝐾𝑛
(0)(𝑥2) = 𝐻2𝑛(𝑥)  ,  𝑥𝐾𝑛

(1)(𝑥2) = 𝐻2𝑛+1(𝑥) 
 

and 𝐻𝑛(𝑥) denote the Hermite polynomials ([ScW]), i.e. the polynomials 𝐾𝑛
(𝑖)(𝑥) are non-

affine. 

 

Our alternatively proposed Schrödinger (Calderón) equation operator differs from the 
standard operator L by its combination with the Hilbert-transform operator 𝐻 based on 

extended domain, which is an unitary operator with corresponding spectral theorem and a 

representation  

 
𝐻 = cos(𝐴) + 𝑖 ∗ sin(𝐴) = 𝑒𝑖𝐴 

 
whereby 𝐴 denotes a Hermitian operator with a corresponding spectrum on the unit circle. 

This enables a spectral representation of the alternatively proposed Schrödinger equation 

operator, whereby the L2 space is governed by a discrete spectrum, while the corresponding 

complementary space of L2 is governed by a continuous spectrum, modelling the "ground 

state zero"  “eigen-differential” / “wave packages”. 

 

 

From [GrI] 1.317, 1.411, we recall the following identities  
 

𝜋

2
tan (

𝜋

2
𝑥) =

𝜋

2
∙
1 − cos (𝜋𝑥)

sin (𝜋𝑥)
=

𝜋

2
∙

𝑠𝑖𝑛(𝜋𝑥)

1 + cos (𝜋𝑥)
 

 

𝜋

2
tan (

𝜋

2
𝑥) =

1

𝑥
∙ ∑

22𝑘−1

(2𝑘)!

∞
𝑘=1 |𝐵2𝑘| ∙ (𝜋𝑥)2𝑘  ,  𝑥2 < 1 . 

 

 
The expansion of the 𝑡𝑎𝑛 − resp. the 𝑥𝑐𝑜𝑡(𝑥) −term in series of simple fractions are given by 

([GrI] 1.421) 
 

𝑡𝑎𝑛
𝜋

2
𝑥

𝜋

2
𝑥

=
8

𝜋2
∑

1

(2𝑘−1)2−𝑥2
∞
𝑘=1   ,  −

𝜋

2
(1 − 𝑥) cot (

𝜋

2
(1 − 𝑥)) = −1 + 2∑

(1−𝑥)2

4𝑘2−(1−𝑥)2
∞
𝑘=1   . 

 

With respect to the relationship of the Zeta function and the 𝜋𝑥𝑐𝑜𝑡(𝜋𝑥) function we further 

note the following formulas ([BeB] 5, [TiE] 4.14, [AnG] entry 3, entry 44) 
 

 

i. ∑
1

𝑛𝑠𝑛>𝑥 =
1

2𝜋𝑥
∫ 𝑥−𝑠(−𝜋𝑧𝑐𝑜𝑡(𝜋𝑧)𝑑𝑧

𝑥+𝑖∞

𝑥−𝑖∞
    

 

ii. 𝑧(𝑠) = ∑
1

𝑛𝑠 −
𝑥1−𝑠

1−𝑠
+ 𝑂(𝑥−𝜎)𝑛≤𝑥    ,  𝜎 ≥ 𝜎0 > 0 ,  |𝑡| ≤

2𝜋𝑥

𝑐
 ,  𝑐 > 1  

 

iii. 𝑥𝑐𝑜𝑡ℎ(𝑥) = 1 +
𝑥2

3 +

𝑥2

5
+

𝑥2

7
… . . = 1 +

𝑥2

3
−

𝑥2

9
[
𝑥5

5
+

4∙5

2∙3
𝑥2

7
+

2∙3

4∙5
𝑥2

9
+

6∙7

4∙5
𝑥2

11
+

4∙5

6∙7
𝑥2

13
+ ⋯]  

 

iv. (
𝜋

2
𝑠) ∙ 𝑐𝑜𝑡ℎ (

𝜋

2
𝑠) = 1 +

𝑠2

1 +

12(𝑠2+12)

3
+

+

22(𝑠2+22)

5 +

32(𝑠2+32)

7
… ... 𝑠 ∈ 𝐶. 
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We note that the periodical continuation of the log-Gamma-function 𝑙𝑜𝑔𝛾(𝑠) with domain 

(0,1) is ∈ 𝐻−1/2
# (0,1), also anticipating the odd sin-Fourier terms in the form 

log(2𝜋𝑛)

2𝜋𝑛
+

𝛾

2𝜋𝑛
 ([GrI] 

6.443). The log-Gamma-function is linked to the log-sin-function by the formula 
 

𝑙𝑜𝑔𝛾(𝑥) + 𝑙𝑜𝑔𝛾(1 − 𝑥) = log(2𝜋) + 𝑙𝑜𝑔
1

2sin (𝜋𝑥)
= log(2𝜋) + ∑

cos (2𝜋𝑘𝑥)

𝑘

∞
𝑘=1   

 

𝜋

2
cot (

𝜋

2
𝑥) −

𝜋

2
cot (

𝜋

2
(𝑥 − 1)) =

2𝜋

2sin (𝜋𝑥)
 . 

 

 

The Stieltjes continued fraction theory provides an integral representation of the continued 

fraction 
 

1|

|𝑎1−𝑧
−

𝑏1
2|

|𝑎2−𝑧
−

𝑏2
2|

|𝑎3−𝑧
− ⋯    ,   𝑎𝑛 ∈ 𝑅, 𝑏𝑛 ∈ 𝑅 − {0}, 𝑧 ∈ 𝑍 

 

in the form ([HeE], [BrK1]) 
 

u(z) = S[𝜎](𝑧) ≔ ∫
𝑑𝜎(𝜇)

𝑧 − 𝜇
=

1|

|𝑎1 − 𝑧
−

𝑏1
2|

|𝑎2 − 𝑧
−

𝑏2
2|

|𝑎3 − 𝑧
− ⋯

∞

−∞

 

 

provided that the series ∑ |𝑝𝑛(𝑧)|
2∞

𝑛=1  diverge for at least one non-real 𝑧 ∈ 𝑍 − 𝑅 (and therefore 

for all 𝑧 ∈ 𝑍 − 𝑅) whereby the polynomials 𝑝𝑛(𝑧) are defined by the linear homogenous 

equations 

 
(𝑎1 − 𝑧)𝑝1(𝑧) − 𝑏1𝑝2(𝑧) = 0 

 

−𝑏𝑛−1𝑝𝑛−1(𝑧) + (𝑎𝑛 − 𝑧)𝑝𝑛(𝑧) − 𝑏𝑛𝑝𝑛+1(𝑧) = 0  . 

 

The above is about a real bounded J-fraction ([WaH], theorem 27.4). The equivalent 

function of a positive definite J-fraction can be represented as a Stieltjes transform ([WaH], 

theorems 65.1 & 66.1). 
 

Just as a side remark we note the result from P. Bundschuh: the number 
 

∑
1

𝑛2 + 1
=

1

2
+

𝜋

2

𝑒𝜋 + 𝑒−𝜋

𝑒𝜋 − 𝑒−𝜋

∞

𝑛=0

=
1

2
+

𝜋

2
coth (𝜋) 

is transcendental. 

 

The above formula is related to the series ([ChK] VI, §2) 

 
1

2
−

𝜋

2
𝑧 cot(𝜋𝑧) =

1

2
+

𝜋

2
z(

𝑑

𝑑𝑧
𝜌𝐻(z)) = ∑ 𝑧𝑒𝑡𝑎(2𝑛)𝑧2𝑛∞

𝑛=1     , |𝑧| < 1  . 
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Putting 𝑎𝑛 ≔ (2𝜋)−1/2(−2)𝑛𝑛!, (𝑛 = 0,1,2…. ) the Hermite polynomials are linked to Weber’s 

(Whittaker’s) parabolic cylindrical polynomials by ([AbM] (13.1.32) [BuH] p. 215) 
 

𝑀
(𝑛+

1
2
)−

1
4
;−

1
4

(𝑧) ≔ √2
𝑎𝑛

(2𝑛)!
𝑧

1
4𝑒−

𝑧
2𝐻𝑒2𝑛(√2𝑧) =

𝑛!

𝛾 (𝑛 +
1
2
)
𝑧

1
2𝑧−

1
4𝑒−

𝑧
2𝐿𝑛

−
1
2(𝑧) = 𝑧

1
4𝑒−

𝑧
2𝑀(−𝑛,

1

2
; 𝑧) 

 

𝑀
(𝑛+

1
2
)+

1
4
;+

1
4

(𝑧) ≔ 2
𝑎𝑛

(2𝑛 + 1)!
𝑧

1
4𝑒−

𝑧
2𝐻𝑒2𝑛+1(√2𝑧) =

𝑛!

𝛾 (𝑛 +
3
2
)
𝑧

1
2𝑧

1
4𝑒−

𝑧
2𝐿𝑛

1
2 (𝑧) = 𝑧−

1
4𝑒−

𝑧
2 [𝑥𝑀(−𝑛,

3

2
; 𝑧)] 

 

resp. ([AbM] (13.6) ([GrI] (9.231) 
 

𝑀 (−𝑛,
1

2
;
𝑧2

2
) =

𝑛!

(2𝑛)!
(−

1

2
)−𝑛𝐻𝑒2𝑛(𝑧) 

 

𝑥𝑀 (−𝑛,
3

2
;
𝑧2

2
) =

𝑛!

(2𝑛 + 1)!
(−

1

2
)−𝑛𝐻𝑒2𝑛+1(𝑧) 

where 

𝑀
(𝑛+

1

2
)+𝜇;𝜇

(𝑧) =
𝑧
1
2−𝜇

𝑒
𝑧
2

(2𝜇+1)(2𝜇+2)…(2𝜇+𝑛)

𝑑𝑛

𝑑𝑧𝑛 (𝑧𝑛+2𝜇𝑒−𝑧) . 

 

The Mellin transform of ℎ𝜌;𝜎(𝑧) ≔ 𝑒−
𝑧

2𝑀𝜎;𝜌(𝑧) is given by ([GrI] (7.621) 

 

∫ 𝑥𝑠∞

0
ℎ𝜌;𝜎(𝑠)

𝑑𝑥

𝑥
=

𝛾(1+2𝜎)𝛾(𝜌−𝑠)𝛾(
1

2
+𝜎+𝑠)

𝛾(
1

2
+𝜎+𝜌)𝛾(

1

2
+𝜎−𝑠)

   ,  𝑅𝑒 (−
1

2
− 𝜎) < 𝑅𝑒(𝑠) < 𝑅𝑒(𝜌) . 
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There are at least two approaches to wavelet analysis, both are addressing the somehow 

contradiction by itself, that a function over the one-dimensional space R can be unfolded 

into a function over the two-dimensional half-plane. 

 
A wavelet transform 𝑊𝜗 

Wϑ[f](a, b) ≔ |a|−1/2 ∫ f(t)ϑ (
t − b

a
) dt

R

 

 

of a function 𝑓 with respect to a wavelet function 𝜗 is an isometric mapping. The 

admissibility condition is given by 
 

0 < 𝑐𝜗 ≔ ∫
|ϑ̂(ω)|2

|ω|
dω < ∞

R

 

 

The corresponding adjoint operator 𝑊𝜗
∗ is given by the inverse wavelet transform on its 

range: 

Wϑ
∗[g](a, b) ≔ cϑ

−1/2
∫ ∫|a|−

1
2g(a, b)

1

a
ϑ (

t − b

a
)
da

a
db

RR

 

 

The Fourier transform of a wavelet transformed function f is given by 
 

Wϑ[f]̂(a, ω) ≔ (2π|a|)
1

2c
ϑ

−
1

2ϑ̂(−aω)f̂(ω)  . 

 
For φ, ϑ ∈ L2(R), f1, f2 ∈ L2(R), 

0 < |cϑφ| ≔ 2π |∫
ϑ̂(ω)φ̅̂(ω)

|ω|
dω

R

| < ∞ 

 

and |cϑφ| ≤ cϑcφ one gets the duality relationship ([LoA]) 
 

(Wϑ 𝑓1,Wφ
∗𝑓2)𝐿2(𝑅2,

𝑑𝑎𝑑𝑏
𝑎2 )

= cϑφ(𝑓1, 𝑓2)𝐿2
 

i.e. 

Wφ
∗Wϑ [f] = cϑφf   in a L2 −sense.   

 

This identity provides an additional degree of freedom to apply wavelet analysis with 

appropriately (problem specific) defined wavelets in a (distributional) Hilbert scale 
framework where the "microscope observations" of two wavelet (optics) functions ϑ, φ can 

be compared with each other by the above "reproducing" ("duality") formula. The prize to 

be paid is about additional efforts, when re-building the reconstruction wavelet. The 
extended admissibility condition above indicates that wavelet “pairs” in the form (𝜑, 𝜗) ∈
𝐿2𝑥𝐻−1 would be an appropriate good baseline to start from, when analyzing in the Hilbert 

space frame 𝐻−1/2 = 𝐿2𝑥𝐿2
¬, where 𝐿2

¬ denote the complementary space of 𝐿2  with respect to 

the 𝐻−1/2 −norm. The Hilbert transform operator (which is valid for every Hilbert scale) is the 

"natural" partner to the wavelet-transform operator, as it is skew-symmetric, rotation 

invariant and each Hilbert transformed "function" has vanishing constant Fourier term. The 

example in the context above is the Hilbert transform of the Gaussian distribution function, 

the (odd) Dawson function, with the "polynomial degree" point of zero at +/- infinite. 
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With respect to the proposed alternative Schrödinger momentum operator and the above 

we recall the Heisenberg uncertainty inequality: 
 

Let g ∈ H0 = L2(R),  ‖g‖0 = 1, then 
 

μ(g) ≔ 𝑡0𝜔0 ≔ (∫ (t − t0)
2|g(t)|2)(∫ (ω − ω0)

2|ĝ(ω)|2)
RR

≥
1

4
   

 

whereby 𝑡0 denotes the mean value of the location of the particle and 
 

𝜔0 ≔ ∫ 𝜔|ĝ(ω)|2
R

𝑑𝜔 = (−𝑖
𝑑

𝑑𝑥
𝜑, 𝜑)0  

 

the mean value of the momentum of the particle. The localization “uncertainty” μ(g) of the 

function g at the phase point (𝑡0, 𝜔0) is defined, provided that −∞ < 𝑡0, 𝜔0 < ∞, i.e. g ∈ H1/2. 
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