
1 
 

A global bounded energy norm estimate of the 3D-NSE system 
 enabled by complementary mechanical and turbulence energy spaces 

in the form 𝑯𝟏/𝟐 = 𝑯𝟏 ⊗ 𝑯𝟏
⊥ 

 
Klaus Braun 

unified-field-theory.de 
 

September 2025 
 

a.o. extract of the core piece from 
 

Global Existence and Uniqueness  
of the Non-stationary 3D-Navier-Stokes  
Initial-boundary Value Problem, (BrK1) 

 

June, 2016 
 
 
 

Abstract 
 
A global bounded energy norm estimate of a generalized 3D-NSE initial value problem is 
provided. Based on the Hilbert scale 𝐻𝛼, 𝛼 ∈ [−1,1], (SoH) p. 133, the standard variational 
(statistical)  𝐿2 = 𝐻0 framework is extended to the distributional Hilbert space 𝐻−1/2 = 𝐻0 ⊗ 𝐻0

⊥. 
The corresponding generalized 3D Navier-Stokes initial value problem is given by (∀ 𝑣 ∈ 𝐻−1/2 
and the time-dependency is not described) 
 

(𝑢̇, 𝑣)−1/2 + (𝐴𝑢, 𝑣)−1/2 + (𝐵𝑢, 𝑣)−1/2 = 0 
                                                                                        (𝑢(0), 𝑣)−1/2 = (𝑢0, 𝑣)−1/2  .                                               
 

Accordingly the governing energy Hilbert space is given in the form 𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥, (BrK). The 

corresponding energy norm inequality is given by 
 

1

2

𝑑

𝑑𝑡
‖𝑢‖−1/2

2 + ‖𝑢‖1/2
2 ≤ |(𝐵𝑢, 𝑢)−1/2| 

 

Applying the Sobolevskii-estimate, (GiY), resp. the lemma of Gronwall one gets 
 

|(𝐵𝑢, 𝑢)−1/2| ≤ 𝑐 ⋅ ‖𝑢‖−1/2‖𝑢‖1
2 

resp.  
‖𝑢(𝑡)‖−1/2 ≤ ‖𝑢0‖−1/2 + ∫ ‖𝑢‖1

2(𝑠)𝑑𝑠
𝑡

0
≤ 𝑐{‖𝑢0‖−1/2 + ‖𝑢0‖0

2}. 
 

i.e. there is a global bounded energy norm inequality provided that 𝑢0 ∈ 𝐻0.   
 

As it holds (𝐵𝑢, 𝑢)0 = 0, the non-linear term of the NSE system provides no contribution to the 
energy equality. Since the solution of the associated linearized equation is already as smooth as 
the data allow a solution of the non-linear NSE cannot be expected to be smoother than the 
corresponding linearized equations. Accordingly, the closed sub-space  𝐻1

⊥ of 𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥ may 

be interpreted as dynamic turbulence energy space providing an alternative model to 
Kolmogorov’s statistical turbulence model. The corresponding “turbulence” energy operator 
with 𝐻1

⊥ domain may be interpreted as compact disturbance of the self-adjoint Stokes operator, 
(BrK).  
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A  𝑯𝟏/𝟐 = 𝑯𝟏 ⊗ 𝑯𝟏
⊥ energy Hilbert space based   

bounded energy norm estimate of the 3D-NSE system 
 
Using the Stokes operator and its related Hilbert scale framework the Navier-Stokes equations can be 
represented as an evolution equation in 𝐻0 . Since 𝑃(𝑔𝑟𝑎𝑑𝑝) = 0 one gets  
 

𝐴𝑢 = 𝑃𝑓  in 𝐻0 . 
 
Putting 𝐵(𝑢): = 𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢) and assuming 𝑃𝑢0 = 𝑢0 the NSE initial-boundary equation is given by 
 
                          (*)                                            𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 + 𝐵𝑢 = 𝑃𝑓 , 𝑢(0) = 𝑢0. 

 
As 𝑢 is divergence free and 𝑢 ⋅ 𝑣 identically vanishes on ∂Ω one gets 
 

𝑏(𝑢, 𝑣, 𝑤): = ((𝑢, 𝑔𝑟𝑎𝑑)𝑣, 𝑤) = ∬ (𝑢, 𝑔𝑟𝑎𝑑)𝑣 ⋅ 𝑤𝑑𝑥 = −𝑏(𝑢, 𝑤, 𝑣)
Ω

 

 
and especially 𝑏(𝑢, 𝑣, 𝑣) = (𝐵𝑢, 𝑢) = 0. This means that the non-linear term of the NSE system provides 
no contribution to the energy equality. Since the solution of the associated linearized equation is already 
as smooth as the data allow a solution of the nonlinear NSE cannot be expected to be smoother than the 
corresponding linearized equations.  

 
Theorem: The generalized 3D Navier-Stokes initial value problem is governed by a bounded 
𝐻1/2 energy Hilbert space based energy norm estimate in the form 
 

‖𝑢(𝑡)‖−1/2 ≤ ‖𝑢0‖−1/2 + ∫ ‖𝑢‖1
2(𝑠)𝑑𝑠

𝑡

0
≤ 𝑐{‖𝑢0‖−1/2 + ‖𝑢0‖0

2} . 
 

It ensures a global boundedness of a NSE system solution provided that 𝑢0 ∈ 𝐻0.   
 
Before proving the theorem we prove the essential estimate of the nonlinear term of (*) in 
 

Lemma:  
 

‖𝐴−1/4𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢‖
0

=≤ 𝑐‖𝐴1/2𝑢‖
0

⋅ ‖𝐴1/2𝑢‖
0

= 𝑐‖𝑢‖1 ⋅ ‖𝑢‖1 = 𝑐‖𝑢‖1
2. 

 
 

Proof: In order to prove the lemma we will apply a more general lemma as provided in (GiY1), and below (*). 
 

Choosing  𝑝 = 2 , 𝛿 = 1/4 , 𝜃: = 𝜌: = 1/2  which gives  𝜃 + 𝜌 ≥
1

4
(𝑛 + 1) = 1 . Then it follows 

 

‖𝐴−1/4𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢‖
0

= ‖𝐴−1/4𝐵𝑢‖
0

≤ 𝑐‖𝐴1/2𝑢‖
0

⋅ ‖𝐴1/2𝑢‖
0

= 𝑐‖𝑢‖1 ⋅ ‖𝑢‖1 = 𝑐‖𝑢‖1
2  . 

 
 
Proof of the theorem: Multiplying the homogeneous equation of (*) with 𝐴−1/2𝑢 leads to 
 

(𝑢̇, 𝑢)−1/2 + (𝐴𝑢, 𝑢)−1/2 + (𝐵𝑢, 𝑢)−1/2 = 0 . 
 

Then, the corresponding generalized “energy” inequality is given by 
 

1

2

𝑑

𝑑𝑡
‖𝑢‖−1/2

2 + ‖𝑢‖1/2
2 ≤ |(𝐵𝑢, 𝑢)−1/2| ≤ ‖𝑢‖−1/2‖𝐴−1/4𝐵𝑢‖

0
≤ 𝑐‖𝑢‖1

2. 
 

Putting  𝑦(𝑡): = ‖𝑢‖−1/2
2  one gets 𝑦 ′(𝑡) ≤ 𝑐 ⋅ ‖𝑢‖1

2 ⋅ 𝑦1/2(𝑡) . Applying the lemma of Gronwall gives 
 

‖𝑢(𝑡)‖−1/2 ≤ ‖𝑢(0)‖−1/2 + ∫ ‖𝑢‖1
2(𝑠)𝑑𝑠

𝑡

0
≤ 𝑐{‖𝑢0‖−1/2 + ‖𝑢0‖0

2} . 
 
(*) Lemma 3.2 (GiY1);  see also (FuH), (KaT) for 𝑝 = 2): Let 0 ≤ 𝛿 <

1

2
+

𝑛

2
(1 −

1

𝑝
) . We have 

‖𝐴−𝛿𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢‖
𝐿𝑝

≤ 𝑀‖𝐴𝜃𝑢‖
𝐿𝑝

⋅ ‖𝐴𝜌𝑢‖𝐿𝑝
 

 

with a constant 𝑀 = 𝑀(𝛿, 𝜃, 𝜌, 𝑝) if 𝛿 + 𝜃 + 𝜌 ≥
𝑛

2𝑝
+

1

2
 , 𝜌, 𝜃 > 0,  ,  𝜌 + 𝜃 >

1

2
 . In particular, if 𝑝 = 𝑛, we can choose 𝛿 = 𝜃 =

1

4
 , 𝜌 =

1

2
 . 

Lemma of Gronwall (general form): Let 𝑎(𝑡) and 𝑏(𝑡) nonnegative functions in [0, 𝐴) and 0 < 𝛿 < 1 . Suppose a non-negative 
function 𝑦(𝑡) satisfies the differential inequality   𝑦′(𝑡) + 𝑏(𝑡) ≤ 𝛼(𝑡)𝑦𝛿(𝑡)   on  [0, 𝐴) and 𝑦(0) = 𝑦0. Then for 0 ≤ 𝑡 < 𝐴 

𝑦(𝑡) + ∫ 𝑏(𝜏)𝑑𝜏
𝑡

0
≤ (2𝛿/(1−𝛿) + 1)𝑦0 + 2𝛿/(1−𝛿)[∫ 𝛼(𝜏)𝑑𝜏

𝑡

0
]

𝛿/(1−𝛿)

 . 
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The fluid intrinsic „pressure“ artifact of the NSE system 
 
In the current NSE system the pressure plays the key role to generate the „force“ (resp. to provide the 
energy) to move a fluid particle forwards into the direction of the decreasing pressure. The „pressure“ is a 
scalar quantity, however, its spacial shift generates a „pressure force“, which acts on the fluid. 
Correspondingly, the negative pressure gradient represents the acceleration of the fluid which acts on the 
fluid. Its multiplication with the mass density of the fluid continuum it gives the fundamental force, which 
governs the movement of fluids orchestrated by the Newton law F = m * a. 
 
In the current model it is the difference between the pressures of two fluid particles that generates the 
“pressure force”, which moves the considered fluid forward. The negative gradient of this pressure (the 
relevant term in the NSE system) represents the acceleration of the considered fluid into the direction of 
the decreasing pressure. Conceptually spoken, the „pressure“ force is governed by a fluid intrinsic 
energy, while the exterrior force of the NSE system (the graviation force and the viscous forces) acting on 
the continuum are governed by mechanical energy. Correspondingly, regarding the boundary valus 
conditions the pressure field model should become an exterior Neumann problem, while the NSE system 
itself should become an interior dynamic fluid problem. 
 
 

The dynamic turbulence energy sub-space 𝑯𝟏
⊥ of 𝑯𝟏/𝟐 = 𝑯𝟏 ⊗ 𝑯𝟏

⊥ 
 
The  𝐻1/2 = 𝐻1 ⊗ 𝐻1

⊥ energy Hilbert space decomposition may be interpreted as two complementary 
energy type spaces: the mechanical energy Hilbert space 𝐻1, which is the domain of the Friedrichs 
extension of the Laplacian operator governed by Fourier waves. Its complementary closed sub-space of  
𝐻1/2 may be interpreted as dynamic turbulence energy space, where the corresponding “turbulence” 
energy operator with 𝐻1

⊥ domain may be interpreted as compact disturbance of the related fractional self-
adjoint Stokes operator, (BrK).  
 
The Stokes operator is a self-adjoint positive definite operator with respect to the 𝐿2 inner product. It has 
orthonormal eigenpairs and the inverse of the Stokes operator is bounded and compact. This means that 
the Stokes operator shows the same conceptual structure as the Laplacian operator, (TeR). Therefore, the 
non-stationary Stokes system shows the same structure as the heat operator. The related evolution 
equation of the nonstationary Stokes system shows solutions (in case of 𝑢(0) = 𝑢0 = 0) in the form, (SoH) 
p. 203, 

𝑢(𝑡) = ∫ 𝑆(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

0
 , 𝑡 ≥ 0, 

 
where 𝑆(𝑡) = 𝑒−𝑡𝐴 is defined by a spectral representation. In the appendix we provide a proof of an optimal 
shift theorem for the heat equation with respect to norms in the form 
 

‖𝑧‖𝐿2(0,𝑇;𝐻𝑘)
2 = ∫ ‖𝑧(𝑡)‖𝐻𝑘

2 𝑑𝑡
𝑇

0
 . 

 
 

Die Potentiale der einfachen und doppelten Scicht 
 

Extract from 
 

Plemelj’s Potentialtheoretische Untersuchungen 
 

The argument of Plemelj for his newly proposed potential is, (PlJ) S. 17: 
 
“Bisher war es üblich für das Potential die Form (𝑉(𝑝) = ∮ 𝑙𝑜𝑔

1

𝑟𝑝𝑠
∙ 𝜇′(𝑠)𝑑𝑠 vorauszusetzen, wobei dann 𝜇′(𝑠) 

die Massendichtigkeit der Belegung genannt wurde. Eine solche Annahme erweist sich aber als eine 
derart folgenschwere Einschränkung, daß dadurch dem Potentiale  der größte Teil seiner 
Leistungsfähigkeit hinweg genommen wird. Für tiefergehende Untersuchungen erweist sich das Potential 
nur in der Form (𝑉(𝑝) = ∮ 𝑙𝑜𝑔

1

𝑟𝑝𝑠
∙ 𝑑𝜇(𝑠) verwendbar.” 
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Neumann problem, hypersingular integral equations  
and the Prandtl operator 

 

Extracts from (LiI) 
 

“In order to find the characteristics of a flow past a body without separation, it is convenient to model the 
vortex layer next to the body by closed quadragles and vortex frames. The intensity of these vortex 
formations coincides with the density of the double layer potential on the surface of the body for which the 
values of the potential outside the body are the same as in the case of a purturbed flow. Thus we come to 
the problem of finding the potential outside a body in terms of its normal derivative and the density of the 
double layer potential. This chapter 4 is dedicated to the theory of the Neumann problem and the 
correponding integral equations with the double layer potential”, (LiI) p. 95. 
 
In the Euclian space 𝑅3, consider closed connected surfaces 𝑆1

0, … . , 𝑆𝑘
0 of class 𝐶∞ (i.e., compact 

connected 𝐶∞ manifolds of dimension 2). Suppose also that in 𝑅3 there are non-closed connected 
surfaces surfaces 𝑆1

1, … . , 𝑆𝑛
1 of class 𝐶∞ ((i.e., compact two-dimensional 𝐶∞ manifolds with border) such 

that 𝑆𝑖̅
1 ∩ 𝑆𝑗̅

1 = ∅ for 𝑖 ≠ 𝑗. We assume that there exist two-dimensional compact manifolds (without 
borders) of class 𝑀1, … 𝑀𝑚1

 of class 𝐶∞ such that every surface 𝑆𝑗
1, 𝑗 = 1, … , 𝑛, belongs to one of the 

manifolds 𝑀1, … 𝑀𝑚1
, and several surfaces 𝑆𝑖

1 may belong to one and the same manifold 𝑀𝑗. It is also 
assumed that the manifolds 𝑀1, … 𝑀𝑚1

 are connected. 
 
The surfaces 𝑆𝑖

0 coincide with the boundaries of the bounded domains 𝛺𝑖
0 and the surfaces 𝑀𝑖  are the 

boundaries of bounded domains 𝛺𝑖
1. Moreover, 𝛺𝑖

0̅̅̅̅ ∩ 𝛺𝑗
0̅̅̅̅ = ∅   𝛺𝑖

1̅̅̅̅ ∩ 𝛺𝑗
1̅̅̅̅ = ∅ for 𝑖 ≠ 𝑗, and 𝛺𝑖

0̅̅̅̅ ∩ 𝛺𝑗
1̅̅̅̅ = ∅ for 

all 𝑖, 𝑗. 
 
Consider the following harmonic functions 
 

𝑢𝑖
0(𝑥): =

1

4𝜋
∯ 𝜈𝑖

0(𝑦)
𝑐𝑜𝑠 𝜑𝑥𝑦

|𝑥−𝑦|2𝑆𝑖
0 𝑑𝑆𝑖𝑦

0   
 

𝑢𝑖
1(𝑥): =

1

4𝜋
∯ 𝜈𝑖

1(𝑦)
𝑐𝑜𝑠 𝜑𝑥𝑦

|𝑥−𝑦|2𝑆𝑖
0 𝑑𝑆𝑖𝑦

1  , 

 
where 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅3, 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑆𝑖

0 or 𝑆𝑖
1; 𝜑𝑥𝑦  is the angle between the vector |𝑥 − 𝑦| and the 

normal 𝒏𝑦  to the surface 𝑆𝑖
0 or 𝑆𝑖

1 at the point 𝑦, 𝜈𝑖
𝑝

(𝑦) ∈ 𝐶∞(𝑆𝑖
𝑝

) is the density of the double layer 
potential, 𝑝 = 0,1. Consider the boundary value problem 
 

                                                                  𝛥𝑢 = 0      𝑥 ∈ 𝑅3 − (∪ 𝑆𝑖
𝑝

) 

             𝜕𝑢

𝜕𝑛
|

𝑆𝑖
𝑝 = 𝑓𝑖

𝑝 , 

                                          𝑝 = 0:   𝑖 = 1, … , 𝑘;  𝑝 = 1:   𝑖 = 1, … , 𝑛, 
 
where ∆ is the Laplacian operator; 𝜕𝑢/𝜕𝑛|

𝑆𝑖
𝑝  is the derivative along the normal to the surface 𝑆𝑖

𝑝. We seek 

the solution of the boundary value problem  as the double layer potential 
 

𝑢(𝑥): =
1

4𝜋
∑ ∑ ∯ 𝜈𝑖

𝑝
(𝑦)

𝑐𝑜𝑠 𝜑𝑥𝑦

|𝑥−𝑦|2𝑆
𝑖
𝑝 𝑑𝑆𝑖𝑦

𝑝
𝑖𝑝 , 

 
and for the unknown functions 𝜈𝑖

𝑝
(𝑦) we obtain the following system of equations: 

 
𝑷𝒓[𝜈𝑙

𝑚](𝑥) ≔
1

4𝜋
∑ ∑

𝜕

𝜕𝑛𝑙
𝑚 ∯ 𝜈𝑖

𝑝
(𝑦)

𝑐𝑜𝑠 𝜑𝑥𝑦

|𝑥−𝑦|2𝑆𝑖
0 𝑑𝑆𝑖𝑦

𝑝
𝑖𝑝 = 𝑓𝑙

𝑚(𝑥) , 

                                               (*) 
𝑚 = 0:   𝑙 = 1, … , 𝑘;  𝑚 = 1:   𝑙 = 1, … , 𝑛. 

 
Defintion 4.1.4: The operator 𝑷𝒓 defined by (*) is called the Prandtl operator. 
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Note: 𝐻𝑟(𝑅𝑛) denotes the Sobolev-Slobodestkii space. For a closed connected surface 𝑆 ⊂ 𝑅n it holds 
𝐻̂𝑟−1 = 𝐻𝑟−1. 
 
Proposition 2.3.3. The norm of the space 𝐻𝜆  with 0 < 𝜆 < 1 is equivalent to  
 

‖𝑢‖𝜆
,2 = ∫ ∫

|𝑢(𝑥+𝑦)|𝑢(𝑠)2

|𝑦|𝑛+2𝜆 𝑑𝑥𝑑𝑦
𝑅𝑛 + ∫ |𝑢(𝑥)|2𝑑𝑥

𝑅𝑛𝑅𝑛 . 

 
Denote by 𝐻𝑟(𝜈) the direct sum of all spaces 𝐻𝑟(𝑆𝑖

0) and 𝐻̇𝑟(𝑆𝑗
1) and by 𝐻̂𝑟(𝜈) the direct sum of all spaces 

𝐻𝑟(𝑆𝑖
0) and 𝐻𝑟(𝑆𝑗

1).  
 
The Prandtl operator has the following properties (LiI) pp. 108, 109, 111, 115: 
 
Proposition 4.2.1. The Prandtl operator 𝑷𝒓 ∶  𝐻𝑟 → 𝐻̂𝑟−1 is bounded for 0 ≤ 𝑟 ≤ 1. 
 
Theeorem 4.2.2. For 0 < 𝑟 < 1, The Prandtl operator 𝑷𝒓, which maps 𝐻𝑟  into 𝐻̂𝑟−1, is Noetherian. 
 
Proposition 4.3.1. For 𝜈 ∈ 𝐻𝑟(𝜈), 𝑟 ≥ 1/2, the function 
 

𝑢(𝑥): =
1

4𝜋
∑ ∑ ∯ 𝜈𝑖

𝑝
(𝑦)

𝑐𝑜𝑠 𝜑𝑥𝑦

|𝑥−𝑦|2𝑆
𝑖
𝑝 𝑑𝑆𝑖𝑦

𝑝
𝑖𝑝   

 
belongs to 𝐻1(𝛺), where 𝛺 = 𝑅3 − (∪𝑝∪𝑖 𝑆𝑖

𝑝
). 

 
Theorem 4.3.2. For 1/2 ≤ 𝑟 < 1, the exterior Neumann problem admits one and only on generalized 
solution. 
 
 
In summary  
 
For a closed connected surface 𝑆 ⊂ 𝑅3, the Prandtl operator 𝑷𝒓 ∶  𝐻1/2 → 𝐻−1/2 is Noetherian, is bounded, 

the function  𝑢(𝑥): =
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥−𝑦|2𝑆
𝑑𝑆𝑦 is an element of 𝐻1(𝑅3 − 𝑆) and the exterior Neumann problem 

admits one and only on generalized solution. 
 
 

The Garding type type inequality and compact operators 
 
A variational representation of an operator in the form 𝐵 = 𝐴 + 𝐾, where 𝐴 is a 𝐻𝛼  - coercive operator with 
a compact disturbance 𝐾 fullfills a coerciveness (Garding type type inequality) condition in the form, 
(AzA), 

(𝐵𝑢, 𝑣) ≥ 𝑐 ∙ ‖𝑢‖𝛼‖𝑣‖𝛼 − (𝐾𝑢, 𝑣) or (𝐵𝑢, 𝑣) ≥ 𝑐1 ∙ ‖𝑢‖𝛼
2 − 𝑐2 ∙ ‖𝑢‖𝛽

2  
 
with 𝐻𝛽 ⊂ 𝐻𝛼  compactly embedded.  
 
 

The wavelet transform  
interpreted as a mathematical microscope 

 
(HoM) 1.2: „The idea of wavelet analysis is to look at the details are added if one goes from scale 𝑎 to 
scale 𝑎 − 𝑑𝑎 with 𝑑𝑎 > 0 but infinitesimal small. … Therefore, the wavelet transform allows us to unfold a 
function over the one-dimensional space 𝑅 into a function over the two-dimensional half-plane 𝐻 of 
positions and details (where is which details generated?). … Therefore, the parameter space 𝐻 of the 
wavelet analysis may also be called the position-scale half-plane since if 𝑔 localized around zero with 
width ∆ then 𝑔𝑏,𝑎  is localized around the position 𝑏 with width 𝑎∆. The wavelet transform itself may now be 
interpreted as a mathematical microscope where we identify  
 

𝑏   ↔  position;   (𝑎∆)−1   ↔  enlargement;     𝑔   ↔ optics “. 
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Optimal shift theorem for the heat equation 
 

Extract from 
 

𝐿∞-boundedness of the finite element  
galerkin operator for parabolic problems 

 
J. A. Nitsche, M. F. Wheeler, (NiJ) 

 
The inverse of the fractional Stokes operators are compact, (TeR). Therefore, they have a discrete 
spectrum. This allow to omit the concept of a spectral measure 𝑑𝐸𝜆, when analyzing its mapping 
properties within Hilbert scales. In other words, In the respective Hilbert scale framework the heat and 
the Stokes operators show the same properties.  
 
We introduce the Hilbert-scale {𝐻𝑘|𝑘 ≥ 0} in the following way: Let {𝑣𝑖 , 𝜆𝑖} be the orthogonal set of eigen-
pairs of the Laplacian, i.e. 

−∆𝑣𝑖 = 𝜆𝑖𝑣𝑖   in 𝛺 
            𝑣𝑖 = 0  in 𝜕𝛺 . 

 
Any  𝑧 ∈ 𝐿2(𝛺) admits the representation 

𝑧 = ∑ 𝑧𝑖𝑣𝑖   
with 

𝑧𝑖 = (𝑧, 𝑣𝑖) . 
In addition Parseval’s equation holds: 

‖𝑧‖2 = ∑ 𝑧𝑖
2. 

 
Now 𝐻𝑘  is the subspace of functions such that  ‖𝑧‖𝑘

2 = ∑ 𝜆𝑖
𝑘𝑧𝑖

2 is finite. 
 
Remark: Since we have accepted only 𝑧 ∈ 𝐿2 the index 𝑘has to be non-negative. 
 
For integers 𝑘 ≤ 4    – only these values will be relevant – the spaces 𝐻𝑘  are connected with the unsual 
Sobolev-spaces 𝑊2

𝑚 by: 
 

𝐻0 = 𝐿2, 𝐻1 = 𝑊̇2
1, 𝐻2 = 𝑊̇2

1 ∩ 𝑊2
2, 𝐻3 = {𝑧|𝑧 ∈ 𝐻2 𝑎𝑛𝑑 ∆𝑧 ∈ 𝐻1}, 𝐻4 = {𝑧|𝑧 ∈ 𝐻2 𝑎𝑛𝑑 ∆𝑧 ∈ 𝐻2} . 

 
The 𝐻𝑘-norms are equivalent in these spaces to the corresponding 𝑊2

𝑘-norms. If 𝑧 = 𝑧(𝑡) is an element of 
𝐻𝑘  for almost every 0 < 𝑡 < 𝑇 we will use the notation 
 

‖𝑧‖𝐿2(0,𝑇;𝐻𝑘)
2 = ∫ ‖𝑧(𝑡)‖𝐻𝑘

2 𝑑𝑡
𝑇

0
  . 

 
For the sake of completeness we will give the proof of the standard shift-theorem: 
 
Theorem 3.1: Let the operator 𝐴 be defined by 
 

(*)  𝐴𝑧 =  𝑧̇ − ∆𝑢 in 𝛺 × (0, 𝑇) , 
   𝑧 =  0  on 𝜕𝛺 × (0, 𝑇), 

              𝑧𝑡=0 =  0  in 𝛺  . 
 

Then 𝐴 is a bijective mapping of 𝐿2(𝐻𝑘+2) ∩ {𝑧|𝑧̇ ∈ 𝐿2(𝐻𝑘)} to 𝐿2(𝐻𝑘) and 
 

(**)       ‖𝑧‖𝐿2(𝐻𝑘+2) ≤ ‖𝐴𝑧‖𝐿2(𝐻𝑘) . 
 
Proof: Let 𝑧𝑖  resp. 𝑓𝑖  denote the “Fourier”-coefficients of 𝑧 resp. 𝐴𝑧 with respect to  {𝑣𝑖}. Multiplication of 
(*) with 𝑣𝑖  and integration over 𝛺 leads to the uncoupled first order system 
 

𝑧̇𝑖 + 𝜆𝑖𝑧𝑖 = 𝑓𝑖   for 0 < 𝑡 < 𝑇 
 

       𝑧𝑖(0) = 0 
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The solution of which is   𝑧𝑖(𝑡) = ∫ 𝑒−𝜆𝑖(𝑡−𝑠)𝑓𝑖(𝑠)𝑑𝑠
𝑡

0
 . Application of Schwartz’ inequality in the proper way 

gives 
|𝑧𝑖|2 ≤ {∫ 𝑒−𝜆𝑖(𝑡−𝑠)𝑓𝑖

2(𝑠)𝑑𝑠
𝑡

0
} {∫ 𝑒−𝜆𝑖(𝑡−𝑠)𝑑𝑠

𝑡

0
} ≤ 𝜆𝑖

−1 ∫ 𝑒−𝜆𝑖(𝑡−𝑠)𝑓𝑖
2(𝑠)𝑑𝑠

𝑡

0
  

 
and further by interchanging the order of integration 
 

∫ |𝑧𝑖|
2𝑑𝑡

𝑇

0
≤ 𝜆𝑖

−1 [∫ 𝑓𝑖
2(𝑠)𝑑𝑠

𝑇

0
] ∙ [∫ 𝑒−𝜆𝑖(𝑡−𝑠)(𝑠)𝑑𝑡

𝑇

𝑠
] ≤ 𝜆𝑖

−2 ∫ 𝑓𝑖
2(𝑠)𝑑𝑠

𝑇

0
. 

 
Because of the defintion of the 𝐻𝑘– resp. 𝐿2(𝐻𝑘)- norms (**) is proven. 
 
 

The Riesz, the Calderón-Zygmund and the Schrödinger 2.0 operators 
 
The Riesz transformations are the n-dimensional generalizations of the 1-dimensional Hilbert 
transformation. They arise when study the Neumann problem in upper half-plane. The Riesz transforms 
 

𝑅𝑘𝑢 = −𝑖𝑐𝑛𝑝. 𝑣. ∫
𝑥𝑘−𝑦𝑘

|𝑥−𝑦|𝑛+1 𝑢(𝑦)𝑑𝑦
∞

−∞
 ,   𝑐𝑛: =

𝛤(
𝑛+1

2
)

𝜋(𝑛+1)/2 
 

commutes with translations and homothesis, having nice properties relative to rotation, (PeB), (StE) (*). 
The “rotation property” plays a key role in the context of the rotation group 𝑆𝑂(𝑛) (*):  
 

let 𝑚: = 𝑚(𝑥): = (𝑚1(𝑥), . . . 𝑚𝑛(𝑥)) be the vector of the Mikhlin multipliers of the 
Riesz operators and 𝜌 = 𝜌𝑖𝑘 ∈ 𝑆𝑂(𝑛), then it holds 𝑚(𝜌(𝑥)) = 𝜌(𝑚(𝑥)),  
i.e.   𝑚𝑗(𝜌(𝑥)) = ∑ 𝜌𝑗𝑘𝑚𝑘(𝑥) . 

 
The Calderón-Zygmund operators 𝛬 with symbol |𝜈| and its inverse operator 𝛬−1 may be represented in 
the following forms, (EsG) 3.15, 3.17, 3.35, (LiI) p. 58 ff., (**) 
 

  (𝛬𝑢)(𝑥) = (∑ 𝑅𝑘𝐷𝑘𝑢)(𝑥)𝑛
𝑘=1 =

𝛤(
𝑛+1

2
)

𝜋
𝑛+1

2

∑ 𝑝. 𝑣. ∫ ∑
𝑥𝑘−𝑦𝑘

|𝑥−𝑦|𝑛+1

𝜕𝑢(𝑦)

𝜕𝑦𝑘
𝑑𝑦𝑛

𝑘=1
∞

−∞
𝑛
𝑘=1    

 

                                                                                               = −
𝛤(

𝑛−1

2
)

2𝜋
𝑛+1

2

𝑝. 𝑣. ∫
𝛥𝑦𝑢(𝑦)

|𝑥−𝑦|𝑛−1 𝑑𝑦
∞

−∞
= −(𝛥𝛬−1)𝑢(𝑥)  

 

                              (𝛬−1𝑢)(𝑥) =
𝛤(

𝑛−1

2
)

2𝜋
𝑛+1

2

𝑝. 𝑣. ∫
𝑢(𝑦)

|𝑥−𝑦|𝑛−1 𝑑𝑦
∞

−∞
 , 𝑛 ≥ 2 . 

 
Note: For space dimension 𝑛 = 1 this is about Λ = 𝐷𝐻 = 𝑃𝐻, where 𝐻 denotes the Hilbert transformation 
and 𝐷 = 𝑃 the Schrödinger momentum operator 𝑃 = −𝑖

𝑑

𝑑𝑥
 , (MeY) p. 5. In (BrK2) the Calderón-Zygmund 

operators 𝛬 is proposed as alternative Schrödinger 2.0 momentum operator. 
 
(*)  If 𝑗 ≠ 𝑗 then 𝑅𝑗𝑅𝑘 is a singular convolution operator. On the other hand, it holds  𝑅𝑗

2 = −(1/𝑛)𝐼 + 𝐴𝑗  where 𝐴𝑗  is a convolution 
operator. The following identities are valid 
 

‖𝑅𝑗‖ = 1  , 𝑅𝑗
∗ = −𝑅𝑗    ,  ∑ 𝑅𝑗

2 = −𝐼  ,   ∑‖𝑅𝑗𝑢‖
2

= ‖𝑢‖2 ,𝑢 ∈ 𝐿2 . 
 

Let  𝑚: = 𝑚(𝑥): = (𝑚1(𝑥), . . . 𝑚𝑛(𝑥))  be the vector of the Mikhlin multipliers of the Riesz operators and𝜌 = 𝜌𝑖𝑘 ∈ 𝑆𝑂(𝑛), then 
 

𝑚(𝜌(𝑥)) = 𝜌(𝑚(𝑥)), whereby 𝑚𝑗(𝜌(𝑥)) = ∑ 𝜌𝑗𝑘𝑚𝑘(𝑥) 
and 

𝑚(𝜌(𝑥)) = 𝑐𝑛 ∫ (
𝜋𝑖

2𝑆𝑛−1

𝑠𝑖𝑔𝑛(𝑥𝜌−1(𝑦)) + 𝑙𝑜𝑔 |
1

𝑥𝜌−1(𝑦)
|)

𝑦

|𝑦|
𝑑𝜎(𝑦) 

 

                                                                                          = 𝑐𝑛 ∫ (
𝜋𝑖

2𝑆𝑛−1 𝑠𝑖𝑔𝑛(𝑥𝑦) + 𝑙𝑜𝑔 |
1

𝑥𝑦
|)

𝑦

|𝑦|
𝑑𝜎(𝑦) . 

 
(**) They are special Calderón-Zygmund (Pseudo Differential-, convolution-) operators 𝑇(𝑓) = 𝑆 ∗ 𝐹 with a distribution 𝑆 defined by 
symbols 𝑚(𝜔) ∈ 𝐶∞(𝑅𝑛 − {0}) with the following properties, (MeY) 
 

i) 𝑚(𝜇𝜔) = 𝑚(𝜔), 𝜇 > 0 
ii) the mean of 𝑚(𝜔) on the unit sphere is zero 
iii) it holds 𝑚(𝜔) =

𝜔𝑗

|𝜔|
.  
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The Leray-Hopf and the Landau collision operators 
Extract from (LeN), (LiP) 

 
The Leray-Hopf projector (that projector is also called the Helmholtz-Weyl projector by some authors) is 
the following matrix valued Fourier multiplier, given by 
 

𝑷(𝜉) = 𝐼𝑑 −
𝜉⊗𝜉

|𝜉|2 = (𝛿𝑗𝑘 −
𝜉𝑗𝜉𝑘

|𝜉|2 )1≤𝑗,𝑘≤𝑛    ,  𝑷 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑸. 

 
We can also consider the 𝑛 × 𝑛 matrix of operators given by 𝑸: = 𝑅 ⊗ 𝑅 = (𝑅𝑗𝑅𝑘)1≤𝑗,𝑘≤𝑛 sending the vector 
space of 𝐿2(𝑅𝑛) vector fields into itself. The operator 𝑸 is selfadjoint and is a projection since  
∑ 𝑅𝑙

2
𝑙 = 𝐼𝑑 so that 𝑸2 = ∑ (𝑅𝑗𝑅𝑙𝑅𝑙𝑅𝑘)𝑗,𝑘𝑙 = 𝑸. As a result the (Leray-Hopf or Helmholtz-Weyl) operator 

 
𝑷 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑸 = 𝐼𝑑 −

𝐷⊗𝐷

𝐷2 𝐼𝑑 − 𝛥−1(𝛻 × 𝛻)   
 

is also an orthogonal projection; the operator is in fact the orthogonal projection onto the closed 
subspace of 𝐿2 vecor fields with null divergence. When almost all collisions are grazing, the Landau (or 
Fokker-Planck) collision operator is defined by 
 

𝑄(𝑓, 𝑓) =
𝜕

𝜕𝑣𝑖

{∫ 𝑎𝑖𝑗(𝑣 − 𝑤) [𝑓(𝑤)
𝜕𝑓(𝑣)

𝜕𝑣𝑗

− 𝑓(𝑣)
𝜕𝑓(𝑤)

𝜕𝑤𝑗

]
𝑅𝑁

𝑑𝑤} 

 
The matrix 𝑎𝑗𝑘(𝑧) is symmetric, non-negative, even 𝑧 and is typically of the following form if 𝑁 = 3, 
 

𝑎𝑗𝑘(𝑧) ≔
𝑎(𝑧)

|𝑧|
{𝛿𝑗𝑘 −

𝑧𝑗𝑧𝑘

|𝑧|2 } , 

 
were 𝑎 is even, smooth (for instance) and positive on 𝑅𝑛. The unknown function 𝑓 corresponds at 
each time 𝑡 to the density of particle at the point 𝑥 with velocity 𝑣. The matrix  and therefore the 
collision operator can be approximated by the linear Pseudo Differential Operator (PDO) of order 
zero with symbol  

𝑧

|𝑧|
{𝛿𝑖𝑗 −

𝑧𝑖𝑧𝑗

|𝑧|2} =
𝑧

|𝑧|
𝑷(𝑧) ≔

𝑧

|𝑧|
[𝐼𝑑 − 𝑸](𝑧). 

 
 

On Boltzmann and Landau equations 
Some extracts from (LiP), (LiP1) 

 
In (LiP) some properties of the solutions of the following kinetic equations are studied 
 

(*)        𝜕𝑓

𝜕𝑡
+ 𝑣 ∙ ∇𝑥𝑓 = 𝑄(𝑓, 𝑓) for 𝑡 ≥ 0, 𝑥 ∈ 𝑅𝑁, 𝑣 ∈ 𝑅𝑁, 

 
where 𝑁 ≥ 1, 𝑓 is a non-negative function and 𝑄(𝑓, 𝑓) is a non-local, quadratic operator. Physically, such 
equations provide a mathematical model for statistical evolution of large number of particles interacting 
through “collisions”. They are used for the description of a moderately rarefied gas or of plasma. The 
unkonwn function 𝑓 corresponds at each time 𝑡 to the density of particles at the point 𝑥 with velocity 𝑣. If 
the operator 𝑄 were 0, (*) would simply mean that the particles do not interact and 𝑓 would be constant 
along particles paths (𝑥̇ = 𝑣, 𝑣̇ = 0). This conservation no longer holds if collisions occurs, in which case 
the rate of changes of 𝑓 has to be specified. 
 
All “compactness-stability” and existence  results are shown under a certain conditions on 𝑉0. This 
condition is satisfied in the case the Vlasov-Poisson system where 𝑁 = 3, 𝑉0 =

1

|𝑥|
 , as the condition holds 

in view of classical results on Riesz transforms, (LiP1). 
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