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Maxwell‘s and Lorentz‘s encounter with Mie and Bohm 

 

 

This paper is about the quantum energy Hilbert space 𝐻1/2 = 𝐻1
(⋰)

⊗ 𝐻1
(⋱)

⊗ 𝐻1
⊥ as proposed in (BrK), 

(BrK1), (BrK2) in the light of  
 

(1) Mie’s tensor and manifolds based purely electricity field theory, (WeH) 
 

(2) Bohm’s conception of explicate and implicate order based on an „undivided wholeness of 
modes of observation, instrumentation and theoretical understanding“ considering the 
difference between a lens and a hologram (a kind of mathematical lens (**)), (BoD).  

 
All below relevant data from those two subject areas are taken from (WeH) (*), (BoD). For the 
following related subject areas we refer to (BrK2): 
 

(a) Schrödinger’s vision of purely quanta waves governed by half-odd integers rather than 
integers, (ScE) p. 44 
 

(b) Pauli’s exclusion principle accompanied with his spin conceptions 
 

(c) Plemelj’s extended Green formulae accompanied with the conceptions of „flow“ and „mass 
element“, which are purely defined from the boundary layer w/o „a mathematical flux through 
the layer“ and enhancing the concept of „a mathematical particle density“, (***), (PlJ) 

 
(d) Calderón’s wavelets interpreted as mathematical lenses.  

 
For the convenience of interested readers we also provide some other related mathematical data in 
the appendix. We especially mention the theory of indefinite inner products and the hyperbolid 
generation by a self-adjoint operator on all of the Hilbert space. 
 
 
 
 
 
(*) for whatever reason the german print version provides more physical rationals than the english versions 
 

(**) (HoM) 1.2: „The idea of wavelet analysis is to look at the details are added if one goes from scale 𝑎 to scale 𝑎 − 𝑑𝑎 with 
𝑑𝑎 > 0 but infinitesimal small. … Therefore, the wavelet transform allows us to unfold a function over the one-dimensional space 
𝑅 into a function over the two-dimensional half-plane 𝑯 of positions and details (where is which details generated?). … 
Therefore, the parameter space 𝑯 of the wavelet analysis may also be called the position-scale half-plane since if 𝑔 localized 
around zero with width ∆ then 𝑔𝑏,𝑎 is localized around the position 𝑏 with width 𝑎∆. The wavelet transform itself may now be 

interpreted as a mathematical microscope where we identify    𝑏   ↔  position;   (𝑎∆)−1   ↔  enlargement; 𝑔   ↔ optics. “ 
 

(***) (PlJ) I, §8: "bisher war es ueblich fuer das Potential V(p) die Form  𝑉(𝑢)(𝑠) = ∮ 𝛾(𝑠 − 𝑡)𝑢(𝑡)𝑑𝑡  vorauszusetzen, wobei 

dann 𝑢(𝑡)𝑑𝑡 die Massendichtigkeit der Belegung genannt wurde. Eine solche Annahme erweist sich aber als eine derart 
folgenschwere Einschraenkung, dass dadurch dem Potentials V(p) der groesste Teil seiner Leistungsfaehigkeit hinweg 

genommen wird." 𝑉(𝑢)(𝑠) = ∮ 𝛾(𝑠 − 𝑡)𝑑𝑢(𝑡).” (PlJ) p. 11: “Vom Integral ∮
𝜕𝑈

𝜕𝑛
𝑑𝑠 auf einer nichtgeschlossenen Kurve ergibt sich 

aus der Gleichung (6) eine Eigenschaft von grosser Wichtigkeit. Das Integral hängt nämlich nur von den Endpunkten ab und 
nicht von der näheren Form der sie verbindenden Integrationskurve in der Weise, dass die Integrale alle gleich einander gleich 
sind, welche Integrationswege entsprechen, die durch stetige Deformation im Regularitätsgebiete auseinander hervorgehen. 
Sind also 𝑝 und 𝑞 zwei Punkte im Regularitätsgebiete und verbindet man sie durch irgendeine Kurve (die Tangenten hat), so ist 

∫
𝜕𝑈

𝜕𝑛
𝑑𝑠

𝑞

𝑝
wohl definiert und hat einen von der näheren Form der Kurve nicht abhängigen Wert.… Das Integral zwischen zwei 

Punkten 𝑝 und 𝑞 �̄�(𝑞) = − ∫
𝜕𝑈

𝜕𝑛
𝑑𝑠

𝑞

𝑝
  ist, weil von der Kurve unabhängig, eine wohl definierte Funktion der Grenzen 𝑝 und 𝑞 und 

soll in seiner Abhängigkeit von 𝑞 mit �̄� bezeichnet werden. 
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Einstein relativity principle and the split up of the world into space and time 
 
 
Einstein relativity principle tells us that the speed of light is independent from the motion state of the 
light source (it does not tell us, that clocks cannot run differently for observers in other galaxies). In 
other words, a translation in an ether cannot be distinguished from hibernation. The conclusion of the 
physicists was, „ether does not exist“ (WeH1) §22. The analysis of the Einstein relativity principle in 
the context of the Lorentz invariance lead to a decomposition of the world into space and time by 
projection. The related world-points constitute a four-dimensional manifold, i.e., in this world there 
exists four coordinates that the corresponding space-like zero cones translate into space-like zero 
cones, and the time-like vectors transform into time-like vectors (WeH1) §23. In terms of Bohm’s 
explicate and implicate order conception, (*), the Einstein-world-model is related to the explicate order 
with three general transformations considered to be the essential determining features of a geometry 
in an Euclidean space of three dimensions: displacement operators, rotation operators and dilatation 
operators, which are the characterizing properties of the Riesz operators (**). 

 
Regarding the NSE we note that the pressure 𝑝 can be expressed in terms of the velocity by the 
formula  𝑝 = − ∑ 𝑅𝑗𝑅𝑘(𝑢𝑗𝑢𝑘)3

𝑗,𝑘=1  where (𝑅1, 𝑅2, 𝑅3) is the Riesz transform (***). 
  
The fundamental principle of the SRT is the (Maxwell equations based) invariance principle building on 
the Lorentz transformation. The handicap of the Lorentz transformation is the fact, that no component 
of one component can be connected to another in another component. This results to three subgroups 
of 𝐿, which are the orthochronous Lorentz group, the proper Lorentz group, and the orthochorous 
Lorentz group. Associated with the restricted Lorentz group is the group of 2𝑥2 complex matrices of 
determinant one (𝑆𝐿(2, 𝐶)). The resolution of this handicap is the corresponding Lorentz group 𝐿 has 
four disconnected components, where each of which is connected in the sense that any one point can 
be connected to any other (****). 
 
The complex Lorentz group with its two connected components provides the central tool in the proof of 
the PCT theorem. In the context of the three characterizing one might rename the PCT theorem into 
DRD theorem (displacement, rotation, dilation). 
 
(*) (BoD) A.2, p. 200: „What is common to the functioning of instruments generally used in physical research is that the sensibly 
perceptible content is ultimately describable in terms of a Euclidean system of order and measure, i.e., one that can adequately 
be understood in terms of ordinary Euclidean geometry. …  The general transformations are considered to be the essential 
determining features of a geometry in an Euclidean space of three dimensions; those are displacement operators, rotation 
operators and the dilation operator. 
 

(**) The Riesz transforms are the generalization of the one-dimension Hilbert transform. The properties of the Riesz transforms 
have the following converse 
 

Proposition 2 (StE) p. 58): Let 𝑇 = (𝑇1, 𝑇2, … 𝑇𝑛) be an 𝑛-tuple of bounded transformations on 𝐿2(𝑅𝑛). Suppose 
 

i) each 𝑇𝑗 commutes with the translation of 𝑅𝑛 
 

ii) each 𝑇𝑗 commutes with the dilations of 𝑅𝑛 
 

iii) for every rotation of 𝜌 = (𝜌𝑗𝑘)  of 𝑅𝑛, 𝜌𝑇𝑗𝜌−1𝑓 = ∑ 𝜌𝑗𝑘𝑇𝑘𝑓𝑘 . 
 

Then the 𝑇𝑗 are a constant multiple of the Riesz transforms, i.e. there exists a constant 𝑐, so that  𝑇𝑗 = 𝑐𝑅𝑗, 𝑗 = 1, … , 𝑛. 
 

(***) Regarding the NSE we note that the pressure 𝑝 can be expressed in terms of the velocity by the formula  𝑝 =

− ∑ 𝑅𝑗𝑅𝑘(𝑢𝑗𝑢𝑘)3
𝑗,𝑘=1  where (𝑅1, 𝑅2, 𝑅3) is the Riesz transform. The Leray-Hopf projector is the matrix valued Fourier multiplier given 

by 𝑃(𝜉) = 𝐼𝑑 −
𝜉⊗𝜉

|𝜉|2
= (𝛿𝑗𝑘 −

𝜉𝑗𝜉𝑘

|𝜉|2
)1≤𝑗,𝑘≤𝑛 , 𝑃 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑄, whereby 𝑄 is an orthogonal projector, i.e. it holds 𝑄: = 𝑅 ⊗ 𝑅 =

(𝑅𝑗𝑅𝑘)1≤𝑗,𝑘≤1 = 𝑄2 . As a result the Leray-Hopf operator 𝑃 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑄 = 𝐼𝑑 −
𝐷⊗𝐷

𝐷2
𝐼𝑑 − 𝛥−1(𝛻 × 𝛻) is also an orthogonal 

projection.  
 

(****) (StR): „The corresponding Lorentz group 𝐿 has four disconnected components, where each of which is connected in the 
sense that any one point can be connected to any other, but no Lorentz transformation in one component can be connected to 
another in another component. This results to three subgroups of 𝐿, which are the orthochronous Lorentz group, the proper 
Lorentz group, and the orthochorous Lorentz group. Associated with the restricted Lorentz group is the group of 2x2 complex 
matrices of determinant one (𝑆𝐿(2, 𝐶)).  …..  The alignment of the SRT with the proposed quantum field model is enabled by the 
complex Lorentz group 𝐿(𝐶), which is also essential in the proof of the PCT theorem. The central differentiator to the Lorentz 
group is the fact, that  𝐿(𝐶) has the (only two) connected components 𝐿+/−(𝐶), where 𝐿+(𝐶) denotes the proper complex Lorentz 

group. …..   For a general analysis of relativistic invariance it is reasonable that any relativistically invariant theory in which the 
states are spanned by the collision states of the elementary particles of the theory has, in a suitable basis, an essentially 
uniquely determined relativistic transformation law. This transformation law is identical to that of a theory of non-interacting 
elementary particles of the same masses and spins. Any relativistic theory of particles which does not have this transformation 
law will, in our opinion, require a novel physical interpretation. (as usual, in making this statement we are ignoring the special 
difficulties associated with zero mass particles.) 
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Maxwell‘s „a priori electron“ vs. Mie’s „electricity pressure“ 
 
 

The Mie electrodynamic field theory replaces ten unknown universal functions by only one 
accomplished by the principle of energy. Mie’s electrodynamics exists in a compressed one-world-
function form governed by Hamiltonian‘s principle providing a single physical law, (WeH) §26. 
 
The following text is basically a 1-2-1 copy from (WeH) §26. We just comment on the Maxwell/Lorentz 
concept of an a priori given electron. It is the root of evil for today’s large zoo of elementrary particles, 
when considering the two other „forces“ phenomena in the context of the SMEP. 
 
In Maxwell’s phenomenogical theory of electricity, the concealed motions of the electrons are not 
taken into account as motions of matter, consequently electricity is not supposed attached to matter in 
his theory. The only way to explain how it is that a piece of matter carries a certain charge is to say 
this charge is that which simultaneously in the portion of space that is occupied by the matter at the 
moment under consideration. From this we see that the charge is not, as in the theory of electrons, an 
invariant determined by the portion of matter, but is dependent on the way the world has been split up 
into space and time. 
 
The theory of Maxwell and Lorentz cannot hold for the interior of the electron; therefore, from the point 
of view of ordinary theory of electrons we must treat the electron as something given a priori, as a 
foreign body in the field.  
 
A more general theory of electrodynamics has been proposed by Mie, by which it seems possible to 
derive the matter from the field.  
 
In place of the ten unknown universal functions of the Maxwell theory there are only one (invariant 
scalar density), the Hamiltonian Function L; this is accomplished by the principle of energy. In Mie’s 
theory, the fundamental equation of electrical theory, suddenly acquires a much more vivid meaning 
by the appearance of potential as an electrical pressure; this is the required cohesive pressure that 
keeps the electron together (*).  
 
Mie’s theory resolves the problem of matter into a determination of the expression of the Hamiltonian 
function in terms of the following four quantities and the laws for the field may be summarised in a very 
simple principle of variation, Hamilton’s principle: 
 

𝛿𝐿 =
1

2
𝐻𝑖𝑘𝛿𝐹𝑖𝑘 − 𝑠𝑖𝛿𝜑𝑖. 

 
The simplest invariants that may be formed from a vector having component 𝜑𝑖 and a linear tensor of 

the second order having component 𝐹𝑖𝑘 are the squares of the following expressions 
 

1. 𝜑𝑖𝜑
𝑖 

 

2.  2𝐿0 =
1

2
𝐹𝑖𝑘𝐹𝑖𝑘 

 
3. the linear tensor of the fourth order with components ∑ ±𝐹𝑖𝑘𝐹𝑙𝑚  

 

4. 𝐹𝑖𝑘𝜑𝑘.  
 
 
 
 
 
 
 
 
 
 
 
(*) In Maxwell equations there is sometime the concept of „electromotive force“; it is not a force, but the work done by the 
electric field, i.e. it has the same unit of measure as „Volt“; the mathematical object is „circulation“ governed by the Stokes 
equation. 
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Whereas in mechanics, a definite function 𝐿 of action corresponds to every given mechanical system 
and has to be deduced from the constitution of the system, we are here concerned with a single 
system, the world. This is were the real problem of matter takes its beginning: we have to determine 
the „function of action“, the world-function 𝐿, belonging to the world. For the present it leaves us in 

perplexity. If we choose an arbitrary 𝐿, we get a „possible“ wolrd governed by this function of action, 
which will perfectly intelligible to us – more so than the actual world – provided that our mathematical 
analysis does not fail us. We are, of course, then concerned in discovering the only existing world, the 
real world of us. Judging from what we know of physical laws, we may expect that  which belongs to it 
to bedistinguished by having mathematical properties. Physics, this time as a physics of fields, is again 
pursuing the object of reducing the totality of natural phenomena to a single physical law: it was 
believed that this goal was alomst within reach once before Newton’s Principia, founded on the 
physics of mechanical point-masses was celebrating its triumph. For the present we do not know 
whether the phase-quantities on which Mie’s theory is founded will suffice to describe matter or 
whether matter is purely „electrical“ in nature. 
 
Let us try the following hypothesis for 𝐿: 
 

𝐿 =
1

2
|𝐹|2 + 𝑤(√−𝜑𝑖𝜑𝑖)  

 
(w is a symbol of a function with one variable); it suggests itself as being the simplest of those that go 
beyond Maxwell’s Theory. We have no grounds for assuming that the world-function has actually this 
form. We have here the new circumstance that the density 𝜌 is an universal function of the potential, 
the electrical pressure 𝛷. If 𝑤(𝛷) is not an even function of 𝛷, the defining Poisson equation no longer 

holds after the transition from 𝛷 to −𝛷; this would account for the difference between the natures of 
positive and negative electricity. Yet it certainly leads to a remarkable difficulty in the case of non-

statical fields. If charges having opposite signs are to occur in the latter, the root √−𝜑𝑖𝜑𝑖 must have 

different signs at different points of the field.  
 
A Hilbert space based Mie theory overcomes the current two Lorentz resp. Mie theory handicaps: 
 

A. the Michelson-Morley experient, showing that a translation in an ether cannot be distinguished 
from hibernation; therefore, „ether“ cannot not exist 

B.  
C. in the case of non-statical fields if charges have opposite signs there are different signs in the 

wolrd-function 𝐿 =
1

2
|𝐹|2 + 𝑤(√−𝜑𝑖𝜑𝑖) at different points of the field.  
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A (quanta energy) Hilbert space decomposition 𝑯𝟏/𝟐 = 𝑯𝟏
(⋰)

⊗ 𝑯𝟏
(⋱)

⊗ 𝑯𝟏
⊥  

into an  

explicate (world energy) Hilbert space 𝑯𝟏 = 𝑯𝟏
(⋰)

⊗ 𝑯𝟏
(⋱)

 

and into an 
implicate (ground state energy) Hilbert space 𝑯𝟏

⊥ 
 
 
The root of evil of the remarkable difficulties of different natures of positive an negative field electricity, 

i.e. there are different signs in 𝐿 =
1

2
|𝐹|2 + 𝑤(√−𝜑𝑖𝜑𝑖) at different points of the field, if charges have 

opposite signs in the case of non-statical fields is the pure metrical structure of the underlying manifold 
concept. A geometric Hilbert space framework is equipped with the characterizing translation 
capabilities of the Euclidian space (displacement, dilatation, rotation) in line with the explicate order 
concept of D. Bohm. Mathematically speaking, the geometric structure of a Hilbert space determines 
the Hamiltonian function of a well defined energy minimanization problem. 
 
Measurable actions in a specific physical situation where particle interaction happen are interpreted as 
the action of an underyling „potential difference“ resp. „pressure“. In the context of electrodynamics the 
potential difference is the „voltage“, which is linked to „amperage“ and „current resistence“ by Ohm’s 
law. In the context of the Mie theory this about the electric pressure. 
 
The coarse-grained compactly embedded standard physical world Hilbert space 𝐻1 (equipped with the 
Dirichlet integral inner product) into an overall mathematical 𝐻1/2 Hilbert space world provides the 

energy model of the physical (explicative) world, while its complementary space 𝐻1
⊥ builds the 

implicative purely mathematical (hologram) world.  
 
The overall Hilbert space 𝐻1/2 is governed by the conservation of energy principle.  

 

The ground state energy space 𝐻1
⊥ has a continuous spectrum, while 𝐻1 has a discrete spectrum in 

line with Schrödinger’s thermostatistics.  
 
Handicap A:  𝐻1

⊥ addresses the unfortune conclusion of the physicists („there exists no ether“) from the 
results of the Michelson-Morley experiment, showing that a translation in an ether cannot be 
distinguished from hibernation.  
 
Handicap B: The physical world is governed by the least action principle accompanied with a related 
self-adjoint (energy) operator defined on all of the Hilbert space 𝐻1. It induces a decomposition of 𝐻1 

into a direct sum of two sub-spaces 𝐻1 = 𝐻1
(⋰)

⊗ 𝐻1
(⋱)

 in the following way:  

 
let 𝛽 ≔ 𝑠𝑢𝑝‖𝑥‖=1(𝐻𝑥, 𝑥) < ∞ and let 𝐸𝑡 denotes the resolution of the identity corresponding 

to the hermitian operator 𝐻, then 𝑃1 ≔ 𝐸𝛽 − 𝐸0  is a projector onto a subspace of 𝐻1, (VaM) 

11.2. 

 

The decomposition 𝐻1 = 𝐻1
(⋰)

⊗ 𝐻1
(⋱)

 provides the Hilbert space based model where an electric pressure 

keeps the electron together. The supporting mathematical theory is about linear operators in spaces 
with an indefinite metric accompanied with the Krein spaces (AzT). 
 
For an overall vision about a simplification of the incompatible standard model of elementrary particles 
(SMEP) and the cosmology model (GRT) accompanied with Hamilton’s quaternions and the 
conception of a 𝑆3 unit sphere mathematical reality we refer to (UnA), (see also (BrK3)). 
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Ideal plasma and the decomposition 𝑯𝟏 = 𝑯𝟏
(−)

⊗ 𝑯𝟏
(+)

 

 
 
In case of a proper plasma heating model the above Hilbert space based (single particle focused) Mie 
theory needs to adapted in order to address the „two-nature-particles“ requirement of an ideal plasma. 
The key differentiator between plasma to neutral gas or neutral fluid is the fact that its electrically 
positively and negatively charged particles are strongly influenced by electric and magnetic fields, 
while neutral gas is not. The MHD model (*), describes an ideal plasma as a non-dissipative plasma 
particle flow of two incompressible charged particles with different natures.  
 
For an overall vision about a simplification of the incompatible standard model of elementrary particles 
(SMEP) and the cosmology model (GRT) accompanied with Hamilton’s quaternions and the 
conception of a 𝑆3 unit sphere mathematical reality we refer to (UnA), (see also (BrK3)). 
 
In case of plasma heating two types of electricity pressures generate the additional energy waves, i.e., 
it now requires two particle types with different nature and with the same cardinality, and the process 
is about frictional heating mathematically modelled as double layer potential governed by the extended 
Green formulae acoompanied with the concpets of „mass element“ and „potential difference“ defined 
on the boundary layer w/o the concept of a normal derivative. 
 
The alternatively proposed adapted Hilbert space based Mie theory is accompanied by two types of 
(permanent) electric pressures generating the additional (energy) waves for the plasma heating 

phenomenon: the hermitian operaotr based decomposition 𝐻1 = 𝐻1
(⋰)

⊗ 𝐻1
(⋱)

 is replaced by a „balanced 

composition with respct to the cardinality of the concerned sub-space“ in the form 
 

𝐻1 = 𝐻1
(−)

⊗ 𝐻1
(+)

.  

 
 We sketch the related building procedure for the 1D case: 
 
The weighted Hermite polynomials 
 

𝜑𝑛(𝑥): =
𝑒

−
𝑥2

2 𝐻𝑛(𝑥)

√2𝑛𝑛!√𝜋

   

with  𝐻𝑛(𝑥): = (−1)𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑥𝑛 𝑒−𝑥2
 ,  𝐻0(𝑥) = 1,  𝐻1(𝑥) = 𝑥, 

 
form a set of orthonormal functions in 𝐿2(−∞, ∞).  
 
The 1D counterpart of the Riesz operators is the Hilbert transform (appendix). From 𝜑𝑛, 𝐻𝜑𝑛 ∈ 𝐿2, it 
follows 𝐿2 = 𝑠𝑝𝑎𝑛{𝜑𝑛}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑠𝑝𝑎𝑛{𝐻𝜑𝑛}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Then, the orthogonality relation (𝜑𝑛, 𝐻𝜑𝑛) = 0 enables the following 
decomposition 
 

𝐻1
(−)

≔ 𝑠𝑝𝑎𝑛{𝜑2𝑛−1}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝐻1
(+)

≔ 𝑠𝑝𝑎𝑛{𝐻𝜑2𝑛−1}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 
We note that  
 

i) both sequences {𝜑2𝑛−1(𝑥)}𝑛∈𝑁, {𝐻(𝜑2𝑛−1(𝑥))}𝑛∈𝑁 have Snirelmann density ½ 
 

ii) the decomposition addresses Schrödinger’s vision of purely quanta waves 
governed by half-odd integers rather than integers, in line with Pauli`s exclusion 
principle, and also in line with an underlying ground state energy concept (ScE) p. 
44.   

 
 
 
(*) The MHD equations are derived from continuum theory of non-polar fluids with three kinds of balance laws,  
 

(1) conservation of mass 
 

(2) balance of linear momentum 
 

(3) balance of angular momentum governed by the Ampere law and the Faraday law.The MHD equations consists of 10 
equations with 10 parameters accompanied with appropriate boundary conditions from the underlying Maxwell 
equations (CaF). 
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Appendix 

 

Extract (VaM) chapter IV 
 
 

Let 𝐵 be a self-djoint operator defined on all of the Hilbert space 𝐻. Then this operator induces a 

decomposition of 𝐻 into a direct sum of two sub-spaces 𝐻 = 𝐻1 ⊗ 𝐻2. Both sub-spaces are no Hilbert 

spaces. However, the orthogonal projection operators 𝑃1 and 𝑃2 enable the definition of the indefinite 
metric 
 

𝜑(𝑥) ≔ ((𝑥))
2

: = ‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2  

 

Thus, putting 𝑥1 ≔ 𝑃1𝑥, 𝑥2 ≔ 𝑃2𝑥 the operator 𝐵 generates a hyperboloid and a related ellipsoid  
 

i) Hyperboloid:  𝜑(𝑥1 + 𝑥2) = ‖𝑥1‖2 − ‖𝑥2‖2 = 𝑐 > 0 

 

ii) Ellipsoid: 
 ‖𝑥1‖2

𝑎1
2 +

‖𝑥2‖2

𝑎2
2 = 1 ; elliptical region: 𝐸𝑐 ≔ {𝑥 ∈ 𝐻|

 ‖𝑥1‖2

𝑎1
2 +

‖𝑥2‖2

𝑎2
2 ≤ 𝑐, 𝑐 > 0}. 

 
The indefinite metric 𝜑(𝑥) can be interpreted as a „potential“ accompanied with the gradient of the 

potential 𝜑(𝑥) defined by 

 

𝑔𝑟𝑎𝑑𝜑(𝑥) = grad((𝑥))
2

= 2𝑃1𝑥 − 2𝑃2𝑥.  

 

The corresponding potential operator is then given by 

 

𝑾(𝑥): =
1

2
grad((𝑥))

2
= 𝑃1𝑥 − 𝑃2𝑥.  

 

The fundamental properties of the potential operator 𝑾(𝑥) are completeness, invertibility, (𝑾 = 𝑾−1) 

isometry, and symmetry. Thus, the bilinear form (𝑥, 𝑦)𝑊 ≔ (𝑾(𝑥), 𝑦) defines an inner product, (BoJ) p. 

52. 

 

From  physical modelling perspective we note that the model enables the definition of a PDE specific 

potential criterion (e.g. the famous coupling constants) accompanied with related hyperbolic and 

conical region  𝑉𝑐 and 𝑉0, whose points satisfy the corresponding potential barrier conditions. Evidently 

𝑉𝑐 is a subspace of 𝑉0.  

 

We remark that if 𝑥 is an exterior point of the conical region 𝑉0, i.e. 

 

√‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2 = 𝛼 > 0,  

 

then those points of the ray 𝑡𝑥, 𝑡 ∈ [0, ∞) for which 𝑡 ≥ 𝑐/𝑎 belong to the hyperbolic region 𝑉𝑐, and 

those for which 0 ≤ 𝑡 < 𝑐/𝑎 do not belong to 𝑉𝑐. If 𝑥 is not an element of 𝑉0, then the ray 𝑡𝑥, 𝑡 ∈ [0, ∞) 

does not have any point in common with 𝑉𝑐. Thus, every interior ray of the conical region 𝑉0 intersects 

the hyperbolid ((𝑥)) = 𝑐 > 0 in a single point. We denote by 𝐾 the boundary of the conical region 𝑉0. 

The manifold 𝐾 is defined by the condition ((𝑥)) = 0. If we look at the unit sphere 𝑆1 (‖𝑥‖2 = 1), then 

those points of 𝑆1 for which ‖𝑃1𝑥‖ = ‖𝑃2𝑥‖ belong to 𝐾, and those points of 𝑆1 for which ‖𝑃1𝑥‖ >

‖𝑃2𝑥‖ intersect the hyperboloid ((𝑥)) = 𝑐 > 0 at the point whose distance from 𝜃 is given by   

 

𝑡 = c√‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2 . 

 

From this it is seen that 𝑡 → ∞ if ‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2 → 0, i.e. the manifold 𝐾 is an asymptotic conical 

manifold for the hyperboloid ((𝑥)) = 𝑐 > 0. 
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The Riesz tranforms 

 
 
We consider the pseudo-differential operator with symbol |𝜉|−1 ((EsG) (3.15‘), (3.17‘)), defined by 
 

𝛬−1𝑢 =
𝛤(

𝑛−1

2
)

2𝜋
𝑛+1

2

∫
𝑢(𝑦)𝑑𝑦

|𝑥−𝑦|𝑛−1

∞

−∞
 ,   𝑛 ≥ 2. 

 
We note that the function 

𝛬−2𝑢 =
𝛤(

𝑛−2

2
)

4𝜋
𝑛
2

∫
𝑢(𝑦)𝑑𝑦

|𝑥−𝑦|𝑛−2

∞

−∞
 ,   𝑛 ≥ 3 

  
is called the Newtonian potential. The inverse operator 𝛬 (which is called the Calderón-Zygmund 

integrodifferential operator) with symbol |𝜉|1 is given by 
 

(𝛬𝑢)(𝑥) = −(∆𝛬−1)𝑢(𝑥) = −
𝛤(

𝑛−1

2
)

2𝜋
𝑛+1

2

𝑝. 𝑣. ∫
𝛥𝑦𝑢(𝑦)

|𝑥−𝑦|𝑛−1 𝑑𝑦
∞

−∞
. 

 
The singular integral (Riesz) operators 𝑅𝑘  
 

𝑅𝑘𝑢: = −𝑖
𝛤(

𝑛+1

2
)

𝜋
𝑛+1

2

𝑝. 𝑣. ∫
𝑥𝑘−𝑦𝑘

|𝑥−𝑦|𝑛+1 𝑢(𝑦)𝑑𝑦
∞

−∞
  

 
enable an alternative representation of the Calderón-Zygmund operator 𝛬 in the form, (EsG) (3.35), 

 

(𝛬𝑢)(𝑥) = (∑ 𝑅𝑘𝐷𝑘𝑢)(𝑥) =𝑛
𝑘=1 ∑

𝛤(
𝑛+1

2
)

𝜋
𝑛+1

2

𝑝. 𝑣. ∫ ∑
𝑥𝑘−𝑦𝑘

|𝑥−𝑦|𝑛+1

𝜕𝑢(𝑦)

𝜕𝑦𝑘
𝑑𝑦𝑛

𝑘=1
∞

−∞
𝑛
𝑘=1  . 

 
The Riesz transforms are the generalization of the one-dimension Hilbert transform. The properties of 
the Riesz transforms have the following converse (StE) p. 58, 
 

Proposition 2: Let 𝑇 = (𝑇1, 𝑇2, … 𝑇𝑛) be an 𝑛-tuple of bounded transformations on 𝐿2(𝑅𝑛). 
Suppose 

 
(a) Each 𝑇𝑗 commutes with the translation of 𝑅𝑛 

 
(b) Each 𝑇𝑗 commutes with the dillations of 𝑅𝑛 

 
(c) For every rotation of 𝜌 = (𝜌𝑗𝑘)  of 𝑅𝑛, 𝜌𝑇𝑗𝜌−1𝑓 = ∑ 𝜌𝑗𝑘𝑇𝑘𝑓𝑘 . 

 
Then the 𝑇𝑗 are a constant multiple of the Riesz transforms, i.e. there exists a constant 𝑐, 

so that  𝑇𝑗 = 𝑐𝑅𝑗, 𝑗 = 1, … , 𝑛. 
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The Hilbert transform 

 
 
Some key properties of the Hilbert transform  
 

(𝐻𝑢)(𝑥): = 𝑙𝑖𝑚
𝜀→0

1

𝜋
∮

𝑢(𝑦)

𝑥−𝑦
𝑑

|𝑥−𝑦|>𝜀
𝑦 =

1

𝜋
∫

𝑢(𝑦)

𝑥−𝑦
𝑑𝑦

∞

−∞
     

 
are given in 

 

Lemma:         
 

i) The constant Fourier term vanishes, i.e., (𝐻𝑢)0 = 0 
 

ii) 𝐻(𝑥𝑢(𝑥)) = 𝑥𝐻(𝑢(𝑥)) −
1

𝜋
∫ 𝑢(𝑦)𝑑𝑦

∞

−∞
 

 

iii) 

 

For odd functions it holds

          

𝐻(𝑥𝑢(𝑥)) = 𝑥(𝐻𝑢)(𝑥) 
 

iv) If  𝑢, 𝐻𝑢 ∈ 𝐿2 then 𝑢 and

  

𝐻𝑢 are orthogonal, i.e.,   ∫ 𝑢(𝑦)(𝐻𝑢)(𝑦)𝑑𝑦
∞

−∞
= 0  

 

v) ‖𝐻‖ = 1 ,
 
𝐻∗ = −𝐻 ,

 
𝐻2 = −𝐼, 𝐻−1 = 𝐻3 

 

vi) 𝐻(𝑓 ∗ 𝑔) = 𝑓 ∗ 𝐻𝑔 = 𝐻𝑓 ∗ 𝑔     𝑓 ∗ 𝑔 = −𝐻𝑓 ∗ 𝐻𝑔 
 

vii) If  (𝜙𝑛)𝑛∈𝑁 is an orthogonal system, so it is for the system (𝐻(𝜙𝑛))𝑛∈𝑁, i.e.
 
 

 

(𝐻𝜙𝑛, 𝐻𝜙𝑛) = −(𝜙𝑛, 𝐻2𝜙𝑛) = (𝜙𝑛, 𝜙𝑛)  
 

viii) ‖𝐻𝑢‖2 = ‖𝑢‖2, i.e. if 𝑢 ∈ 𝐿2 ,   then 𝐻𝑢 ∈ 𝐿2. 
 
 

Proof: 
 

i) i) and  v)-viii):  (PeB), 2.9 
 

ii) ii) The insertion of a new variable 𝑧 = 𝑥 − 𝑦 into the Hilbert transform of 𝑥𝑢(𝑥), i.e., 

𝐻(𝑥𝑢(𝑥)) =
1

𝜋
∫

𝑦𝑢(𝑦)

𝑥−𝑦
𝑑𝑦

∞

−∞
 yields 

 

   𝐻(𝑥𝑢(𝑥)) =
1

𝜋
∫

(𝑥−𝑧)𝑢(𝑥−𝑧)

𝑧
𝑑𝑧

∞

−∞
=

1

𝜋
∫

(𝑥𝑢(𝑥−𝑧)

𝑧
𝑑𝑧

∞

−∞
−

1

𝜋
∫ 𝑢(𝑥 − 𝑧)𝑑𝑧

∞

−∞
= 𝑥𝐻(𝑢(𝑥)) −

1

𝜋
∫ 𝑢(𝑦)𝑑𝑦

∞

−∞
. 

 
iii) follows from i) and ii) 

 

iv)  ∫ 𝑢(𝑦)(𝐻𝑢)(𝑦)𝑑𝑦
∞

−∞
=

𝑖

2𝜋
∫ 𝑠𝑖𝑔𝑛((𝜔)|�̂�(𝜔)|2𝑑𝜔

∞

−∞
    whereby |�̂�(𝜔)|2

 is even. 
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The Eigenvalue problem for compact symmetric operators 
 

 
In the following H denotes an (infinite dimensional) real Hilbert space with scalar product (. , . ) and 
the norm ‖. . . ‖. We will consider mappings 𝐾: 𝐻 → 𝐻. Unless otherwise noticed the standard 
assumptions on K are: 
 

i) 𝐾 is symmetric, i.e., for all 𝑥, 𝑦 ∈ 𝐻it holds (𝑥, 𝐾𝑦) = (𝑥, 𝐾𝑦) 
 

ii) 𝐾 is compact, i.e., for any (infinite) sequence {𝑥𝑛} bounded in 𝐻 contains a subsequence 
{𝑥𝑛′}

 
such that {𝐾𝑥𝑛′}

 
is convergent 

 

iii)  𝐾 is injective, i.e., 𝐾𝑥 = 0 implies 𝑥 = 0 . 
 

 
A first consequence is 
 
Lemma: K is bounded, i.e. 

‖𝐾‖: = 𝑠𝑢𝑝
𝑥≠0

‖𝐾𝑥‖

‖𝑥‖
< ∞. 

 
Lemma: Let 𝐾 be bounded, and fulfill condition i) above, but not necessarily the two other conditions 
ii) and iii). Then ‖𝐾‖ equals 
 

𝑁(𝐾) = 𝑠𝑢𝑝
𝑥≠0

|(𝑥,𝐾𝑥)|

‖𝑥‖
. 

 
Theorem: There exists a countable sequence {𝜆𝑖 , 𝜙𝑖} 

of eigen-elements and eigenvalues 

𝐾𝜙𝑖 = 𝜆𝑖𝜙𝑖 with the properties 
 

i) the eigen-elements are pair-wise orthogonal, i.e.

  

(𝜙𝑖 , 𝜙𝑘) = 𝛿𝑖,𝑘 

 
ii) the eigenvalues tend to zero, i.e., 𝑙𝑖𝑚

𝑖→∞
𝜆𝑖 

 

iii) for the generalized Fourier sums it holds 
 
                            𝑆𝑛: = ∑ (𝑥, 𝜙𝑖)

𝑛
𝑖=1 𝜙𝑖 → 𝑥    with 𝑛 → ∞ for all 𝑥 ∈ 𝐻 

 
iv)  the Parseval equation 
 

‖𝑥‖2 = ∑(𝑥, 𝜙𝑖)
2

∞

𝑖

 

holds for all 𝑥 ∈ 𝐻. 
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Hilbert Scales 
 
 
Let 𝐻 be a (infinite dimensional) Hilbert space with scalar product (. , . ), the norm‖. . . ‖ and let 𝐴 be a 
linear operator with the properties 
 

i) 𝐴 is self-adjoint, positive definite 
 

ii) 𝐴−1 is compact. 
 

 Without loss of generality, possible by multiplying 𝐴 with a constant, we may assume 
 

(𝑥, 𝐴𝑥) ≥ ‖𝑥‖

       

for all 𝑥 ∈ 𝐷(𝐴).
 

 
The operator 𝐾 = 𝐴−1has the properties of the previous section. Any eigen-element of 𝐾 is also an 

eigen-element of 𝐴 to the eigenvalues being the inverse of the first. Now by replacing 𝜆𝑖 → 𝜆𝑖
−1 we 

have from the previous section 
 

i) there is a countable sequence {𝜆𝑖 , 𝜙𝑖} with 
 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖 
 ,

   

(𝜙𝑖 , 𝜙𝑘) = 𝛿𝑖,𝑘and  𝑙𝑖𝑚
𝑖→∞

𝜆𝑖
 

 
ii) any 𝑥 ∈ 𝐻 is represented by  

 
(*)     𝑥 = ∑ (𝑥, 𝜙𝑖)

∞
𝑖=1 𝜙𝑖  and    ‖𝑥‖2 = ∑ (𝑥, 𝜙𝑖)

2∞
1 . 

 
Lemma:  Let 𝑥 ∈ 𝐷(𝐴), then  
 

(**)  𝐴𝑥 = ∑ 𝜆𝑖(𝑥, 𝜙𝑖)
∞
𝑖=1 𝜙𝑖  ,    ‖𝐴𝑥‖2 = ∑ 𝜆𝑖

2(𝑥, 𝜙𝑖)
2

𝑖=1 , 

 
(𝐴𝑥, 𝐴𝑦) = ∑ 𝜆𝑖

2(𝑥, 𝜙𝑖)
∞
𝑖=1 (𝑦, 𝜙𝑖). 

 
 

Because of (*) there is a one-to-one mapping 𝐼 of 𝐻 to the space �̂� of infinite sequences of real 
numbers 
 

�̂�: = {�̂�|�̂� = (𝑥1, 𝑥2, . . . )} 
defined by 
 

�̂� = 𝐼𝑥   with   𝑥𝑖 = (𝑥, 𝜙𝑖) .    

If we equip �̂� with the norm  
 

‖�̂�‖2 = ∑(𝑥, 𝜙𝑖)
2

∞

1

 

then 𝐼 is an isometry.  
 
By looking at (**) it is reasonable to introduce for non-negative 𝛼 the weighted inner products 
 

(�̂�, �̂�)𝛼 = ∑ 𝜆𝑖
𝛼(𝑥, 𝜙𝑖)

∞

𝑖

(𝑦, 𝜙𝑖) = ∑ 𝜆𝑖
𝛼𝑥𝑖𝑦𝑖

∞

𝑖

 

and the norms 
‖�̂�‖𝛼

2 = (�̂�, �̂�)𝛼.
  

Let �̂�𝛼 denote the set of all sequences with finite 𝛼 −norm. then �̂�𝛼 is a Hilbert space. The proof is the 
same as the standard one for the space 𝑙2. 
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Similarly one can define the spaces 𝐻𝛼: they consist of those elements 𝑥 ∈ 𝐻 such that 𝐼𝑥 ∈ �̂�𝛼 with 
scalar product  
 

(𝑥, 𝑦)𝛼 = ∑ 𝜆𝑖
𝛼(𝑥, 𝜙𝑖)

∞
𝑖 (𝑦, 𝜙𝑖) = ∑ 𝜆𝑖

𝛼𝑥𝑖𝑦𝑖
∞
𝑖   

 
and norm   
 

‖𝑥‖𝛼
2 = (𝑥, 𝑥)𝛼. 

 
Because of the Parseval identity we have especially 
 

(𝑥, 𝑦)0 = (𝑥, 𝑦) 
and because of (**) it holds 
 

‖𝑥‖2
2 = (𝐴𝑥, 𝐴𝑥)0 ,

 

𝐻2 = 𝐷(𝐴). 
 

The set {𝐻𝛼|𝛼 ≥ 0} is called a Hilbert scale. The condition 𝛼 ≥ 0 is in our context necessary for the 
following reasons: 
 
Since the eigen-values 𝜆𝑖 tend to infinity we would have for 𝛼 < 0: 𝑙𝑖𝑚 𝜆𝑖

𝛼 → 0. Then there exist 

sequences �̂� = (𝑥1, 𝑥2, . . . ) with 
 

‖�̂�‖2
2 < ∞ , ‖�̂�‖0

2 = ∞ . 
 

Because of Bessel’s inequality there exists no 𝑥 ∈ 𝐻  with 𝐼𝑥 = �̂�. This difficulty could be overcome by 
duality arguments which we omit here. 
 
 
There are certain relations between the spaces {𝐻𝛼|𝛼 ≥ 0}

 
for different indices: 

 
Lemma: Let 𝛼 < 𝛽. Then 

‖𝑥‖𝛼 ≤ ‖𝑥‖𝛽 

and the embedding 𝐻𝛽 → 𝐻𝛼 is compact. 

 
 
 
Lemma: Let 𝛼 < 𝛽 < 𝜒. Then 
 

‖𝑥‖𝛽 ≤ ‖𝑥‖𝛼
𝜇‖𝑥‖𝛾

𝜈 for 𝑥 ∈ 𝐻𝛾 

with  

𝜇 =
𝛾−𝛽

𝛾−𝛼 
and  𝜈 =

𝛽−𝛼

𝛾−𝛼
. 

 
Lemma: Let 𝛼 < 𝛽 < 𝛾. To any 𝑥 ∈ 𝐻𝛽 and 𝑡 > 0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 

 

i) ‖𝑥 − 𝑦‖𝛼 ≤ 𝑡𝛽−𝛼‖𝑥‖𝛽  

 
ii) ‖𝑥 − 𝑦‖𝛽 ≤ ‖𝑥‖𝛽 ,

  
‖𝑦‖𝛽 ≤ ‖𝑥‖𝛽 

 

iii) ‖𝑦‖𝛾 ≤ 𝑡−(𝛾−𝛽)‖𝑥‖𝛽
  
.
 

 
Corollary: Let 𝛼 < 𝛽 < 𝛾. To any 𝑥 ∈ 𝐻𝛽 and 𝑡 > 0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 

 

i) ‖𝑥 − 𝑦‖𝜌 ≤ 𝑡𝛽−𝜌‖𝑥‖𝛽    for  𝛼 ≤ 𝜌 ≤ 𝛽 

 

ii) ‖𝑦‖𝜎 ≤ 𝑡−(𝜎−𝛽)‖𝑥‖𝛽       for  𝛽 ≤ 𝜎 ≤ 𝛾  . 
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Extension and generalizations 
 
 
For 𝑡 > 0 we introduce an additional inner product resp. norm by 
 

(𝑥, 𝑦)(𝑡)
2 = ∑ 𝑒−√𝜆𝑖𝑡(𝑥, 𝜙𝑖)(𝑦, 𝜙𝑖)𝑖=1

     
‖𝑥‖(𝑡)

2 = (𝑥, 𝑥)(𝑡)
2  . 

 

Now the factor has exponential decay 𝑒−√𝜆𝑖𝑡 instead of a polynomial decay in case of 𝜆𝑖
𝛼.  

 
Obviously we have 
 

‖𝑥‖(𝑡) ≤ 𝑐(𝛼, 𝑡)‖𝑥‖𝛼 for 𝑥 ∈ 𝐻𝛼 

 
with 𝑐(𝛼, 𝑡) depending only from 𝛼 and 𝑡 > 0. Thus the (𝑡)-norm is weaker than any 𝛼-norm. On the 

other hand any negative norm, i.e. ‖𝑥‖𝛼 with 𝛼 < 0, is bounded by the  0-norm and the newly 

introduced (𝑡)-norm.  
 
It holds: 
 
Lemma: Let 𝛼 > 0 be fixed. The 𝛼-norm of any 𝑥 ∈ 𝐻0 is bounded by 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝑡/𝛿‖𝑥‖(𝑡)
2  

with 𝛿 > 0 being arbitrary. 
 
Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of the 𝛼-

norm, which can be reformulated in the form (𝜇, 𝜈 > 0,𝜇 + 𝜈 > 1) 
 

‖𝑥‖𝛽
2 ≤ 𝜈𝜀‖𝑥‖𝛾

2 + 𝜇𝑒−𝜈/𝜇‖𝑥‖𝛼
2

 
 
applying Young’s inequality to 
 

‖𝑥‖𝛽
2 ≤ (‖𝑥‖𝛼

2 )𝜇(‖𝑥‖𝛾
2)𝜈 . 

 
The counterpart of the fourth lemma above is 
 
Lemma: Let 𝑡, 𝛿 > 0 be fixed. To any 𝑥 ∈ 𝐻0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 
 

i) ‖𝑥 − 𝑦‖ ≤ ‖𝑥‖   
 

ii) ‖𝑦‖1 ≤ 𝛿−1‖𝑥‖ 
 

iii) ‖𝑥 − 𝑦‖(𝑡) ≤ 𝑒−𝑡/𝛿‖𝑥‖
  
. 
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Eigen-functions and Eigen-differentials 
 

 
Let 𝐻 be a (infinite dimensional) Hilbert space with inner product (. , . ), the norm ‖. . . ‖ and 𝐴 be a 

linear self-adjoint, positive definite operator, but we omit the additional assumption, that 𝐴−1compact. 
Then the operator 1−= AK does not fulfill the properties leading to a discrete spectrum.  
 
We define a set of projections operators onto closed subspaces of 𝐻 in the following way: 
 

𝑅 → 𝐿(𝐻, 𝐻) 
 

𝜆 → 𝐸𝜆: = ∫ 𝜙𝜇(
𝜆

𝜆0
𝜙𝜇 ,∗)𝑑𝜇

   
,
   

𝜇 ∈ [𝜆0, ∞) , 

i.e.                                        

𝑑𝐸𝜆 = 𝜙𝜆(𝜙𝜆,∗)𝑑𝜆 . 
 

The spectrum 𝜎(𝐴) ⊂ 𝐶 of the operator 𝐴 is the support of the spectral measure 𝑑𝐸𝜆. The set 𝐸𝜆 fulfills 
the following properties: 
 

i) 𝐸𝜆 is a projection operator for all 𝜆 ∈ 𝑅 
 

ii) for 𝜆 ≤ 𝜇 it follows 𝐸𝜆 ≤ 𝐸𝜇 i.e. 𝐸𝜆𝐸𝜇 = 𝐸𝜇𝐸𝜆 = 𝐸𝜆 
 

iii) 𝑙𝑖𝑚
𝜆→−∞

𝐸𝜆 = 0 and 𝑙𝑖𝑚
𝜆→∞

𝐸𝜆 = 𝐼𝑑 
 

iv)  𝑙𝑖𝑚
𝜇→𝜆
𝜇>𝜆

𝐸𝜇 = 𝐸𝜆 . 

 
Proposition: Let 𝐸𝜆 be a set of projection operators with the properties i)-iv) having a compact support 
[𝑎, 𝑏]. Let  𝑓: [𝑎, 𝑏] → 𝑅 be a continuous function. Then there exists exactly one Hermitian operator 

𝐴𝑓: 𝐻 → 𝐻 with 

 

(𝐴𝑓𝑥, 𝑥) = ∫ 𝑓(𝜆)𝑑(𝐸𝜆𝑥, 𝑥)
∞

−∞
 . 

 

Symbolically one writes 𝐴 = ∫ 𝜆𝑑𝐸𝜆
∞

−∞
. Using the abbreviation 

 
𝜇𝑥,𝑦(𝜆): = (𝐸𝜆𝑥, 𝑦)

  
, 
 
𝑑𝜇𝑥,𝑦(𝜆): = 𝑑(𝐸𝜆𝑥, 𝑦)

 
one gets 
 

(𝐴𝑥, 𝑦) = ∫ 𝜆𝑑(𝐸𝜆𝑥, 𝑦) =
∞

−∞
∫ 𝜆𝑑𝜇𝑥,𝑥(𝜆)

∞

−∞         
,   ‖𝑥‖1

2 = ∫ 𝜆𝑑‖𝐸𝜆𝑥‖2 =
∞

−∞
∫ 𝜆𝑑𝜇𝑥,𝑥(𝜆)

∞

−∞
 

  

(𝐴2𝑥, 𝑦) = ∫ 𝜆2𝑑(𝐸𝜆𝑥, 𝑦) =
∞

−∞
∫ 𝜆2𝑑𝜇𝑥,𝑥(𝜆)

∞

−∞
 ,  ‖𝐴𝑥‖2 = ∫ 𝜆2𝑑‖𝐸𝜆𝑥‖2 =

∞

−∞
∫ 𝜆2𝑑𝜇𝑥,𝑥(𝜆)

∞

−∞
 . 

 

The function
 
𝜎(𝜆): = ‖𝐸𝜆𝑥‖2 is called the spectral function of 𝐴 for the vector 𝑥. It has the properties of 

a distribution function. It holds the following eigen-pair relations 
 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖     
𝐴𝜙𝜆 = 𝜆𝜙𝜆    

‖𝜙𝜆‖2 = ∞
 
,
 
(𝜙𝜆, 𝜙𝜇) = 𝛿(𝜙𝜆 − 𝜙𝜇). 

 
The 𝜙𝜆 are not elements of the Hilbert space. The so-called eigen-differentials, which play a key role in 
quantum mechanics, are built as superposition of such eigen-functions.  
 
Example: The location operator 𝑄𝑥 

and the momentum operator 
xP  both have only a continuous 

spectrum. For positive energies 𝜆 ≥ 0 the Schrödinger equation 
 

𝐻𝜙𝜆(𝑥) = 𝜆𝜙𝜆(𝑥)
 

 
delivers no element of the Hilbert space 𝐻, but linear, bounded functional with an underlying domain 

𝑀 ⊂ 𝐻 which is dense in 𝐻. Only if one builds wave packages out of 𝜙𝜆(𝑥) it results into elements of 

𝐻. The practical way to find eigen-differentials is looking for solutions of a distribution equation. 
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Non-linear minimization problems 
 
 
Non-linear minimization problems can be analyzed as saddle point problems on convex manifolds in 
the following form (VeW): 
 
 

(*)    𝐽(𝑢): 𝑎(𝑢, 𝑢) − 𝐹(𝑢) → 𝑚𝑖𝑛 ,    𝑢 − 𝑢0 ∈ 𝑈. 
 

Let 𝑎(⋅,⋅) ∶   𝑉 × 𝑉 → 𝑅 a symmetric bilinear form with energy norm ‖𝑢‖2: = 𝑎(𝑢, 𝑢). Let further 𝑢0 ∈ 𝑉 
and 𝐹(⋅): 𝑉 → 𝑅 a functional with the following properties:  
 
 𝐹(⋅): 𝑉 → 𝑅 is convex on the linear manifold 𝑢0 + 𝑈, i.e. for every  𝑢, 𝑣 ∈ 𝑢0 + 𝑈 it holds  𝐹((1 − 𝑡)𝑢 +
𝑡𝑣) ≤ (1 − 𝑡)𝐹(𝑢) + 𝑡𝐹(𝑣) for every  𝑡 ∈ [0,1] 
 
 𝐹(𝑢) ≥ 𝛼 for every  𝑢 ∈ 𝑢0 + 𝑈 
 
 𝐹(⋅): 𝑉 → 𝑅 is Gateaux differentiable, i.e. it exits a functional 𝐹𝑢(⋅): 𝑉 → 𝑅 with  
 
 

𝑙𝑖𝑚
𝑡→0

𝐹(𝑢+𝑡𝑣)−𝐹(𝑣)

𝑡
= 𝐹𝑢(𝑣). 

 
 
 Then the minimum problem (*) is equivalent to the variational equation 
 

𝑎(𝑢, 𝜙) + 𝐹𝑢(𝜙) = 0  for every  𝜙 ∈ 𝑈 
 
and admits only an unique solution.  
 
In case the sub-space 𝑈 and therefore also the manifold 𝑢0 + 𝑈 is closed with respect to the energy 
norm and the functional 𝐹(⋅): 𝑉 → 𝑅 is continuous with respect to convergence in the energy norm, 

then there exists a solution. We note that the energy functional is even strongly convex in whole 𝑉. 
 
The proposed „energy“ Hilbert space 𝐻1/2 enables e.g. the method of Noble ((VeW) 6.2.4), (ArA) 4.2), 

which is about two properly defined operator equations, to analyze (nonlinear) complementary 
extremal problems. The Noble method leads to a “Hamiltonian” function W(∙,∙) which combines the 
pair of underlying operator equations (based on the “Gateaux derivative” concept) 
 
 

𝑇𝑢 =
𝜕𝑊(�́�,𝑢)

𝜕�́�
  ,  𝑇∗�́� =

𝜕𝑊(�́�,𝑢)

𝜕𝑢
   𝑢 ∈ 𝐸 = 𝐻1/2  ,  �́� ∈ �́� = 𝐻−1/2. 
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The 𝑯𝟏 = 𝑯𝟏
(⋰)

⊗ 𝑯𝟏
(⋱)

 decomposition  

to model two spin-types of elementary mass particles 
 
 
The standard energy Hilbert space 𝐻1 is proposed to be interpreted as „ferminons mass/energy“ 

space; 𝐻1
⊥ is proposed to be interpreted as the orthogonal „bosons / ether energy“ space. Both 

together build the newly proposed quantum energy space  H1/2 = 𝐻1 ⊗ 𝐻1
⊥. The Hilbert (sub-) space 

𝐻1 is proposed as the model of the physical (fermions) reality of all affected quantum kinematical 
phenomena, in line with Einstein’s idealized experiment considering the motion of a single electron 
moving in a field of force with a given potential (*).   
 
A selfadjoint operator 𝐵 defined on all of the Hilbert space 𝐻 (e.g. 𝐻 = 𝐻1 and 𝐵 the Friedrichs 

extension of the Laplacian operator) is bounded. Thus, the operator 𝐵 induces a decomposition of 𝐻 
into the direct sum of the subspaces, enabling the definition of a potential and a corresponding „grad“ 
potential operator. Then a potential criterion defines a manifold, which represents a hyperboloid in the 
Hilbert space H with corresponding hyperbolic and conical regions ((VaM) 11.2). The direct sum of the 
corresponding two subspaces of  𝐻 = 𝐻1 are proposed as a model to define a decomposition of the 

„fermions“ space  𝐻1 into  
 

𝐻1 = 𝐻1
(⋰)

⊗ 𝐻1
(⋱)

. 

 
The potential criterion defines repulsive resp. attractive elementary mass particles. Then the 
corresponding proposed quantum energy Hilbert space is given by  
 

𝐻1/2 = 𝐻1
(⋰)

⊗ 𝐻1
(⋱)

⊗ 𝐻1
⊥. 

 
The theory of Hilbert spaces with an indefinite metric is provided in e.g. ((DrM), (AzT), (DrM), (VaM)). 
Following the investigations of Pontrjagin and Iohvidov on linear operators in a Hilbert space with an 
indefinite inner product, M. G. Krein proved the Pontrjagin-Iohvidov-Krein theorem (FaK).  
 
In case of a Hilbert space 𝐻, this is about a decomposition of 𝐻 into an orthonal sum of two spaces 𝐻1 

and 𝐻2 with corresponding projection operators 𝑃1 and 𝑃2 (see also the problem of S. L. Sobolev 
concerning Hermitean operators in spaces with indefinite metric, (VaM) IV). We note, that for a vector 
space 𝐻, the empty set, the space 𝐻, and any linear subspace of 𝐻 are convex cones. 
 
  
 
 
 
 
 
(*) ((HeW) p. 36, englisch version): „critique of the corpuscular theory“: „The motion and spreading of probability packets has 
been studied by various authors, … A simple consideration of Ehrenfest’s may be mentioned, … considering the motion of a 
single electron moving in a field of force whose potential is  𝑉(𝑞). … If there were no spreading at all, it would be possible to 
make a Fourier analysis of the probability density into which only integral multiples of the fundamental frequency of the orbit 
enter. As a matter of fact, however, the „overtones“ of quantum theory are not exactly integral multiples of this fundamental 
frequency. The time in which the phase of the quantum theoretical overtones will be qualitatively the same as the time required 

for the spreading of the wave packet. Let  𝐽 be the action variabe of classical theory, then this time will be   𝑡 =
1

ℎ
𝜕v

𝜕𝐽

  and the 

number of revolutions performed in this time is 𝑁~
1

ℎ
𝜕v

𝜕𝐽

 . In the special case of the harmonic oscillator, 𝑁 becomes infinite – the 

wave packet remains small for all times. In general, however, 𝑁 will be of the order of magnitude of the quantum number  n “.  
 
In relation to these considerations, one other idealized experiment (due to Einstein) may be considered. We imagine a photon 
which is represented by a wave packet built up out of Maxwell waves. (For a single photon the configuration space has only 
three dimensions; the Schrödinger equation of a photon can thus be regarded as formally identical with the Maxwell equations.) 
It will thus have a certain spatial extension and also a certain range of frequency. By reflection at a definite probability for finding 
the photon either in one part or in the other part oft he divided wave packet. After sufficient time the two parts will be sparated by 
any distance disired; now if any experiment yields the result that the photon is, say, in the reflected part of the packet, then the 
probability of finding the photon in the other part of the packet immediately becomes zero. The experiment at the position of the 
reflected packet thus exerts a kind of action (reduction of the wave packet) at the distant point occupied by the transmitted 
packet, and one sees that this action is propagated with velocity greater than that of light. However, it is also obvious that this 
kind of action can never be utilized for transmission of signals so that it is not in conflict with the postulates of the theory of 
relativity“. 

https://en.m.wikipedia.org/wiki/Linear_subspace
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The decomposition of the quantum state space 𝐻0 ⊗ 𝐻0
⊥ resp. the quantum energy space 𝐻1 ⊗ 𝐻1

⊥ is 
very much related to the „hidden variables in quantum theory“ concept of D. Bohm (BoD) with the 
notions of implicate and explicate order: 
 
(BoD) A.2, p. 200: „What is common to the functioning of instruments generally used in physical 
research is that the sensibly perceptible content is ultimately describable in terms of a Euclidean 
system of order and measure, i.e., one that can adequately be understood in terms of ordinary 
Euclidean geometry. …  The general transformations are considered to be the essential determining 
features of a geometry in a Euclidean space of three dimensions; those are displacement operators, 
rotation operators and the dilatation operator. 
 
In our case this puts the spot on the Riesz transformations. The Riesz operators fulfill certain 
properties with respect to commutation with translations homothesis and rotation ((PeB), (StE)). Let 

𝑆𝑂(𝑛) denote the rotation group. If 𝑗 ≠ 𝑗 then 𝑅𝑗𝑅𝑘 is a singular convolution operator. On the other 

hand, it holds  𝑅𝑗
2 = −(1/𝑛)𝐼 + 𝐴𝑗 where 𝐴𝑗 is a convolution operator. The following identities are valid 

 

‖𝑅𝑗‖ = 1  , 𝑅𝑗
∗ = −𝑅𝑗   ,  ∑ 𝑅𝑗

2 = −𝐼  ,   ∑‖𝑅𝑗𝑢‖
2

= ‖𝑢‖2 ,𝑢 ∈ 𝐿2 . 

 
Let 

𝑚: = 𝑚(𝑥): = (𝑚1(𝑥), . . . 𝑚𝑛(𝑥)) 
 

be the vector of the Mikhlin multipliers of the Riesz operators and𝜌 = 𝜌𝑖𝑘 ∈ 𝑆𝑂(𝑛), then 
 

𝑚(𝜌(𝑥)) = 𝜌(𝑚(𝑥)), 
 
whereby         

𝑚𝑗(𝜌(𝑥)) = ∑ 𝜌𝑗𝑘𝑚𝑘(𝑥)  

 
and  
                           

𝑚(𝜌(𝑥)) = 𝑐𝑛 ∫ (
𝜋𝑖

2𝑆𝑛−1 𝑠𝑖𝑔𝑛(𝑥𝜌−1(𝑦)) + 𝑙𝑜𝑔 |
1

𝑥𝜌−1(𝑦)
|)

𝑦

|𝑦|
𝑑𝜎(𝑦)  

 

= 𝑐𝑛 ∫ (
𝜋𝑖

2𝑆𝑛−1 𝑠𝑖𝑔𝑛(𝑥𝑦) + 𝑙𝑜𝑔 |
1

𝑥𝑦
|)

𝑦

|𝑦|
𝑑𝜎(𝑦) . 

 
 
(BoD), A3, p. 202: „Implicate order is generally to be described not in terms of simple geometric 
transformations, such as translations, rotations, and dilations, but rather in terms of a different kind of 
operations. … What happens in the broader context of implicate order we shall call a metamorphosis. 
… An example of such a metamorphosis metamorphosis M is determed by the Green’s function 
relating amplitudes at the illuminated structure to those at the photographic plate“. 
 

In our case this relates to the closed sub-spaces 𝐻0
⊥ and 𝐻1

⊥.   
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Magnetohydrodynamics 
 
 
One of the key differentiator between plasma to neutral gas of neutral fluid is the fact that its 
electrically positively and negatively charged particles are strongly influenced by electric and magnetic 
fields, while neutral gas is not. 
 
An ideal plasma is a non-dissipative flow of the incompressible charged particles (CaF). 
 
The MHD equations are derived from continuum theory of non-polar fluids with three kinds of balance 
laws: 
 

i) conservation of mass 
 

ii) balance of linear momentum 
 

iii) balance of angular momentum (Ampere law and Faraday law). 
 

The MHD equations consists of 10 equations with 10 parameters accompanied with appropriate 
boundary conditions from the underlying Maxwell equations (CaF). 
 
In (EyG) it is proven that smooth solutions of non-ideal (viscous and resistive) incompressible 
magneto-hydrodynamic (plasma fluid) equations satisfy a stochastic (conservation) law of flux. It is 
shown that the magnetic flux through the fixed Plasma is an ionized gas consisting of approximately 
equal numbers of positively charged ions and negatively charged electrons. 
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Hermite Polynomials 

 

The weighted Hermite polynomials 

𝜙𝑛(𝑥): =
𝑒

−
𝑥2

2 𝐻𝑛(𝑥)

√2𝑛𝑛!√𝜋

   

with  𝐻𝑛(𝑥): = (−1)𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑥𝑛 𝑒−𝑥2
 ,  𝐻0(𝑥) = 1,  𝐻1(𝑥) = 𝑥, 

form a set of orthonormal functions in 𝐿2(−∞, ∞), i.e., the Hermite polynomials have only real zeros. 

The relation to the Gaussian function is given by 

𝑓(𝑥) = 𝜋1/4𝜙0(√2𝜋𝑥) .

 
The Hermite polynomials 𝐻𝑛(𝑥) fulfill the recursion formula 

𝐻𝑛(√2𝜋𝑥) = 2𝑥𝐻𝑛−1(√2𝜋𝑥) − (𝑛 − 1)𝑏𝑛𝜙𝑛−2(𝑥) − 2(𝑛 − 1)𝐻𝑛−2(√2𝜋𝑥) . 

Using the abbreviation
               

𝑎𝑛: = √
2(𝑛−1)!

𝑛!

       

𝑏𝑛: = √
(𝑛−2)!

𝑛!
 

this gives the recursion formula 

𝜙𝑛(𝑥): = 𝑎𝑛𝑥𝜙𝑛−1(𝑥) − (𝑛 − 1)𝑏𝑛𝜙𝑛−2(𝑥)
,   

𝜙0(𝑥): = 𝜋−1/4𝑒−
𝑥2

2 ,  𝜙1(𝑥): = 2−1/2𝜋−1/4𝑥𝑒−
𝑥2

2     , 

from which the recursion formula for the corresponding Hilbert transforms can be calculated
 

�̂�𝑛(𝑥): = 𝑎𝑛 [𝑥�̂�𝑛−1(𝑥) −
1

𝜋
∫ 𝜙𝑛−1(𝑦)𝑑𝑦

∞

−∞
] − (𝑛 − 1)𝑏𝑛�̂�𝑛−2(𝑥) 

 

�̂�0(𝑥) = 𝜋1/4 ∫ 𝑒−
𝜔2

2 𝑠𝑖𝑛( 𝜔𝑥)𝑑𝜔
∞

−∞
 .

 
As 𝜙𝑛, 𝐻𝜙𝑛 ∈ 𝐿2 is follows 

𝐿2: = 𝐻: = 𝑠𝑝𝑎𝑛[𝜙𝑛(𝑥)] = 𝑠𝑝𝑎𝑛[𝐻(𝜙𝑛(𝑥))]. 
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Extract from 
 

H. Weyl, Philosophy of Mathematics and Natural Science 
 

The Physical Picture of the World 
B. Matter and Fields. Ether 

 
 
p. 171: „Just as the velocity of a water wave is not a substantial but a phase velocity, so the velocity with which an 

electron moves is only the velocity of an ideal „center of energy“, constructed out of the field distribution. 

According to this view, there exists but one kind of natural laws, namely, field laws of the same transparent nature 

as Maxwell had established for the electromagnetic field. The obscure problem of laws of interaction between 

matter and field does not arise. This conception of the world can hardly be described as dynamical any more, 

since the field is neither generated nor acting upon an agent separate from the field, but following its own laws is 

in a quiet continuous flow. It is of the essence of the continuum. Even the atomic nuclei and the electrons are not 

ultimate unchangeable elements that are pushed back and forth by natural forces acting upon them, but they are 

themselves spread out continuously and are subject to fine fluent changes. 

On the basis of rather convincing general considerations, G. Mie in 1912 pointed out a way of modifying the 

Maxwell equations in such manner that they might possibly solve the problem of matter, by explaining why the 

field possesses a „granular“ structure and why the knots of energy remain intact in spite of the back and forth flux 

of energy and momentum. The Maxwell equations will not do because they imply that the negative charges 

compressed in an electron explode; to guarantee their coherence in spite of Coulomb’s repulsive forces was the 

only service still required of substance by H. A. Lorentz’s theory of electrons. The preservation of the energy 

knots must result from the fact that the modified field laws admit only of one state of field equilibrium – or of a few 

between which there is no continuous transition (static, spherically symmetry solutions of the field equations). The 

field laws should thus permit us to compute in advance charge and mass of the electron and the atomic weights 

of the various chemical elements in existence. And the same fact, rather than the contrast of substance and field, 

would be the reason why we may decompose the energy or inert mass of a compond body (approximately) into 

the non-resolvable energy or its last elementary constituents and the resolvable energy of their mutual bond.“ 
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