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Abstract. We use distribution theory (generalized functions) to show
the prime number theorem. No tauberian results are employed.

1. Introduction

We give distributional proofs of the celebrated Prime Number Theorem
(in short PNT). The word distributional refers to Schwartz distributions.
So, we show that

(1.1) π(x) ∼ x

log x
, x→∞ ,

where

(1.2) π(x) =
∑

p prime, p<x

1 .

We provide two related proofs. It is remarkable that both proofs are di-
rect and do not use any tauberian argument. Our arguments are based on
Chebyshev’s elementary estimate [3, p.14]

(1.3) π(x) = O (x/ log x) , x→∞ ,

and additional properties of the Riemann zeta function on the line <ez = 1.
We would like to point out the recent articles [6, 7], where distributional

methods have been also applied to prime number theory.

2. Special functions and distributions

In this section we briefly explain some special functions and distributions
related to prime numbers.

Throughout this article, the letter p stands only for a prime number. We
denote by Λ the von Mangoldt function defined on the natural numbers as

(2.1) Λ(n) =


0 , if n = 1 ,
log p , if n = pm with p prime and m > 0 ,
0 , otherwise .
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As usually done, we denote by ψ the Chebyshev function

(2.2) ψ(x) =
∑

pm<x

log p =
∑
n<x

Λ(n) .

It follows easily from Chebyshev’s classical estimate (1.3) that for some
M > 0

(2.3) ψ(x) < Mx .

It is very well known since the time of Chebyshev that the PNT is equiv-
alent to the statement

(2.4) ψ(x) ∼ x .

Our approach to the PNT will be to show (2.4).
We denote by D(R) and S(R) the Schwartz spaces of the test functions

consisting of smooth compactly supported functions and smooth rapidly
decreasing functions, respectively, with their usual topologies. Their dual
spaces, the spaces of distributions and tempered distributions, are denoted
by D′(R) and S ′(R), respectively. We refer to [10] for the very well known
properties of these spaces.

Our proof of the PNT is based on finding the distributional asymptotic
behavior of ψ′(x) (the derivative is understood in the distributional sense,
of course); observe that

(2.5) ψ′(x) =
∞∑

n=1

Λ(n) δ(x− n) ,

where δ is the well known Dirac delta distribution whose action on test
functions is given by 〈δ(x), φ(x)〉 = φ(0). For this goal, we shall study the
asymptotic properties of the distribution

(2.6) v(x) =
∞∑

n=1

Λ(n)
n

δ(x− log n) ;

clearly v ∈ S ′(R).
Consider the Riemann zeta function

(2.7) ζ(z) =
∞∑

n=1

1
nz

, <e z > 1 .

Let us first take the Fourier-Laplace transform [1, 12] of v, that is, for
=m z > 0

(2.8)
〈
v(t), eizt

〉
=

∞∑
n=1

Λ(n)
n1−iz

= −ζ
′(1− iz)
ζ(1− iz)

,

a formula that Riemann obtained by logarithmic differentiation of the Euler
product for the zeta function ζ(z) =

∏
p 1/(1− p−z) .
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Taking the boundary values on the real axis, in the distributional sense,
we obtain the Fourier transform of v ,

(2.9) v̂(x) = −ζ
′(1− ix)
ζ(1− ix)

.

Notice that we are not saying that the right hand side on the last relation
is a function but rather that it is a tempered distribution. We shall always
interpret (2.9) as equality in the space S ′(R), meaning that for each φ ∈ S(R)

(2.10) 〈v̂(x), φ(x)〉 = − lim
y→0+

∫ ∞

−∞
φ(x)

ζ ′(1− ix+ y)
ζ(1− ix+ y)

dx .

It is implicit in (2.9) that the Fourier transform we are using is

φ̂(x) =
∫ ∞

−∞
eixtφ(t) dt , for φ ∈ S(R) ,

and it is defined by duality on S ′(R). We emphasize that (2.10) follows
automatically from the fact that v is a tempered distribution, but, alterna-
tively, it may be directly deduced from Chebyshev’s estimate (2.3) through
integration by parts (when applying −ζ ′(1− ix+ y)/ζ(1− ix+ y) to a test
function).

We discuss some properties of the distribution v̂. From the well known
properties of ζ, we conclude that on R\{0} v̂ is a locally integrable function.
Indeed,

(2.11) ζ(z)− 1
z − 1

admits an analytic continuation to a neighborhood of <ez = 1, as one easily
proves by applying the Euler-Maclaurin formula; in addition, ζ(1 + ix),
x 6= 0, is free of zeros [3, 4, 5]. It follows then that

(2.12) v̂(x)− i

(x+ i0)
∈ L1

loc(R) ,

where here we use the notation 1/(x + i0) for the distributional boundary
value of the analytic function z−1, =m z > 0.

The property (2.12) together with Chebyshev’s estimate (2.3) will be the
key ingredients for the proof of the PNT given in Section 5.

The proof to be given in Section 4 makes use of additional information of
the Riemann zeta function on the line <e z = 1; we shall take for granted
that v̂ has at most polynomial growth as |x| → ∞. In fact, more than this
is true: v̂(x) = O(logβ |x|) as |x| → ∞, for some β > 0. The reader can find
the proof of this fact in [3, Chap.2] (see also [8]). Summarizing, we have
that

(2.13) v̂(x)− i

(x+ i0)
∈ L1

loc(R) and has tempered growth .
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3. Notation from generalized asymptotics

The purpose of this section is to clarify the notation to be used in the
following two sections. It comes from the theory of asymptotic behaviors of
generalized functions [2, 9, 12]. Besides the notation, we do not make use of
any deep result from this theory.

Let f ∈ D′(R), a relation of the form

(3.1) lim
h→∞

f(x+ h) = β , in D′(R) ,

means that the limit is taken in the weak topology of D′(R), that is, for each
test function from D(R) the following limit holds,

(3.2) lim
h→∞

〈f(x+ h), φ(x)〉 = β

∫ ∞

−∞
φ(x)dx .

The meaning of the expression limh→∞ f(x + h) = β in S ′(R) is clear.
Relation (3.1) is an example of the so-called S-asymptotics of generalized
functions (also called asymptotics by translation), we refer the reader to [9]
and [12] for further properties of this concept.

On the other hand, we may attempt to study the asymptotic behavior of a
distribution by looking at the behavior at large scale of the dilates f(λx) as
λ→∞. In this case, we encounter the concept of quasiasymptotic behavior
of distributions [2, 9, 11, 12]. We will study in connection to the PNT a
particular case of this type of behavior, namely, a limit of the form

(3.3) lim
λ→∞

f(λx) = β , in D′(R) ,

Needless to say that (3.3) should be always interpreted in the weak topology
of D′(R). We may also talk about (3.3) in other spaces of distributions with
a clear meaning.

4. Proof of the PNT based on (2.3) and (2.13)

We begin with the distribution v given by (2.6).
Our first step is to show that

(4.1) lim
h→∞

v(x+ h) = 1, in S ′(R) .

We denote the Heaviside function by H(x), i.e., the characteristic function
of (0,∞). Let φ ∈ S(R). Consider φ1 ∈ S(R) such that φ = φ̂1 ; then as
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h→∞

〈v(x+ h), φ(x)〉 =
∫ ∞

−h
φ(x)dx+ 〈v(x+ h)−H(x+ h) , φ(x)〉

=
∫ ∞

−h
φ(x)dx+

〈
v̂(x)− i

(x+ i0)
, e−ihxφ1(x)

〉
=
∫ ∞

−h
φ(x)dx+

∫ ∞

−∞
e−ihxφ1(x)

(
v̂(x)− i

(x+ i0)

)
dx

=
∫ ∞

−∞
φ(x)dx+ o(1), h→∞ ,

where the last step follows in view of (2.13) and the Riemann-Lebesgue
lemma. This shows (4.1).

In a second essential step we pass from distributions on (−∞,∞) to dis-
tributions on (0,∞). Specifically, we will show that

(4.2) lim
λ→∞

ψ′(λx) = lim
λ→∞

∞∑
n=1

Λ(n)δ(λx− n) = 1 , in D′(0,∞) .

By (4.1) we have et+hv(t + h) ∼ et+h, as h → ∞, in the weak topology of
D′(R). This readily implies that

(4.3)
∞∑

n=1

Λ(n)φ(log n− h) ∼ eh
∫ ∞

0
φ(log x)dx , h→∞ ,

for each test function φ ∈ D(R). Now any test function φ1 ∈ D(0,∞) can
be written as φ1(x) = φ(log x) with φ ∈ D(R). Setting λ = eh in (4.3) we
obtain (4.2).

Here comes the final step in our argument, we evaluate (4.2) at suitable
test functions to deduce that ψ(x) ∼ x. Let ε > 0 be an arbitrary num-
ber; find φ1 and φ2 ∈ D(0,∞) with the following properties: 0 ≤ φi ≤ 1,
suppφ1 ⊆ (0, 1], φ1(x) = 1 on [ε, 1 − ε], suppφ2 ⊆ (0, 1 + ε], and finally,
φ2(x) = 1 on [ε, 1]. Applying the distributional relation (4.2) to φ2 and
using (2.3), we obtain that

lim sup
λ→∞

1
λ

∑
n<λ

Λ(n) ≤ lim sup
λ→∞

(
1
λ

∑
n<ελ

Λ(n) +
1
λ

∞∑
n=1

Λ(n)φ2

(n
λ

))

≤Mε+ lim
λ→∞

1
λ

∞∑
n=1

Λ(n)φ2

(n
λ

)
= Mε+

∫ ∞

0
φ2(x)dx ≤ 1 + ε(M + 1) .

Using now φ1, we easily obtain that

1− 2ε ≤ lim inf
λ→∞

1
λ

∑
n<λ

Λ(n) .
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Since ε was arbitrary, we conclude that ψ(λ) ∼ λ and the PNT follows
immediately.

5. Proof of the PNT based on (2.3) and (2.12)

In this section we present a variant of the proof discussed in Section 4.
In fact, we show how to avoid the use of the growth properties of ζ(z)
on <e z = 1. We begin by observing that it is enough to establish (4.1).
Indeed, once (4.1) is obtained, one can proceed identically as in the Section
4 and derive the PNT merely from Chebyshev’s estimate. Therefore, we
shall derive (4.1) from (2.3) and (2.12). In view of (2.12) and the argument
from the previous section involving the Riemann-Lebesgue lemma, we can
still deduce that for each test function φ with supp φ̂ compact

(5.1) lim
h→∞

〈v(x+ h), φ(x)〉 =
∫ ∞

−∞
φ(x)dx .

The set of test functions having this property is dense in S(R). Then, if
one were able to show that v(x + h) = O(1) in S ′(R), that is, that the set
of translates of v is a weakly bounded set, then (4.1) would follow from
the Banach-Steinhaus theorem and the convergence over a dense subset of
S(R). We now show this last property. Let g(x) = e−xψ(ex). Because
of (2.3), we have that g(x + h) = O(1) in the weak topology of S ′(R).
Consequently, we also have that g′(x+h) = O(1) in S ′(R). Hence, v(x+h) =
g′(x+h)+g(x+h) = O(1) in S ′(R), as required. The boundedness of v(x+h)
together with (5.1) imply the PNT.
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