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1. IntrodutionIn [3℄, Bump and Ng made the remarkable disovery that the zeroes ofthe Mellin transform of Hermite funtions of even level lie on the ritialline Re(s) = 1=2. Hermite funtions are eigenfuntions of the HamiltonianH = x2 � 14�2 d2dx2 of the quantum mehanial harmoni osillator. H maybe given a group theoretial interpretation via the Weil representation of^SL2(R), the two fold metapleti over of SL2(R), as follows: Let SO2 �SL2 be the subgroup of transformations preserving the form x2 + y2. Theover splits over SO2 and thus we may onsider the Weil representationrestrited to SO2. By di�erentiation at identity it an be shown (Bump,Choi, Kurlberg and Vaaler [2℄) that H(f) = �ff is equivalent to f lying ina one dimensional SO2-invariant subspae of L2(R).1



2 Di�erential operators does not make sense p-adially, but the Weil repre-sentation exists for all Qp . We may thus de�ne the p-adi Hermite funtionsas the set of funtions lying in one dimensional SO2-invariant subspaes.(We need to be areful in how to de�ne SO2 over Qp sine the stabilizer ofthe quadrati form x2+ y2 is not ompat for all p, see the text for details.)We may relate this to the study of lassial zeta funtions as follows: LetA;A� denote the adeles respetively ideles over Q , and let � be an idele lassharater (assumed to be even for simpliity of notation.) Let f : A� ! Cbe de�ned as the produtf(x) = f1(x1)�Yp fp(xp);where f1(x1) = e��x21 and fp is the harateristi funtion on the p-adiintegers at the unrami�ed plaes. For the rami�ed plaes we take fp to bethe harateristi funtion of the loal ondutor of �. As in Tate [6℄ wehave�(s; �; f) = ZA� f(x)�(x)jxjsd�x = L(s; �)�(s=2)��s=2(s; �) = �(s; �);where L(s; �) is a Dirihlet L-series, (s; �) is a produt of loal rami�edfators, and �(s; �) is the \ompleted" L-funtion that satis�es a funtionalequation. (In lassial language the integral representation amounts to ex-pressing �(s; �) as the Mellin transform of a theta funtion.)Now, at all the unrami�ed plaes v, the fv's are examples of Hermitefuntions. It is thus natural to ask what happens when we replae a �nite



3number of fators fv by arbitrary Hermite funtions. Sine we are modifyingthe Euler produt at a �nite number of plaes, the question an be settledby loal alulations. Bump onjetured that the \new" loal fators,
�(s; �v; fv) = ZQ�v jxjs�v(x)fv(x) d�xshould satisfy a loal Riemann hypothesis, i.e. that their zeroes lie on theritial line Re(s) = 1=2. The ase Qv = R is of ourse Bump and Ng'sdisovery, a proof for Qv = Qp , p = 3(4), and � = 1 is due to Bump andHo�stein (unpublished.) For more details on this onjeture, along with ageneralization to the n-dimensional harmoni osillator, see Bump, Choi,Kurlberg and Vaaler [2℄.In this paper we prove the onjeture for loal �elds of odd residue har-ateristi and we also show why it does not hold for F = C . (Theorems 4and 5.) 2. PreliminariesLet F be a nonarhimedean loal �eld of odd harateristi. O = OF willdenote the ring of integers in F , P = (�) will be the unique maximal idealin O, and �nally q = jO=P j. We will use Weil's \module normalization" ofthe absolute value, i.e., j�j = 1=q.Let  be an additive harater on F with ondutor Pn. Let � be aunitary multipliative harater on F� suh that �(�) = 1 (see lemma 2.)



4We let the level of � be the smallest integer m suh that �j1+Pm = 1. If�jO� = 1, then we say the level of � is zero.It will be onvenient to normalize the additive and multipliative Haarmeasures on F and F� so that the Fourier transform with respet to  isself dual, and ��(O�) = 1. Sine the Fourier transforms maps1Pn ! �(Pn)1O ! �(Pn)�(O)1Pnwe have �(O) = qn=2. With d�x = C dxjxj we see that 1 = RO� d�x impliesC = q1�n=2q � 1 ;sine RO� d�x = C RO� dxjxj = C�(O�) = C�(O) q�1q :S(F ) will be the Shwartz spae of F , i.e., the spae of ompatly sup-ported loally onstant omplex valued funtions on F . For any funtionor harater � on F , let �a(x) = �(ax), and let the \dilation operator"Ta : S(F )! S(F ) be de�ned by Ta(�) = �a: If X is a union of osets of Pk,then S(X;Pk) will be the spae of funtions supported on X and onstanton osets of Pk.2.1. The loal Tate integrals. The zeta funtions that we are interestedin are:De�nition 1. Let �(s; �; f) = ZF� jxjs�(x)f(x)d�x:



5Remark: Sometimes we will write �(s; f) for �(s; 1; f).For the reader's onveniene we reall Tate's loal funtional equation(see Tate [6℄ for details).Theorem 1. Let f 2 S(F ), and let  , � be haraters on F , F� respe-tively. Then there exists a meromorphi funtion (s), depending only on  and �, suh that �(s; �; f) = (s)�(1� s; ��1; f̂);f̂ being the  -Fourier transform of f .Remark: An easy alulation with f = 11+Pn shows that (s) is a funtionof exponential type (and hene nowhere vanishing) when � 6= 1.The following lemmas show that the real parts of the zeroes of �(s; �; f) areunhanged when f is replaed by fa, or when � is twisted by an unrami�edharater. (Thus we may make the assumption that �(�) = 1 without lossof generality.)Lemma 1. �(s; �; fa) = �(a�1)jaj�s�(s; �; f):Proof: Change of variables. �Lemma 2. The real parts of the zeroes of �(s; �; f) depend only on �jO�.Proof: �(s; �; f) = ZF� f(x)�(x)jxjsd�x



6 =Xk q�ks ZO� f(�kx)�(�kx)d�x =Xk (q�s�(�))k ZO� f(�kx)�(x)d�x:Sine j�(�)j = 1, we are done. �2.2. The Weil representation. In this setion we develop properties ofthe Weil representation that we will need. For notational onveniene wemake the followingDe�nition 2. Letsa = 2664a 00 a�13775 ; ut = 26641 t0 13775 ; w = 2664 0 1�1 03775 :Remark: These elements generate SL2(F ).Let ~G be the two fold metapleti over of G = SL2(F ), de�ned byKubota's oyle � : G � G ! f�1g. � is given in terms of the Hilbertsymbol by �(g1; g2) = � X(g1)X(g1g2) ; X(g2)X(g1g2)� ;where X0BB�2664a b d37751CCA =  if  6= 0, d otherwise. Finally, let s : G! ~G be thestandard setion suh that s(g1)s(g2) = �(g1; g2)s(g1g2):De�nition 3. Let (t) = jtj1=2 limn!1 RP�n  (tx2)dx:Theorem 2. (Weil [8℄) There exists a representation! : ~G! GL�S(F )�;



7de�ned by �!�s(ut)�f�(x) =  (tx2)f(x);!�s(w)�f = (1)f̂ ;and !�s(sa)�f = jaj1=2 (1)(a)fa:Remarks: The representation is also known as the osillator, or metaple-ti representation. Using the Stone-von Neumann theorem one an de�ne! in a more natural way, for instane see hapter 4 in Bump [1℄. Note thatthe usual L2(F ) inner produt is ~G-invariant when restrited to S(F ).Let SO2(F ) orrespond to the quadrati form x2+ y2. We are interestedin ! restrited to the unique maximal ompat subgroup of SO2(F ).De�nition 4. Let H = SL2(O) \ SO2(F );Remark: If i 62 F (where i2 = �1), then SO2(F ) is ontained in themaximal ompat subgroup SL2(O) � SL2(F ). However, if i 2 F , then weneed to interset with SL2(O) in order for nontrivial H-eigenfuntions toexist. We will all (rightfully so) the �rst ase anisotropi, and the seond\split".The restrition of ! to H is a true representation (the over splits overSL2(O) when the residue harateristi is odd, see Kubota [5℄), and is givenby:



8 (!(2664a �bb a 3775)f)(x)(1) = �(a; b)jbj�1=2(b)�1 ZF  (1b (ax2 + ay2 � 2xy))f(y) dy;where �(a; b) = �1 if we are in the anisotropi ase, ordP(b) is odd, anda � �1 mod P. Otherwise �(a; b) = 1.Sine H is a ompat abelian group, we know thatS(F ) = M�2Ĥ V�;where Ĥ is the unitary dual of H, andV� = ff 2 S(F ) j !(h)f = �(h)f 8h 2 Hg:Lemma 3. All V�'s are invariant under omplex onjugation.Proof: Realling that 2664a �bb a 3775�1 = 2664 a b�b a3775 and (�b) = (b)�1 =(b), we see that !(h) = !(h�1): (We de�ne !(h) by !(h)f = !(h)f .)Hene !(h)f = !(h)f = !(h�1)f = �(h�1)f = �(h)f: �Corollary 1. There exists a C -basis of real eigenfuntions for S(F ).Proof: By lemma 3 we know that both the real and the imaginary partof any eigenfuntion f is in the same eigenspae as f . �



92.3. The Kloosterman deomposition. In what follows, f will alwaysdenote an H-eigenfuntion, i.e., !(h)f = �(h)f for some harater � 2 Ĥ.We �rst note that any suh f will be similar to its Fourier transform sinew 2 H. We will let � be suh that(2) �f(x) = f̂(x) = ZF  (2xy)f(y)dy:The following will show that it is enough to study the ation of H on the�nite dimensional subspaes S(O;Pn) for n � 0.First note that Ta intertwines the ! and ! a2 -ations of H on S(F ).Moreover, �(s; �; fa) = 0 , �(s; �; f) = 0, so by replaing f by f��k for klarge enough, we an assume that the ondutor of  is Pn for n � 0, andthat the support of f is ontained in O. Realling that supp(f) � O impliesthat f̂ is onstant on osets of Pn, we see that f 2 S(O;Pn) sine f̂ = �f .It is easily heked that S(O;Pn) is SL2(O)-invariant, and hene H-invariant. Moreover, S(O;Pn) breaks up into an H-diret sum that will en-able us to indut on n. The splitting identi�es S(O;Pn�2) with S(P;Pn�1) �S(O;Pn) via the intertwining mapT��1 : �! ��2 ; S(O;Pn�2)�! �! ; S(O;Pn)�:This motivates the following:De�nition 5. An H-eigenfuntion f is alled a lift if f 2 L = S(P;Pn�1).If f 2 L? � S(O;Pn), it is said to be primitive.



10 3. The range of f ! �(s; v; f)In this setion we show that the map f ! �(s; �; f) has at most one-dimensional range when restrited to S(O;Pn) \ V�.3.1. The anisotropi ase.Lemma 4. !jH is multipliity free when H is anisotropi.Proof: Apply Howe duality to the redutive dual pair U(1)� U(1). �Remark: Howe duality is a theorem for any redutive dual pair if theresidue harateristi is odd, see Waldspurger [7℄.3.2. The \split" ase. If i 2 F , then !jH has multipliities; but on theother hand we an onjugate H into into a diagonal \torus". This providesenough information about eigenfuntions to prove that the range is at mostone-dimensional.Let M = 26641=2 ii=2 13775 2 SL2(O). Then M�1HM = H 0, where
H 0 = f2664u 00 u�13775 j u 2 O�g:(M an be thought of as a \Cayley transform".) Moreover, the identity!(M�1hM) Æ !(M�1) = !(M�1) Æ !(h)an be interpreted as meaning that(h!M�1hM;!(M�1)) : (H;S(O;Pn))! (H 0; S(O;Pn))



11is an intertwining operator. (Note that S(O;Pn) is SL2(O)-invariant!)In order to translate the above deomposition bak to the H-model, wewrite M = 26641 �i0 1 37752664 0 1�1 0377526641 i=20 1 37752664�i=2 00 �2=i3775 :Thus, if f = !(M)g, then(3) f(x) =  �i(x2)ZO  (2xy) i=2(y2)g�i=2(y)dy:The following lemma makes it easy to understand !jH0 :Lemma 5. S(O;Pn) �= (n�1Mk=0 S(�kO�;Pn))� S(Pn;Pn)as H 0-modules. Moreover, eah summand is isomorphi to the regular rep-resentation of O�=1 +Pn�k. (Abusing notation, we let 1 +P0 = O�.)Proof: Clear sine(4) !(sa)g = jaj1=2 (1)(a)ga: �Corollary 2. If g is an H 0-eigenfuntion, then so is g � 1O� and g � 1P.Corollary 3. We an identify H 0 with O�, and if Pn is the ondutor of , then ! fators as H ! H=(1+Pn)! GL�S(O;Pn)�: In partiular, anyharater of H 0 assoiated with lifts must be trivial on 1 +Pn�2.



12 For notational onveniene we de�ne a \zeta operator" Z� by(Z�(f))(s) = �(s; �; f):Lemma 6. If f = !(M)g is primitive, 0 < m < n, and supp(g) � P, thenZ�(f) = 0.Proof: Lemma 23 in the appendix. �Lemma 7. If f 2 V� \ L?, 0 < m < n, and the level of � is smaller thann, then Z�(f) = 0.Proof: Lemma 24 in the appendix. �3.3. Conlusion. Putting the previous results together we have:Theorem 3. The range of Z� restrited to V� \ S(O;Pn) is at most one-dimensional.Proof: The anisotropi ase follows immediately from lemma 4. In the\split" ase we argue as follows: If m � n, it is easy to see that �(s; �; f)is onstant; assume that m < n. Write f as f = flift + fprim, where eahterm belongs to L;L? respetively. If the level of � is smaller than n, thenZ�(fprim) = 0 by lemma 7. We an thus indut on n; the only thing tohek is the ase when the level of � is n. In this ase we must have flift = 0(orollary 3), and we an assume that g orresponding to f via equation 3is supported on O� by orollary 2 and lemma 23. Now, the H 0-ation on



13S(O�;Pn) is just the regular representation (lemma 5), hene eah haraterours with multipliity one, so done. �Lemma 8. There exists C -basis for V�\S(O;Pn), onsisting of real-valuedfuntions, suh that at most one basis element has nonzero image under Z� .Proof: Use theorem 3 together with orollary 1. �4. Properties of primitivesRemark: The ase when � is trivial has a di�erent avor from the non-trivial ase; in the former the zeta funtion will be a rational funtion ofq�s, whereas in the latter it will be a polynomial.4.1. The ase � = 1.Lemma 9. If f is primitive, then �(s; f) satis�es the LRH.Proof: See lemma 21 in the appendix.4.2. The ase � 6= 1. It is easy to see that m � n (m being the level of �)implies that the zeta funtion is onstant, so we will make the assumptionthat m < n.Lemma 10. If f 2 L?, then all the zeroes of �(s; �; f) lie on a vertial line.Proof: By lemma 22 in the appendix we know that �(s; �; f) is of the formA+Bq�(n�m)s for some onstants A;B. �Remark: In view of lemma 22 it is worth mentioning that jA=Bj is known,so it possible to prove lemma 10 by a diret alulation as an alternative.



14Lemma 11. If f 2 L?, then �(s; �; f) satis�es LRH.Proof: By lemma 8 we an assume that f � f , hene�(1� s; �; f) = �(1� s; �; f) � �(1� s; �; f):By the funtional equation we have�(s; v; f) = (s)�(1� s; ��1; f̂) = �(s)�(1 � s; �; f) � �(s)�(1 � s; �; f):Sine (s) is nowhere vanishing, we are done by lemma 10. �4.3. Conlusion.Theorem 4. The loal Riemann hypothesis is true for nonarhimedean loal�elds of odd residue harateristi.Proof: Write f = flift + fprim. If flift is nonzero, then the level of � issmaller than n, hene Z�(f) = Z�(flift) by lemma 7, so done by indution.If f is a primitive, then we are done by lemma 11. �5. The omplex aseLet  (z) = e2�iRe(z) be an additive harater on C . As in setion 3.2 wewill onjugate H into a diagonal \torus" H 0, where the !-ation is easier tounderstand. We will show that the LRH does not hold over C by provingthat the dimension of the range of Z1jV1 is more than one-dimensional.(Linear ombinations of two independent funtions an be made to havezeroes anywhere.)



15De�nition 6. Let Se(R) = fh 2 S(R) j h(x) = h(�x)g;i.e., the spae of even Shwartz funtions.De�nition 7. With q(z; w) a quadrati form, letkq(r;R) = Z 2�0 Z 2�0  �q(re2�i�; Re2�i�)�d�d�:Furthermore, let Kq : S(R+)! S(R+) be de�ned by(5) �Kq(h)�(r) = Z 10 kq(r;R)Rh(R) dR:De�nition 8. Let �ZR(h)�(s) = R10 xs�1h(x)dx, i.e., the real Mellin trans-form of h.Lemma 12.fg j f = !(M)g 2 V1 g = fg j g(z) = h(jzj); where h 2 Se(R) g:Proof: Use equation 4 and the fat that  is onstant on C � . �Lemma 13. Z1(V1) = ZR�Kq(Se(R))�;where q(z; w) = �iz2 + 2zw + i=2w2.Proof: Let f = !(M)g, g(z) = p2h(j2zj), and h 2 Se(R). We have�(s; f) = ZC f(z)jzjsd�z = Z 10 � Z 2�0 f(re2�i�)d� �rs dr:



16The last fator in the Bruhat deomposition of M ats by sending g !ji=2j1=2gi=2, henef(z) = ZC  �q(z; w)�h(jwj)dw = Z 10 Z 2�0  �q(z;Re2�i�)�d�h(R)RdR:Hene it is enough to show thatZ 2�0 Z 10 Z 2�0  �q(re2�i�; Re2�i�)�d�h(R)R dRd�= Z 10 Z 2�0 Z 2�0  �q(re2�i�; Re2�i�)�d� d� h(R)RdR;but h is of rapid deay, so hanging order of integration is justi�ed. �Corollary 4. The dimensions of the range of Z1 and the range of Kq arethe same.Proof: The real Mellin transform restrited to Se(R) is invertible.Lemma 14. Let q(z; w) = az2 + bzw+ w2. Then Kq has one-dimensionalrange only if b = 0.We an assume that a =  = 1 sine a diagonal hange of variables doesnot hange the dimension of the range. (We might perturb b, but we willnot hange whether b = 0 or not.)It is an easy onsequene of the Riesz representation theorem that an in-tegral operator of the form (5) has one-dimensional range only if kq(r;R) =kq;1(r)kq;2(R). (We need to be a little bit areful sine kq(r;R)R is un-bounded; onsider trunations h! R t0 kq(r;R)Rh(R) dR to get the produt



17representation for r 2 [0; t℄. Then let t ! 1, and note that the produtrepresentation on any interval is unique if it exists. Also, Se(R) is L1-densein C([0; t℄) 8t, so we do not have to worry about the \atness" of h at zero.)Anyhow, by lemma 15 we know that kq is not a produt. �Lemma 15. Let q(z; w) = az2 + bzw + w2, with a; b;  6= 0. Then kq(r;R)an not be written as a produt of two funtions.Proof: Again we may assume that a =  = 1. If kq(r;R) = k1(r)k2(R),then we must have0 = kq(r;R)kq(0; 0) � kq(0; R)kq(r; 0)= (2�)2 Z 2�0 Z 2�0 eir2 os(2�)+iR2 os(2�)�eijbjrR os(�+�+arg(b)) � 1�d�d�:(6)
However, when r;R are both small, the �rst fator is very lose to 1, andthe seond fator has negative real part if b 6= 0, integrating it we see that(6) has negative real part for small r;R. (The argument an be made formalby onsidering Taylor expansions of ex; os(x), and sin(x).) �Putting it all together we have:Theorem 5. If �; � are trivial, then the LRH does not hold for F = C .6. AppendixHere we show that primitives satisfy the loal Riemann hypothesis. Wewill assume that 0 < m < n, m being the level of �, and that �(�) = 1. (Seelemma 2.)



186.1. Gauss sums.De�nition 9. Let G( ; �) = ZO� �(x) (x)d�xbe the integral form of a Gauss sum.Lemma 16. G( u; �) = �(u�1)G( ; �) for u 2 O�.Proof: Change of variables. �Lemma 17. Let Pk be the ondutor of an additive harater �. Let m > 0be the level of �, where � is a harater on O�. Then jG(�; �)j = q1�k=2q�1 ifk = m, and zero otherwise.Proof: If k > m,ZO� �(x)�(x)d�x = Xa2O�=(1+Pm) �(a)Za(1+Pm) �(x)d�x = 0sine Ra+Pk �(x)dx = 0, and d�x = Cdx on O�. The ase k < m is handledsimilarly. If m = k, thenjG(�; �)j2 = ZO� ZO� �(xy�1)�(x� y)d�xd�y= ZO� ZO� �(t)�(y(t� 1))d�yd�t= C ZO� �(t)ZO �t�1(y)dy d�t� C ZO� ZP �(t)�(y(t� 1))dy d�t:



19Now, in the �rst integral, only t 2 1+Pk ontributes and hene its absolutevalue equals C��(1 +Pk)�(O) = q1�n=2q � 1 1(q � 1)qk�1 qn=2:The seond integral an be rewritten asZP �(�y)ZO� v(t)�y(t)d�t dy;and the inner integral vanishes by the �rst part of the lemma. Taking squareroots we get jG(�; �)j = q1�k=2q � 1 : �Lemma 18. If a 2 O� and 0 < k < n, then Ra+Pk  (x2)dx = 0:Proof: Za+Pk  (x2)dx = Xai2(a+Pk)=Pn�1 Zai+Pn�1  (x2):ButZai+Pn�1  (x2) =  (a2i )ZPn�1  (2aix+ x2) =  (a2i )ZPn�1  (2aix) = 0;sine  2ai has ondutor Pn, and x 2 Pn�1 ) x2 2 Pn as n � 2. �Remark: This lemma does not hold for the even residue harateristiase.



206.2. Properties of primitives. Remarks: The lemmas of this setionholds for both the \split" and the anisotropi ase. It should also be notedthat the ruial property of the primitives is that they are determined bytheir values on O� (see next lemma).Lemma 19. If f is primitive and y 2 P , then�f(y) = ZO�  (2xy)f(x)dx:Proof: First we note thatf 2 L? , Za+Pn�1 f(x)dx = 0 8a 2 P:Now,ZO  (2xy)f(x)dx = ZO� f(x) (2xy)dx + Xa2P=Pn�1 Za+Pn�1  (2xy)f(x)dx:Sine  2y is onstant on osets of P n�1, we an use f 2 L? to onlude thatall but the �rst terms in the sum vanish. �Corollary 5. �f(0) = RO� f(x)dx for primitive f .Lemma 20. If f is primitive, then�(s; f) = Cf(0)(�� qn=2�1�(n�1)s + C�1 q�ns1� q�s ):Proof:�(s; f) = ZO f(x)jxjsd�x = n�1Xk=0 q�ks ZP k�P k�1 f(x)d�x+ f(0)ZPn jxjsd�x:



21Sine f 2 L?, all terms exept k = 0; n� 1 and the last one vanishes. The�rst term is equal to C�f(0). The seond term equals �Cf(0)qn=2�1�(n�1)s;sine �(P n) = q�n=2 andZPn�1�Pn f(x)d�x = Cqn�1 ZPn�1�Pn f(x)dx= Cqn�1(ZPn�1 �ZPn) = 0� Cqn�1 ZPn f(x)dx = �f(0)Cqn�1�(P n):Finally, the third term equals f(0) RPn jxjsd�x = f(0) q�ns1�q�s : �Lemma 21. If f is primitive, then �(s; f) satis�es LRH.Proof: Put x = q�s and y = q1=2x. Sine C = q1�n=2q�1 , we see that �(s; f)vanishes only if f(0) = 0 or1 = j�j = jC�1 q�ns1� q�s � qn=2�1�(n�1)sj= j(q � 1)qn=2�1q�ns � qn=2�1�(n�1)s(1� q�s)1� q�s j= jqn=2xn � qn=2�1xn � (xn�1qn=2�1 � xnqn=2�1)1� x j= jqn=2xn � xn�1qn=2�11� x j = jyn�1(y � q�1=2)1� yq�1=2 j:Now, both y ! y�q�1=21�yq�1=2 and y ! yn�1 preserve the interior, boundary andexterior of the unit dis, and so does their produt. Therefore jyj = 1, whihimplies that Re(s) = 1=2. �Lemma 22. Let f be primitive, and let n > m > 0 be the level of �. Then�(s; �; f) = ZO� f(x)�(x)d�x+ ZO� f(x)�(x�1)d�xG( 2�n�m ; �)�C q�(n�m)s:



22 Proof:�(s; �; f) = ZO� �(x)f(x)d�x+Xk>0 q�ks ZO� f(�kx)�(x)d�x:Sine f is onstant on P n and � 6= 1, we see that the terms for whih k � nvanish. Furthermore,�ZO� f(�kx)�(x)d�x = ZO� ZO� �(x) (2�kxy)f(y)dy d�x= ZO� G( 2�ky; �)f(y)dy = ZO� �(y�1)G( 2�k ; �)f(y)dy:Lemma 17 gives that the only non-vanishing term is when n� k = m, i.e.,k = n�m. Thus�(s; �; f) = ZO� �(x)f(x)d�x + q�(n�m)s� ZO� �(y�1)f(y)G( 2�n�m ; �)dy= ZO� f(x)�(x)d�x+ ZO� f(x)�(x�1)d�xG( 2�n�m ; �)�C q�(n�m)s: �Corollary 6. If f is primitive, � 6= 1, andZO� f(x)�(x)d�x = ZO� f(x)�(x�1)d�x = 0;then Z�(f) = 0.6.3. Properties of primitives, \split" ase.Lemma 23. Let f = !(M)g be primitive. If g is supported on P and0 < m < n, then Z�(f) = 0.



23Proof: f(x) =  i=2(x2)ZP  (2xy) �i(y2)g�i=2(y)dyand thereforeZO� f(x)�(x)d�x = ZO� ZP  i=2(x2) (2xy) �i(y2)g�i=2(y)�(x)dy dx:Now,ZO� �(x) i=2(x2) (2xy)dx = ZO� �(x) i=2�(x+ 2y=i)2 � (2y=i)2�dx;andZO� �(x) i=2�(x+ 2y=i)2�dx = Xa2O�=(1+Pn�1) �(a)Za+2y=i+Pn�1  i=2(x2)dx:But Ra+2y=i+Pn�1  i=2(x2)dx = 0 by lemma 18 (2y=i 2 P ). The same holdsfor �, so we are done by orollary 6. �Lemma 24. If f 2 V� \ L?, 0 < m < n, and the level of � is smaller thann, then Z�(f) = 0.Proof: By lemma 23 and orollary 2 we an assume that supp(g) � O�.As in the previous lemma, it is enough to show that RO� f(x)�(x)d�x = 0.We have g�i=2(x) = (x)�(x) by equation 3. Now, (a2b) = (b) and hene is onstant of osets of squares, i.e., it is onstant on (1+P )-osets. Thusg�i=2 will be onstant on osets of 1 + P n�1. Henef(x) =  i=2(x2)ZO�  (2xy) �i(y2)g�i=2(y)dy



24=  i=2(x2) �i�� (ix)2� Xa2O�=1+Pn�1 g�i=2(a)Za+Pn�1  �i((y + ix)2)dy:By lemma 18, we see that the only non-vanishing integrals ome from a 2(�ix+ P )=(1 + P n�1), and will be of the formZb�ix+Pn�1  �i((y + ix)2)dy = Zb+Pn�1  �i(z2)dz;where b 2 P=P n�1, the point being that those terms do not depend on x.Thus f will be a linear ombination of terms of the form i=2(x2)g�i=2(b� ix) �i(x2);where b 2 P=P n�1. Therefore it is enough to show thatZO�  ((i=2 � i)x2)g�i=2(b� ix)�(x)d�x = 0 8 b 2 P=P n�1:Again, we break up the integral into osets of 1+P n�1, sine g�i=2(b�ix)�(x)is onstant on 1+P n�1-osets. We an now apply lemma 18 sine i=2� i =�i=2 2 O�. Referenes[1℄ D. Bump, Automorphi Forms and Representations, Cambridge University Press (to appear).[2℄ D. Bump, K.K.S. Choi, P. Kurlberg, J. Vaaler A Loal Riemann Hypothesis, I, to appear[3℄ D. Bump and E. K.-S. Ng, On Riemann's Zeta funtion, Math. Zeitshrift 192 (1986).[4℄ H. Kloosterman, The behavior of general theta funtions under the modular group and theharaters of binary modular ongruene groups, I and II, Ann. of Math. (2) 47 (1946).317{375, and 376{447.[5℄ T. Kubota, Automorphi Forms and Reiproity in a Number Field, Kyoto University andthe Kiyokuniya Book Store (1969).



25[6℄ J. Tate, Fourier analysis in number �elds and Heke's zeta-funtions, Dissertation (1950).Reprinted in Cassels and Fr�ohlih, Algebrai Number Theory, Aademi Press (1967).[7℄ J.L. Waldspurger D�emostration d'une onjeture de Dualit�e de Howe dans le as p-adi, p 6= 2,in S. Gelbart, R. Howe and P. Sarnak, ed., Festshrift in honor of I.I. Piatetski-Shapiro onthe oasion of his 60-th birthday, two volumes, The Weizmann Siene Press of Israel (1990),267-327.[8℄ A. Weil, Sur ertains groupes d'op�erateurs unitaires, Ata Math. 111 (1964), 143{211, Col-leted Works, Vol. 3.


