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Abstract

There has been a surge of interest of late in an old result of Nyman and Beurling giving a

Hilbert space formulation of the Riemann Hypothesis. Many authors have contributed to this circle

of ideas, culminating in a beautiful refinement due to Baez-Duarte. The purpose of this little survey

is to dis-entangle the resulting web of complications, and reveal the essential simplicity of the main

results.

Let H denote the weighted l2-space consisting of all sequences a = {an : n ∈ N} of complex numbers such

that
∞∑

n=1

|an|2

n(n+1) < ∞. For any two vectors a, b ∈ H, their inner product is given by: 〈a, b〉 =
∞∑

n=1

anbn

n(n+1) .

Notice that all bounded sequences of complex numbers are vectors in this Hilbert space. For l = 1, 2, 3, ...

let γl ∈ H be the sequence .

γl =
{{n

l

}
: n = 1, 2, 3, ...

}
.

(Here , and in what follows, {x} is the fractional part of a real number x.) Also, let γ ∈ H denote the

constant sequence

γ = {1, 1, 1, ....}.

Recall that a set A of vectors in a Hilbert space H is said to be total if the set of all finite linear

combinations of elements of A is dense in H, i.e., if no proper closed subspace of the Hilbert space

contains the set A. In terms of these few notions and notations, the recent result of Baez-Duarte from

[2] can be given the following dramatic formulation.

Theorem 1 The following statements are equivalent :

(i) The Riemann Hypothesis,

(ii) γ belongs to the closed linear span of {γl : l = 1, 2, 3, ...}, and

(iii) the set {γl : l = 1, 2, 3, ...} is total in H.

We hasten to add that this is not the statement that the reader will see in Baez-Duarte’s paper. For

one thing, the implications (ii) =⇒ (iii) and (iii) =⇒ (i) are not mentioned in this paper : perhaps

the author thinks of them as ‘well known to experts’. (In such contexts, an expert is usually defined to

be a person who has the relevant piece of information.) More over, the main result in [2] is not the
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implication (i) =⇒ (ii) itself, but a ‘unitarily equivalent’ version there-of. More precisely, the result

actually proved in [2] is the implication (i) =⇒ (ii) of Theorem 7 below. In fact, we could not locate in

the existing literature the statement (iii) of Theorem 1 (equivalently, of Theorem 7) as a reformulation

of the Riemann Hypothesis. This result may be new. It reveals the Riemann Hypothesis as a version

of the central theme of Harmonic Analysis : that more or less arbitrary sequences (subject to mild

growth restrictions) can be arbitrarily well approximated by superpositions of a class of simple periodic

sequences (in this instance, the sequences γl).

A second point worth noting is that the particular weight sequence { 1
n(n+1)} used above is not crucial

for the validity of Theorem 1 (though this is the sequence which occurs naturally in its proof). Indeed,

any weight sequence {wn : n = 1, 2, 3, ...} satisfying c1

n2 ≤ wn ≤ c2

n2 for all n (for constants 0 < c1 ≤ c2)

would serve equally well. This is because the identity map is an invertible linear operator (hence carrying

total sets to total sets) between any two of these weighted l2-spaces.

In what follows, we shall adopt the standard practice (in analytic number theory) of denoting a

complex variable by s = σ + it. Thus σ and t are the real and imaginery parts of the complex number

s. Recall that Riemann’s Zeta function is the analytic function defined on the half-plane {σ > 1} by

the absolutely convergent series ζ(s) =
∑∞

n=1 n−s. The completed Zeta function ζ∗ is defined on this

half plane by ζ∗(s) = π−s/2Γ(s/2)ζ(s), .where Γ is Euler’s Gamma function. As Riemann discovered,

ζ∗ has a meromorphic continuation to the entire complex plane with only two (simple) poles : at s = 0

and at s = 1. Further, it satisfies the functional equation ζ∗(1 − s) = ζ∗(s) for all s. Since Γ has poles

at the non-positive integers (and nowhere else), it follows that ζ has trivial zeros at the negative even

integers. Further, since ζ is real-valued on the real line, its zeros occur in conjugate pairs. This trivial

observation, along with the (highly non-trivial) functional equation, shows that the non-trivial zeros of

the Zeta function are symmetrically situated about the so-called critical line {σ = 1
2}. The Riemann

hypothesis (RH) conjectures that all these non-trivial zeros actually lie on the critical line. In view of

the symmetry mentioned above, this amounts to the conjecture that ζ has no zeros on the half-plane

Ω = {s = σ + it : σ >
1

2
, −∞ < t < ∞}.

In other words, the Riemann hypothesis is the statement that 1
ζ is analytic on the half-plane Ω. This is

the formulation of RH that we use in this article. Throughout this article, Ω stands for the half-plane

{σ > 1
2}.

Baez-Duarte’s theorem refines an earlier result of the same type (Theorem 5 below) proved inde-

pendently by Nyman and Beurling (cf. [6] and [1] ). Our intention in this article is to point out that

the entire gamut of these results is best seen inside the Hardy space H2(Ω). Recall that this is the

Hilbert space of all analytic functions F on Ω such that

‖F‖2 := sup
σ> 1

2

1

2π

∞∫

−∞

|F (σ + it)|2 dt < ∞,

It is known that any F ∈ H2(Ω) has, almost everywhere on the critical line, a non-tangential boundary

value F ∗ such that

‖F‖2
=

1

2π

∞∫

−∞

∣∣∣∣F
∗(

1

2
+ it)

∣∣∣∣
2

dt
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Thus H2(Ω) may be identified (via the isometric embedding F 7→ F ∗) with a closed subspace of the

L2-space of the critical line with respect to the Lebesgue measure scaled by the factor 1
2π . (This scaling

is to ensure that the Mellin transform z, defined while proving Theorem 2 below, is an isometry.)

For 0 ≤ λ ≤ 1, let Fλ ∈ H2(Ω) be defined by

Fλ(s) = (λs − λ)
ζ(s)

s
, s ∈ Ω.

Notice that the zero of the first factor at s = 1 cancels the pole of the second factor, so that Fλ, thus

defined, is analytic on Ω. Also, in view of the well-known elementary estimate (cf. [7])

ζ(s) = O(|s|
1

6 log |s|), s ∈ Ω, s −→ ∞,

the factor 1
s ensures that Fλ ∈ H2(Ω) for 0 ≤ λ ≤ 1. (Note that, in order to arrive at this conclusion,

any exponent < 1
2 in the above Zeta estimate would have sufficed. But the exponent 1

6 happens to be

the simplest non-trivial estimate which occurs in the theory of the Riemann Zeta function.) Indeed,

under Riemann Hypothesis we have the stronger estimate (Lindelof Hypothesis)

ζ(s) = O(|s|ε) as |s| −→ ∞, uniformly for s ∈ Ω, (1)

for each ε > 0. (More precisely, under RH, this estimate holds uniformly on the complement of any

given neighbourhood of 1 in Ω.)

Finally, for l = 1, 2, 3, ..., let Gl ∈ H2(Ω) be defined by Gl = F 1

l

. Thus,

Gl(s) = (l−s − l−1)
ζ(s)

s
, s ∈ Ω.

Also, let E ∈ H2(Ω) be defined by :

E(s) =
1

s
, s ∈ Ω.

In terms of these notations, the most naural formulation of the Nyman–Beurling–Baez-Duarte theorem

is the following :

Theorem 2 The following statements are equivalent :

(i)The Riemann Hypothesis,

(ii) E belongs to the closed linear span of the set {Gl : l = 1, 2, 3, ...},and

(iii) E belongs to the closed linear span of the set {Fλ : 0 ≤ λ ≤ 1}.

The plan of the proof is to verify (i) =⇒ (ii) =⇒ (iii) =⇒ (i). As we shall see in a little while,

except for the first implication ((i) =⇒ (ii)), all these implications are fairly straight forward. In order

to prove (i) =⇒ (ii), we need recall that on the half-plane {σ > 1}, 1
ζ is represented by an absolutely

convergent Dirichlet series

∞∑

l=1

µ(l)l−s =
1

ζ(s)
. (2)

Here µ(·) is the Mobius function. (To determine its formula, we may formally multiply this Dirichlet

series by that of ζ(s) and equate coefficients to get the recurrence relation
∑
l|n

µ(l) = δ1n. Solving this,

one can show that µ(·) takes values in {0, +1,−1} and hence the Dirichlet series for 1
ζ is absolutely
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convergent on {σ > 1} . Indeed, µ(l) is = 0 if l has a repeated prime factor, is = +1 if l has an even

number of distinct prime factors, and is = −1 if l has an odd number of distinct prime factors. But,

for our limited purposes, all this is unnecessary.) What we need is an old theorem of Littlewood (cf.

[7]) to the effect that for the validity of the Riemann Hypothesis, it is necessary (and sufficient) that

the Dirichlet series displayed above converges uniformly on compact subsets of Ω. Actually, we need

the following quantitative version of this theorem of Littlewood.

Lemma 3 If the Riemann Hypothesis holds then for each ε > 0 and each δ > 0, we have
L∑

l=1

µ(l)l−s =

O((|t|+1)δ) uniformly for L = 1, 2, 3, ... and uniformly for s = σ+it in the half- plane
{
σ > 1

2 + ε
}
.(Thus

the implied constant depends only on ε and δ.)

This Lemma may be proved by a minor variation in the original proof of Littlewood’s Theorem

quoted above. (Note that, with the aid of a little ‘normal family’ argument, Littlewood’s Theorem itself

is an easy consequence of this Lemma.) However, for the sake of completeness, we sketch a proof here :

Proof of Lemma 3: We may assume that s = σ + it with 1
2 + ε < σ ≤ 1. (The case σ ≥ 1 is much

easier to handle, and we leave out the details.) Fix a positive integer L, and put x = L + 1
2 . Also put

c = 1− σ + 1
log x . For any large T > 0, using residue calculus one can show that for all positive integers

n, we have :

1

2πi

c+iT∫

c−iT

(x

n

)w dw

w
=

{
1 + O( (x/n)c

T log(x/n) ) if n < x,

O( (x/n)c

T log(n/x) ) if n > x.

Multiplying this formula by µ(n)n−s and adding over all positive integers n, we get :

L∑

n=1

µ(n)n−s =
1

2πi

c+iT∫

c−iT

xw

ζ(s + w)

dw

w
+ O(x1−σ log(xT )

T
),

which is an effective version of Perron’s formula. Now, letting c̃ = 1
2 + δ

2 − σ, Cauchy’s fundamental

Theorem yields :

L∑

n=1

µ(n)n−s =
1

2πi
(

�

c+iT∫

�

c−iT

+

c+iT∫

�

c+iT

+

�

c−iT∫

c−iT

)
xw

ζ(s + w)

dw

w
+

1

ζ(s)
+ O(x1−σ log(xT )

T
).

Now, under RH, we have the wellknown estimate (cf. Theorem 14.2 in [7] )

ζ(s)−1 = O((|t| + 1)ε) (3)

uniformly for s in the half-plane {σ ≥ 1
2 + δ}. Therefore the second and third integrals are

O(x1−σ(
T ε + (|t| + 1)ε

T
)),

while the first integral is

O(x
1

2
+ δ

2
−σ log T (T ε + (|t| + 1)ε)) = O(x−δ/2 log T (T ε + (|t| + 1)ε)).

Combining these estimates and choosing T = xB where B is a sufficiently small positive constant, we

get the required result.
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Proof of Theorem 2 : (i) ⇒ (ii). Assume RH. For positive integers L and any small real number

ε > 0, let HL,ε ∈ H2(Ω) be defined by

HL,ε =
L∑

l=1

µ(l)

lε
Gl.

Thus each HL,ε is in the linear span of {Gl : l ≥ 1}. Note that

HL,ε(s) =
ζ(s)

s
(

L∑

l=1

µ(l)

ls+ε
−

L∑

l=1

µ(l)

l1+ε
), s ∈ Ω.

Therefore, by the Theorem of Littlewood quoted above, for any fixed ε > 0,

HL,ε(s) −→ Hε(s) for s in the critical line, as L −→ ∞.

Here,

Hε(s) :=
ζ(s)

s
(

1

ζ(s + ε)
−

1

ζ(1 + ε)
).

Also, by the estimates (1), (3) and Lemma 3, HL,ε is bounded by an absolutely square integrable

function (viz. a constant times s2δ−1, for any fixed δ in the range 0 < δ < 1
4 ). Therefore, by Lebesgue’s

dominated convergence theorem, we have , for each fixed ε > 0,

HL,ε −→ Hε in the norm of H2(Ω) as L −→ ∞.

Since HL,ε is in the linear span of {Gl : l = 1, 2, 3, ...}, it follows that, for each ε > 0, Hε is in the closed

linear span of {Gl : l = 1, 2, 3, ...}. Now note that, since ζ has a pole at s = 1,

Hε(s) −→
1

s
= E(s) for s in the critical line, as ε ↘ 0.

Therefore, in order to show that E is in the closed linear span of {Gl : l = 1, 2, 3, ...} and thus complete

this part of the proof, it suffices to show that Hε, 0 < ε < 1
2 , are uniformly bounded in modulus on

the critical line by an absolutely square integrable function. Then, another application of Lebesgue’s

dominated convergence would yield

Hε −→ E in the norm of H2(Ω) as ε ↘ 0.

Consider the entire function ξ(s) := s(1 − s)ζ∗(s) = s(1 − s)π−s/2Γ( s
2 )ζ(s). It has the Hadamard

factorisation

ξ(s) = ξ(0)
∏

ρ

(1 −
s

ρ
),

where the product is over all the non-trivial zeros ρ of the Riemann Zeta function. This product converges

provided the zeros ρ and 1−ρ are grouped together. In consequence, with a similar bracketing, we have

|ξ(s)| = |ξ(0)|
∏

ρ

∣∣∣∣1 −
s

ρ

∣∣∣∣ .

Now, under RH, each ρ has real part = 1
2 . Therefore, for s in the closed half-plane Ω, we have

|1 − s
ρ | ≤ |1 − s+ε

ρ |. Multiplying this trivial inequality over all ρ, we get

|ξ(s)| ≤ |ξ(s + ε)|, s ∈ Ω, ε > 0.
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(Aside : conversely, the above inequality clearly implies RH. Thus, this simple looking inequality is a

reformulation of RH.) In other words, we have, for s ∈ Ω,

∣∣∣∣
ζ(s)

ζ(s + ε)

∣∣∣∣ ≤ π−ε/2

∣∣∣∣
(s + ε)(1 − ε − s)

s(1 − s)

∣∣∣∣
∣∣∣∣
Γ((s + ε)/2)

Γ(s/2)

∣∣∣∣ ≤ c

∣∣∣∣
Γ((s + ε)/2)

Γ(s/2)

∣∣∣∣

for some absolute constant c > 0. But, by Sterling’s formula (see [5] for instance), the Gamma ratio on

the extreme right is bounded by a constant times |s|ε/2, uniformly for s ∈ Ω. Therefore we get

∣∣∣∣
ζ(s)

ζ(s + ε)

∣∣∣∣ ≤ c|s|ε/2, s ∈ Ω,

for some other absolute constant c > 0. In conjunction with the estimate (1), this implies

|Hε(s)| ≤ c|s|−3/4, s ∈ Ω,

for 0 < ε < 1
2 . Since s 7−→ c|s|−3/4 is square integrable on the critical line, we are done. This proves

the implication (i) ⇒ (ii).

Since {Gl : l = 1, 2, 3, ...} ⊆ {Fλ : 0 ≤ λ ≤ 1}, the implication (ii) ⇒ (iii) is trivial. To prove

(iii) ⇒ (i), . suppose RH is false. Then there is a Zeta-zero ρ ∈ Ω. Since ζ(ρ) = 0, it follows that

Fλ(ρ) = 0 for all λ ∈ (0, 1]. Thus the set {Fλ : λ ∈ (0, 1]} (and hence also its closed linear span) is

contained in the proper closed subspace {F ∈ H2(Ω) : F (ρ) = 0} of H2(Ω). (It is a closed subspace

since evaluation at any fixed ρ ∈ Ω is a continuous linear functional : H2(Ω) is a functional Hilbert

space.) Since E belongs to the closed linear span of this set, it follows that 0 = E(ρ) = 1
ρ . Hence

0 = 1 : the ultimate contradiction! This proves (iii) =⇒ (i).

Remark 4 Since µ(l) = 0 unless l is square-free, the functions HL,ε introduced in the course of the

above proof are in the linear span of the set {Gl : l square-free}. Thus, the proof actually shows that RH

implies (and hence is equivalent to) that E belongs to the closed linear span of the thinner set {Gl : l

square-free} in H2(Ω).

Now let L2((0, 1]) be the Hilbert space of complex-valued absolutely square integrable functions

(modulo almost everywhere equality) on the interval (0, 1]. For 0 ≤ λ ≤ 1, let fλ ∈ L2((0, 1]) be defined

by

fλ(x) = {
λ

x
} − λ{

1

x
}, x ∈ (0, 1].

(Recall that {.} stands for the fractional part.) Let 1 ∈ L2((0, 1]) denote the constant function = 1 on

(0, 1]. Thus,

1(x) = 1, x ∈ (0, 1].

In terms of these notations, the original theorem of Nyman and Beurling may be stated as :

Theorem 5 The following statements are equivalent:

(i) The Riemann Hypothesis,

(ii) 1 is in the closed linear span in L2((0, 1]) of the set {fλ : 0 ≤ λ ≤ 1},

(iii) the set {fλ : 0 ≤ λ ≤ 1} is total in L2((0, 1]).
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Proof : One defines the Fourier-Mellin transform z : L2((0, 1]) −→ H2(Ω) by :

z(f)(s) =

∞∫

0

xs−1f(x)dx, s ∈ Ω, f ∈ L2((0, 1]). (4)

It is wellknown that z, thus defined , is an isometry. For completeness, we sketch a proof. Since

s 7−→ (x 7−→ xs−1) is an L2((0, 1])-valued analytic function on Ω, it follows that z(f) is analytic on Ω

for each f ∈ L2((0, 1]). For λ ∈ [0, 1], let Ψλ ∈ L2((0, 1]) denote the indicator function of the interval

(0, λ). Using the well-known identity

1

π

+∞∫

−∞

eiux

1 + x2
dx = e−|u|, u ∈ R,

one sees that ‖z(Ψλ)‖2
= ‖Ψλ‖

2
< ∞ – hence z(Ψλ) ∈ H2(Ω) – and, more generally, ‖z(Ψλ) − z(Ψµ)‖2

=

‖Ψλ − Ψµ‖
2

for λ, µ ∈ [0, 1]. Since {Ψλ : λ ∈ [0, 1]} is a total subset of L2((0, 1]), this implies that z

maps L2((0, 1]) isometrically into H2(Ω).

We begin with a computation of the Melin transform of fλ. Claim :

z(fλ) = −F
λ
, 0 ≤ λ ≤ 1. (5)

To verify this claim, begin with s = σ + it, σ > 1. Then,
1∫
0

{λ
x}x

s−1dx = λ
1∫
0

xs−2dx −
1∫
0

⌊
λ
x

⌋
xs−1dx =

λ
s−1 −

1∫
0

⌊
λ
x

⌋
xs−1dx. But,

1∫
0

⌊
λ
x

⌋
xs−1dx =

∞∑
n=1

n
λ/n∫

λ/(n+1)

xs−1dx

= λs

s

∞∑
n=1

n(n−s − (n + 1)−s).

Now, the partial sum
N∑

n=1
n(n−s − (n + 1)−s) telescopes to −N(N + 1)−s+

N∑
n=1

n−s. Since σ > 1, letting

N −→ ∞, we get
∞∑

n=1
n(n−s − (n + 1)−s) = ζ(s). Thus,

1∫

0

{
λ

x
}xs−1dx =

λ

s − 1
− λs ζ(s)

s
.

In particular, taking λ = 1 here, one gets

1∫

0

{
1

x
}xs−1dx =

1

s − 1
−

ζ(s)

s
.

Multiplying the second equation by λ and subtracting the result from the first, we arrive at

1∫

0

fλ(x)xs−1dx = −(λs − λ)
ζ(s)

s
= −Fλ(s)

for s in the half-plane {σ > 1}. Since both sides of this equation are analytic in the bigger half-plane

Ω, this equation continues to hold for s ∈ Ω. This proves the Claim (??).
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(i) =⇒ (ii). Assume RH. Then, by Theorem 2, E = z(1) belongs to the closed linear span of

{Fλ = −z(fλ) : 0 ≤ λ ≤ 1}. Since z is an isometry, this shows that 1 belongs to the closed linear span

of the set {fλ : 0 ≤ λ ≤ 1}. Thus (i) =⇒ (ii).

(ii) =⇒ (iii). Let 1 be in the closed linear span in L2((0, 1]) of {fλ : 0 ≤ λ ≤ 1}. Applying z, it

follows that E is in the closed linear span (say N ) of {Fλ : 0 ≤ λ ≤ 1}. For µ ∈ (0, 1], let Θµ ∈ H∞(Ω)

(the Banach algebra of bounded analytic functions on Ω) be defined by

Θµ(s) = µs− 1

2 , s ∈ Ω.

We have |Θµ(s)| = 1 for s in the critical line. That is, Θµ is an inner function. In consequence, the

linear operators Mµ : H2(Ω) −→ H2(Ω) defined by

Mµ(F ) = ΘµF (point-wise product), F ∈ H2(Ω),

are isometries. (Since ΘλΘµ = Θλµ, it follows that MλMµ = Mλµ for λ, µ ∈ (0, 1]. Thus {Mµ :

µ ∈ (0, 1]} is a semi-group of isometries on H2(Ω) modelled after the multiplicative semi-group (0, 1].)

Trivially, for 0 ≤ λ ≤ 1 and 0 < µ ≤ 1, we have:

Mµ(Fλ) = ΘµFλ = µ−1/2(Fλµ − λFµ).

This shows that the closed subspace N spanned by the Fλ’s is invariant under the semi-group {Mµ :

µ ∈ (0, 1]} :

Mµ(N ) ⊆ N , µ ∈ (0, 1].

Since E ∈ N , it follows that Mµ(E) ∈ N for µ ∈ (0, 1]. But we have the trivial computation

z(Ψλ) = λ1/2Mλ(E), 0 < λ ≤ 1.

Thus, { z(Ψλ) : 0 ≤ λ ≤ 1} is contained in the closed linear span N of {z(fλ) : 0 ≤ λ ≤ 1}. Since z is

an isometry, it follows that { Ψλ : 0 ≤ λ ≤ 1} is contained in the closed linear span in L2((0, 1]) of the

set {fλ : 0 ≤ λ ≤ 1}.. Since the first set is clearly total in L2((0, 1]), it follows that so is the second.

Thus (ii) =⇒ (iii).

(iii) =⇒ (i). Clearly (iii) implies that the closed linear span of {fλ : 0 ≤ λ ≤ 1} contains 1 and

hence, applying z, the closed linear span of {Fλ : 0 ≤ λ ≤ 1} contains E. Therefore, by Theorem 2,

Riemann Hypothesis follows. Thus (iii) =⇒ (i).

Remark 6 It is instructive to compare the proof of Theorem 5 with Beurling’s original proof as given

in [4]. Our proof makes it clear that the heart of the matter is very simple : Riemann Hypothesis

amounts to the existence of approximate inverses to the Zeta function in a suitable function space (viz.

the weighted Hardy space of analytic functions on Ω with the weight function |E(s)|2). The simplification

in its proof is achieved by Baez-Duarte’s perfectly natural and yet vastly illuminating observation that,

under RH, these approximate inverses are provided by the partial sums of the Dirichlet series for 1
ζ . In

contrast, Beurling’s original proof is a clever and ill-motivated application of Phragmen-Lindelof type

arguments. (We have not seen Nyman’s original proof.) To be fair, we should however point out that

such arguments are now hidden under the carpet : they occur in the proofs (not presented here) of the

conditional estimates (3) and (1).
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Let M be the closed subspace of L2((0, 1]) consisting of the functions which are almost everywhere

constant on each of the sub-intervals ( 1
n+1 , 1

n ], n = 1, 2, 3, ...Since each element of M is almost

everywhere equal to a unique function which is everywhere constant on these sub-intervals, we may

(and do) think of M as the space of all such (genuine) piece-wise constant functions. As a closed

subspace of a Hilbert space, M is a Hilbert space in its own right.

For l = 1, 2, 3, ..., let gl ∈ L2((0, 1]) be defined by

gl(x) = {
1

lx
} −

1

l
{
1

x
}, x ∈ (0, 1].

Thus, gl = f1/l, l = 1, 2, 3, ...

Notice that we have gl(x) = 1
l

⌊
1
x

⌋
−

⌊
1
lx

⌋
. Also, for x ∈ ( 1

n+1 , 1
n ] , n = 1, 2, 3, ..., 1

lx ∈ [n
l , n+1

l ), and

no integer can be in the interior of the latter interval, so that
⌊

1
lx

⌋
=

⌊
n
l

⌋
; also,

⌊
1
x

⌋
= n for x ∈ ( 1

n+1 , 1
n ].

Thus we get:

gl(x) = gl(
1

n
) = {

n

l
}, x ∈ (

1

n + 1
,
1

n
]. (6)

In consequence,

gl ∈ M, l = 1, 2, 3, ...

The refinement of Baez-Duarte of the Beurling-Nyman theorem may now be stated as follows. (However,

as already stated, the implication (i) =⇒ (ii) of this theorem is its only part which explicitly occurs in

[2].)

Theorem 7 The following are equivalent :

(i) The Riemann Hypothesis,

(ii) 1 belongs to the closed linear span of {gl : l = 1, 2, 3, ...}, and

(iii) {gl : l = 1, 2, 3, ...} is a total set in M .

Proof : Putting λ = 1
l in the Formula (??), we get :

z(gl) = −Gl, l = 1, 2, 3, ...

Since, under RH, E = z(1) is in the closed linear span of {Gl = −z(gl) : l = 1, 2, 3, ...} and z is an

isometry, it follows that 1 is in the closed linear span of {gl : l = 1, 2, 3, ...}. Thus (i) =⇒ (ii).

Now, for positive integers m, define the linear operators Tm : M −→ M by :

(Tmf)(x) =

{
m1/2f(mx) if x ∈ (0, 1

m ],

0 if x ∈ ( 1
m , 1].

Clearly each Tm is an isometry. (We have TmTn = Tmn – thus {Tm : m = 1, 2, 3, ...} is a semigroup of

isometries modelled after the multiplicative semi-group of positive integers.) Also, it is easy to see that

Tm(gl) = m1/2(glm −
gm

l
)

for any two positive integers l, m. Thus the closed linear span K of the vectors gl, l = 1, 2, 3, ... is

invariant under this semi-group. Further, letting Φn ∈ M denote the indicator function of the interval

(0, 1
n ], one has :

Tm(Φn) = m1/2Φmn.

9



Thus, if K contains 1 = Φ1 then it contains Φn for all n. Since {Φn : n = 1, 2, 3, ...} is clearly a total

subset of M, it then follows that K = M, so that {gl : l = 1, 2, 3, ...} is a total subset of M. Thus

(ii) =⇒ (iii).

Lastly, if {gl : l = 1, 2, 3, ...} is a total subset of M then, in particular its closed linear span contains

1, and hence the closed linear span of {Gl = −z(gl)} contains E = z(1), so that RH follows by Theorem

2. Thus (iii) =⇒ (i).

Proof of Theorem 1: Let U : M −→ H be the unitary defined by

U(f) = {f(
1

n
) : n = 1, 2, 3, ...}, f ∈ M.

Since U(1) = γ and (in view of the Formula (??)) U(gl) = γl, this Theorem is a straightforward

reformulation of Theorem 7.

Remark 8 In view of Remark 4, Riemann hypothesis actually implies (and hence is equivalent to) the

statement that γ belongs to the closed linear span in H of the much thinner set {γl : l square-free}.

So where does the undoubtedly elegant reformulation of RH in Theorem 1 leave us? One possible

approach is as follows. For positive integers L, let D(L) denote the distance of the vector γ ∈ H from

the (L− 1)-dimensional subspace of H spanned by γ1, γ2,..., γL. In view of Theorem 1, RH is equivalent

to the statement D(L) −→ 0 as L −→ ∞. So one might try to estimate D(L). Indeed, as a discrete

analogue of a conjecture of Baez-Duarte et. al. in [3], one might expect that D2(L) is asymptotically

equal to A
log L for A = 2 + C − log(4π) , where C is Euler’s constant.(But, of course, this is far stronger

than RH itself.) A standard formula gives D2(L) as a ratio of two Gram determinants, i.e., determinants

with the inner products 〈γl, γm〉 as entries. It is easy to write down these inner products as finite sums

involving the logarithmic derivative of the Gamma function. But such formulae are hardly suitable for

calculation/estimation of determinants. In any case, it will be a sad day for Mathematics when (and

if) the Riemann Hypothesis is proved by a brute-force calculation ! Surely a dramatically new and deep

idea is called for. But then, as a wise man once said, it is fool-hardy to predict – specially the future!
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