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BIAS IN CUBIC GAUSS SUMS: PATTERSON’S CONJECTURE

ALEXANDER DUNN AND MAKSYM RADZIWILL

ABSTRACT. Let W be a smooth test function with compact support in (0,0). Con-
ditional on the Generalized Riemann Hypothesis for Hecke L-functions over Q(w), we

prove that
1 , 271)2/3 ® X5/6
D e ( D ezmms/p>W(%) _ 7T)2 J W(x)x—l/ﬁdx.I =
p=1 (mod 3) \/ﬁ z (mod p) 3F(§) 0 og

as X — oo and p runs over primes. This explains a well-known numerical bias in the
distribution of cubic Gauss sums first observed by Kummer in 1846 and confirms (con-
ditionally on the Generalized Riemann Hypothesis) a conjecture of Patterson [Pat78b]
from 1978.

There are two important byproducts of our proof. The first is an explicit level aspect
Voronoi summation formula for cubic Gauss sums, extending computations of Patterson
and Yoshimoto. Secondly, we show that Heath-Brown’s cubic large sieve is sharp up to
factors of X°(1) under the Generalized Riemann Hypothesis. This disproves the popular
belief that the cubic large sieve can be improved.

An important ingredient in our proof is a dispersion estimate for cubic Gauss sums.
It can be interpreted as a cubic large sieve with correction by a non-trivial asymptotic
main term. This estimate relies on the Generalized Riemann Hypothesis, and is one of
the fundamental reasons why our result is conditional.
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1. Introduction

1.1. Exponential sums over primes. Kummer [Kum?75, Paper 16,17] studied the dis-
tribution of the cubic exponential sums
p 3
n .
Sp = e(—), e(x) := ¥,

> ; .
with p =1 (mod 3) prime. The bound |S,| < 2,/p is well-known, and we can consequently
write

S,

2\2_) = cos(276,), 6, € [0,1]. (1.1)
This specifies the value of 60, — % up to sign. This sign ambiguity can be resolved by
noticing that (1.1) is the real part of an explicit root of unity defined in (1.5). To probe
whether 6, is equidistributed, Kummer computed the frequency with which cos(276,)
lay in the intervals I; = [5,1], [, = [-1,3] and I3 = [—1,—2], for p < 500. Kummer
observed that cos(276,) tended to lay more frequently in [; than in I or I3 (the ratio
he observed was 3 : 2 : 1 respectively). If this bias persisted, then the angles 6, are
not uniformly distributed. Subsequent calculations by von Neumann-Goldstine [vNG53],
Lehmer [Leh56] and Cassels [Cas69] cast doubt on the persistence of this observation and
suggested that cos(2m6,) lay equally frequently in I, I, and I3, and that 6, was uniformly
distributed. In light of the new numerical evidence, Patterson [Pat78b] enunciated a
corrected conjecture. This conjecture explained the bias observed by Kummer, and was

consistent with the numerical data.

Conjecture 1 (Patterson, 1978). As X — oo,
Z S, 202m)*P XP/6
= 2 50(3)  log X’

p=1 (mod 3)

where p runs through primes.

Patterson obtained this conjecture by developing Kubota’s theory of metaplectic forms
[Kub69,Kub71], and by appealing to a heuristic form of the circle method [Pat78b]. Unfor-
tunately, even under the assumption of the Generalized Riemann Hypothesis, Patterson’s
heuristic fell short of a proof. This was due to insufficient bounds for the minor arcs. Sub-
sequently, in 1979, Heath-Brown and Patterson [HBP79] established that 6, is uniformly
distributed in [0, 1] as p varies among primes congruent to 1 modulo 3. This decisively
disproved Kummer’s guess. A nice summary up to this point can be found in a standard
text of Davenport [Dav00, Chap. 3]. Some 20 years later, in 2000, Heath-Brown [HB0O0]
sharpened his earlier result with Patterson and obtained unconditionally the nearly tight
upper bound

> 5 <o X006t (1.2)
2y/p

p<X
p=1 (mod 3)
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for any given € > 0. Heath-Brown [HBO0O, pg. 99] also stated a refined from of Patterson’s
conjecture that features an error term capturing square root cancellation®.

In this paper we confirm Patterson’s conjecture, conditionally on the assumption of the
Generalized Riemann Hypothesis. This can be also viewed as a conditional sharpening
of (1.2). We will explain in a later part of the introduction why the assumption of the
Riemann Hypothesis (or similar unproven hypothesis) appears to be necessary at this
point.

Theorem 1.1. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let W be a smooth function that is compactly supported in (0,0). Then as X — oo
we have

S )23 X5/6
3 2 -W(ﬁ) ~ 2 f W (z)2odz - ,
) 2\/p X ['(3) log X

p=1 (mod 3

where p runs through primes.

Notice that the constant that we get is consistent with Patterson’s [Pat78b] prediction:
if W(z) — 1po,17(«) then,
2/3 2(27’(’)2/3

50(2)

J W(z *1/6dx

2
3

Theorem 1.1 shows that the angles 6, cannot be equidistributed with square-root cancel-
lation in the error term. We make this precise in the Theorem below.

Theorem 1.2. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let f be a smooth 1-periodic function and W be a smooth function that is compactly
supported in (0,00). Then we have

3 f(Hp)W(%>=L1f(x)dx > w(%) (1.3)

p=1 (mod 3) =1 (mod 3)
1 (27‘(‘)2/3 X5/6 X5/6
42 o) da W ()25 ( )
L f(z) cos(2mz)dx 30D Jo (x)z x oz X oz X

as X — 0.

It is unlikely that (1.3) can be established unconditionally given the current state of
knowledge, for instance with the choice f(x) = e(3¢x), ¢ # 0, (1.3) implies a zero-free
strip for certain L-functions associated to Groflencharaktern.

Before proceeding to a high level sketch of the ideas in the paper, we make two remarks.
First, it is possible to slightly sharpen the rate of convergence in Theorems 1.1 and 1.2.
One can save roughly one power of log X. Second, in both Theorems 1.1 and 1.2 we do
not require the full strength of the Generalized Riemann Hypothesis. A sufficiently large
zero-free strip (in Res > 1) would have sufficed.

!The constant in Patterson’s conjecture appearing in [HB00] is mistated due to a misprint
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1.2. Gauss sums over Eisenstein integers. Let w = €™/? and let Z[w] denote the
ring of Eisenstein integers (in Q(w)). It is well known that any non-zero element of Z|w]|
can be uniquely written as (Ac with ¢ € {+1, +w, +w?} a unit, A = /-3 = 1 + 2w
the unique ramified prime in Z|w]|, i € Zso, and ¢ € Z|w] satisfying ¢ = 1 (mod 3).
Furthermore we have a cubic symbol defined for ¢ = 1 (mod 3) and @ = 1 (mod 3)
prime by
(ﬁ) = o\N@=)-1/3 (mod w).
w/3

The cubic symbol is clearly multiplicative in a and can be extended to a multiplicative
function in w by setting (%), = [1; (wi) for any b =1 (mod 3) with b = [ [, w; and w;

primes. The cubic symbol obeys cubic reciprocity: given a,b =1 (mod 3) we have

(5),- )

b)s  \a/s

We also have supplementary laws for units and the ramified prime. Given d = 1 + as\? +
azA? (mod 9) with ay, a3 € {—1,0,1}, then

(- i (),

The cubic exponential sums S, are intimately connected to cubic Gauss sums over
Eisenstein integers. For any rational prime p = 1 (mod 3), we can write p = w@ with w
prime in Z[w]. Then

Sp
2./p

where the normalised Gauss sum is given by

f](c):% 3 (f)gé@), &(z) = e2mi+3), (1.5)

C C

— Re j(w), (1.4)

z  (mod ¢)

for any ¢ € Z|w] with ¢ =1 (mod 3). Here | - | denotes the Euclidean distance of ¢ from
the origin. We write g(c) for the unnormalized Gauss sum, namely g(c) := |c|g(c). We
also note that

. c

g(c)* = M(C)H- (1.6)

Thus §(c) is a cube root of u(c)c/|c| (see [Hasb0, pp. 443-445]). However, given a prime
w = 1 (mod 3), there is no known formula efficiently predicting which cube root §(w)
corresponds to.

Formula (1.4) shows that Patterson’s conjecture is equivalent to the statement

~ 2(271’)2/3 X5/6
Z g(w) ~ 2y .
5I(3) log X

N(w)<X
w prime
w=1 (mod 3)

2We note that the work of Matthews [Mat79] gives an explicit formula expressing §(w) as a product of
the Weierstrass p-functions evaluated at (N (7) — 1)/3 values. Despite the beauty of Matthews’ formula,
it is not computationally efficient.
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From the point of view of Weyl’s equidistribution criterion it is also natural to ask about
the behavior of §(w)* with k € Z. Patterson enunciated in [Pat78b] a complementary
conjecture. It states that for all k£ ¢ {0,1, —1} we have,

N X5/6
N(;@( g(w)k = 0<10gX) (1.7)

w prime
w=1 (mod 3)

as X — oo. We conditionally establish a version of this conjecture with wide uniformity
in k.

Theorem 1.3. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let W be a smooth function compactly supported in (0,00). Then as X — o0 we

have
o 5/6
S o= W () = o(x)

w=1 (mod 3)

w prime

uniformly in 1 < |k| < X1/10

Theorem 1.2 is a nearly immediate consequence of Theorem 1.1 and Theorem 1.3.
Notice that in the case Kk = 0 (mod 3) (k # 0), Theorem 1.3 unambiguously requires a
zero-free strip for L-functions associated to Groflencharaktern.

1.3. Cubic Gauss sums and automorphic forms. Developing Kubota'’s theory [Kub69,
Kub71], Patterson [Pat77] established a functional equation for a Dirichlet series of the

form
g(p, c)
2 No

c=1 (mod 3)

= B (2)e(F)

z (mod c)

where

Subsequently, Yoshimoto [Yos87] followed Patterson’s approach to obtain a functional
equation for the Dirichlet series

c=1 (mod 3) N(C>S

where 1 a primitive Dirichlet character such that 3 is not principal. Yoshimoto specif-
ically excludes the case when 9?3 is principal to prevent the (Kubota) multiplier from
interfering with ¢. We develop both of these computations further, obtaining a func-
tional equation for the Dirichlet series

D 9(c)o(9c)
c=1 (mod 3) N(C>S
and ¢ a periodic function modulo 7 with r = 1 (mod 3). We specialise our computation
to the case when ¢ is the conjugate of a cubic character to modulus r. The result for this
specific choice of ¢ could have been obtained more directly by combining [Pat77, Theorem
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6.1] and [HB0O, Lemma 4.1]. However, we found it advantageous to develop a more general
approach. First, we believe that the result will be useful in later works. Second, this more
general approach improved our understanding of (and confidence in) the formula. Third,
our functional equations explicate the root number. These formulas are too lengthy to be
introduced here. We refer the reader to Section 5 where they are stated in detail.

As in earlier works [HB0O, HBP79], this Voronoi formula is used to understand the
so-called Type-I sums

3 f](cr)arV(Nér))V(NC(,C)), CR = X, (1.8)
er=1 (mod 3)

with «, arbitrary coefficients bounded in absolute value by 1. A sharp bound for (1.8)
in the range C' > R? was established in [HB00]. In the proof of Theorem 1.1 we need
an asymptotic slightly past this range (with an error term « X®%¢). In Section 8
we use the Generalized Riemann Hypothesis (to cancel out the contribution of cubes)
to obtain adequate pointwise (for a single value of r) Type-I information as long as
C > N(r)'*¢, for any given € > 0. We also give alternative estimates in Section 11 that
use the averaging over r in a non-trivial way: we obtain adequate Type-I information
on average in the range C' > R?~¢, under the Generalized Riemann Hypothesis. For the
interested reader we note that there are two ways of bypassing the Riemann Hypothesis
in this case. One is to assume that the sequence «, has a bilinear structure. The second
second would be to obtain “subconvex” bounds in the r aspect for the Dirichlet series
Yie=1 (mod 3) 9(cr)N(c)~*. Since a more significant bottleneck appears elsewhere we have
not endeavoured to make these results unconditional.

1.4. Cubic Gauss sums and the cubic large sieve. In order to obtain the bound

Z g(w) <. X5/6+a’
N(w)<X
w prime
w=1 (mod 3)
Heath-Brown develops in [HB00, Theorem 2] the so-called “cubic large sieve”. The cubic-
large sieve states that for any sequence (3, supported on squarefree b € Z|w],

> o) Y 51)(2)3)2<<E(AB)E-(A+B+(AB)2/3) ST (19)

N(a)<A N(b)<B N((b)<B
1 (mod 3) b=1 (mod 3) b=1 (mod 3)

a=

Immediately after stating the cubic large sieve in [HB00], Heath-Brown writes:

“It seems possible that the term (AB)%? could be removed with further
effort, and the bound would then be essentially best possible. However,
the above suffices for our purposes. It should be noted that if the variables
are not restricted to be squarefree, a result as sharp as Theorem 2 would
be impossible. The proof of Theorem 2 is modelled on the corresponding
argument for sums (over Z) containing the quadratic residue symbol, due
to the author [3] (local cit. [HB95]). The latter is distinctly unpleasant,
but fortunately some of the difficulties may be reduced in our situation by
the introduction of the term (AB)%3 in Theorem 2. ”
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This assertion that the term (AB)%? can be removed is then frequently repeated in sub-
sequent literature. For example, in [BGL14] it is asserted that

“As in [12] (local cit. [HBO00]), the term (AB)*3 is not optimal and can
most likely be replaced with (AB)Y/2.”

To our great surprise we found that the term (AB)%? in Heath-Brown’s cubic large
sieve can’t be removed. We state our optimality result in terms of operator norms. For
A, B > 10, and (By)eez[) be an arbitrary sequence of complex numbers with support
contained in the set of squarefree elements of Z[w], let

saBe= Y vl Y a)[

a
A<N(a)<2A B<N(b)<2B
a=1 (mod 3) b=1 (mod 3)

For A, B > 1, consider the operator norm
B(A, B) = sup {Z(A, B,B): Y| = 1}. (1.10)
B b

Theorem 1.4. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let A, B = 10, then for any € > 0 we have

(AB)*? «. B(A, B) <. (AB)¥3*¢ for Ae [vB, B*\[B'~¢, B'*¥],
(AB)¥37% «. B(A, B) <. (AB)¥3*¢  for Ae [B'~¢, B""*],
A+ B« B(A,B) «. (AB)*- (A + B) otherwise.

One example establishing optimality in the range A = B~ (for any given small ¢ > 0)
is B, = g(b). This follows from applying our Voronoi summation formula in Proposition
8.1, and then subsequently using the non-trivial main term that arises when summing

cubic Gauss sums over all elements of Z[w] (see Section 9 for details). This is far from
the only obstruction. Any sequence of the form (,g(b) with £, non-negative and not
correlated with cubic symbols would provide a counterexample.

To address this limitation of the cubic large sieve we introduce a correction term into
Heath-Brown’s cubic large sieve. This allows us to beat the exponent (AB)%?3, albeit only
for sequences that have substantial cancellations against all non-principal cubic characters.
We show that there exists a small fixed § > 0 such that for any sequence 8 on Z[w]|

satisfying

e |3 <1 for all be Z[w];

e [, supported on square-free w-rough integers (i.e all prime factors of b € Z[w] have
norm > w);

e [3, supported on b =1 (mod 3) with N(b) = B;
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then -
P u2<a>v(Nga>))b%]ﬁbm(g)g— (;2 Z e
a=1 (mod 3)

A by | AB)*®.B
~2 Y ‘Z@,(E)g) + 0(7( >w + (AB)Q/?’*‘; B),  (111)
0<|h|<B2/A b
h+#6

where (3 denotes an integer of the form k3 with k € Z[w]. In particular, if the sequence £3,
exhibits square root cancellations against all non-trivial cubic characters and w > (AB)®,
then (1.11) is « (AB)°W(AB + B? + (AB)?3~¢ . B). This suggests that in order to
beat the cubic large sieve, the correction term alone is not enough; we really need to
know additional information about the sequence ;. It is tempting to try to use Dirichlet
polynomial techniques to bound (1.11). However, the optimal term (AB)%? in the cubic
large sieve adds substantial technical challenges preventing us from being able to use these
techniques. Here is a special case of the precise statement we prove in Section 9.

Proposition 1.1. Let A, B,w > 10, X := AB and € € (0, 15555). Suppose that w = X°
and that B = (By) is a sequence satisfying |8l < 1, and has support only on squarefree
w-rough integers b € Z|w] with b =1 (mod 3) and N(b) € [B/10,10B]. Suppose that

3 a(5) 0 < (50g) 0PN,

beZ[w]
ulb

uniformly in t € R, @ # a € Z[w], and N(u) < B. Then there exists p(¢) € (0, 15555

that
> ey (A ))zﬁb 0(3), - Sy z: i

a€Z|w] beZ|w
a=1 (mod 3) (b, a)

A2/3 35/3
w?/10

G <B29/12A’1/12 L B4 X(l " (B2/A)’1000)>.

) such

&, A2/3 p(e B5/3 p(e) +A1/6+€B5/3

Using the above estimates we are able to show in Section 10 that for a broad class of
sequences we have

. (2m)*8 Byt (ab)
Z g pg(ab) ~ 5 Z . (1.12)
a,b=1 (mod 3) 3F<§) a,b=1 (mod 3) N(ab> 1/6

Note that p?(ab) can be inserted at will since b is supported on w-rough integers and
w > (log X)'% is reasonably large. It is perhaps appropriate to call (1.12) a dispersion
estimate. Compared to the usual dispersion estimates we use the assumption of the
Generalized Riemann Hypothesis instead of the usual Siegel-Walfisz assumption, and the
condition ab =1 (mod ¢) is replaced by the term g(ab).

The estimate (1.12) will be indispensible in estimating so-called Type-II sums, which
we discuss in the next section. Our example suggests that the GLs-spectral large sieve
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recently established by Young [You21] might also be optimal. In the same vein, it is also
interesting to note that Iwaniec and Li found unexpected main terms appearing in the
spectral large sieve for I';(¢) [ILO7]. Other versions of the cubic large sieve have been
established by Baier and Young [BY10] in their work on the first moment of Dirichlet
L-functions (over Q) twisted by cubic characters.

1.5. The overall strategy of the proof. Having explained above the main ingredients
in our proof we will now explain how they are combined in Sections 13 and 14. It will be
useful to compare the argument with [HB00]. In order to establish the bound

D (@) « X0t (1.13)

N(w)<X

in [HB0O], Heath-Brown needs to address two types of sums,

3 aag(ab)v(Ma))V(N(b)), AB = X; (1.14)

a,b=1 (mod 3) A B
~ N(a) N(b) -
abzlz(:md , aaﬁbg(ab)V< 1 >V( 5 ), AB = X. (1.15)

The first sum is known as a Type-I sum and the second sum as a Type-II sum. If we are
aiming for a bound of the form X°%*¢ then we need X¢ sharp bounds for Type-II sums in
the range B > X'/ (since we will apply Cauchy-Schwarz on the b-sum and thus we can
hope for at most a saving of /B in the most favourable scenario). Then in order to be
able to capture primes we need X¢ sharp bounds for Type-I sums in the range B < X3,
However, asymptotic estimates are not needed and sharp bounds (up to X¢) are sufficient.

If we aim to refine Heath-Brown’s bound (1.13) to an asymptotic then first we need
to refine the Type-I estimate to an asymptotic. This can be done simply by a careful
derivation of Voronoi summation. We also need to push the range slightly past B > X3,
but this does not present us with any significant difficulties under the Generalized Riemann
Hypothesis (other than the tedium of the computations).

Second, we need to refine Type-II estimates to an asymptotic; this is significantly more
tricky. For this it is necessary to use our version of the cubic large sieve with the correction
term. Since the error term needs to be smaller than X°/® we now need to take B > X/3+¢
in the Type-II sums. This however creates a problem since the ranges in which we can
handle Type-I and Type-II sums are not enough to obtain primes. In fact we now need
to also bound the contribution of so-called Type-III sums of the form

X awav (SRR (). ase-x

with A, B,C = X/3¥9C) and a,b, c supported on primes. Bounding these sums with
a power-saving presents a real challenge that we do not know how to solve. The main
problem arises when A = B = C' = X3, In that regime, executing Voronoi summation
on any single variable produces an essentially self-dual situation. Furthermore, the only
admissible way of applying Cauchy-Schwarz is by grouping two variables together, and
this then leads to a very long off-diagonal that appears even more difficult to handle.
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Instead, we use the Generalized Riemann Hypothesis in Section 7 to refine the large sieve
bound to a bound that is tight up to constant factors and holds with wider uniformity than
the Type-II bound stated above. As a result we can show that the overall contribution
of these Type-III sums is only € times the expected main term. This strategy has been
previously frequently used in the literature, albeit to our knowledge not in the context of
oscillating sequence with a main term of density X 9.

Finally we note that our Type-II bound (as stated) is not able to handle the narrow
range X1/27¢ < A, B < X'/?*¢. So instead in this range we use the same kind of ideas
that we used to handle Type-III sums. This is not necessary and we could have obtained
a power-saving in this range with a little bit more work. However, this wouldn’t have
made a significant difference so we refrained from this additional work.

1.6. Acknowledgements. We warmly thank Samuel Patterson for his helpful corre-
spondence and encouragement, as well as Matthew Young and Scott Ahlgren for their
helpful feedback on the manuscript. M.R. was supported on NSF grant DMS-1902063
and a Sloan Fellowship.

2. Basic facts about Q(w)

Let Q(w) be the Eisenstein quadratic number field, where w is identified with ™3 e C.
It has ring of integers Z|w], discriminant —3, and class number 1. It also has six units
{£1, tw, +w?} and one ramified prime A := 1 + 2w = /=3 dividing 3. Let N(z) :=
No)o(z) = |z|* denote the norm form on Q(w)/Q. Each ideal 0 # ¢ <Z[w] is principal.
If (¢,3) = 1, then ¢ has a unique generator ¢ = (c) that satisfies c =1 (mod 3).

Whenever we write d|c with ¢ = 1 (mod 3), it is our convention that d =1 (mod 3). If
p=1 (mod 3) is a rational prime, then p = @@ in Z|w]| with N(w) = p and @ a prime
in Z[w]. If p=2 (mod 3) is a rational prime, then p = @ is inert in Z[w] and N(w) = p*.
Define

é(z) c= e27TiTrC/R(Z) — 627T7:(Z+E) = (C

Y

For ¢ € Z|w] with ¢ =1 (mod 3), the cubic Gauss sum is defined by

g@);:d > )(g)3é(g). (2.1)

(mod ¢

We have the formula [Has50, pp. 443-445]

9(c)* = ule)e’e, (2.2)
where £ denotes the Mobius function on Z[w]. Observe that (2.2) implies that g(c) is
supported on squarefree moduli. We write

. 9(c)
g(c) == ==,
¢]
for the normalised cubic Gauss sum. Note that |g(c)| = p?(c) for all ¢ € Z[w].

An important property of g(c) is twisted multiplicativity [Has50, pp. 443-445]. It states
that

a

g@@:@k%&@ for a,beZ[w] satisfying (a,b) = 1. (2.3)
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Both sides of (2.3) are zero when (a,b) # 1, and so (2.3) can be trivially extended to all
a,b e Z|w].
The cubic symbol obeys reciprocity. If a,b =1 (mod 3), then

(5, @),

We also have the supplement: if d = 1 + a\? + a3z\® (mod 9) with ay, a3 € {—1,0,1},

then
(s i (),

3. Notational conventions and definitions

Throughout the paper, @ will denote a general prime in Z[w] satisfying (w,3) = 1,
and \ := 4/—3 the unique ramified prime. We also denote by & an element of the form
b® with b € Z[w]. For z > 3, let

2= ] = (3.1)
N(w)<z
w=1 (mod 3)
w prime
For a given w > 1, we say that a € Z[w| with a = 1 (mod 3) is w-rough if and only if
(n, Z(w)) = 1.
Many estimates in this paper hold for a large class of sequences given in Definition 1
below.

Definition 1. Given n > 0, A > 1, and w > 1, let C, (A, w) denote the set of sequences
a = (ag) such that

(1) |ag| < 1 for all a € Z[w];

)
(2) «, is supported on squarefree w-rough a € Z|w| with a =1 (mod 3);
(3) @ = 0 unless N(a) = A;
(4) For any € > 0, t€ R, { € Z and k,u € Z|w] with k,u =1 (mod 3), we have
a \? i k . . . A 1/24n+e
Z[]] (i) N@*(3), < W INE A+ (505) - 62
a=1 (mod 3)

ula
provided that ¢ # 0, or if £ = 0, then provided that k # (J.

The Generalized Riemann Hypothesis is used to show that axiom (3.2) above holds
for sequences of interest to us (i.e. smoothed indicator functions on the set of w-rough
integers in Z|w].) See Section 6 for details.

Where important, the dependence of implied constants on auxiliary parameters will be
indicated in subscripts i.e. O;¢ .., Kcea,.. and ».¢ 4 . It will be crucial to give the
implied constants of certain error terms in the proofs of Theorem 1.1 and Theorem 1.3
explicitly in terms of some of the auxiliary parameters. Such terms are clearly indicated.
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4. Poisson summation formula

We will need a minor variant of the number field Poisson summation formula.

Lemma 4.1. Let V : R? — C be a smooth Schwartz function. By an abuse of notation,
set V(z +1y) :== V(x,y). Then we have

Z V(k Z f 7:’3:”’))@@.

keZ|w keZ

Proof. Let A := Z|w], viewed as a discrete lattice embedded in C. We identify z + iy with
(z,y) € R% Poisson summation gives

Z Vix) = covol Z V

xeA xeA*
where A* = \7'Z[w] is the dual lattice to A,

V(x) := J}W V(u,v)e(2(zu + vy))dudv,

and

covol(A) = ?

Observe that
Re[(z + i) (u —iv)] = zu + yv.
Thus Poisson summation for Z[w] is given by

Z V(m JR (,y)e(2Re(k(z + iy)))dzdy.

meZ[w keA
We can replace k by k, since A’lz[w] is closed under conjugation. Thus

% Vm =5 37 [ Ve (R

meZ[w keZ

as required. (]

Lemma 4.2. Let 0 # q € Z|w], ¥ : Z[w] — C be a g-periodic function, and V : R* — C
be a smooth Schwartz function. Then

2 .k
X, wmVim) =~ 3 wuwv(a),

keZlw

where

and
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Remark 4.1. For each t € Z|w], note that the additive character

has minimal period 3¢ (not 3Aq).
Proof. We have

>, dmV(m) = D () Y Vimg+i)
meZ[w] t (mod q) meZ[w]
Application of Lemma 4.1 to the summation over m gives
k
Z Vimg+t) = Z J z+zyq+t)( (v + ))dxdy
R2 A
meZ[w] keZ

A linear change of variable then shows that

D V(mqﬂ):é(—@)L y fWV(x,y)é(W)dmy. (4.1)

meZlw] gA/ V/3N(q) keZ[w]
The result follows upon summing both sides of (4.1) over ¢ (mod ¢) with the g-periodic
weights (t). |

We will specialise to the case where the test function is radially symmetric.

Lemma 4.3. Let q € Z|w] with ¢ = 1 (mod 3), ¥ : Z|w] — C be a q-periodic function,
and V' : R — C be a smooth Schwartz function. Then for any M > 0 we have

meZ[w] M 9v3N(q) keZ[w]
m=1 (mod 3)
where
co o ( Tk kx
dhy=e(—55) X vwae(—),
z (mod q)
q denotes an inverse of ¢ (mod 3), and V : C — C is defined by
. @ 4r|u|
V(u) = V(r?)J; dr. 4.2
) = | v ()i (12)
Proof. Application of Lemma 4.2 gives
N(m) 2 2 + y*\ | (k(z +dy)
mezz[w] ¢(m)v( M > 39) V3 ; f < M >6< 3A\q )dxdy’
m=1 (mod 3)
where
. 5 tk
W= Y vme(gp) (4.3)
t (mod 3q)
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We first simplify the integral. A change of variable gives

J;Rz V(:C2]_\;y2>é<k(5;;\-qiy>>dxdy =M y V(z? + y?)e (W)dwdy. (4.4)

We change x + iy to polar coordinates via the substitution z + iy = re®”. Let x € [—m, )
be a fixed angle (depending on k and ¢) such that

o {%i—g' if k#0

1 if k=0.
Then (4.4) becomes
0 27 9—ik k|\/—
M| v 2f re™ | dodr-. 45
formo(mq')r (45)

We eliminate the translation by x by a linear change of variable in 9 and the fact that
the integrand is periodic with period 27. Therefore (4.5) becomes

* n Arir cos(V) | k|v M
M V(r? J dvdr.
Jy v ), e (T o

Observe that by [DLMF, (10.9.2)] and the fact that Jy(x) is real-valued we obtain

Jo(x) = Re Jo(x) = Re (% f ey 2i ( f iz cos(V) gy f i )
0

™\ Jo 0

1 21

_ eiw cos(ﬁ)dﬁ.
2T 0

Thus (4.5) is equal to
4 v M
27'('ij 0 mr|k] ) r
3v3lql

It remains to compute w(k;) The Chinese Remainder theorem guarantees that we can
write any ¢ (mod 3¢q) as t = aq + 3b with a a representative of a residue class (mod 3)
and b a representative of a residue class (mod ¢). Necessarily a =G (mod 3). Thus (4.3)

becomes
= X (g X vee(5,)

a (mod 3) b (mod gq)
azz (mod 3)
)T o)
b (mod q)

where the displays followed from the fact that 1 is periodic modulo ¢ with (¢,3) = 1, and
Remark 4.1. |

We now state the final version of the Poisson summation formula needed for this paper.
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Corollary 1. Let ny,ny € Z|w]| be squarefree and satisfy ny = ny = 1 (mod 3). Let
d = (ny,n2) and V : R — C be a smooth Schwartz function. Then for any M > 0 we
have

oy 7 Nm)y () (Mo /d)alnald)
> GGy ) =

N () (), P (S0,

keZ|w]

Ed(k):zé(—%\) 3 é<—%x>, (4.6)

meZ[w]
m=1 (mod 3)

where

Proof. We apply Lemma 4.3 to

where 1, denotes the principal character modulo d. Observe that v, ,, is n1ns/d periodic.
All that remains to do is to compute 9, ,,. We have

ot (P 3 () () )

z  (mod ninz/d)
(z,d)=1

Observe that 3\ = (=\)? and (n1ny/d,3) = 1, so (4.7) becomes
dnl’m(k) - é(_%) Z (nf/d)s(%/d)gé<_(nl]:zﬁ>'

z  (mod nina/d)
(z,d)=1

Since ny,n2,d =1 (mod 3), we have nyng/d =1 (mod 3), and hence

(I (L)

Since n; and ny are squarefree we have (nyny/d?, d) = 1. We use the Chinese remainder
theorem to write = a(nyny/d*) + bd. We find that

=5 Y ()G o)

z  (mod nin2/d)
(z,d)=1

S MY ) )

a (mod d) b (mod ning/d?)
(a,d)=1
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The sum over a is a Ramanujan sum ¢4(k). Observe that (ny/d,ny/d) = 1. To evaluate the
sum over b we use the Chinese remainder theorem again. Writing b = t(n,/d) + u(nz/d)

gives
ot =i 8GRI, Gia)

t (mod ma/d) u (mod mn1/d)

- é<_£>cd(k)(nf/d)?,(nlk/d)s(n?jd):a(nz;d)s 9lm/d)g(na/d)

where the last display follows from the primitivity of characters <m) and <—) .
3 3

¢

na/d
Finally,
(n2><n1):ng/d d ny/d d :<d)(d>
ny/d/3\ny/d/ 3 ny/d) s \ni/d )5 \noj/d), \no/d ), ny/d/)3\ny/d/ 3’
where the last equality follows from cubic reciprocity. This completes the proof. [ |

We close this section with standard estimate for V.

Lemma 4.4. Let V : R — C be a smooth compactly supported function. Then for any
integer k =0, )
V(u)] <pv (1+u))™*, weC. (4.8)

Proof. Integrating (4.2) by parts k € Zs( times using [DLMF, (10.22.1)] gives

V() — (-1)’@(%?)'“# f PO (2 rk+1Jk(4§:/|g|>dr. (4.9)

The claim immediately follows. [ |

5. Voronoi summation in the level aspect

The Fourier coefficients of the cubic theta function essentially sample cubic Gauss sums.
Naturally, automorphy of the theta function is a key input in the proof of our level aspect
Voronoi summation formula.

5.1. Geometry and the cubic theta function at cusps. Let H? denote the hyper-
bolic 3-space C x RT. We embed H? in the Hamilton quaternions by identifying i = v/—1
with 7 and w = (z,v) = (z + iy,v) € H? with 2 + yi + vk, where 1,4, 7, k denote the unit
quaternions. In terms of quaternion arithmetic, the group action of SLy(C) on H? is given
by

Yw = ZZiz, for all ~ = (CCL 2) € SLy(C) and we HP.
In terms of coordinates,
(az + b)(cz + d) + acv? v .
- = H". 1
yw < |cz + d|2 + |C|2U2 ) |CZ i d|2 n |C|2U2 , w (2;71]) I (5 )

Let I' := SLy(Z|w]), A € Z|w] satisfy A =0 (mod 3), and
['(A):={yel':y=1 (mod A)}.
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Let
X :Ti(3) = {Lw,w’}
be the famous cubic Kubota character [Kub66, Kub69], given by

), if y=(2%)el(3) and c#0,
X<fy> = (a)S g ' (cd) 1( ) (52)
1 otherwise.

For v € I'1(3) above, we have the determinant equation ad — bc = 1 with bc = 0 (mod 9).
Thus we have the alternative formula

b)Y if y=(2b)ely(3) and c¢#0,
x(7) = (d)3 v '(Cd) 1(3) (5.3)
1 otherwise.

Let I'y := (SLs(Z),T'1(3)). It was shown by Patterson [Pat77, §2] that x extends to a
well-defined homomorphism
x: Ty — {1, w,w?},
when one defines x/|sr,z)= 1.
Let (w) denote the cubic metaplectic theta function of Kubota on H3. Tt is automor-
phic on I'y with multiplier x. It has Fourier expansion (at o) given by

0(w) = ov?? + Z T(M)UK%(47T|M|’U)(§(ILLZ), w e HP,
HEXAT3Z[w]
where
0= 37/2, (5.4
and the other Fourier coefficients were computed by Patterson [Pat77, Theorem 8.1]. They
are

(g(\2,c)|2[3m/2+2 if p=2N""cd®, n>=1
6_%m‘%‘3n/z+2 if p=dwled®, nx=1
7(p) = < e%m‘%‘?ﬂm” if p=+w\"ed?®, n=>1 (5.5)
g(1,c)|4|3m/2+5/2 if p=2XN"3cd®, n=0
L0 otherwise,
where
c,de Z[w], c¢,d=1 (mod3), and p*(c)=1. (5.6)

Implicit in [Pat77, §7 and §8] is a careful study of 6(w) at various cusps of H?. We
extract the information that will be of use to us.

Let {; : j = 1,...27} be the complete set of inequivalent representatives for I'>)\I" given
in [Pat77, Table I pg. 129]. Particular coset representatives 7; of I'2\I' of importance to

us are
o= 1 w (1 —w (1 0 q (1 0
M =4,7% = 0 1 , V3 = 0 1 y Y10 = w 1/ and 7yig = w2 1)

For each j =1,2,...,27, let
Fj(w) == 0(y;(w)), weH. (5.7)
If ge T, then
Y59 = 9i(9)Vk,(9), for some g;(g) €y and 1< k;(g) < 27. (5.8)
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Thus

Fi(g(w)) = x(9;(9)) Fr,(g)(w) for all w e H. (5.9)
Observe that each Fj is automorphic on I'1(9) with multiplier y by [Pat78a, Lemma 2.1].
Following Patterson, we define

Zd Yo K js(4n|plv)é(pz), we H?, (5.10)

where the d;(u) have support contained in A\™*Z[w]\{0}, and have expressions in terms of
T(w), T (p) [Pat?? (8.8)] and 7 (p) [Pat77, (8.9)]. For the reader’s convenience we state
them here. They are given by

Iwg(A2, )¢ if p=\"ted?
96_ 5” w2g(wA2, )¢ if  p=w\"cd?
Tl(/’l’) = 96 9 g w2)\2 } } lf o= W2)\_4Cd3 (511)
0 otherwise,
and
9ew? g g(02,¢) ‘ ‘ if p=-\"ted?
9e~ 5" g(w)\2 ‘ | if pu=-\"twed?
= 5.12
(k) Jwe s g(w?A? ¢ }g‘ if p=-\"‘w?cd? (5:.12)
0 otherwise,

where ¢ and d are as in (5.6). The formulas for the d;(p) are given in [Pat77, Table III
pg. 151]. We have also included them in Appendix A. We have the Fourier expansions
(at o0) [Pat77, pg. 148],

23 4 if 1<j<
Fi(w) = ov(w)™" + Fi(w) i IS em, (5.13)
F}(w) if 10<j <27

It is well known that I' is generated by elements

w 0 11 0 —1
R I (R

Thus to understand the maps j — g¢;(-), 7 — k;(-) and j — x(g;(-)) occurring in (5.8)
and (5.9), it suffices to compute them on the generators P, E' and T'. The values of k;(E)
appear in [Pat77, Table III]. We have included the k; values on all three generators in
Appendix A.

5.2. Conjugation and coefficient sieving. It is more convenient for us to work with
the F;(w). It follows from (5.13) that they each have Fourier expansion (at o0) given by

) — {02}2/3 + 2,4 d;(—p) )UKl (mlplv)e(pz) if 1<j<9 weH?, (5.14)

J

F
> di(— )UK1(47T|,u|U)( z) if 10<j<27’

since Ky /3(z) € R for > 0.
The Fourier coefficients of I} (w) are given by

di(=p) = 7(=p) = 7(1),
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where the last equality follows from the evenness property of 7 implicit in (5.5). Let
S:={\3cdeQw):c,deZw], ¢, d=1 (mod3) and p?*(c)=1}, (5.15)
and

Fi(w)s := ZWUK (4r|plv)é(uz), we H>,

nes

1
3
Lemma 5.1. Let F}(w)s be as above. Then
. 1/ . .
Fi(w)s = g(Fl(w) + why(w) + w2F3(w)),

and Fy(w)s is automorphic under T'1(9) with multiplier Y.

Proof. Following [Pat78a, Theorem 5.2], we detect € S additively. From (5.5), we have
(e ANZ[w] : é(wp) =w? and T(u) #0} =S.

Thus

cv?3(1 + w + w?)

+ = Z WUK% (47| plv)é(pz) (1 + wé(wp) + w?é(2wp))
HEXN3Z[w]

_ %(E () + wFi(w) + W Fy(w)), (5.16)

where the last term in (5.16) was obtained by writing (§ %) = (§ %) (} ) and using
automorphy of Fi(w) = 6(w) on T'y with multiplier ;. This proves the first claim. Each
F; is automorphic on I'1(9) with multiplier X, and so the second claim follows. |

5.3. Twists. Let r € Z[w] with 7 = 1 (mod 3), and ¢ be a function on Z[w] that is
periodic modulo r. In view of (5.10), the ¥-twist of F(w) is given by
Fi(w; ) == Y di (=) (N )oK (4n|ulv)é(pz),  w e HP,
w

3
In view of (5.14), the ¢-twist of F;(w) is

2/3 | Tox (g ;

Fi(w; ) = {ﬂ(o)” PHFwy) 1<i<9 o (5.17)
Fi(w; ) 10y <27

Remark 5.1. The Fourier coefficients of all the F; have support contained in A™*Z[w].
This explains why we define a general twist by ¥(A\*(-)) in (5.17). In the special case
Fy = 0, (5.5) tells us that the Fourier coefficients have support contained in A™*Z[w].
Thus our twisting definition produces an extraneous ¥ () factor in this case. This will be
immaterial in our final results.

Define the Fourier transform
ux

D)= Y] ¢(g;)é<7), u e Z[w]. (5.18)

z (mod )
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Fourier inversion tells us that
1 ~ ux

V= oy X bwi(—=), ezl

u (mod )
We also define the following non-Archimedean analogue of a Bessel K /3-transform,

P(u) = Y (@)Sys(z,uir), ueZw), (5.19)

z (mod r)

Sy, uir) = (%)3 Y (g)gé(xd j ), (5.20)

d (mod r)
(d,r)=1
(Md)(A\ta)=1 (mod r)

where

is the cubic Kloosterman sum.
To isolate twists of the cubic Gauss sums, we need to analyse

Fi(w;v)s == ) ()N )oK (dalplv)é(pz),  w e H. (5.21)
pesS

Lemma 5.2. Suppose r € Z|w] with r =1 (mod 3), and ¢ is a sequence on Z|w] that is

periodic modulo r. Suppose that 1 is supported only on residue classes coprime to r. For
w = (2,v) € H?, we have

F(wiv)s = 31\%(7“){?1 + T+ TR (- 7‘2(|z|2§+ ) |r|2(|z|v2 T w)”ﬂ

Proof. Fourier inversion and Lemma 5.1 imply that

ﬁ(w;ws
1 ~ Md
- D (2 - 22
NG mzodr)‘”() (== 570),
(d,r)=1

4 4

= 3N1(r) Z @(d)(ﬁ(z— ¥,U) +wf2<z— ¥,U) +w2F3(z— ¥,v)>.

d (mod r)
(d,r)=1

(5.22)
Given our r, and each d in (5.22), there exists
MNd b
= (_r A4a> e Ts. (5.23)

A direct computation shows that
\d Ma z v
27 -~ = = ) 5.24
(Z r ’”) 7( TP |r|2(|z|2+v2)> (5:24)
We now carefully factorise the v in (5.23) as a word in P, E and T so that (5.24) and
automorphy can be used in (5.22). For each k = m + nw € Z|w], m,n € Z, let

A(k) := PT-"PT™"P = ((1) ’1‘) .
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For each r,b € Z|w] occurring in (5.23), let

W(r,b) = E*A(r) EA(BD)EA(r) = (1 A 1_*5];) .

Then
—9d + br + 9bdr —b — 9ab + b*r o
Wi(r,b)Ey = (r + 18dr — br? — 9bdr?*  —9a + 2br + 9abr — b2r2> =7 el(9). (525
Equivalently,
v = E*W(r,b) 7. (5.26)

To obtain (5.27) immediately below we use (5.24), (5.26), (5.8), (5.9), and the fact that
each Fj is automorphic on I'y(9) with multiplier x. For each j = 1,2, 3,

— Md o
B (== 250) = XG0 ) - x0)
D ) z v
X Bl (B3W (r,b)-1) (T - 222+ 02) (2 + v2))' (5.27)
We claim that
3 -1\ _ 1.
1 5 = 1, .
ki (E°W (r,b)7") =1 (5.28)
ks (E*W (r,0)7") = 19; (5.29)
3 -1\ _
3 5 = . .
ks(E°W (r,b)~") = 10 (5.30)

Observe that

3 1 -1 —1+br b
NEW(r, )"~ = (—27“ +br? —1+br

=FE® (mod 3).

Thus v, E3W (r,b) "1y, € Ty, and (5.28) follows. Note that (5.29) (resp. (5.30)) follow
similarly from

3 11 (w+ 1)b — 2wr + wbr? —w + b+ wbr
VEW(r,b) "y = <—(w +1) —2r+ (w+ Dbr + b2 —1+br
=T'E* (mod 3),
(resp.)
3 11 (w=wb+2wr —wbr —wbr? w+b—wbr
VW ()" = ( w—2r — wbr + br? —1+0br
=FE° (mod 3).

We now compute the automorphy factor in (5.27). The above computations show that
g1 (E3W(r, b)*l) = E*W (r,b)";
92 (B*W (r,0)7") = 12 EW (r,b) '
g3 (E3W(r, b)*l) = W (r,b) 1
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In the following computations we repeatedly use the determinant equation 8lad + br = 1
from (5.23), the fact that x|si,z) = 1, as well as (5.2) and (5.3). Now,

X(g1(E°W (r,0) 7)) = X(Egu(E*W (r, b))
:{m it —1+br#0

1 otherwise
= 1. (5.31)
Similar computations yield
X(g3(E*W (r,0)™")) = X(Egs(E*W (r,b)™"))
B (erb__b;br)3 if w(l—=b+2r—br—5b?) #0
1 otherwise
=1, (5.32)

and

X(g2(E*W (r,0)71))
(ETgo(E°W (r,b)™"))

=X
( w+bi;ll)):+br71)3 if (w + l)b — 2wr + Wbrz
1
= 1.

—(w+1)=2r+ (w+1)br+br? #0
otherwise
(5.33)

We also have

7+ 18dr — br? — 9bdr?\ [ 8ladr + 18dr — 9bdr?
—9d+br +9%dr ), \ —9d+br+9dr ),

9ar + 2r — br?
—9d + br +9bdr ), \=9d + br + 9bdr ) ,

<9d) ( 9 + br + 9bdr> (by cubic reciprocity)

1 9ar + 2r — br?

—9d + br + 9bdr —9d + br + 9bdr
9a + 2 — br 3

9d 1 —8lad — 729ad®>\ [ 9a 9d + 1
9a+1+8lad ), \r ), \9a+1+8lad/,

¢, ) - (),

We combine (5.27)-(5.34) in (5.22). Note that Fig = Fyy and Fig = Fj; by (5.13). We
then use the Fourier expansions (5.14) to open Fy, I}y and FY,, and assembling the sum
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over d (equivalently a) shows that

_ 1 — - S z U
7y (w: =7<F 1% 2F*)<— , \11)
(wi)s = gy 3wl ) e ey TP o)

where

W(u) = 3 @(d)(&)?)é(%), we Z[w]. (5.35)

d (mod r)
(d,r)=1
(Md)(M\a)=1 (mod r)

After opening @(d) using the definition (5.18), and interchanging the order of summation,
we readily see that ¥ (u) = 1 (u) for all u € Z[w]. [

For the coming lemma it will be instructive to open the definition of é(-),
é(pz) =e(puz +mz), zeC.
For ¢ € Z\{0} and 1 < j < 27, let
2 j(—ﬂ)w(k“u)uévK% (4rlplv)e(pz +7Z), it £>0
2 (=N ) E oKy (4r|plv)e(pz + 7z),  if £ <0
3

For ¢ = 0, F;(w;1,0) := Fj(w; 1) from before. We have

S

Ej(w;p,€) = Ff (w; 9, 0) =

S

(a—az)gfj(w;w), if >0

(L) F(w;v), it £<o0,

w = (z,v) € H’. (5.36)

— 1
We apply differential operators in the proof of the next lemma. Thus we remind the
reader that Fj(w;,0) = G,(z,Z,v;1,{) is a function of z,Z and v, although the F;
notation suppresses this.
With these observations in mind we deduce the following Corollary.

Corollary 2. Suppose r € Z|w] with r =1 (mod 3), and 1) is a sequence on Z|w] that is
periodic modulo r. Suppose that 1 is supported only on residue classes coprime to r. By
abuse of notation, write F;((0,v);1,0) as Fy(v;1, L) for allv >0, 1< j <27 and { € Z.
Then we have

(=1)°

_ . _ 1 ~
(30T + 8ecoFs + wFiy + T ) (i =),

r?o’

or equivalently,

Tx Fal Tox 27w 7 3- (_1)6 - 1
(Fl dez0 + Frde—o + WYy + w FlO) (v; 9, L) = N (r)a—1y214 F1(|r|2v;w’£>’

Proof. By Lemma 5.2, we have

Fi(er s = gy B+ - TRl (- oy s ) ).
(5.37)
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Setting z = 0 immediately gives the claim in the case ¢ = 0. If £ > 0, we write |2|? = 2Z

and apply the operator W(a—i)g}zzo to both sides of (5.37). A computation with the

chain rule yields

F(0,0);, 0)s = Wwiw (T T 4 ) (0 ) 5 ),

i)lé\

If ¢ < 0, then we apply the operator ( l)m (62 to both sides of (5.37). This yields,

z=0

(1) <

Fi((0,0);4,0)5 = 3N ()20 Fy +WF9+W2F1*0)((0’L)§@Z> —E>-

[

The claim follows.

5.4. Poles and Dirichlet series. Let ¢ be as in Corollary 2. For Re(s) > 1, £ € Z and
1 < j < 27, consider the family of Dirichlet series

g
T
=
<

>~

S
=

S~—

—

==
SN—

o~

D(s, F}i9,0) = Z NG ;

(5.38)

Dis, Fis )5 = 3 -

pes

For Re(s) > 1, we introduce the integral transforms

o0
M Fw,0) = | F(ws o, 0024 2o,

Y VR
0

0

A(S,Eﬂﬂ,@s = J Fl(v;w’g)svsta,gCZu

0

where by abuse of notation we wrote F;(v; ¢, ¢) = F;((0,v);1,¢) for all v > 0. In the case
¢ = 0 we will omit the index ¢ from the notation.

Lemma 5.3. For Re(s) > 1 we have

A(s, T, 0) = i(%)—%r( +ﬂ—1)r(s+| |+6> D(s, T, 0);

2 6 2
_ 1 12 1 —=
As. T 05 = @m0 (s + = Dr(s+ 4 Dp(s Fr o

2 6 2
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Proof. The proofs of both identities are virtually identical, so we prove the latter, with
¢ < 0. For Re(s) > 1 we have

Mo P = [ 3 TR (drludo)o> e

ues

—)w(A”‘u) (E )"

]_ T
= s+|€ Z
(47)2s+ld =

T(w () ()
:i(%)—2sr<s+|2ﬁ—%)r<s+|2ﬁ+%)Z U O Ga) (5.39)

f Kl )T2s+\f| ldT

pesS

The interchange of summation and integration above for Re(s) > 1 is justified by absolute
convergence (cf. [DLMF, (10.25.3),(10.30.2)]). Furthermore, (5.39) follows from [DLMF,
(10.43.19)]. [

Proposition 5.1. The completed Dirichlet series A(Fy, s;1))s admits a meromorphic con-
tinuation to the whole complex plane C. It has a unique pole (that is simple) at s = 5/6,
with residue

Reg A(Fi, 5 )s = e (5.40)

where o = 3%2/2 is as in (5.4). In particular,

2(2m)5/3a1)(0)

Res D(s, F1;1)g = W

=3

(5.41)

For { # 0 the Dirichlet series A(FY, s;1),{)g is entire. Moreover, for all { € Z we have the
functional equation

3(—1) N> A(s, Fr:p, 0)g = A1 — 5, Ff + wFy, + w*Fy; 0, —0). (5.42)
This functional equation also determines the poles of A(s, FY + wFjy + w*Fy; QZ)

Proof. For Res > 1 we have

N(r)~1 o0

F(v; 1, 0) sv® 92y + J Fi(v; 9, 0) g0 2dy.  (5.43)

N(r)=*

A(?lu S wv K)S = J

0

Observe that Fy(v;1,£)s has exponential decay at co by (5.15) and (5.21). Thus the
second integral in (5.43) has analytic continuation to an entire function.
Let

- (Fl+wF—1*9+w2F—1*0)(w;z/~i,€) if £ =0
(B + wEy + W F) (wy b, 0)  if £#0°
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An application of Corollary 2 tells us that

N(r)=t
j B (v; 4, £) 50220

0

(=) fN(T)l— Lo\ as—jg—2
“agyen), Ol ) o
_ U@Z(O)N(T)f%' dg=0
6 s—%
Y —2s o0, _ -
1

Observe that I} + wFy, + w?F}, has exponential decay at oo by (5.10) and (5.13), and
so the integral in (5.45) has analytic continuation to an entire function. This gives the
meromorphicity and entirety claims in the Proposition, as well as (5.40). Observe that
(5.41) follows from (5.40) and Lemma 5.3.

We now prove the functional equation (5.42). From (5.43) and (5.44) we found that

Q0

- -1 ZN —2s e - .
A(Fl, S5, E)S = % f G(’U; Y, _g)v\€|—2sdv + f Fl(v; 0, E)SU2S+M|_2CZ’U.
1 N(r)~1
(5.46)

We now repeat a similar argument, but instead start with
G (w1, 0) = (FF + wFy + W F) (w; 0, 0), forall weH® and (eZ.  (5.47)

For Res > 1 we have

1 0'6)
A(G*, s;1p, —10) =f G (v;1h, — 0> 11=2qy f G*(v; 1, —0)w*H1=24y, (5.48)
0

1
For Res > 1 we have

301(0)
6s—1°

1 1
J G (v;1h, —0)v** =20y = J G(v; v, —0)v* =20y — 6, - (5.49)
0 0

Then (5.49) holds for all s € C by meromorphic continuation. Similarly, for Res < —1,
we have

304)(0)

— 5.50
6s —1 ( )

f G*(v; 15, —O)wr =2y = f G(v; 1;, — 0w HI=2dy 4 5,
1 1

Then (5.50) holds for all s € C by meromorphic continuation. Insertion of (5.49) and
(5.50) into (5.48) gives

A(G* f G(v Jo2 =24y + f G(v; 9, —0)w*H9"2qy, (5.51)
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where both integrals are to be interpreted as the meromorphic continuations of the original
integrals. Using Corollary 2 we obtain

1 1
— o~ —7 1
Gl .y 2s+|£\f2d —3(—1 ZN IZ|Jv Ia . /¢ 237\Z|72d
|| Gt et = s N | B () o
= 3(—1)£N(T)225f Fi(v; 9, 0)gv=%dv. (5.52)
N(r)—1
Substitution of (5.52) into (5.51) gives

o0 o0
A(G*, s;1p, —0) = 3(—1)ZN(7")223J Fi(v; 9, €)sv‘z|72sdv + J G(v; 1, —€)v2s+|g"2dv.
N(r)—1 1
Equivalently,
ANG* 1=s;0,—0) = 3(—1)£N(r)2sf Fi(v; 1, £)gvzs+zl2dv+f G(v; 1, —€)U‘Z|’2de.
N(r)—t 1
(5.53)
After combining (5.46) and (5.53) we obtain
3(_1)ZN(T)2SA(F1> S, wa E)S = A(@a 1- S ’l;, _E)a
as required. [ |

5.5. Sieving for g(c). Let r € Z|w] satisfy » = 1 (mod 3), ¢ be a primitive character
to modulus r, and ¢ € Z. Then let

Cow (s, 0) == )]

d=1 (mod 3)

In the case ¢ = 0 we omit ¢ from the notation and write (g)(s;%). We denote the
principal character modulo r by 1,. Any J <Z[w] with (J,3) = 1 has a unique generator
d =1 (mod 3). Thus when ¢ = 0 and ¢ = 1,, the above L-function coincides with the
Dedekind (-function of Q(w), except at the local factors of primes dividing (Ar). Note
that (gw)(s; 4, £) has standard meromorphic continuation to all of C; the only case when
this function is meromorphic is when ¢ = 1, is the principal character and ¢ = 0, in
that case there is a unique simple pole at s = 1. Standard functional equations for these
L-functions can be found in [Miy89, §3.3].

Lemma 5.4. Let r € Z|w] with r = 1 (mod 3), and ¢ be a primitive cubic Dirichlet
character on Z|w] to modulus r. For { € Z and Res > 1 we have

§OLOO(E)" 372 D(s Fi, 0)s
= ) 5.54
e=1 %Od 3) N(c)® Cow)(3s — 33 1,,,30) (5:54)

where D(s, F1;1,0)s is as in (5.38).

(1)t

Remark 5.2. Note that we have abused notation in the results and proofs that follow:
i1 € Q(w) is used to index Fourier coefficients of various automorphic forms, and pu(-)
denotes the Mébius function on Z[w]. Meanings should be clear from context.



28 ALEXANDER DUNN AND MAKSYM RADZIWILL

Proof. The Dirichlet coefficients of the right side of (5.54) have support contained in
Z|w]\{0}. The vth Dirichlet coefficient of the right side of (5.54) is given by

ﬁ (%3')5 2, WY\ wu(d)ld] (5.55)

nes
d=1 (mod 3)
(d,r)=1
v=X\3pud3

Recall the definition of S in (5.15). If v ¢ X3S, then (5.55) is zero. Therefore we can
assume that v € A3S. If p e S and 7(u) # 0, then by (5.5) we must have

7() = 3"%g(e)l /1,
where
p=A3ef® forsome e, f=1 (mod3) and p’*(e)=1.
Thus (5.55) is equal to

v.—o( V" ~ 3
=0 () efd_;(md Fwoer il
)=t
v=c(df)?

o V\* .
=0 () N o) (5.56)
e,f,d=1 (mod 3)
(df7r):1
v=c(df)?
where the last display follows from the assumption that ¢ is a primitive cubic character
to modulus r. Note that it is redundant to have p?(e) = 1 in (5.56) because this condition
is automatically captured by (2.2). Mobius inversion then tells us that the right side of
(5.56) is equal to

Co(E) Y (Y ud)

e,u=1l (mod 3) dlu
(u,r)=1 d=1 (mod 3)
v=cu?

as required. (]

The following lemma records the standard evaluation of Ramanujan sums.
Lemma 5.5. Let m € Z|w] be squarefree and satisfy m =1 (mod 3). Then for u € Z|w],

culm) = Y é(%):“&mnfu))@g([)%)’

z (mod m)
(z,m)=1

where o(-) is the Euler phi function on Z|w].
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Let r € Z|w] be squarefree and satisfy r = 1 (mod 3). We are now able to study the
the analytic properties of the Dirichlet series

——, Re(s) > 1. (5.57)
c=1 (mod 3) (C>

The following result records a level aspect functional equation for (5.57) that generalises
[Pat77, Theorem 6.1]. It explicates the root number and level, and is crucial to our paper.
Yoshimoto [Yos87] established level aspect analogues of [Pat77, Theorem 6.1] for twists
of Gauss sums by arbitrary non-cubic Dirichlet characters. Clearly, Yoshimoto’s results
do not cover the case we need.

Proposition 5.2. Let r € Z[w] be squarefree and satisfy r = 1 (mod 3), and ¢ := (;)3
Let ¢ € Z.. Then the Dirichlet series

S 3(0)(9), ()"

c=1 (mod 3) N(C)S

R(s;1, L) := Re(s) > 1, (5.58)

admits meromorphic continuation to all of C. If £ = 0, the Dirichlet series
Cow) (35 — 55 1, 3OR(s;1), £) (5.59)

has a unique pole located at s = %, and it is simple. If £ # 0 the Dirichlet series (5.59)
defines an entire function. We have
(2m)

5/3 ()
Rmr%@w@®s—§lﬁR@ﬂM)=I%@yg§x¥2,

and for ¢ € Z we have the functional equation

CQ(w)(?’S - %; 17“7 3€)R(Sa % ﬁ)

—— e TE+ Y -G+ —9)
=g(r)- . o) (5 = 3s: 1, =3O RI(1 — 5, —0),
3PEN(r)* (s + 4 - Hr(s + U+ 1) ?
where .
a' ()bl (v) ()
Tla ) o (_1)\05—0 r vl
Ri(s:0) == (—1)% VEAZ%M Ny Re(s) > 1, (€Z,

for some Dirichlet coefficients a'(v). The coefficients a'(v) have support contained in the
set

Q= {v = NChwh® : LeZo_y, (e {+], 4w, tw?},
hoh/,w=1 (mod3), hh'[r® (w,r)=1 and p*(hw)=1},
and for v e QF,
T(=AL3y) if L=0
a'(v) = { WP (“N3ww)e(WBy) if D=1, (ef{-1,—w,—w?}, (5.60)
wro(=AL=3w)e(AL3y)  dif L=-1, (e{l,w,w?}
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and

10 = () ey e

Av,r)
Remark 5.3. Recall that 7(-), 71 () and 7»(-) are given in (5.5), (5.11) and (5.12) respec-
tively.

Proof. Meromorphic continuation of (g(.)(3s — %; 1,,30)R(s;1,£) to all of C follows from
Lemma 5.3, Proposition 5.1 and Lemma 5.4. If £ # 0, then it is entire. If £ = 0 , then it
has a unique simple pole at s = 5/6 with residue

A (27)4(0)
1 A
ResS:% (C@(w)(?)s 5 L)R(s; w)) (7“)3 37/2F(§)N(7")5/3'
We now evaluate (u) Recall from (5.35) and the argument following it that we have

D(u) = (%)3 3 @(d)(%);(%), e Z[wl. (5.62)

(mod r)
(d,r)=1
(Md)(M\a)=1 (mod r)

Moreover, using the definition (5.18) and the fact that ¢ is primitive gives us
~ AN ——
d) = (—) .
9@ = (%) 30

We have ad = A® (mod r) in (5.62). Therefore

2 [

~ A
) = (=) g0 w), (5.63)
where ¢, (+) denotes the usual Ramanujan sum. In particular,
~ A2\ —
30 = (%) a0
/s

Lemma 5.4 tells us that
A .
Gato (35~ 510, 30R(si0,0) = (-1 (2) 37925D(6, Friwn s
3
Thus Lemma 5.3 and Proposition 5.1 imply that
Cow) (3s — 3: 1, 30O R(s;¢, ()

_ R TG+ Y -G+
3TAN(r)* T(s + '“ — H(s +
14

7
¢

Cow) (3 — 351y, —3() (—)
3

CIJ
[ I VA
~— N~—

5
D(1—s,G" 1, —0)

Cow) ( —3s;1,,—3()’

where G* is as in (5.47). Observe that (5.63) gives

é —3s (S @,IL ) _ APt .
(r);” D TRl )

% 3735
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where L
D(s,G*;¢0(+), 1)
CQ(UJ)(?)S — %; lr, 36)’
We now analyse the Dirichlet coefficients of Rf(s; ). Let al,(v) and a* ,(v) be the

Fourier coefficients of R (s; —¢) and D(s, G*; —{) respectively. By definition and Appendix
A we have

Ri(s;0) =373

lel. (5.65)

) = (L) @) + o) + (=30

- (L) (FEm + wn et + wnl-wme).  (566)

Consultation with (5.5), (5.11) and (5.12) shows that the a*(u) have support contained
in the set

Ui={pu=NC(cj keZ._y, (e{xl tw,tw’}, c¢,j=1 (mod3) and p*(c)=1}.
Each of the three terms in (5.66) have disjoint support. In particular,
T(—p) if k>-3

a*e(u)=(ﬁ>_e- T~ Pe(p) i k= -4, Ce{-1,—w,—w?
: wra(—wom)e(n) i k=4, (e{lww?

—: <|Z—|>_éa*(,u). (5.67)

Observe that (5.65) and (5.66) imply that the coefficients af(-) have support contained in
MU < A'Z[w]\{0}. Then

T o I//)‘3 —¢ * 4
L) = (1 5) 2 e Kl
el
(d,r)=1
(mod 3)

(5T Y awe W],

|V| v=X\3pud?®

d=

pnelU
(d,r)=1
d=1 (mod 3)

Evaluation of the Ramanujan sum using Lemma 5.5 gives

o ) = (1l (E - o r e(r)
L) = () 2 (u)u<(A4M’T))Qp((ﬂzvr))u(d)ldl- (5.68)
(dlf)lil
d=1 (mod 3)

To continue the evaluation of a'(v) in (5.68), we write each u € U occurring on the right
side uniquely as

My = NFChw(Rw')?  with e {+1, +w, +w?},
h’v h'/ | ,r,OO’ (ww',r) = 17 hu hla w,w, =1 (mod 3) and ,uz(hw) =1.
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Then
; v - * T @\r
al ) = (=1 (1) > a (k) ) S
v v=AF+3¢ R (h'w'd)3 ( 7) ¢((hh’3,r))
h,h' waw',d=1  (mod 3)
p? (hw)=1
hoh! |7
(dww’,r)=1
(5.69)
Furthermore, (5.67) tells us that
a* (N Chw(h'w')?)
(=M Chw(h'w')?) if k>=-3

= W (=MwChw(Ww'))e(NChw(hw')?) if k= —4, (e {-1,—w,—w?}.
wra (—MwChw(h'w')?)é(NChw(Ww')?)  if k= -4, (e{l,w,w’}

Further consultation with (5.5), (5.11) and (5.12) shows that

* /7 * h'/w/
a* (N Chw(h'w')?) = bk,c(hw)ﬁ, (5.70)

for some sequence of coefficients b () on squarefree elements of Z[w] that are congruent
to 1 (the sequence depends only on k and (). Using (5.70) in (5.69), we obtain

-/
o) = (-1 () >
v v=AF+3Chw(h'u)?

h,h/  wu=1  (mod 3)
1 (hw)=1

bl;,((hw> /u T ()0(’/")
]| |“<(hh/3,r)>¢((hh;‘3ﬂ) (5.71)

h,h!|r®
(vw,r)=1

X ( Z ,u(d)).
dlu
d=1 (mod 3)

Mobius inversion tells us that v = 1 in (5.71). Subsequent use of (5.70) (in reverse) gives

T _ (_ i L - a* w 13 r SO(T)
! ) = (1) (1) L () Ty 67

h,h/ s w=1 (mod 3)
p? (hw)=1
h,h!|r®
(w,r)=1

For a given v, there is at most one summand on the right side on (5.72). This completes
the proof. [

5.6. Voronoi formula. We are finally able to prove a variant of the Voronoi summation
formula.
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Proposition 5.3. Let W be a smooth Schwartz function, compactly supported in (0, c0).
Let { € Z. Then for X > 0 we have

L2 ) (L ()
T (dr)=1

5) (2m)* (1) g (r)

5/6117 )
= 0p—g - X°/ W(6 3720 (2)N (r)3/3

g(r T(w)bi(v) v\~ ~ /(27)IN(dPv)X
~wer 5 wuwarle) )
d=1 (mod 3)
(d,r)=1

(5.73)

where the a'(-) and bl(-) are as in (5.60) and (5.61) respectively, and W, : Ry — C is
defined by

g
§| N %;W(s)ds, (5.74)

_ 1 TE+ s+
Wé(u) . 2— w ] 6
Ti)oemiw  T(s+ - DI(s+

for e € (0, 1oa55). For any A > 0 we have

o o ) (W/(L+ 9% if ju] < (1+¢%)
Wi(u) <wa (14 [€])°- {(u/(l O il > (14 6) (5.75)
Proof. We have
cd? N(cd?)
B 2, ldiate >( ) <| d3|> W( X )
d,c=1 (mod 3)
(d,r)=1 '
% ; Cot) (35 — 21, 30 R(s;0, ) X*W (s)ds,  (5.76)

where R(s;1,0) is given in (5.58). We shift the contour to Res = —e. Proposition 5.2
tells us that we collect a pole at s = 2 when ¢ = 0. Thus (5.76) is equal to

~ /5 (271-)5/3g(r) (r) 1 —e+im0 ~
. Y5/6 e ! - 1. . s
Op—p - X W<6>37/21“(§)N(r)5/3 i) . C@(w)(Bs 2,1T,3£)R(s7w,£)X W (s)ds.
(5.77)

We evaluate the integral in (5.77) by applying the functional equation in Proposition 5.2.
We obtain
1 —e+100

— Coww) (35 — 151, 30)R (s34, ()XW (5)dss

2mi —€—100

_ 1 i) [ i o2 T+ Y- s)r(E+ & — )
2mi 372 ) i N(r)* T(s +%—%)r< +4 41
X Cow) (3 = 3s; 1, —30)RI(1 — 5, —0) X*W (s)ds. (5.78)
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Expanding the absolutely convergent series we see that (5.78) is equal to

90 o ()b} (v) (L)~
GECELPY

5/2
ol VN
d=1 (mod 3)
(d,r)=1
—eti 14| 14|
i. i ((zw)w(d%)x)sr(g + 8 =)L+ 15 —s) 7 (s)ds
210 ) i N(r)? (s + % — %)F(s + g é)

The above display can be expressed as

9 A (L) (%S) " — 2n) AN (@)X
T S NeN@E T NeE )
d=1 (mod 3)

(d,r)=1

This establishes (5.73). The decay bound (5.75) follows from a direct computation with
Stirling’s asymptotic [DLMF, (5.11.1)].
|

6. Cancellations in sequences over primes

Let <g(. denote the standard ordering on ideals of Z[w]. We will abuse notation and
also denote it < when the meaning is clear from context

Lemma 6.1. Assume the Generalized Riemann Hypothesis for the Dedekind zeta function
attached to Q(w) twisted by Griffencharaktern. Let W be a smooth test function with
compact support in (0,00) and ReN. Let B> 10, 10 < w < M < N « B, and 7 € Z|w]
satisfy m = 1 (mod 3) be a prime or 1. If R < 25— with K > 1000, then the sequence

Kloglog B
N(b)
=W (") bzﬁ; !

w;j=1 (mod 3)
w<we<..<WR
MSN(WJ')SN
(b,m)=1

100

belongs to C,(B,w) for all n > ==.

Proof. After Mellin inversion of W, it suffices is to show that the sequence
1 241400 — R 1

Bri= 5 W (v)B® > I N(wj)vdv

2—1400

T,y =
M<w<wa<..<wp<N
w;j=1 (mod 3)
TFET

belongs to C,(B,w) for all n » 1/K. It is clear the first three properties in Definition 1
follow from definition of 3. For t € R, £ € Z and k,u € Z[w] with k,u = 1 (mod 3), it
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suffices to estimate

2 Bb(|b|) ( ), V@, (6.1)

beZw
u|b
provided that ¢ # 0, or if £ = 0, then provided that k # £J. Without loss of generality we
can take u = 1 since the case u # 1 reduces to this case after combinatorial manipulations.
Thus (6.1) (with u = 1) is equal to

e s P ELE)
— W (v)BY — . (6.2)
271 Ja—ioo M<wi<wa<..<wp<N j=1 N (a;)*~*
w;j=1 (mod 3)
T FET

The Newton-Girard identity [Mac95, (2.14")] implies that

N
M<w <ws<..<wp<N j=1 N( )U it

wj=1 (mod 3)
WiFET

. E(~1)ms (L))" \m
— (-1) Yo Ihow( X w55%)

'jmg
mi,...,mp=0 j=1 """ M<N(w)<N
mi+2ma+-+Rmr=R w=1 (mod 3)
TWHT

(6.3)

We can assume without loss of generality that M and N are half-integers. Thus each
sharp cut-off can be written as

(k)j(w) 1/log B+iB I dsd
w /3 \|w| J . _
Z > !( l.t Jf (v—it)+s—w; ( ) lﬂ,jﬁ)NsM w? w+0(
MR N(w)ilv=i 2m Sw
w=1 (mod 3) 1/log B—iB
WHET

(6.4)
where (for Re(s) > 1/2) we have

D(s; (i)ilw,jﬁ) := log (o) (s; (—) 1,,j0) — Z Z

m22w=1 (mod 3)
TH#T

(&) @)™

mN (zo)ms

We shift the v-contour in (6.2) to Re(v) = 1/2+ 1/log B. From (6.4) and the Riemann
hypothesis we deduce that (uniformly in j > 1)

WY
o e

meiimen M@

wzlw;n;lrod?))

1
log B

1
« (log? B)log? (2+(1+|v|+|t|)(1+|£|)N(k¢)B>,Rev > 5+
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Substitution of this bound into (6.3) shows that for Re(v) = 1/2 + 1/log B we have
R (k) (=it
M<w<wa<..<wr<N j=1 J
w;=1 (mod 3)
@y

« CF(log?k B) - log?® (2 (1 + ol + L) (1 + |€|)N(k)B)

« (C/e")(log* B7) - log™" (2 + (1 + ol + ) (1 + |€|)N(k)B)E>,
for some absolute constant C' > 1 and any fixed € > 0. Returning to (6.2) (and recalling
that we shifted the contour to Re(v) = 1/2 + 1/log B) we see that (6.1) is

« (C/ehEpH2Ts B (10927 B2) - 1og™ (2 + ((1+ [¢) (1 + |[¢))N(k)B)"). (6.5)
We use the hypothesis 1 < R < log B/(K loglog B), the inequality
(logz)! < Lz, z>1, L=>1,
and Stirling’s asymptotic formula [DLMF, (5.11.1)] to conclude that (6.5) is
«. BY2FWOOK+32 (1 11 4 [¢)FN (),

say. This concludes the proof. |

A minor variation of the above proof gives a smoothed version of the Lemma.

Lemma 6.2. Assume the Generalized Riemann Hypothesis for the Dedekind zeta function
attached to Q(w) twisted by Griflencharaktern. Let V- W be a smooth test functions with
compact support in (0,0) and R € N. Let B > 10, 10 < w < M < N « B, and
Py,...,Pg > 1 be such that P,---Pgr = B. If R < los B ith K > 1000, then the

Kloglog B
sequence

N(b B/ N(w,
() S TR
b=l @, I 7
w;i=1 ](mod?))
w1 <w2<..<wWR
MSN(?DJ')SN

belongs to C,(B,w) for alln > 19

Remark 6.1. A sum over R running through any subset of [1,log B/(K loglog B)] can
be introduced in the definition of B occurring in both Lemma 6.1 and Lemma 6.2 with
no change to the conclusions.

Lemma 6.3. Suppose A, B > 10, X := AB, 0 < n1,m2 < 1/4 and w; > wy = 10. Let
a = (o) €Cy (A,w), and B = (By) € C, (B, ws) be such that

Gp#0 = (w|b = wy < N(w) < wy). (6.6)
Let 10 < M < N and v := (7.) be given by

Ye = Z O‘aﬁb-

M<N(c)<N
a,beZ|w]
a,b=1 (mod 3)
ab=c
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Then v = (Ve) € Crnax{n o} (X, w2).

Proof. Observe that the hypotheses (6.6) and ws < w; imply that v = (.) is supported
on squarefree wy-rough integers. We also have 7. # 0 = N(c¢) = X from the supports
of a = (a,) and B = (f,). Each ¢ € Z[w] with ¢ =1 (mod 3) has a unique factorisation
¢ = ab with (a, Z(w;)) = 1 and b | &(w;). Thus hypothesis (6.6) implies that |y.| =
|aa5b| <1

It only remains to prove inequality (3.2) in Definition 1 for v = (v.). Without loss
of generality we can assume that M and N are half-integers and that M = X (resp.
N = X), otherwise dpr<n() (resp. dn(ey<n) is a redundant condition. The sharp cut-off
can be written as

1/log X+iX
5 ff SM— dsdw+0(1>
M<N{e)<N 2m N(c)s* sw VX7
1/log X —iX

The integrals incur an acceptable loss of (log X)? < X°M. Thus it suffices to show that

'?c = Z Oéaﬁb

a,beZ|w]
a,b=1 (mod 3)
ab=c

satisfies (3.2). In other words, for t e R, £ € Z and k,u € Z[w] with k,u =1 (mod 3), we

need to estimate ok
2 %(|Z|> (_)3]\[(0)#’ (6.7)

ceZ[w]
ulc

provided that ¢ # 0, or if £ = 0, then provided that k # . Observe u has a unique
factorisation u = wjus such that (uj, Z(wq)) = 1 and uy | P (wy). Hypothesis (6.6)
implies that that (6.7) is equal to

<;O‘“(|Z|>Z<_> Zt)(zﬁb<|b|> < ) Wt)- (6.8)

uila ug\b
Since o = () € Cp, (A, wq) and B = (5,) € C,, (B, ws), we see that (6.8) is

e (55" )

. X 1/24max{n1,m2}+¢€
< (L NG+ 1D (75)

)

as required.

7. Narrow Type II/III estimates

We establish estimates for type-11/I11 sums that are useful in narrow ranges correspond-
ing to two or three variables of equal size respectively. In the three variable case, two
variables are clumped to together to reduce to a type-II analysis. These estimates will be
in ranges where sharp bounds are required (but not asymptotics).
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7.1. Sieve weights. We will need to use auxiliary sieve weights in the proof of our
narrow range bounds.

Lemma 7.1. Gien w = y* > 1, there exists coefficients (Aq)aezp.] such that

(1) My =1 and |N\g| < N(d)® for all d € Z|w] and all € > 0;
(2) A\ =0 if N(d) > y* ord # 1 (mod 3);
(3) For all n € Z|w] we have

Smpwn=1 < Y, Aa; (7.1)
d| 2 (w)
N(d)<y?
(4) They satisfy
Ad 1
Z & : (7.2)
iy V() logy

Proof. Given d =1 (mod 3), define
A= ) M(e)u(f)(l - M) (1 - M)-

N(©).N(f)<y logy logy
e,f=1 (mod 3)

d=[e,f]
Properties (1) and (2) are immediate from the definition. Property (3) follows from

ou=( Y u(e)(l—M))z. (7.3)

dln N(e)<y log Y
d| 2 (w) el(n,2(w))
N(d)<y? e=1 (mod 3)

It remains to check property (4). Observe that

A _ ple)u(f) (, log N(e)\(, logN(f)
de;[w] N(d) ]}Iiel)%f)iys) N(le, f1) ( logy ) ( logy )
1/10gy+zoo

fJ‘ H(s, w)guw)(1 +s+w) y* dsdw « 1
Cat) (1 + 8)Coww) (T +w)  s>w? (logy)®  logy’

1/1ogy 100

where H(s,w) is an analytic and absolutely convergent Euler product for Res, Rew >
—1/4. The bound can be obtained either by shifting contours or by carefully bounding
the integral using a Taylor expansion around the pole. |

7.2. Narrow Type-II/III bound. We are now ready to state the main result of this
section.

Proposition 7.1. Let A, B,w > 10, X := AB and n > 0. Suppose that o = (a,) is a
sequence supported on squarefree a = 1 (mod 3) with N(a) € [A/10,10A]. Suppose that
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B = (B) € Cy(B,w), € € (0, 5555) and w < X°. Then

~ D |Bs]
+0. <B" xlte <ﬁ N 1 >> +O(X1 - (Afw) 100y,

with D > 1 an absolute constant.

Proof. Without loss of generality we can include the condition (a,b) = 1 on the left side
(7.4) by (2.2). Application of (2.3) and Cauchy-Schwarz gives

S auian)] < ek Saao(3),)" (75

a,beZ[w) ( (5(2[))

a=1 (mod 3)
Let V : R — R be a fixed smooth positive function with compact support in [1/100, 100].
We also stipulate that it satisfies V' = d}1/10,10;- By positivity of the right side of (7.5), we
introduce both the smooth function V' and the sieve weight (7.1) on the a-sum. Thus the
right side of (7.5) is

<lak( Y V(NX”))Z&@@)(%)?))Q 3 Ad)m, (7.6)

acZlw] b dla
a=1 (mod 3) d| P (w)
N(d)<y?

where y? := w. Expansion of the bracketed sum in (7.6) gives

Z MY Bl Y V(Nﬁla))@(b%)?)- (7.7)

d|Z(w b1,b2€Z]w] acZlw] , dla
N(d)<y a=1 (mod 3)

Diagonal contribution to (7.7). The diagonal contribution b; = by =: b to (7.7) is

2 V(%) > |5b|2< > >\d>- (7.8)

a€Zlw] beZ[w] dla
a=1 (mod 3) (a,b)=1 d| P (w)
N(d)<y?

We can drop the condition (a,b) = 1 by non-negativity of (7.8) (the bracketed sieve weight
divisor sum is non-negative by (7.1)). Thus

< S apar 3 (M)

d| 2 (w beZ[w aeZ[w]
N(d)<y a=1 (mod 3)
- Y i) T (g VVAN@) 2. (1)
Iv3 d|@(w)2 (> keZ[w]
N(d)<y

where (7.9) follows from Poisson summation (in the form of Lemma 4.3).
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Non-diagonal contribution to (7.7). The non-diagonal b; # by contribution to (7.7) is

T (00 >@(%)3 2 V(W)(%L(%)g

d|2( ) b1, szZ EZ[UJ]
N(d)<y? b1 ;ﬁbg a=1 (mod 3)

(7.10)
For each fixed by, by € Z[w] occurring in (7.10), let e := (b1, by). Poisson summation (in
the form of Corollary 1) tells us that

v (),
a=1 (mod 3)

() (55 AT s ke TE ey ey
T OVBN(@)N(biba/e) k%:w] C@(“(@)g(m)gv(m)
(7.11)

Observe that (2.3) and the squarefree property of b; and by imply that
3(00)302) = 5(b1/e)3e) (57 ) 70209 5 (57, ),
=30 /e)30:) (570 ) (572 (7.12)

Upon insertion of (7.11) and (7.12) into (7.10), we see that (7.10) becomes

P e
d‘] ) e€Z|w] b1 #b2€Z[w] N(blb2)
N(d)<y e=1 (mod 3) (b1,b2)=e

~ 2ekN sd2ekN - VA
’ ke;[w]Ce(k)(Zl/lz)g(ig/lz)?,v(\/%j:lb)' (7.13)

Note that Poisson summation constitutes a key step in the proof - the dual side (7.13)
has no Gauss sum weights.

Estimates for 2 and /. We estimate 2 and 4" displayed in (7.9) and (7.13) respectively.
Consider . Lemma 4.4 tells us that

_ 4mA Ad 1+e —2000
7 =53 0B( X ) V) + 0-(XH - ()W),

2 (w)
N(d)<y?
Application of (7.2) gives
A
D« —— HBH2 + O (X (Afw) ), (7.14)

Consider .#". For a given d, e € Z|w] in (7.13), we split the k& sum into two subsums:

e k€ Z|w] such that d*ek = (F;
e k€ Z|w] such that d*ek # (3.
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Denote the contributions to .4 by each of these two cases by .47 and .45 respectively.
Thus A = M + S,

Since 1%(d) = p*(e) = 1 and (d, e) = 1, we deduce that d*ck = D iff k = de?h® for some
h € Z|w]. Notice that (4.6) and Lemma 5.5 imply that

(dett®) = (<20 o) — (1) ote)
(

3\
where the last equality follows from the fact that d =e =

_ 4 A Z @(e) Z ﬁb1ﬁb2

= _PoiiFbe
333 ecZ[w] b1 #bocZ[w] N (bib)
e=1 (mod 3) (b1,b2)=e
h3\ - re3h3V A A
X ) é(_ﬁ)‘/(e b f)( ~d ) (7.15)
heZ[w)] 172 4|2 (w) (d)
(h,b1ba/e?)=1 N(d)<y?

Note that the extra factor of 1/3 in the above display for .41 accounts for the fact that
(w'h)® = h? for i € {0,1,2} and 0 # h € Z[w]. Using Lemma 4.4 and recalling (7.2), we
see that all this leads to

M L

1 1Bl \?
A%3 —— AlB)?). 1
ol (bEZZM No) *AIBE) (7.16)
We now focus on A5. We have

47TA Z

5b15_bz
Z Z N (b1by)

d\] e€Z[w] b1 #b2€Z[w]
N(d)<y e=1 (mod 3) (b1,b2)=e
d*ek d*ekN - kev/ A
< 3 (50, () (xig)
bzl bi/e/3\byje/3 N(d)byby
d?ek#0

The term .45 is small because the characters (d ck )3 and (d Ek)g are both non-principal.
Using Lemma 4.4 and Lemma 5.5, we re-install the diagonal b; = b, in .45 with acceptable
error O(X¢(A+B)). After rescaling the variables by — eb; and by — eby and using Lemma
4.4, we obtain

47TA 1 5661@
9v/3 Z N ) Z N(e) Z N (b1by)

d\g’ e€Z[w] b1,b2€Z]w]
N(d)<y e=1 (mod 3) (bl,b2)=1
N d?*ekN [d2eky - kv A
. Z Ce(k)( by )3( by >3V( N(d)ebb)
keZ[w] 102
d2ek+#0

N(k)«Xe(1+N(d)B2/(N(e)A))
+ O(X°(A+ B)).

We Mobius invert the condition (by,by) = 1 and separate variables. After combining
(4.9) and the Mellin-Barnes integral representation [DLMF, (10.9.22)] for the J-Bessel
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function, we obtain

_ (=1~ JOO J_am (L) (,.2\,.2L+1 I'(=s) 2mr|uf\ 2
V(u) = i v (ro)r F(L+s+1)(3\/§> dsdr, uw#0, LeZs.
(7.17)

For L sufficiently large and fixed depending on ¢ > 0, Stirling’s asymptotic formula
[DLMF, (5 11.9)] implies that

Teris ['(—s) 27r|u|\ 25
_ 2L+1 dsd Oe X—2000
27Tz J JEZXE T F(L—l—s—l—l)(g\/ﬁ) sdr + Oc( )

for uw#0, LeZs.
(7.18)

We insert (7.18) into the previous expression for .45 to separate variables. A subsequent
interchange of the absolutely convergent finite (recall that V(%) is compactly supported)
sums and integrations by Fubini’s Theorem gives

r/Vz o L J' J<€+ZX5 T2L+1 F(—S) (27TT\/Z>2S
9\/—1 e—iXe I(L+s+1)\ 33

p(f)
X ( d|;w) N(d)l-i—s fe%[:w] N(f)l+2s
N(d)<y? f=1 (mod 3)
y Z Z C. (k)N (k)* <d2ek> <d2ek>
e€Z|w] keZ|w] N(6)1+S f 3 f 3
e=1 (mod 3) d2ek+0

N (k)< X®(1+N(d)B2/(N(e)A))

Beps,  (dPek s Bepr, (d*ek —s
X (blez[w]“/]\;é)bl)( bf >3N(bl) )<b2ez[w] ]\;(bbﬂ( ¢ >3N(b2) ))dsdr

+ O(X*(A + B)).

We use Axiom 4 of Definition 1 to estimate the sum over b; and by (square root cancella-
tion), and then estimate the remaining sums trivially using Lemma 5.5. We obtain

2 xe L 12 (f) 12 (e)
e (2 v 2 5o B NG

N(d)<y? 1<SN(f)«<B 1<N(e)«B
x> > f(j))> +X°(A+B)
gle keZ|w] wlerg
(k76):g
N(k)«X®(1+N(d)B?/(N(e)A))
« X°B*(A + B?). (7.19)

7.2.1. Conclusion. Combining (7.14), (7.16) and (7.19) tells us that

D | By 2 . . B
77) < g (47 2, NG e) HAIBIR)HOAB (A B X +O(X (A ) ),
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for some absolute constant D > 1. Chasing this bound through (7.6) and (7.5) gives the
result.

8. Type I estimates

We now establish Type-I estimates. In the Proposition below we use the Riemann
Hypothesis for the Dedekind zeta function attached to Q(w) in order to restrict the sum
to squarefree numbers.

Proposition 8.1. Assume the Riemann Hypothesis for the Dedekind zeta function at-
tached to Q(w) twisted by Groflencharaktern. Let r € Z|w] be squarefree and satisfy r = 1
(mod 3). Let £ € Z, £ € (0, 15055), and W : R — R be a smooth function with compact

support contained in [1,2]. Then there exists p(e) € (0, 15555) such that

u u N )3/3775/6 ,
ue;w] 5(ur)<m)f.W<N (S )) _ 53_0-W(%> . 37/2T(?§))<@5> — Nfﬁ)z/ﬁ

u=1 (mod 3)

U ) )
+ Oa((l +e)E - <W VI N ()24 (] EG)))

Remark 8.1. The function p(e) is somewhat arbitrary. For instance, it follows from (8.6)
that p(e) = —1ie + 2¢? is an acceptable choice.

Remark 8.2. Mellin inversion of the smooth function, the Class number formula [Lan94,
Chapter VIII, §2, Theorem 5], and a contour shift together imply that

(27)%/3 12 (1) N (u) 1
30(2) it %:wd 3)]\f(u)l/(sW< U >'N(T)1/6 (8.1)
(u,r)=1

B ~(5) (27T)5/3U5/6 o(r) o ( [1/3+e >

N6/ 3TP0(5) g (25 1) N ()6 TEAN ()16
Thus when ¢ = 0, we can use the main term in (8.1) in Proposition 8.1 at negligible cost.
Remark 8.3. For |[(| < U°Y the error term is meaningful when U > N (r)*°®).
Proof. Mobius inversion implies that

¢ N

5 () ()
ueZ[w] |U|
u=1l (mod 3)

3

- Y sw(S) wHEE(Y we) 62

u,e€Z[w] e=cd
u,e=1  (mod 3) c,d=1(mod 3)
(e,r)=1
On the right side of (8.2) we introduce a smooth partition of unity in the ¢ variable i.e.
Let V : R — R be a fixed smooth function with compact support contained in [1, 2] such
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that

) =1 forall 0#ceZw]. (8.3)
C dyadic

Insertion of (8.3) into (8.2) yields

3 g(ur)<i>€W<N[(]u>>= >, A(C.D), (8.4)

ueZ[w] |U|
u=1l (mod 3)

where

aC) = Y awld() Y ek

u,deZ[w] cEZ|w]
u,d=1 (mod 3) c=1 (mod 3)
(d,r)=1 (e,r)=1
cd \3¢__/N(c) N(cd)®>N(u
S v (=2 ( ). 8.5
8 ( |cd|> C U (8:5)

We have suppressed the dependence of .Z(C,U) on the smooth functions V' and W in
the notation.

Large dyadic C'. We estimate the contribution to the right side of (8.4) from all dyadic
values of C satisfying

C > (UN( ))1/12+e/2.
We Mellin invert the smooth functions V' and W in (8.5). We then use the rapid decay of

their holomorphic Mellin transforms W and V in vertical strips to truncate the integra-
tions appropriately. A subsequent interchange of the order of absolutely convergent finite
sums and integrations by Fubini’s Theorem gives

1 (O (L+[€]))/100%0  mi(C(L+le[)=/100 -
(2mi) —i(C(1+1€]))5/1000 J —i(C(1+]¢]))s/1000
ud? \¢
< ( 3 Glur) N (@) 2 (250 ) N ()™
u,deZ[w] |Ud |
U/(100C3)< N (ud®)<100U/C3
u,d=1 (mod 3)
(d,r)=1
3¢
< ) u(c)<i> N(c)1/2’s’3w>dsdw+Oa((C(l +6]))200)
ceZ|w] |C|
C<N(c)<2C
c=1 (mod 3)
(e,r)=1

To bound the sum over ¢ we appeal to the Riemann Hypothesis for the Dedekind zeta
function attached to Q(w) twisted by a Gréflencharakter. Estimating the other summa-
tions trivially, we obtain

U5/6 p(e

S U < (L5) O ) < (L4 ) W’

C' dyadic
CZ(UN(T))1/12+5/2

(8.6)



BIAS IN CUBIC GAUSS SUMS 45

for some p(e) € (0, 15555)- See also Remark 8.1.

Small dyadic C'. Tt remains to estimate

Z M (C,U).
C dyadic
1/2<C<(UN(r))1/12+¢/2

Rearranging the sums in (8.5), and then using (2.3), we obtain

e =i Y () v

ceZ[w]

czl( (;nod 3)
c,r)=1
TN [ ud? N (ud®)
; d,ué[w] ot )< ) (I d3|> W(U/N(c)3>' (8.7)
d7u£(%i,r)(ilfd 3)

Application of Voronoi summation (in the form of Proposition 5.3) gives

% 1w (7), (o) W (o)

dueZlw]
du=1 (mod 3)
(d,r)=1
_g U ~<5>(27T)5/3s0(7°)9()
TON(e)2 " \6/ 32T (2)N(r)5/3

B g9(r) a'(v)b <V>(|ud3\) 2m)AN(d®v)U
37/2(27r)2 VEAZZM ( )N( )5/2 We( N(c37”2) >7

d=1 (mod 3)
(d,r)=1

where the af(-) and b](-) are given by (5.60) and (5.61) respectively. Insertion of the above
display into (8.7) gives

M(C,U) = T(C.U) + &(C,U), (8.8)

where

e @R BN o(r) s ple) o (N
Q(C,U).—65_037/2F(§>W(6>N<T)7/6U/ CE;M vior' ()

c=1 (mod 3)
(e,r)=1
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and

N af (v)bi (v
ECU) = ——r— 2 N(v)N(d)>/2 (|d3u|>

RGO
d=1 (mod3)
(d,T):
% NN+ [ (20 N(dP)U

) |C|“()(| |) V( C )Wf( N(c3r?) )

ceZ[w]
c=1 (mod 3)

(e,r)=1

We now collect the main term from the various .7 (C,U). We have

Y 7= Y 7 U)+0(L/4)

. ( )1/4
C' dyadic C' dyadic

1/2<C<(UN(r))1/12+e
~ /5 27 )3/3[75/6 -
- 30 (5) o elr) + 0. )
6/ 3720'(3)Cow)(2; 1) N(r)7/6

where the error term follows from a trivial estimation of the tail of (g
The various &(C,U) contribute the error term in the statement of the result. By the

rapid decay of W in (5.75), we truncate the d and v sums in &(C,U) to

03 N 2
N(@v) < (UN()(1+ 6)7°1+ ¢4 - (1+ %)
with negligible error. To separate variables, we subsequently use the definition (5.74)
of W and Mellin inversion on V. We truncate the resulting integrations appropriately

using the rapid decay of Vand W. A subsequent interchange of the order of absolutely
convergent finite sums and integrations by Fubini’s Theorem gives

( ) N(r)'/2 WUN () (1)1 i (UN (r)(1+]¢]))=/1000 F(% + % _ w)F((Z + % w)
&CU 7J J
372(2m)" )i a0 Ny ey Dw + %' — )T (w + |§‘ +3)
(27r)4U> W~ e~
C°V(s)W
(Ngor) CTEWw
T( )bT( ) d3v \ ¢ ¢\ 3¢
a'\v 14
r N (o) V/2—s—3w (_) )d d
8 ( Z N (v)1=w N (d)5/2=3v (|d3y|) 2 (c) wepy) )dsdw
veEAT1Z[w] ceZw]
d=1 (mod 3) c=1 (mod 3)
(dyr)=1 (e,r)=1
N(dB3v)<(UN(r)(14€]))e/1000 (144)(1+C3 N (r)2 /U) C<N(c)<2C

+ O ((UN(r) (1 + [£]))~1).

We estimate the sum over ¢ using the Riemann hypothesis for the Dedekind zeta function
attached to Q(w), and the quotient of Gamma factors using Stirling’s asymptotic [DLMF,
(5.11.1)] The other sums are estimated trivially using (5.60), (5.61), (5.5), (5.11) and
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(5.12). We obtain
(g)(C, U) & N(T)1/2+€/10 . (1 + £2>

|CLT( )| ( ) Cl+a/10 5/10
8 )52 (1+1¢)
GZP“ VGAZIZ[w] N(V) ( ) / (7‘/6)

d=1 (mod 3)

(d,r)=1
(Av,r)=e
N(d3v)<(UN(r)(1+]£]))/1000 (14+£4)(1+C3 N ()2/U)
& N(,r)l/2+e/4Ua/4(1 +€6)Cl+a/4(1 + |€|)e/4’
and so

2 E(C,U) < UMHEN ()24 (14 £9)(1 + [€])°. (8.10)
C' dyadic
1/2<C<(UN(T»))1/12+5/2

After combining (8.6), (8.9) and (8.10), we obtain the result.

We also record the following nearly immediate Corollary.

Corollary 3. Assume the Riemann Hypothesis for the Dedekind zeta function attached to
Q(w) twisted by Griflencharaktern. Let r € Z|w] be squarefree and satisfy r =1 (mod 3).
Let t € Z, € € (0, m), and V,W : R — R be smooth functions with compact support
contained in [3,4]. Then there exists p(e) € (0, 15555) such that

> (i) VR

47

ueZ[w]
u=1l (mod 3)
_ (2m)*? pu) N (u)y o N(ur) 1
= e0 3T(2) | %wd ) (u)1/6v< U )W( X ) N(r)1/6
(u,r)=
. U5/67p(5) . . U1/3+€
1+ 0. <(1 +[6))° - (N(r)1/6+ﬁ(€) UM N () T2 (] Eﬁ)> + 7N(r)1/6>'

Proof. If UN(r) = X then we simply apply the previous result with a different weight
function and use the Remark 8.2. If UN(r) is not of the order of magnitude of X then
both main terms are zero. |

9. Improved cubic large sieve

The cubic large sieve of Heath—Brown is as follows.

Theorem 9.1. [HBO00, Theorem 2| Let A,B > 1, € > 0, and (5)vezw] be an arbitrary
sequence of complex numbers with support contamed in the set of squarefree elements of
Z|w]. Then

)G &(2)3\2 - (A+ B+ (AB)?*)(AB)* 2|5b|2 (9.1)

N(a)<A N(b)<B beZ|w
a=1 (mod 3) b=1 (mod 3)
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Recall the operator norm B(A, B) defined in (1.10). The Duality Principle [IK04, (7.9)—
(7.11)] and cubic reciprocity imply that

B(A, B) = B(B, A). (9.2)

See also [HB00, Lemma 4]. We also have the following simple monotonicity property,
which is slightly more precise than what has already appeared in the literature.

Lemma 9.1. [HB00, Lemma 5] There exists an absolute constant C = 1 as follows. Let
A, Bl, Bg > 1 and BQ = CBl log(QABl) Then,

B(A, Bl) < B(A, Bg)

We now prove that Heath-Brown’s cubic large sieve is optimal under the Generalized
Riemann Hypothesis for Hecke L-functions over Q(w).

Proof of Theorem 1.4. Initially, let ¢ > 0, A,B > 10, X := AB and A € [10, X/27¢].
Consider the sequence

5 = 5w (M), (9.3)

where W is a smooth compactly supported function in (1,2). It is supported only on
squarefree elements by (2.2). Then

> @ ¥ s

A<N(a)<2A B<N(b)<2B
a=1 (mod 3) b=1 (mod 3)
— N(@®D)\ /by 12
- 3wl > G () (),
A<N(a)<2A B<N(b)<2B
a=1 (mod 3) b=1 (mod 3)
(a,b)=1
_ N(b)\= 2
- Y @ Y w22 ma @3)
A<N(a)<2A B<N(b)<2B
a=1 (mod 3) b=1 (mod 3)
N(b 2
> Y ww Y w(E)aw)
A<N(a)<2A b=1 (mod 3)
a=1 (mod 3)
B0y 2 o(1) [ A17/12 p11/12 13/6 1/6
> A<W> + O(XW(AV12B1/12 | A13/6 g1/6Y) (9.4)

Sew A3 RO/,

where display (9.4) follows from Voronoi summation (Proposition 8.1) and the GRH hy-
pothesis. Thus B(A, B) »: (AB)%3. Notice that A + B « (AB)*3 as long as A €
[X1/3, X/2]. These observations and (9.2) give the claim when A € [v/B, B*|\[B'~¢, B'*%].
The result in the range A € [B17¢ B1*%] then follows from (9.2) and Lemma 9.1, so
B(A,B) » B(AX~3% B) » (AB)%373¢,
If B > A% then the lower bound B « B(A, B) follows from taking 3, = 3) for some
fixed a = 1 (mod 3) with A < N(a) < 2A. It remains to handle the case A > B?. Let
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Xy e {—1,1}, b € Z[w] with b =1 (mod 3) and p?(b) = 1, be a sequence of independent
random variables with mean zero. Then by linearity of expectation,

> ox(Of]- X seme=a Y P

{3 ol a
a€Z|w] beZ[w] a,beZ|w],(a,b)=1 beZ[w]
a=1 (mod 3) b=1 (mod 3) a,b=1 (mod 3) b=1 (mod 3)
A<N(a)<2A B<N(b)<2B A<N(a)<2A B<N(b)<2B
B<N(b)<2B

Consequently, there exists a sequence X, € {—1, 1} (indexed squarefree by b € Z[w] with

b=1 (mod 3)) such that

Z ,Uz(a)’ Z Xb(g)r > A Z | X%
beZ[w]

acZlw] beZ[w]
a=1 (mod 3) b=1 (mod 3) b=1 (mod 3)
A<N(a)<2A B<N(b)<2B B<N(b)<2B
Thus B(A, B) » A in the range A > B2. This completes the proof.
[

In light of the proof of Theorem 1.4, we renormalise the sequences we consider in the

cubic large sieve by setting

c:=3q(b)By, beZ|w] and b=1 (mod 3).

for some sequence B := (f)pezf]- This is well defined scaling by (2.2) (|g(b)| = 1 when
p?(b) =1 and b=1 (mod 3)). We are able to improve Theorem 9.1 by

(1) Introducing a non-trivial asymptotic main term;

(2) Assuming additional cancellations/density restrictions for the sequence 3 = (/3).

= AB. Suppose that w >
(mod 3) be a prime or 1.

Proposition 9.1. Let 0 < n < 1/4, A,B,w > 10 and X :
=1
< N(7) < w we have

(log X)' and B = () € C,(B,w). Let e € (0, 15555)
Then there exists p(e) € (0, 1a55) Such that uniformly in 1

7ay (2m)? gla) By |2
s, 2, w0

N(a) - a
2
p(a)V Brg(O)| ) —
ae%:w] ( A )) beZZM (b)3 30(2) N(a)'/s S ()16
a=1 (mod 3) (b,a)=1 (b,a)=1
la
A2/3BS/3 1 57r;£1 A2/3—p(a)B5/3—p(e) A1/6+aB5/3
TN Nm (o + N(ﬁ)) TTTNm T N
e - X _
+ (N(1)X) (N(W)l/2329/12A 12 | g2 W(l + (B?/A) 1000)).

Proposition 9.1 will be a direct consequence of the following estimate.

AB. Suppose that w >
1, 7 = 1 (mod 3) be a
= 1.

Proposition 9.2. Let 0 < n < 1/4, A,B,w > 10 and X :=
L), A >
Then there exists

(log X)' and B = (By) € Cy(B,w). Let ¢ € (0, 505
prime or 1, and v = 1 (mod 3) be squarefree such that (mw,)
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p(e) € (0, oagg) such that uniformly in 1 < N(y) < A and 1 < N(m) < w we have

M) (D) - G 5o 62
ae%:w] V< A >) be%:w] ﬁbg(b)<5>3_ 3F(§) N(a)Y/6 be%:w] W’
a=1 (mod 3) (b,a)=1 (ba)o
mv2|a

1 8t ~ 72\ 21 /(2m)?/3\3 A%3 By |2
< 2(N(7)2 - gQ(w;(?; 1,T)>V<§) 9\/§<(3F()§) ) N(m) ‘ be%:w] W’
2/3 R5/3
- (;ﬂ (Au/;;;/ + (AN(w)X)a(BQH"N(w)AQ + X(1 + (B?/A)—NOO))))
A2/3-0(e) B5/3-0()  A23B5/3 , 1 S
N N (g N(w))
A1/6+ B5/3
N (m)1/2+e >>

+OE(

+0,21 (0

i XaN(,]T>1/2B29/12A—1/12 n

Proposition 9.1 follows from combining Proposition 9.2 with the Lemma below with
the choice y = XM,
Lemma 9.2. Given y > 1, there exists coefficients (A\g)dezjw] such that

(1) My =1 and |N\g| < N(d)® for all d € Z|w] and all € > 0;
(2) \g =0 if N(d) > y? ord# 1 (mod 3);
(8) For all n € Z|w] we have

p(n) < Y Aa; (9.5)

d?n

(4) For any e > 0 and w € Z[w] a prime 7 =1 (mod 3) (or 1) we have

A 1 ,
= + O (y~ ). (9.6)
de;w] N(d)? o) (2:15)
(d,m)=1

Proof. Given d =1 (mod 3), let

Properties (1) and (2) are immediate from the definition. Property (3) follows from

Sau=( Y we)
N
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It remains to check property (4). For any 0 < k < 1/2 we have

AN ple)u(f)
Z N(d)? Z N([e, f])?

deZ[w] N(e),N(f)<y
(d,m)=1 e,f=1 (mod 3)
(ef,m)=1
N(e)*N(f)~
e,f=1 (mod 3) ([6, f]) e,f=1 (mod 3) ([6, f])
(ef,m)=1 (ef,m)=1

The sum in the error term of (9.7) is convergent for any 0 < x < 1/2. The main term of
(9.7) is equal to

2 1 1 1
1 4 ) — (1 - ) _ ,
w=1 ];[nod 3) ( N(w)2 N(w)z wo=1 ];[nod 3) N(w)2 C@(w)(Q; 17r)
WHET WHT
as required. (]

We now give the proof of Proposition 9.2.

Proof of Proposition 9.2. The parallelogram law implies that

X+ Y|P <2(X]?+|V]?) forall X,YeC. (9.8)
Observe that
N( (2 2/3 ~
2 (Aa))zﬁ“’()_?,- 1/6ZN1/6‘
a€Zlw] beZw beZw
a=1 (mod 3) (b'ya) (b,a)=
mv?|a
_ (2m)** 8,219(a) B
- ae%:w] < )‘( be; B (b < ) T r() O be;w] N(b)1/6>
a=1 (éTod 3) (b’ya)
y¢|a
(21)* 6,219(a) By 2
+<3r(§) N{a)e bEZZM N(b)l/ﬁ)‘
(b,a)#1
N(a) by (2m)*P6,_1g(a) By |2
<2( ae;[] V(=) be;[w] 530(5), - 3T(Z) N be;[w] N(b)l/ﬁ‘ (9:9)
a=1 (mod 3) (byya)=1
m™2|a
(2m)"? p?(a) . (N(a) By |2
+5”:19r(§)2 ae%w] N(a)l/?’v( A )‘bEZZ N(b 1/6‘)’
a=1 (‘mod 3) (ba);ﬁl

(9.10)
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where the last two displays follow from (9.8) and (2.2). The term in (9.10) is equal to

4/3 Bblﬁbg ,LL2( ) N(a) A2/BBS/3
2 2 N (brbo) 7 ae%w] N(a)1/3v( A )‘5V=1O<N(ﬁ)w9/_w>'

3 b1, szZ
a=1 (mod 3)
mla
(a’vbl)#l
(a,b2)#1

(9.11)
The estimate in (9.11) follows from the triangle inequality, the fact (byibe,m) = 1 (bybs is
w-rough and 7 is w-smooth) and

log B* 1 1 10
Z N log e B2 u v for w > (log X)" say.
w|b1b2
w prime
We repeatedly use this w-roughness argument in the course of the proof.
It suffices to compute the term in (9.9). We make the change of variable a — 7y2a.

After using cubic reciprocity and (2.2), it suffices to compute

5 (T s a0 (5),(5),

a€Zlw] beZ[w]
a=1 (mod 3) (b,mya)=1
(27?)2/35 _1g ar)
R N Z G 1/6‘. (9.12)

Expansion of the square in (9.12) shows that we need to evaluate the diagonal term

7= ¥ v S an(),(F)[ o

aeZlw] beZ[w]

a=1 (mod 3) (b,mya)=1

the cross term

- (27T>2/3 61)1 bl 51)2

3 b1,b2€Z[w
2

: Z V(W)@(Z—)g%)% 014

and the trivial term,

)23\ 2 a
7= () e B V) ] S gl o

acZlw]
a=1 (mod 3)

The appearance of p?(ar) in 7 is due to |§(ar)|[* = p?(arm) (a consequence of (2.2)).
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The diagonal term 2. After expansion of the square in (9.13), we obtain

7= Bni)bng <b2>(”b”)3(%)3 2 V(W)@(%)g'

b1,b2€Z[w] a€Z[w]
(b1b2,my)=1 a=1 (mod 3)

If (b1, bs) = d, then recall that (7.12) tells us that

a(0)i0) = (/) (557), (5573)

Thus an application of Poisson summation (in the form of Corollary 1) on the a sum
shows that

— i Z Z Bblﬁb2
9V3N(m7?) 7l bbeeziw) VAV (0102)

d=1 (mod 3) (b1,b2)=d

(d,ry)=1
N dm~yk\ sdmykN - kdvA
2, Cd(k)( by/d )3( bo/d )3V(b1b2N(m2)1/2)‘ (9.16)

keZ[w]

For a given d, 7, € Z[w] in (9.16), we split the k£ sum into two subsums:

e k€ Z|w] such that drn’yk = (F;
e ke Z|w] such that drn’yk # (3.

Denote the contributions to & from each of these two cases by 2, and %, respectively.
Thus 9 = 9, + 9.

Consider 2;. Since p*(dry) = 1, we deduce that dn’yk = @ if and only if k =
(dv)*mH for some H € Z[w] with H = (3. Observe that (4.6) and Lemma 5.5 imply that

ci((dvy)*mH) = é(—%)ap(d). Thus

R YRR/ W 1

d=1 (mod 3) (bl,bg):d
(d;my)=1 (b1b2/d?,my)=1
dy)?mHN - d*H~/ A
<) é<_( 73),; )V( bf) (9.17)
HeZ[w] 1v2
H=9

(H,b1ba/d?)=1

We further write 2, = 27 + 25, where %; denotes the sum in (9.17) restricted to d = 1,
and ¢ denotes the sum in (9.17) restricted to d # 1. The contribution from 2° is
negligible since the support of 3 guarantees that d # 1 implies that N(d) > w. By
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Lemma 4.4 we have

| Bb, B | N (bybo)/3
D7 < o(d) L ( + 1)
N(mvy?) de;[w] bl,bggZ[w] N (by)N (by) N(d)A1/3
(d;my)=1 (b1,b2)=d
d=1 (mod 3) (b1b2/d?,mvy)=1
N(d)>w
A2/SBS/3 ABXe¢ A2/SBS/3 X 1+e
& + <« + . (9.18)

wN(my?) ~ N(my?) ~ wN(my?)  N(7y?)

We now consider 2;. We write H = h* with 0 # h € Z[w] (h is necessarily non-zero in

this case). We have
é(—”z?:;hs) _ é(—g) ~1. (9.19)

This can be seen by writing h = (Nu with v = 1 (mod 3), ¢ € {£1, tw, +w?}, and
i € Z=p. Then the last equality in (9.19) follows from

G (5

Thus
A B, B, h3v/A
;= 10t ( ) (9.20)
1 N(my2 o b;Zw N (b1)N (by) 33\F he;] b1bo
(b1,b2)=1 (R,b1bs)=1
(b1b2,my)=1

Note that the extra factor of 1/3 in the above display accounts for the fact that (w'h)3 = h?
for i € {0,1,2} and 0 # h € Z|w]. We remove the condition (h, b1by) = 1 at negligible cost
since 3 is supported on w-rough squarefree integers in Z[w] with w > (log X)1°. Thus

* A Bblﬁ_b2 hg\ﬁ
%ZN(M 2 NN (bs) 33[2 (blbg)

b1, bQEZ
(b1,b2)=
(blb277F’Y):1
A2/3B5/3 AB
* O(N(MQ)wf’/lO) * O<N(7r72)w9/10>’ (9.21)

Observe that V(1) = V(|u|) is a Schwarz function by Lemma 4.4. Application of Poisson
summation (in the form of Lemma 4.1) to the sum over h € Z[w] yields

33\/_ Z (h;\b/z_):i_jmzz J v((x+1y)3\/—>< (x;’im)d:cdy. (9.92)

EZ[UJ] R2 bl b2
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We simplify the right side of (9.22). Recall that V(u) = V(|u|) is radial. After changing
T + iy into polar coordinates re®, the right side of (9.22) becomes
0

8” Z f f ble)) (W; )rdrdﬁ

81 N(byby) 1/3 mrem N (byby)V/6
- f f e Jrdrdd. (9.23)
meZ[w
For all m € Z|w], Lemma 4.4 1mphes that
2 mrem N (byby)"/6
f f e Jrdrdd
2m X0 N(bib 1/6
J J (r*)8[0.x°1 )e<m7; (21/26) )rdrdﬁ + O (X 2000y, (9.24)

For 0 # m € Z|w], repeated integration by parts on the right side of (9.24) shows that
2 i 1/6
f f (r*)dp0.x°1 )e(”“"; N (iffg >rdrd19 «o XE(B2/A)~100 N () =1000 (g 95)
We substitute (9.24) and (9.25) into (9.23), and then sum trivially over 0 # m € Z[w].
Chasing the result through (9.22) gives
Z V<h3f) 1672 N(bybo)?
33[ biby /3% A3

We now evaluate the main term on the right side of (9.26). We open V' using the definition
(4.2), and find that the main term is

1672 N (byby)Y/3 [ o [, r4mriu
5 e L uV (u )JO JO( WE )rdrdu. (9.27)

For each fixed u € (0,0), we make the change of variable w = 4mr3u/(3+/3) in the
r-integral. Thus (9.27) becomes

F V(r¥)rdr + O.(X°(B*/A)71").  (9.26)

(4m)Y3 N(byby)'/3 * _
o 21/2 ) u'BV (u?)du ) Jo(w)w™ 3 dw. (9.28)
A change of variable shows that
0
1~
L WV (u?)du = 5v(g), for seC, (9.29)
and [DLMF, (10.22.43)] implies that
*e) . 25_1F(§)
J W Jp(w)dw = =———=, for—1<Re(s—1) <1/2. (9.30)
0 I'-3)
Using (9.29), (9.30) and Euler’s reflection formula [DLMF, (5.5.3)], we see that (9.28)
becomes " s
2T (27’(‘) 2~ 72 N(blbg)
— — ) 31
9\/§( 30(2) )V(5) (9-31)
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After retracing (9.26) (9.27), (9.28) and (9.31), we obtain

e 2 V() - (Y P () o .

Substitution of (9.32) into (9.21) gives

L 21 (2m)PNzs 2y AP B Boa
7r = @( 3T (2) ) V(§> N(my?) b;Z N (by) /SN (by)1/6
(b1,b2)=

(blbz,ﬂ“/):l

A2/3B5/3 AR yl+e ) o
W) + O(W) + Os(W(B /A) ) (9.33)

Using w-roughness of the support of 3, we drop the conditions (by, bs) = 1 and (b1by, 77y) =
1 at the expense of the error term of the same order of magnitude of that occurring in
(9.33). After recalling that 2, = 77 + 27, (9.18), and (9.33), we see that

- 2/3 2/3
@1:92—\@((2 ()3)) <2> g ‘Z 1/6)

0(%) + 0. (% (1+ (B2/A)*1000)>. (9.34)

+0(

We now consider %,

4T A B 511
Dy — — 1 Mbe
2 9VBN(12) de;] ) gz ]«/ (b1b)

d=1 (mod 3) (b1,b2)=d

(d,my)=1
N dm?yk W kdy/A
X ke;[w] Cd(k)( bl/d >3< b2/d >3V<W> (935)
dr?yk+#6

We rescale by — db; and by — dby and use Lemma 4.4 in (9.35). We obtain

41 A 1 Bavy Bavs
Dy — — - _ PdnPdby
2 9v3N(m?) d%:w] N(d) bl,b;m NN (by)

d=1 (mod 3) (b1b2,my)=1
(d,my)=1 (b1,b2)=1
dr~kN sdm2ykyN - kv A
: 2 Galh) (TR (TR (VA
keZ[w] bl 3 bg 3 dblng(ﬂ"y )
dm?yk#0

N(k)<(AN(7)X)%(1+B2N(m)A%/(N(d)A))

+ O.((N(m)AX)~1000), (9.36)
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We Mébius invert (by, by) = 1 and separate variables by opening V using (7.17) and (7.18).
Rearranging the absolutely convergent finite sums and integrals by Fubini’s theorem gives

W 2L+ I'(—s) 2mvA 2
72 = 9@\/_N (my2) f fa ixe Ve (L +s+ 1)(3\/§N(7r)1/2N(7)>
1
Z W 2 N(d)+s

feZ[w] deZ[w]
f=1 (mod 3) d=1 (mod 3)
(fﬂl"Y):l (d,ﬂ"\/):l
N dr’ykN dnyk 5
8 Z Cd(k)( f7 )3( f7 >3N(k)
keZw]
dr2yk+0

N(k)«(N(7)AX)< (1+ B2 N (r)A2/(N(d)A))

X ( bléw] 5]1\?(1721) (dw;vk‘)g) )( Z \;ﬂ(dﬂgjl{:)?)]\f(bg)s)dsdr
(b1,my)=1 ( )

+ O:((N(m)AX) 1),

for any fixed L € Z~,. We use Axiom 5 of Definition 1 to estimate the sum over b; and
by, and then estimate the remaining sums trivially using Lemma 5.5. We obtain

AB™ B“Z”N(W)A?)
N(my?) N(my?)

Since n < 1 we have AB?" < X. We recall (9.34), (9.37) and the fact that 2 = 2, + %.
Thus

- 2/3 2/3 |2
'@:92%<<§r() )) V(§> . ) Z Nﬁl/ﬁ)

Dy <. (AN(W)X)€< (9.37)

N(m
A2/BBS/3 B2+277N(7T)A2 X ) 1000
(N(?T”}/ w9/10> ( ( N(7v?) * N(mv?) (1+(B%/4) )>)
(9.38)
The cross terms €. Recall that (9.14) records
(27T>2/3 ﬁbl bl 51)2
N\ il
% : 3F( 'y—1R . b2§Z b2 1/6
N(a)N(m)\7aN /7*\ glarm)
8 ae%[:w] V( A ) (b_l)g(b_1>3N(a7T)1/6)' (9:39)
a=1 (mod 3)
(am,b1)=1

Observe that (2.3) tells us that

a(bnatam) (5-), (5-), = alamh).
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We now evaluate the sum over a € Z|w] in (9.39) using our asymptotic formula for type-I

sums in Proposition 8.1 (for level wb;). Thus there exists p(e) € (0, 15555) such that

% mat) 3 V() G5 K

bi1€Zlw acZlw]
a=1 (mod 3)

B ‘7@) (2m)?3 A28 By p(hy)
3/ 3TN (m)*/6 | Z4 ) G (25 vy )N (mby )0
A2/3-p(&) B5/6-p(e)

: < N(m)

We now use the fact that 3 is supported on w-rough squarefree elements of Z[w]| that are
congruent to 1 modulo 3. We have

) + 0-(XN(m) 2 B1/1241/12), (9.40)

p(mrbi) \ _ 1 b
log <N(7rbl)> = w%;ﬂ log (1 — wzﬂ;n LZl LN (w9/10 + N(;:T)).
w prime w prime
Thus
b 1 o
;\i(( e exp<— w;)l Z LN > =1 +O( 75+ Wj:)) (9.41)
w prime

Similarly, we also have

1 1 1

Insertion of (9.41) and (9.42) into (9.40) gives
2

5wt 3 ()G, () e

bi€Zlw acZlw]

a=1 (mod 3)
&2 (27r)5/3A2/3 By,
MOk mre

]N 1)1/6
A2/3—p(a B5/6—pe .
e /2 219/12 4 —1/12
+ 0. e )+ 0-(XN(m) 2B a2 4 o

b1€Z]!

N(m) \w%10  N(x)

(9.43)
Insertion of (9.43) into (9.39) gives

@ = —2V<2)

2/3

T 2 A2/3
V‘9fc@2( w)(< >A ’Z 1/6‘

A2/BBS/6< 1 5#7&1 ))

A2/3fp(s B5/3fp € )
e /2 D29/12 4 —1/12
+5V=1(OE< N ) + O (X N(m)7*B/**A )+O< N

(9.44)

A2/3B5/3< 1 . 57rsﬁ1
w10 " N (n)

))
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The trivial term 7. Recall that (9.15) records

)23\ 2 a
7 () e £ v S sl o)

a€Zlw]
a=1 (mod 3)

Mellin inversion of the smooth function, the Class number formula [Lan94, Chapter VIII,
§2, Theorem 5] and subsequent contour shift to the right of the 1/6-line (in the s-variable)
gives

D V(MGW(W)) p*(a)

1/3
o] A N(am)
a=1 (mod 3)
~ 1/3;1 s

_ b V( ) Cow) (s +1/3;14) A ds

270 (o) (25 +2/3;1;) N(m)s+1/3

~ /9 271'142/3 A1/6+6
V(2 (1 = 6 - N(m) o (-

<3) ( #1 (7T> )9\/§CQ(w)<27 lw)N(ﬂ') <N(7T)1/2+a)

2/3

o A2/3 AL/6+e
7N(7r)2> + Oa(iN(ﬁ)lme)' (9.46)

2
<§) 9vV3Cow) (25 1) N (7)

Insertion of (9.46) into (9.45) gives

- 2/3 9 A2/3
7 = by 1V( >9\f<@<2w(21)<( ) ¢ ) Z | N 1/6)

A2/BBS/3 Al/6+aB5/3
N(n)2 ) =t E(N(w)1/2+€>

4 5#10(

T N A O< (9.47)

Conclusion. Combining &, €, and 7 using (9.38), (9.44) and (9.47) respectively gives
an asymptotic expression for (9.12). Substitution of this asymptotic expression into (9.9),
and (9.11) into (9.10), gives the result.

[

10. Broad Type II estimates

We prove the following type-1I estimates for sequences in C, (-, w).

Proposition 10.1. Let W be a smooth function compactly supported in [1,2], 0 < n <
1/4, A, B = 10 and set X := AB. Let a be a sequence supported in N(a) € [A/10,10A]
with a = 1 (mod 3). Suppose that w > (log X)'°, B = (8) € Cy(B,w), € € (0, 15055) and
=1 (mod 3) a prime or 1 satisfying 1 < N(w) < w. Then there ezists p(e) € (0, 15555)
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such that

_ N(ab) (27)%/3 Qo Bp®(ab) ¢ N(ab)
Z aaBpg(ab) W = 5 Z W
a,beZ|w] < X > 3F(§) a,beZ|w] N(ab)l/G ( X >
la la

(D ) (i s + )+

weZls] N(?T)l/2 w9/20 N(ﬂ')l/2 N(ﬂ.)l/2
la
A1/12+e/2B5/6 1/2

" N + (XN ()2 (N(w)1/4329/24/1‘1/24 4Bl o N)((ﬂ)l/? (1 i (Bz/A)—soo))»'

Remark 10.1. Suppose m = 1 say. Then for dense sequences o, 3 and given & > 0, the
result is non-trivial in the range X3¢ < B < X?7¢, for some appropriate choice of £,
and w.

Proof. Observe that (2.3) gives

N3 20 a
a,b%[w] alh <§(ab) B (??F()g) ]\l;(cgb)bl)/fi)w(¥>

la

= Y et (s - CO (Y

a,beZ[w] 3['(3) N(ab)'/s X
7r|a
O‘ag(a) Brg(b) 7@ (2m)*3  G(a) By
27TZJ W [w] N(a)® (beZ[] N(b)® (5)3_ ( ) N(a)i/s b; NG )1/6+s>ds.
7la (b,a)=1 (ba)

(10.1)

Application of triangle inequality and then Cauchy-Schwarz to the a-sum shows that

1(10.1)]? <<< > u2(a)laal2) FOOWNV(#)I( >, u2(a)V<N£1a)>

acZlw] - a€Z|w]
a=1 (mod 3) mla
la
% ) Z f\??b()zz <%>3 N (37T 9( Z N(b 1/6+zt )dtu
beZ[w] beZ|w
(b,a)=1 (b, a)
where V' : R — R a smooth compactly supported function such that V' = 110,10 Using
Proposition 9.1 gives the result. |

11. Average Type-I estimates

We prove average Type-I estimates that will be more of a direct use to us. Recall that
teZ,c=1 (mod 3), and

ale) = a0 (5)

el
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Proposition 11.1. Assume the Generalized Riemann Hypothesis for the Dedekind zeta
function attached to Q(w) twisted by Grofencharaktern. Let £ € Z, € € (0, to50555) A >
1000 be large and fived, and (log X )4 < w < X¢. Let V, W be smooth functions, compactly
supported in [3,4]. Let 0 < n < 100/A and a = (o) € C,(X,w). Then uniformly for
C > X257 and [{] < XY we have

3 QT§£<CT)V(N(C)>W(N(CT)>:(27r)z/3 5 anpi(cr) (1)

1/6
reZfw] ¢ X BP(g) re€Z{w] N(CT) /
c=1 (mod 3) c=1 (mod 3)
wlc = N(w)>w wlc = N(w)>w
X5/6
+ 0. (—) 11.1
Proof of Proposition 11.1. Mdbius inversion asserts that

6w\cﬁ N(w)>w — Z ,U,(U) (112)

u=1 u(‘rflod 3)
wlu = N(w)<w
Using (11.2), we express the left side of (11.1) as
Z(_l)k 2 Bry(N), (11.3)
k=0 N dyadic
where

Bes(N) = 5 argz(nm)(é o )V<N(n))v<N(nu))W(N(nru))'

w|lu = N(w)<w

rau,nel[w]
u,n=1 (mod 3)

(11.4)

Case 1: N > X'/2+1/20_ Corollary 3 and Remark 8.1 guarantee a small fixed §; > 0 such
that we have (uniformly in |¢| < X/100),

(2m)%/3 ozru2(nru)(|2:z|) 5
- Z N(nru)l/s ( wlu)=k )

ru,nEZ[w) @y = N(@)<w

u,n=1 (mod 3)
v (M (M) (M) o (xvem). (11s)

We can drop the condition d,—¢ since if £ # 0 then the sum over n majorised by the error
term in the above display.

Case 2: N < XY**1/20 SQuppose we are given a squarefree u € Z[w] satisfying v = 1
(mod 3), and such that all prime factors of u have norm < w. Then, given a prime
7|u, there is a unique factorisation v = brd such that all the prime factors of d (resp.
b) have norm < N(7) (resp. have norm > N(7)). Since N(r) = X/C « X'/3*¢ and
N(ru) = X/N » X'?7Y20 we are guaranteed a prime 7 € Z[w] such that v = brd with
N(rb) < X339 and N(rbr) = X'3/30. Note that there could possibly be two choices for
7 (say m or m) in the case that w is divisible by a rational prime 77 = p =1 (mod 3).
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In this case, the choice for m can be made unique by requiring 7 = m >g) m2. We
implicitly assume this condition in (11.6), and drop it from our notation from this point
onward. Hence

A= 3 ()5 (MY

rneL{w) u€Zlw
n=1 (mod 3) u=1l (mod 3)
< ( 3 3 1). (11.6)
TeZ[w] u=bmd
7 prime w(u)=k
N(m)<w b,d=1 (mod 3)

7=1 (mod 3) N(rb)<X13/30 N(rbr)=X13/30
w|b = w=N(w)=N(n)
w|d = N(w)<N(r)

We introduce smooth partitions of unity in the N(r), N(b) and N(d) in (11.6). Then (2.3)
and Mellin inversion imply that

%k,Z(N) = Z Z %(kl,kz),f(Na Da R> B)a (117)
D,R,B dyadic (ki,ko)e(Zx0)?
k1+ko=k—1
where
1 100 100 - -
B N,D,R,B) = ——— C*XV(s)W
(kth)’Z( o ) (27Ti)2 Jiw Jioo (S) (U)
X Z M( Z Bi(m, ki; 8,0, 0)yp(m, kaj 8,0 E)f](jh))dsdv
. N(ﬂ')erv - J Y Y Y ) ) 3 ) Y Y
m€Z[w],m prime J,heZw]
N(m)<w,mr=1 (mod 3) j,h=1 (mod 3)
(11.8)
and
(T T\ rr e N(r) N(b) _
Bi(m, kiys,v,0) == p*(j (—) (—) N(7)™" ozrV< )V( )N b)~%;
s = 20)(5), () N0 Y v (ED) )
w(b)=k1
r,b=1 (mod 3),(j,m)=1
N(j)<X13/30,N(j7r)>X13/30
w|b = w=N(w)=N(7)
(11.9)
W\ o N(n)y,, (N(d)
kais,v,0) = w20 (7)) (7)) Ny~ V(S (552):
7h(7r7 258,V ) ,[L( ) hls |h| ( ) h;d N D
w(d)=k2
n,d=1 (mod 3),(h,m)=1
w|d = N(w)<N(m)
We write
ﬁj(Ba R>7Ta kla S>'Ua€) = ﬁj(ﬂ-> kla S>'Ua€) and ’WL(N’ Da k’g,’ﬂ'; S,U,E) = ’}/h(ﬂ-a k27 S>'Ua€)>
(11.10)

when we care to emphasise the dyadic ranges B, R and N, D that are present in the
definitions of B and - respectively.
For each given 7 € Z|w] prime, the sum over j and h in (11.8) is zero unless

X330 /(1000N (7)) < RB < 1000X13/30, (11.11)
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and NDRB = X/N(7w). Thus ND » X'7/3°  Since N < X'?*1/20  we must have
D » X11571/20 whenever the sum over j, h in (11.8) is non-zero. We now write

Bk ko) t(N, D, R, B) = B\ (N, D, R, B) + By, 1,)s(N, D, R, B), (11.12)

where ’%)(Tkhkz)l corresponds the part of (11.8) with N(7) < (log D)#, and By ko)t COT-
responds to (log D)4 < N(7) < w.

Treatment of '%(Tkl ko) ,(N,D, R, B). Since (a,) is supported only on w-rough elements of

Z|w], the factorisation j = rb occurring in the definition of the sequence (; is unique.
Thus |5;(7, k15 s,v,£)| < 1 for Res, Rev = 0.

On the other hand, the sequence v,(N, D, 7, ko; s,v,£) is sparse when N(7) is on log-
power scales. We pause the proof to illustrate this in the following Lemma. We also
make the crude observations that -, is supported on h € Z[w] with N(h) = N D, and also
satisfies |y, (7, ka; 5, v, £)] < 2°( for Res, Rev = 0.

Lemma 11.1. Let N, D, A > 10, ky € Zso, and let 1 € Z[w] be a prime that satisfies
7 =1 (mod 3) and N(7) < (log D). Then

Z Vi(N, D, 7, ko; 8,0, 0)]* «a (ND)O(I) . NDE/A
heZ|w]

with K > 0 a small absolute constant.

Proof of Lemma 11.1. We first refine our bound for |v|,. We have

ko: Yl <2W(h) 1 2151?51\17\&](2) 1
|%(7T> 2; 5,7, )|\ *Lheq, K Zloslos * Lhew,,

where %, is the set of squarefree integers of the form nd with n,d =1 (mod 3), (nd, ) =
1, N(n) = N, N(d) = D, and such that all of the prime factors of d have norm < N ().

Observe that d has necessarily > ﬁg(ﬂ) (say) prime factors. Therefore

S (N, D, 7, kg 5,0, O)F < (ND)estevs - 2. (11.13)
heZ|w]
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Let p > 0 be chosen later. We have

2
p=(d)
|« (ND) Y]
d=1 (mod 3) N(d)
w\d:N(l );N(W)
w(d)> 105 10 N ()
plog D M2 ( d)ep‘*’(d)
< (VD) -exp (——> - N(d)
( ) 100 log N(ﬂ-> d=1 ;nod 3) N(d)
w|d = N(w)<N(m)
plog D e’
<ND-eXp( ) <1+—)
(ND) 1001og N (7 N(WBN(W) N(=@)
, plog D
« (ND) - exp (26 loglog N (7) — WN(W))
plog D
ND) - (2 Plog N(m —)
« (ND) -exp (2¢”log 1001og N ()
log D
« (ND) - exp (2A€p log IOgD - ]_OOAZ loogg logD)

We choose
= loglog D — 1000 logloglog D.
Thus (11.14) implies that

|52/7T| <4 NDI*I/(IOOOA)

for all D (hence X) sufficiently large. Thus (11.13) now implies the Lemma.

(11.14)

(11.15)

We now resume the proof of Proposition 11.1. We now use (2.3), the Cauchy-Schwarz
inequality, Heath-Brown’s cubic large sieve (Theorem 9.1) Lemma 11.1, and the conditions

(11.11), NDRB = X /N(7) and D » X/1571/20 to obtain

(B, (N, D, R, B)
PGS ((33)1/2(33 +ND + (RBND)2/3> 1/2Nl/21)1/2—1/<500A>)
meZ[w]
T prime
N (7)< (log D)4

=1 (mod 3)
« 4 XP/6-1/(10000004)
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say. We include a redundant main term of size that is absorbed by the error term i.e.

t
Bl 1o(N. D, R, B)
(2 5 oerZ(nTU)(ﬂ:ZQZV(N(r))V<N(n))V<N(nu)>W(N(nru)>
©30(3) ] N (nru)t/6 R N C X
n=1 (mod 3)
Ny, (N(d) )
% ( Z Z V( - )V( = )) + O.4(XP/6-1/10000004)y
TeZ[w] u=brd
7 prime w(b)=k1,w(d)=Fk2
N(m)<(log D)4 b,d=1 (mod 3)
=1 (mod 3) N (rb)<X13/30
a N (rbr)=X13/30
w|b = w=N(w)=N(r)
w|d = N(w)<N(r) ( )
11.16

Treatment of %y, (- -+ ). Recall that (log X)* < w < X*, and that (log X)* < N(7) < w.
We reassemble the integral in the v-variable in (11.8), and recover the smooth weight
W(N(jhr)/X). By Lemma 6.1 and Lemma 6.3 we have B(R, B;7;s,() € C,(RB, N(r))
(from (11.9)) for all n > 100/A. We then apply Proposition 10.1 and see that there is a
p(e) € (0, 1555) such that

Bl ko (N, D, R, B)
ey o (N (N Moy Moy

B 31—‘(%) rau,nel[w] N(nru>1/6 R N C X
TLE71 7 (mod 3)
N(b) N(d)
(X 2 V(o )v(=57)) + B (11.17)
meZ[w] u=bmd
7 prime w(b)=k1,w(d)=kso
(log D)A<N(7r)<w b,d=1 (mod 3)
=1 (mod 3) N(rb)<X13/30
N(rbr)=X13/30
@|b = w=N(w)=N(r)
w|d = N(w)<N(r)
where
X5/6 5 X5/6
= fopEe)) . X

L x83/12040(1), 1/4 | xr4T/60+0(1), 3/4 | X17/60+(13/30)(1+100/A)+o(1)w1/2>.

Note that both the error terms in (11.16) and (11.17) are uniform with respect to ¢, k;
and ks.

Conclusion. After combining (11.16) and (11.17) in (11.12), we obtain an asymptotic
expression for B, r.).¢(N, D, R, B) for each dyadic value of N satisfying N < X1/2+1/20,
We reassemble the sum over (ki, ko) € (Zso)? (satisfying ky + ky = k — 1), as well as the
partitions of unity in N(b), N(d) and N(r) in (11.7). We then collapse the weights in

the main term back to (5 w(u)=k ), and obtain an asymptotic expression for %y, (V)
wlu = N(w)<w
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for each dyadic value N satisfying N < X1/2+1/20 Recall that (11.5) gives an asymptotic
expression for %y, ,(N) for each dyadic value N satisfying N > X1/2+1/20. We combine
these two results in (11.3), and reassemble the partition of unity over N(n). Note that
the reassembly of partitions of unity and the sums over k; do not overwhelm the error
terms (one only has losses of O((log X)!Y) say. Inserting this asymptotic expression into
(11.3), and noting that

DDHE e Jura) = () (et — wmpew ) ()

k>0 wlu = N(w)<w
as well as (11.2), we obtain the result. [
12. Combinatorial decompositions
We will use the following combinatorial decomposition.

Lemma 12.1. Let W : R — R be a smooth function compactly supported in (0,C). Let
(5(n))nezpw) be a sequence satisfying |s(n)| < 1 and have support on squarefree n satisfying
n=1 (mod 3). Then for 2 <w < CXY3 < z we have

Y osew(ME) Ly mmw (M)

w=1l (mod 3) wi,w2=1 (mod 3)

N(w)>z N(w1),N(w2)>z

—1)* N(cw; ...
+Z (=1) Z s(cwl...wk)W(M> + O0O(VX).
k! X
k=0 w<N(w1),....N(wg)<z
Viiw;=1 (mod 3)
c=1 (mod 3)
c#l

wlc = N(w)>w
Proof. We assume that Res > 1 throughout this proof. We have

Ga(s) =[] (Lﬁ)l’

N(w)>z
w=1 (mod 3)

and
1 1
YT X wE s osees) = logll+ (G(9) - 1)
L>1 N(w)>z
w=1l (mod 3)
)i+l '
(e D g e 1P N T e 1y 2
j=3
Furthermore, .
=t 11 W)
w=1 (mod 3)
where

1\ 1
Guls) =[] (1—N(w>s) - Y N (12.2)
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The equation (12.2) is valid since every ¢ = 1 (mod 3) has a unique factorisation ¢ =
wi ... wg with @; =1 (mod 3) for i = 1,..., k. Expand the product

1 (—1)k 1
H <1_N(w)8>:1+Z k! Z N(wy ... wk)"

w<N(w)<z k=1 " w<N(wi1),...,N(wp)<z
w=1l (mod 3) Virwo;=1  (mod 3)
wo; all distinct
Therefore

Cox(s) = 1= (_;:u) > ! . (12.3)

s
k=0 " w<N(w1),...,N(wp)<z N(Cwl T Wk>
Vw;=1 (mod 3)
w; all distinct
c=1 (mod 3)
c#1
wlc = N(w)>w

Substitution of (12.3) into (12.1) gives

1 1 (—1)k 1
Z L Z N(w)lbs - Z k! Z N(cwy ... w)° (124)

=1 N(w)>z k=0 " w<N(w1),...,N(wp)<z
w=1l (mod 3) Vw;=1 (mod 3)
w; all distinct
c=1 (mod 3)

c#1
wlc = N(w)>w
S NIEREIES Y = dENrE R

=3 J

The result follows from a comparison of coefficients. Observe that that the total contri-
bution from terms N(w)* < X with & > 2 on the left side of (12.4) is O(v/X). Since
z > CX'3 and W is compactly supported in (0, C'), we see that the contribution from all
terms (C-.(s)—1)7 with j > 3 is zero. Notice that s(cw; ... w@y) is zero if ¢y . . . @y is not
squarefree by hypothesis, so we can drop the requirement that the w; are all distinct. W

13. Proof of Theorems 1.1 and 1.3

We first record a useful Lemma due to Polymath that classifies the Type-I, Type-II and
Type-III information that occurs in the proof of our main theorems.

Lemma 13.1. [Poll4, Lemma 3.1] Given an integer n > 1 and 1—10 <o < %, letty,... t,
be non-negative real numbers such that t; +...+t, = 1. Then at least one of the following
three statement holds:

(Type-1) There is an i € [1,n] such that t; > 5 + o;

(Type-11) There is a partition {1,...,n} =S U T such that

%-O’<Zti<2ti<%+0;

€S €T

(Type-111) There ezists distinct i, j,v € [1,n] such that 20 < t; <t; <t, < i —0 and

1
ti—i-tj,tj-i-tv,tv-i-tiZ 54‘0’.

Furthermore, if o > 1/6, then the Type-111 alternative can’t occur.
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Proof of Theorems 1.1 and 1.3. We first explain some initial manipulations.

Initial reduction. For any rational prime p =1 (mod 3) we have
Sp

2p

where w € Z|w] is a prime such that w = 1 (mod 3) and p = ww@. The number of primes

w =1 (mod 3) for which N(w) is not prime is O(v/X). Such primes are those that lie
over rational primes p = 2 (mod 3). To prove Theorem 1.1 it suffices to estimate the

quantity
% i)

w=1 (mod 3)
Observe that (2.2) implies that

= Reg(w),

(@)’ = .
||
Thus
g(w) ifk=1 (mod 3) with ¢ =*L
+1

i) = (-1 () x

||

(w) ifk=2 (mod 3) with ¢ ==~
if k=0 (mod 3) with ¢ = %
In particular, Theorem 1.3 with & = 0 (mod 3) follows directly from the assumption of

the Generalized Riemann Hypothesis.
To establish Theorem 1.3, it suffices to show that

w w 5/6
S @ () W) = ologx)

w=1 (mod 3)

— @
0-7‘

as X — oo and uniformly in 0 < |[¢| < X%, To prove both Theorem 1.1 and Theorem
1.3 simultaneously it is enough to estimate

. w \*! N(w
Y @ ()W),
w=1 (mod 3)
to a precision better than o(X?*°/log X). For ¢ =1 (mod 3) define
PV
ge(c) := f](c)(—) .
]
Let € € (0,107°) be fixed. Let
w:=X° and z:= X!3*¢
By Lemma 12.1 we have

S aew(M) LN (M)

w=1 (mod 3) wi,w2=1 (mod 3)
N(w1),N(w2)>z

+y % 3 Gl .. .ww)W(M) +O(WX),  (13.1)

k=0 (wl 7777 wkvc)es(w72)
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where S(w, z) denotes the set of tuples (wy, ..., @k, ¢) with £ > 0 such that

e wy,...,wy are primes congruent to 1 (mod 3) (when k > 1);
e For all 1 <i <k we have w < N(w;) < z (when k > 1);
e ¢ is w-rough, c =1 (mod 3), and ¢ # 1.

When £ = 0, the sum is understood just to be over the variable c.
Let £ € (0,107°) be a small fixed quantity to be decided at a later point in the proof
(it will ultimately depend on €).

Remark 13.1. Uniformity of error terms in ¢ is not an issue when deploying Type I1/I11
estimates (i.e. Proposition 7.1 and Proposition 10.1). This is because (2.3) is applied to
ge(ab), and the dependence on /¢ is absorbed into the coefficients e and 3 that satisfy
|e|os, 3]0 < 1. The dependence on ¢ issue emanates from the application of the average
Type-I estimate in Proposition 11.1.

First sum on the right side side (13.1). We introduce a smooth partition of unity
on each of the N(w;) to evaluate the (Type-II) sum over N(w,), N(wy) > 2. Thus it is
sufficient to estimate

B N (@ N(w N(w
FuX, Py, Poz) = Z gg(wle)W( ( Xl' 2))v< SP 1))v< 53 2)),
whngl (mod 3) ! ?
N(w1)7N(w2)>Z
(13.2)

for all dyadic partitions (P, P,) that satisfy z/2 < P, P, < 2X and PP, = X. When
2/2 < min{ P}, P,} < X%?*7¢ we can apply Proposition 10.1 with 7 = 1, and 1 > 0 arbitrar-
ily small and fixed by Lemma 6.2 (the only requirement is that n > 100 loglog X /log X).
Thus there exists do(&, ) > 0 such that

l
2 e (Z2) Ny, (N
%(X,Pl,P2’Z): ( 7T>2 (‘ i/62) V( (w1)>v< (w2)>
3L(3) N(w1),N(w2)>z N(w1w,) Py Py
X W(N(?WQ)) + O§7E(X5/6—50(§7E))’ when Z/2 < min{Pl, P2} < X1/2_§,

(13.3)

When XV27¢ < P, P, < X'Y/?%¢ we appeal to Proposition 7.1. In particular, the
smooth coefficients here are supported on z = X3¢ > X¢ _rough integers. We obtain

X 1 Xo/6
Fo(X, Py, Py 2) « + ,
f( 1 2 ) (5 10gX)3/2 /min(Pl, PQ) (6 log X)2

when XY2¢ < P, P, < XY2HE
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where the implied constant is absolute. We can include a redundant main term that is
majorised by the error term i.e.

eﬂ%(Xa P1,P2;Z) =

7)%/3 * (@) ( p— )Z w1 (7P w1 Ws
(32F() - N(wlwl)1/6| V(Ng:ﬁ )>V(N§-—’2 )>W<N(X )>

win

) N(w1),N(w2)>
X 1 X5/
7 ) O oxe)
(elog X) min(Py, P,) (elog X)
when X727 < P, Py < XS
(13.4)

+0(

Since PP, = X there are O(£log X) choices of Py, P, in the narrow range X'/27¢ <
Py, P, < XY24¢. Summing (13.3) and (13.4) over all possible dyadic tuples (P, P,) gives

_ N(ww
S e (M52)
wi,w2=1 (mod 3)
N(wl),N(w2)>z

102 )Z

B (27’(’)2/3 M2(w1w2)(\w1w2\
B 31"(%) Z N(wwm,)/6

N
(=)
wi,w2=1 (mod 3)

N(w1),N(w2)>z

X3/4+§/2 £X5/6
s S L(X5/6-01(62) 13,
O<(ElogX)3/2)+O(g2logX>+Ofv( ), (13.5)

for any fixed 0 < §;(§,¢) < do(&, €).

Second sum on the right side (13.1). For each 0 < k < 1/e, we analyse the sum

(N(wl..

X.wkc))

> ge(wr ... o) W (13.6)

(1o, Tk, C)ES (W, 2)

We insert a smooth partition of unity in N(c) and each N(w;) fori =1,...,k in (13.6).
Thus its suffices to estimate

(P, ... Pryq) = Z gg(wl...wkc)W<N(wlA.X;.wk0)>v<]}\);(f3> ﬁV(%?),

(wl ~~~~~ wk,c)ES(w,z)

for all dyadic partitions H = (P, ..., Pyyq1) satisfying Py ... Py = X, w/2 < P, < 2z
forall i = 1,...,k, and Pyyq = w/2. Our goal will be to show that .7 (Py,..., Pyy1) is
asymptotically equal to (either for individual tuples (P, ..., Py,1) or on average)
%Z(Plu v 7Pk+1)

Tw1... WEC

T 2/3 2(@1 N v C)(W)Z w1 . . -ch b wz
:(3??3%)( wch: : N('wl.].ﬁ.WILC)lm | W(N( X ) <Pk+1>HV<N i )
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For a given (P, ..., Pii1), let

t; >0 for v=1,...,k+1. 13.8
lOg(Pl . Pk+1) ( )
We necessarily have
ti+ .+t =1 (13.9)
log w log z , log w
<t < f =1,...,k, d tgy = ——. 13.10
log X log X ot an Fr log X ( )

We now apply Lemma 13.1 with choice o := 1/6 — £ to decompose the proof into cases.

Narrow Type-I1I sums. In this case we necessarily have k > 2, and
3 three distinct indices 4, j, ¢ € {1,...,k + 1} such that t;,¢;,¢, € (% — 2€, % +&). (13.11)
In particular, either
(1) 3 an index i such that ¢; € [3, 5 + £), or
(2) we have t;,t;,t, € (3 — 26, 3).
The sum over all dyadic partitions (P, ..., P.1) for which there exists an index i such
that t; € [3, 5 + &) (and two additional indices j, ¢ such that t;,t, € (5 — 2¢, 5 +&)) is
N(ab))
X

<+ sup 3 (%m@mmw(
1/3 [3+¢ [oali[Bp|<1 a,b= mod
s g)igi(iz " BeCy (Pw) lab 1=>(N(7r)i)w
N(a)=X/P,N(b)=P

. (13.12)

where 7 > 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
n > 1001loglog X /(elog X)). Notice that the factor (k + 1)! = k! - (k + 1) arises from the
fact that there are k + 1 ways of choosing the first index ¢ for which P; € [, 5 + &) (and
this index becomes our P) and there are k! ways of representing a as a product of the
remaining k variables. Application of Proposition 7.1 shows that (13.12) is

1 X X5/6
< (k+1)! Z ((5logX)3/2 .\/F—i_ (510gX)2>

X1/3SPSX1/3+E
P dyadic
5/6 5/6
< (k+ 1)!( X + X )
(elog X)32 ~ e?log X/’

where the implied constants are absolute.

We now handle the remaining case in which ¢;,¢;,t, € (% — 2¢, %) We group together
two variables coming from the indices ¢ and j say. We sum over all dyadic partitions
(P, ..., Pyyq) for which ¢, ¢, ¢, € (% — 2€, %) This sum is

]V<ab>> . (13.13)

<(k+1)- Z sup ‘ Z aaﬁbgg(ab)W< e
X236 e x?/3 |%ali|Bbl<1 b=1 (mod 3
U d;adi<c BECy (X /Uw) 7rl\la,b =>(§7’1€7r)>)w

N(a)=U,N(b)=X/U

where 7 > 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
n > 1001loglog X /(e¢log X)). The factor (k+1)! = (k—1)! -2(]“;1) arises from the fact that
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there are 2(]“;1) ordered choices of i and j such that ¢;,t; € (3 —2¢, 1), and (k —1)! ways
of representing a as the product of the remaining k£ — 1 variables. Applying Proposition
7.1 and arguing in a similar way to the above shows that (13.13) is

X5/6 £X5/6
(elog X)3/2 = logX)’

where the implied constant is absolute.
Combining the two cases we conclude that

N AP P =Y ///(Pl,...,PkH)JrO(

< (k+ 1)!(

(k + 1)!X5/6>

3/2
(P1yeesProy1) (P1yeesProy1) <€ lOgX) /
(13.11) holds (13.11) holds
k+ 1)€X5/6
+ 0(—( )€ )
e?log X

Notice that the main term is absorbed by the error term in this case.

Narrow Type-1I sums. In this case we necessarily have k > 1, and
3 a partition S UT = {1,...,k+ 1} such that  — & <Y t; < Y't; < 3 +&  (13.14)
€S JeT
The contribution of all such (P, ..., Pyi1) is

N(ab
<k+1 Y sup 3 aaﬂbgg(ab)W( a ))) (13.15)
1/2—¢ 1/2 laal,[Be|<1 ab=1 (mod 3
T dsy(a]dsiéx peCy(Uw)  11ap :(N(w)>)w
N(a)=X/U,N(b)=U

where 7 > 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
n > 1001loglog X /(clog X)). The term (k+1)! arises from the fact that for each 1 < i < k,
there are 1! (k jl) ordered choices for the set S containing i elements, and there are (k+1—1)!
ways of representing b as a product of the remaining k + 1 — ¢ variables indicated by the

set T'. Applying Proposition 7.1, we see that (13.15) is

1 X X5/6
< (k+1)! < RS )
X1/2E;]<X1/2 (8 lOg X)3/2 \/U (5 lOg X)2

U d\yad\ic

X3/4+¢/2 §X5/6
(elog X)3/2 = logX)’
where the implied constants are absolute.

In particular,

N AP Py =Y ///(Pl,...,PkH)JrO(

< (k+ 1)!(

(k + 1)!X3/4+f/2>

3/2
(P1yeesPry1) (P1yeesPry1) <€ log X) /
(13.14) holds (13.14) holds
k+ 1)1€X5/6
N 0<( )€ )
e?log X

where the main term is absorbed by the error term.
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Remaining ranges. We now consider all of the remaining dyadic partitions (Py, ..., Pyi1)
one by one. For each remaining tuple (P, ..., Py;1) we will show that
X5/6
Py Pet) = Py, Pet) + Onge (). (13.16)
log™ X

for any given A > 10 (depending on ¢ > 0). Recall that £ < 1/e. Since there are at
most (log X)* dyadic partitions (P, ..., Pyy1) satisfying P, --- Pyy; = X, we can sum
over the error term in (13.16) without overwhelming the main term. Notice that each of
the remaining configurations of (P, ..., Pyy1) now fall into either of two cases:

(1) Jie{1,...,k+ 1} such that t; > 2 — &;

(2) Or 3 a partition SuT={1,....k+ 1} such that

= +§ Dt < 1 - +§ Yty <
€S JeT
If 3 e {1,...,k + 1} such that ¢; > % — &, then i = k£ + 1 by (13.10). This corresponds
to the ¢ variable appearing in .7 (P, ..., Pry1) in (13.7). After applying Proposition 11.1
(average Type-I estimate) we obtain (13.16) uniformly in |[¢] < XY If the second
alternative holds, then (13.16) follows from Proposition 10.1 (broad Type-II estimate).

OJII\D

(13.17)

Assembly. Summing over all dyadic partitions (P, ..., P.y1) we obtain

—1)k . N(w; ... we
0<k<l/e T (@1, @g,0)ES (w,2)

w1...TEC £
Z (—1)k Z M2(w1"'wkc>(|w1...w:c|) W(N(wlwkc)>
- | 1/6
O<h<l/e k! (@1, or0)eS (w,2) N(wl Ce wkc) / X
X5/6 X5/6 X3/4+§/2 X5/6
(S ) o) o) 0 ),
etlog X £72(log X )3/? £72(log X')3/? S \og ' X

(13.18)

uniformly in [¢| < XY We now drop the third error term in (13.18) because it is
majorised by the second one. Combining (13.18) and (13.5) in (13.1), and then applying
Lemma 12.1 (in the reverse direction, and to the symbol p2(-)(--)*) gives

S aew(XE) L e LBy (N

2 1/6
w=1 (mod 3) X 3F(§) w=1 (mod 3) N(w) / X

5/6

e 2 5/6—61(£.¢)
O<64logX) JrO<57/2(10g)()3/2) +OA7£76(1 A 1X> + O (X ),
(13.19)

uniformly in |[¢] < XY After choosing & = !9 and A = £71%% (say), the error terms

n (13.19) are O(EX)/?) as X — 2. We conclude by noticing that

1 N(w Xo/6
W( J W (x _1/60[1' as X — oo,
w=1 %od 3) N(w)1/6 lOgX
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and for ¢ # 0,

=/
(%) <N(w)> (X5/6>
Z w =0 as X —
1/6 ’
w=1 (mod 3) N(w> / X IOgX
uniformly in || < X190, This proves Theorem 1.1 and Theorem 1.3. [

14. Proof of Theorem 1.2

Proof of Theorem 1.2. We expand f in a Fourier series

f(@) =Y F(k)e(kz).

keZ
For p=1 (mod 3),

(6) = > FR)e(kb,) = 3 f(k)a(w)",
keZ keZ
where w is a prime in Z|w] such that p = w@. Therefore

> s (%)

p=1 (mod 3)
is equal to
fo Y w2 fw( Y a@w(ME)owm) o
p=1 (mod 3) 0<|k|<X1/100 w=1l (mod 3)

for any given A > 10. We now appeal to Theorem 1.1 and Theorem 1.3 to see that the
sum over k # 0 is equal to

R R 1)2/3 o0 5/6 5/6
(F)+ Fewy- S0 | orx (i)

as claimed. [ |
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Appendix A. Appendix

This table completes the computation in [Pat77, Table III] where the values k;(E) were
computed for all 1 < j < 27. We supplement [Pat77, Table III] by also computing k;(T)
and k;(P) for all 1 < j < 27. We do not require these computations in any of our proofs.
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J_ | di(p) ki(E) | k;(P) | k;(T)
1 | 7(w) 1 4 1
2 | T(p)é(wp) 19 5 2
3 | T(p)eé(—wu) 10 6 3
4 | 7(wp) 7 7 6
5 | T(wp)é(—p) 23 9 4
6 | T(wp)é(p) 13 8 5
7 | (W) 4 1 9
8 | T(w?u)e(—pu) 14 3 7
9 | 7(wn)e(n) 22 2 8
10 | wro(wp)é(p) 3 14 11
11 | wrp(w?n) 12 17 12
12 | wn(wp) 11 11 10
13 | wra(p)é(w?p) 6 10 14
14 | wra(p)é(—wp) 8 13 15
15 | m(w?p)e(—w?p) |24 16 13
16 | m2(1)e(—p) 25 |18 |17
17 [ (1) 17 (12 |18
18 | 7o (p)é(p) 27 15 16
19 | Wi (W?p)é(u) |2 22 20
20 | w?r (wp) 21 21 21
21 | w?r (w?p) 20 26 19
22 | w?r(p)é(wp) 9 23 23
23 [ W (wp)é(w?u) |5 19 24
24 [ w?r(w?p)é(w?u) | 15 27 22
25 | m(p)é(—mp) 16 24 26
26 | 7 (1) 26 20 27
27 | m(p)e(p) 18 25 25
We note that,
)~ Gy’

These isomorphisms are easily seen from the table by following the cycle structure. The

exponents 12 in C4? be explained by noticing that the forms j = 1,17,26 are invariant
under E and all the other elements are of order two, giving us @ = 12 generators.

Likewise the exponent 8 in C§ can be explained by noticing that the forms with j = 1,2, 3
are invariant and there are WT’?’ = 8 remaining generators all of order 3. Finally the
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exponent 9 appears in the case of k;(P) because no forms is left invariant by P and P is
of order three.
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