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This note contains an expository analysis of the mathematical
structure of the theory governing interaction of magnetic fields
with conducting compressible fluids., One of its major aims 1is to
emphasize the remarkably close parallelism between this theory
and ordinary gas dynamics. It 1s shown that the basic equations
governing magneto-hydrodynamics - or hydromagnetics for short -
have essentially the same mathematical character as those govern-
ing gas dynamics and that, consequently, essentially the same
mathematical methods that have proved successful in gas dynamics
can be employed. This fact is 1llustrated by a detailed descrip-
tion of the hydromagnetic analogues of shocks, first discovered by
Teller and de Hoffman, of sound waves, including the Alfvén waves,
and of simple waves. In particular, a typical example 1s presented
which serves to demonstrate that - as 1n gas dynamics - simple one-
dimensional magneto-hydrodynamic flow problems can be solved with
the aid of shocks and simple waves.

The work presented here originated in connection with a
Seminar conducted in 195u by H. Grad at New York University. A
preliminary report appeared at the Los Alamos Scientific Laboratory
in September 195l, reissued in March 1957 as Report LAMS 2105.

Some of the problems described in the preliminary report were
subsequently treated extensively by Bazer and by Bazer and Erlcson;j
their results are referred to and used in the present note. Also
included is an appendix by K. von Hagenow, in which certain of the
results on simple waves are shown to be deducible from the trans-y
formation properties of the differentisl equations.

The relativistic analogue of the problem treated here was

formuleted in a report by P. Reichel [12]; see also Zumino [17].
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NOTES ON MAGNETO-HYDRODYNAMICS - NUMBER VIII

Nonlinear Wave Motion

K. 0, FPriedrichs and H. Kranzer

Introduction. Physical assumptions,

The equations dealt Qith in this note represent a particular
special case of the full set of magneto-hydrodynamic equations
catalogued in MH-I, This specialization 1s achieved through &
number of physicél aséumptions which serve to reduce the mathe-
matical complexities inherent in these equations to almost manage-
able proportions,

Our first assumptlon 1s that there exists a scalar fluld
pressure p which is & funection of density and entropy. This
function is assumed to have properties us&élly required in gas
dynemics, Moreover, we shall assume in our discussion that ﬁeat
conduction and viscosity mey be disregarded., As a consequence
various types of gases are excluded from treatment, such as gases
in whieh the mean free path is not small compared with the signifi-
cant dimensions of the problem,

We also shall assume‘that the flow velocity is small compared
with the speed of light., PFurthermore, we assume that the (mean)
elesetric charge 1s negligible, so that the medium is essentially

neutrel, and that the displacement current may be neglected.%

?It would not be necessary to make these assumptions. A strictly
Lorentz-invariaent counterpart of the treatment given in this report
has been given by Reichel [12].
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On the other hand, we do nct assume that the flow velocity
is small compared with the speed of sound. In other words, we
assume the fluld to be compressible, |

Moreover, we shall assume the electrical coﬁductivity of the
fluid to be infinite. This assumption enables us to express the
electric field in terms of the magnetic field and the flow vector.

Indeed, from equation (26) of MH-IV we find

Tt is not our intention to discuss in detail the significance
of these various physical assumptions, Instead, we want %o
describe some of the mathematical consequences of the basic
differential equations to be derived from thess assumptions.

A remark might be made, though, about the assumption of
compressibility. As is well known, compressibility need be
taken into account only if the flow speed |u| is comparable with

the sound speed

(2) a=c = lap/ap1Y/2,

sound

Moreover, our approach will in general be worthwhile only if the

Alfvéh speed

(3) c = £ % see Chapter II,

is comparable with the sound speed, since otherwise hydromagnetic
and compressibility effects could be separated, If Ch1p is much
less then e¢_ ., Which will frequently be the case, it might be

possible to separate compressibility effects from hydromagnetle
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effects. We might then, for example, first treat compressibility
effects in the absence of hydromagnetic effects, and then consider

hydromagnetic effects under the assumptlon of & known fluid

density.




1. Basic Equations

On the basis of all the assumptions described one can derive
a system of differential equations which governs the flow of the
fluid and the changes in the electromagnetic field., B is the
magnetic field vector; the electric field vector is given by (1)
in terms of the flow veloclty u. In the absence of displacement
current, the current per unit area, J, can be expressed in terms

of the curl of B:
(1.1) uJ = curl B.

The pressure p = p(p,S) is a given functioﬁ of density p and
entropy S.
The two Mexwell equations which do not involve current and

charge are retalned; they may be written as

AO divB = 0
and
A B+ curl (B x u) = 0.

B
The second term in A, is curl E by (1).

The force per unit volume which enters lewton's second law
consists of the "Lorentz force" =B x J and the préssure gradient
-Yp. Using (1.1), we may write this law in the form

A, pu + p(us V)u +{Yp + p.'lB x curl B = 0.

The continuilty equation of fluld dynamics is retained:

Aq o + div (pu) = oO.

Finally, we add the law that the entropy per unit mass, S, is
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cerried unchanged by the particles:
Ay s+ (ueV)s = o,

These equations, essentially formulated by Lundquist, 1952,
[5], eand sometimes referred to as "Lundquist equations", will be
the basis of our discussion., They include as a speclal case the

two-dimensional problems treated in MH-VII,
It would be sufficient to require equation Ao to hold only

at an Initial time; as is well known, it then follows from Al that

this equation is satisfied at 211 times,
Equations Al to Au are a system of eight non-linear partial
differential equations of first order for the eight quantities

B B B s W _, u

z? Yy ¥ 22 P and S, The first fact we emphasize is

x’ y!

that these egquations are hyperbolic. Specifically, they belong

to the speclal class of symmetric hyperbolic equations, which is

particularly well understood mathematically; see [1l]. These
equatlions share this property with Maxwell's squations, with the
equations of elasticity, and with the equations of gas dynamics,
Moreover, they share with the gas-dynamical equations the further
property of being nonlineasr with coefficients which involve the
dependent but not the independent variables, It 1s because of the |

latter property, in addition to the hyperbolic character, that the

same methods can be applied to the equations Al to Ah that have
proved successful 1n gas dynamics.
The fact that these equations of magneto-hydrodynamics belong

to a class of equations which are most consistent in their mathe-

matical character supports the confidence in the physical consis-

tency of the various assumptions from which they were derived.

i
{
|
|
|
!
|
|
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As 1s well known, physical processes governed by hyperbolic

equations have the property that disturbances ars propsgated

with finite speed., Thus, Iin ordinary compressible fluids,

disturbances travel with the speed of sound relative to the
motion of the fluid, Hence magneto-hydrodynamic disturbances
also travel with finite speed. However, in contrast to gas
dynamics, there are three "sound speeds." Accordingly, there

are three modes of propagation in each direction. Moreover,

these speeds depend on the directionj; specifically, on the angle
between the direction of propagation and the direction of the
magnetic field. These remarkable facts were first discovered
by Herlofson [3] and by van de Hulst [4], in connection with
sinusoidal linearized wave motion. Our first task will be to

find these speeds,



2, Characteristic Manifolds and Propagation of Disturbances

Characterlistic manifolds - three dimensional manifolds in
(x,y,2,t)-space - associated with a differential equation may be
defined in many different ways; cf, [1L4,15]. Instead of giving
a precise definition, 1t is sufficient in the present context to
say that solutions of the differential equation may possess "small"
discontinuities only on certain manifolds, and that such manifolds
are called characteristic., We may consider such a manifold as
being swept out by surfaces P =J(t) in (x,y,z)-space; the
motion of these surfaces will then alse be called "characteristic®,
In a process described by a solution of the differentiasl equation,
therefore, a small discontinuity or "disturbance" present on a
surface Qg(to) at an initial time to may at later times be present
only on surfaces & (t) which move characteristically, Such a
moving discontinuity will be called a "disturbance wave" or simply
a "wave®,

We introduce the normal vector n of unit length at each point
of the surface of (t) and characterize the motion of the surface
é(t) by its velocity Ceh in the normal direction at each of its

points. It is convenient to introduce the normal compenent
(2.1} u_ = neu

ef the flew velocity st thils point and to write the characteristic

velocity C.p There sas the sum

(20,2)% c = u_ t ¢

by convention we always choese c > O,
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Thus tc is the normal component of the characteristic velocity

relative to the flow velocity,

In order to find the possible values of c one may first set
up the relations between the possible discontinuities 6B, du, 6&p,
6S of the quantities B, u, p, S on the surface ¥ (t). Using the
formalism of the theory of characteristics, cf. [1ll], the following

relations are found:

By 7cbB + Bbu,n - Bnﬁu = 0,

B, Fpcdu + a“nbép + u "n(Be6B) - p B 0B = 0,
B3 3cop + p6un = 0,

Bh 3cés = 0,

Here a is the speed of sound, given by (2); furthermore

(2.3) Su, = nebu,
and
(20’4-) Bn = ne<B

1s the normal component of the magnetic field,
The determinant of this system of eight homogeneous equations

for the elght quantities 6B, 6u, 8p, 6S is found to be
(2.5) det (B) = pc2(p02- Bi/“){Pcu' (pa2+82/p)c2+ azBi/u} .

The characteristic velocities Fc are obviously the roots of the
equation

(2.6) det (B) = 0,

= 11 &



All eight reets of this equatien are seen te be real, in

accerdance with the fact that the differential equatiens are
hyperbelic,
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3. Fast and 8lew Disturbance Waves

We shall first discuss the roots of the last factor of
det (B)., The condition that this factor vanishes can be written

in the form
(3.1) cz(pc2 - Ba/h) = az(pc2 - Bz/h)

or in the form
(3.2)  (e® - a®)(pe? - B2/p) = c2(8%/u - BE/p),

The larger and the smaller of the roots ¢ » 0 of this equation
will be denoted respectively by Craat and Celow®
From equation (3.2) one immediately deduces the inequalities

(3.3) ®slow = 2 T Cragt
and

(3.4) ®slow = bn = ®fast®
Here

(3.5) b, = [83/up]/2

iz the Alfven velocity, ef, (1), with the magnetic field vector
~eplaced by its normal combonent Bn° The sound speed a 1is as
given by (2). An equality sign can hold in relatioms (3. 3) and
(3.14) only if B=B nl's 80 that the right member of (3.2) vanishes,
In this case one of the two speeds equals a, the othor equals b o
The possible disturbances, i.e., the solutions of equations

B1 to Bh assoclated with ¢ = ¢ Or ¢ = Cpn gt» are found to be

slow

S
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(3.6) 88 = kpc“(B - B_n),

su = ske(p™IB B - pc®n),

6p

2 2
kp(pc® = B_/u),
83 = 0,

Here k is any number # O,

It is to be noted that 6B has & tangential direction so that

(3.7) 6Bn = n°6B = O,

The disturbance Op vanishes when c¢ = bno The disturbance 6u may

be written in the form

(3.8) 6u = %(ppe) 1B 8B + p lc(sp)n,
which 1s on occasion useful., We also note dbwn the relation
(3.9) 8(p + B/2p) = a%6p + p71Be6B = kpc®(pe?- BZ/u),

which follows from (3,6) and will prove useful later on.
Particular attention should be paid to the cases where the
normal n 1s parallel or perpendicular to the magnetic field B,
In the first case, B = Bnng one of the roots c agrees with
sound speed &, Unless a = b = b, formulas (306) remain valid
for this root. They must in any case be modified for the other
root ¢ = b, since the latter root agrees with a root of another

factor of det (B).

In the second case, Bn = 0, the fast speed 1s given by the

-1l -
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noteworthy formula

d 2 1/2 2 2]1/2
(3.10) Crast = Eag + B /pé]/ = (@ + Db ]
Pormulas (3.6) remain valid in this case, The other root

(3.11) 0,

cslow

however, agrees with the root of another factor of det (B).
Hence for this root formulas (3.,6) must again be modified.

The needed modification of formulas (3.6) in these twe
cases will be described later (cf. (4.6) and (5.)4.))°

In order to illustrate disturbances of the type treated in
this section, consider segments of plane wave fronts, fast and
slow, which travel in the direction of the normal n after having
passed through the origin at the time t = 0, At a time t > O
and

®fast
The locus of these points is shown in Figure 1.

these fronts pass thréugh the points etn with e =
¢ = Cs10w®
Also of significance is the envelope of these fronts; which is
shown in Figure 1A. This envelope gives the position at the time
t > 0O of the expanding wave front resulﬁing from a péint distur-
bance at the origin at t = 0, (That is, it represents the
limiting form for large t of the wave fronts resulting from an
initial disturbance in a region of finite extent--for small ¢
such wave fronts may look quite different.) In these figures we

have assumed C41f < ®sound’ 2° that the slow speed c agrees

slow
with the Alfvén speed for B ||n. This seems to bs the more
frequent situation. We also have drawn wave fronts of a third,

intermediate, type which we are going to describe now.
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o, Transverse Waves and Alfvén Waves

An intermediate wave belongs to the root
(lo1) ¢ =b_= [BZ/ 11/2
° n n/ #P

of equation (2.5). As seen from (3.l), the speed b 1lies between

end cp_ . except if B ||n or B | n. The possible discon-

Cslow
tinuities associated with this wave, given as the solutions of

equations (B), are

(4o.2) 6B = ¥ kpeB X n,
. =1
u=k BBXn,

n
88 = 0,

(i

p

with an arbitrary constant k, In this case, therefore, the dis-
turbances are tangential to the wave front and perpendicular to

the magnetic field, The relation

2
(4.3) 8B = 2B:6B = O,

implied by (L.2), shows that the magnetic field undergoes a
rotatiocn, This intermediate type of disturbance wave will also
be referred to as a "tra.usverse wave",

At this place we may interpose a remark about the Alfvén wave

in an incompressible fluid., The conditions on the possible disturbances

in this case are obtained from conditions (B) by setting a26p = Bp

in B, and 6p = 0 in B In addition to the double root ¢ = 0, one

2 3°
finds that c = bn is a double root., The corresponding disturbances

are
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(holy) 6B = anm,

6u

i

;kbnn*
op = -lp"'B_(B-n®),

6S

o,

where n® is an arbitrary unit vector perpendicular to n, and k

is an arbitrary number. Evidently, these possible disturbances
form a two-dimensional manifold, in accordance with the fact that
¢ =b 1s a double root. Relations (4oly) imply the important

relation
(L45) 6(p + B%/2u) = 6&p + p"1B6B = 0,

which expresses the fact that the sum of fluid pressure p and
"magnetic pressure™ B2/2p is continuous across the surface A(t).
(The notion of magnetic pressure will be discussed in Section 6.)

One might say that the Alfvén wave  results 1f the sound speed a

and hence the fast disturbance speed ¢ become infinite while

- fast

the slow wave speed c coalesces with the Alfven wave speed

slow

a1 = Pne
For a compressible fluid, we have already mentioned an

analogous case in which the slow (or posaibiy the fast) distur-
bance speed coalesces with the Alfvén wave speed, namely, the case

of a disturbance wave traveling parallel to the magnetic field:

B = Bnn,

*We use this term for disturbance waves in any direction in an
incompressible medium slthough Alfvén described only waves travel-
ing in the direction of B.
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Again c2 = bg = b2 is a double root of equation (2.6) and there

again exists a two-parameter family of disturbances, namely

(4.6) 6B = kB n¥,
du = 3 kbn™,
6p = 8S = 0,

Here n* and k have the same meanings as in equation (L.l). Once

more we have

1

(4o7) 5(p + BS/2p) = p”IB:6B = o0,

The disturbances (L.6) represent, in a real sense, the
transition between a slow (or fast) wave and a transverse wave.
Indeed, it 1s easy to see that they are obtained as the limit of
equations (L.2) as B approaches the normal direction, and also as
the 1imit of equations (3.,6) as B => B n and ¢® > bi -> bzo

The fast, slow, and intermedlate waves described in Sections 3
and li represent the three modes of wave propagation referred to at
the ena of Section 1. Since each type of wave may move in the
direction of n or of =-n, they correspond to six roots ¢, The

propagation of disturbances associated with the remaining roots

¢ = 0 will not be referred to as wave motion,
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5. Contact Disturbances

About the remaining root ¢ = 0 only a few remarks need be
made, This root has the multiplicity 2 unless Bn = 0, in which
case the multiplicity is 6, We confine ourselves for the present
to the case B # 0. The relations (B) then posséss only the
solutions
(5.1) 6B = In

6u = 0, 6p = 0,

oS = k,

with arbitrary k and kl. We may just as well set k = 0, or,

equivalently,

(502) GBn = 0,

It is consistent to do so, for, as could be shown, this condition
is satisfied on every surface J(t) if it is satisfied initially
on J(to)o

The remaining possibility of an entropy disturbance corres-
ponds to a contact discontinuity. Since the discontinuity is
small, we prefer to use the term "contact disturbance".

In striking contrast to the situation in gas dynamics a contact

discontinuity in a hydromagnetic fluid does not permit a discon-

tinuity in the tangential component of the velocity (provided Bn# 0)s

This remarkable fact will play a considerable role in the discus-
sions of wave motions given in Sectidn‘lB.

Suppose now that B 1is perpendicular to n3

B, = 0.

- 19 =



Then we have

2 - WE o

So that ¢ = 0 i1s a sextuple root of (2.6)., The corresponding
six-parameter family of possible disturbances may be written

as follows:

(5.4) 6B = K,
bu = kn%,
6p = -p”"a"“K-B,
88 = k

Here K is an arbitrary vector, n* an arbltrary unit vector

perpendicular to n, and k and kl arbitrary numbers, In other
words, all the disturbances are arbitrary, except that they must

satisfy
(5.5) 5(p + B%/2p) = o.

Equations (5.l;) do not form as clear-cut a "transition case"
as equations (L4.6), since performing the approprisate limiting
processes on equations (3.6);, (L4.2), or (5.1) will lead only to

special cases of (5,L),
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6, Conservation Laws

In this section we shall discuss the conservation form of
the Lundquist equations, partly as preparation for the discussion

of shocks,

It is customary to say that a system of partial differential
equations has "conservation form" if each equation consists of
the sum of derivatives of functions of the unknown quantities,.
The reason for this expression is that the laws of conservation
of mass, momentum and energy are of this form. On the other hand
the possibility of writing the equations in this form is the condi-
tion for the possibility of setting up shock relations,

Equation A (see Section 1) evidently has conservation form,

c, VB = O.

This same is true of equation Al, but we prefer to write it in

the form
cq B+ VeuB - VeBu = 0.

Here, and correspondingly in the following, the inner product in
V ‘uB involves only V and u while the differentiation Y/ applies

to the product uB. Thus, the x-component of {/.uB is
- 0 3 3
(V-uB), =57 (uB,) + oy (uyBx) * 3z (gBy)e
Similarly, the x-component of V.Bu is

. 0o ) 3
(Y7~Bu)x = 3% (Bxux) + Sy (Byux) + 32'(Bzux)‘

- P =



Equation A2 can be written in the form

C,y 3% (pu) + Voulpu) + Vp + V(B2/2p.) - VeBp™lB = 0

9

which expresses the law of conservation of momentum, Suppose the
magnetic field B is such that the term V?aBumlB vanishes; this will
be the case under various symmetry conditions, cf. [9]., Then the
conservation law 02 has essentially the same form as in gas
dynamics except that the expression p + Bz/2p tekes the place of
the pressure, It is primarily because of this fact that the term
B2/2u 1s referred to as "magnetic pressure",

The law of conservation of mass, A39 is given in conservation

form

o

Cq p + Vel(pu) = 0,

Equation Aug however, which describes the transport of entropy,
1s to be replaced by the law of conservation of energy, which

assumes the form
Ch é% (%pu? + pe + Bz/Ep)+ ‘Vou(%pu? + pe + p 4 Ba/p)
= Vou 1B(B-u) = o,

Here e is the internal energy per unit mass of the fiuid, which
may be considered as a function of density and entropy and is

characterized by the relation
_ -1
(6.1) de = TdS - pd(p™ ),

in which T is the temperature, It is to be noted that the
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expression B2/2u in the first term of Ch plays the role of

"magnetic energy per unit volume", while the expression Ba/u
in the second term of Ch plays the role of "magnetic enthalpy per

unit volume"., It should also be noted that the expression

uBz/u - p-lB(B~u)'
occurring in Cu_may be written in the form
(6.2)  p'us® - B(Bew)] = p"HEXB] = EXH

by virtue of formula (1), This term is thus recognized as

Poynting's energy flux per unit area,
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7. Shocks

As is well known, continuous gas dynamical motions will
break down at some time if they involve a compression, The same
must be expected to happen in hydro-magnetic motions if the
compressibility of the fluid cannot be neglectedo Mathematically
speaking, the solution of the differentlal equations ceases to
exist beyond the time of breakdown, Physically speaking, the
phenomenon is no longer governed by the differentlal equatlons
from that time on., Actually, discontinuities, i.e., shocks, will
appear,

As in gas dynamics, one assumes that the quantities on both
sides of a shock front are governed by the laws of conservation.
The shock conservation laws can then be derived from the conserva-
tion form (C) of the differential equations by a formalism which
is quite analogous to the formalism by which the equations (B) for
the disturbances are derived from the original differential
equations (A)., We denote by n the normal vector at ahy point of

the shock front and by

Q] =q -@

o

the jump of any quantity Q across the shock front; here Ql is the
value on the side toward which the normal n points and Qo is the
velue on the other side, Further, we denote by U the velocity of
the shock front in the normal directionoi The reclpe then recuires
one to replace the symbol é% in equations (C) by =Ul...] and the

symbol V¥V by nl...l. The result is the following set of equations,
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0 n
Dy ((w, - U)B - Bul =0,

D, [(w, - U)pu + (p + B°/2p)n - ™1 B] = o,

Dy [(u, - Uel =0,

D, [(w, - 0)(Zpu® + pe + B°/2u) + u (p + B/2u) - u~lB_(5.U)]=o.

These are the relations which connect the values of the ocuanti-
ties B, u, p, S on one side of a shock front, or, more generally,
of a discontinuity surface, with the values of these gquantities
on the other side and with the speed U of the surface.

These relations were derived by de Hoffmann and Teller [2]
in 1950, These authors set up the conservation laws for shocks
directly without relating them to differential ecuations. Also,
they derived the equations in a Lorentz invariant form and only
afterwards derived equations (D) as the non-relativistic approxi-
mation. The direct non-relativistic derivation was given by List
[771.

The jump conditions (D) are frequently supplemented by the
statement that there is a "sheet current" flowing along the dis-
continuity surface and that the value J° of this current per unit

width is given by the relation

S

() pd- = n X [B]

in accordance with relation (1.1). Although this statement is of

great slignificance for the description of the physical phenomena
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involved,; 1t need not be taken into account in the mathematical
analysis of the discontinuity condition,

We will speak of a shock if fluid crosses the front, u - U # 0.
In that case we assume the direction of the normal vector n so

chosen that fluid crosses in the direction of the normals
(701) un - U > Oo

It w, o= U = 0, so that no fluid crosses, we speak of a contact

discontinuity,

We shall present an analysis of the possible types of shocks
and contact discontinuities which ‘is completely analogous to the
analysis of disturbance waves given in the preceding sections,
Before doing this, however, we make an Important observation of
a general nature,

Gas dynamical shocks involve a rise in pressure and density,
since the entropy increases across a shock., For hydromagnetic

shocks we may state similarly: If the entropy incresses across a

shock front, pressure and density also increase., (The qualifica-

tion is necessary in this case, for, as we shall see, there are
shocks which do not invoive changes in entropy, density, and
pressure at all.) The proof of the statement follows from the

identity

(7.2) [e + 3P°'] = <[p" 1(B12 /18,

in which p is the mean value

(7.3) B =3(p_ + py)e
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This remarkable identity, first given by Liist, could be derived

by forming a linear combination of relations (D) which is similar
to the linear comblnation which expresses the entropy relaticn
Au in terms of the relations (C), cf. Séction 6. The left member
of (7.2) is the "Hugoniot function", which vanishes for gas
dynamical shocks., The right member involves the drop -[p-l] in
specific volume p-1 and the square of the jump of the magnetic
field, From the known properties of the Hugoniot function

(cf. [12]), one can show that it has the same sign as —[p-l]
only if it has the same sign as [S]. The statement made above
then follows.

From relation (7.2) one can also derive the fact that the

increase of entropy across a shock is of the third order in p

and B,
In order to establish the analogy between the shock relations
(D) and relations (B) characterizing disturbances it is convenient
to iIntroduce the notion of mean value
Q=3 (Q, + Q)
of any quantity Q and to use the formula
~ ~
(pQ] = plQ] + [PIQ.

It is also convenlent to introduce the specific volumse

(7.4 T=p7t
instead of p, and the flux

(7.5)  m=plu, - 0)

- O



instead of u o Note that, by D3, the flux 1s the same on both
sides of the shock front. Also, Do permits us to take Bn as a

constant, Relations D1 to D3 can now be written as

E, m#(B] + Blu_ ] - B_[ul = 0,
E, mlu] + [pln + pmlnﬁo[B] - pcan[B] = 0,
E3 m(?”] - [un] = 0,

These equations evidently cerrespond precisely te equations B1

to B3 if one lets

~ - ~/ sy
m, T, =[7] 1[p],B correspond te 3pc, p 1, p2a2, B

and lets

[ul, (7], [B] correspond to &u, apczﬁp, 5B,

The analogue of relation Bh is relation (7.2)3 it may be disre-
garded 1n the present context,
From this analogy, or by direct computation, one finds that

the determinant of the system E1 te E3 is
(7.6)  det (E) = Tom(¥n®- Bo/u)(Tul + (T (117 p)- B2/ )m®

-1t17 el BE/u.
The equation

(7.7) det (E) = O

is an equation for the flux m, but it may just as well be consid-

ered an equation for the shock veloclty

(7.8) U=7_ -nT,




cf, (7-5)-

It is clear from (7.6) that there are fast, slow, and

intermediate shocks and that the relationship between them is

the same as that between the correspending disturbance waves.
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8. Fast and Slew Shocks

The flux m of a fast or a slow shock satisfies the equatien
2/~ 2 = = ~
(8,1) n“ (Tm - Bz/p) = =[] 1[p](27m2= Bfl/p.),9

which expresses the condition that the last factor of det (E)

vanishes; cf, (3,1), In analogy with (3.3) and (3.l) we have

2 =1 2
(8.2) Pglow = -l7170pl < Mrast
and

2 29 % 2
(8.3) Mslow Bn/uIJ S MPraste

In analegy with (3.6), the relations between the possible jumps

across the shock front are

(8.4)  [B] = km®(E - B ),
(8.5) [ul = kym(p"'B B - ¥mn),
(8,6) ] = -k (¥m® - B2/u),

with en arbltrary constant k, (instead of Tk,

The cases of a "parallel" shock, B = B n, and of a "perpen-
dicular" shock, B = 0, were discussed in great detail by de Hoffmann
and Teller [2]. Here we only mention that for the fast perpendicular
shock, as well as for the "non-A1fvén" parallel shock, the jump of
the velocity u 1s in the normal direction, as may be seen from

(805)0* Therefore, if in these cases the shock 1s observed from

*The slew perpendicular shock, for which m = 0, and the "Alfvén"
parallel shock, for which m> = Ba/uﬁfg are net governed by
equations (8.4)-(8,6), but instead by equations analogous te
(5.4) and (4.6) respectively.,
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an appropriate frame, the flow velocity will be normal on both

sides,
For "oblique" shocks, those for which B # B n # 0, a frame

can be so introduced that the flow velocity u is parallel to the

magnetic field B on both sides of the front. This fact, emphasized

by de Hoffmann and Teller, can be read off from relation Dl' One

-1
n (un - U)B on one side;

D1 then implies that this relstion also holds on the other side.

need only choose the frame such that u = B

In view of‘(l) the electric field E vanishes in this frame on both
sides of the front.
Using formulas (8.4) to (8.6), we can easily describe the

Jump of the absolute value of the magnetic fileld across the shock

front. From formula (8.L), we have

2
i)

(B°] = 2B-[B] = xym® (B - B
Hence, using formuis (8.6),
(8.7) 8%} = -n’lr)( Fn® - B2/p) H(B2 - B2).

Since we have asssumed the normal n to point in the direction
in which the fluid crosses the shock front, the statement made
preceding formula (7.2) implies that [?] < O. In view of (8.3),

we are therefore asble to state: The magnetic field strength |B]|

rises across a fast shock and drops across a slow shock. By

virtue of Do’ the same 1s true of the magnitude of the tangential
component of B, This fact will prove particulerly significant in
connection with specific flow problems,

Formula (8.4) implies that the tangential component of the




‘magnetic field jumps in its own direction; i.e., the jump [B]

1s parallel to the tangential cempenent ef B. and has the same

sense as the tangential component of B. Thus acress a fast sheck

the tangential component of the magnetic field retains its directien

and increases its magnitude, while across a slew sheck this cempenent

may retain er reverse its directien and must decrease in magnitude.

The analysis of shecks as given here seems appropriate 1f ene
desires te ebtaln a quick survey of the pessible types ef shecks
and te derive seme of their simple preperties, In this analysis
we have extensively used mean values, invelving values en beth
sides of the frent. In a numerical problem, hewever, the mere
important questions are usually those which refer te the behavier
of the varieus quantities en each side separately. Teo answer such
questiens, the analysis ef Ericsen and Bazer [11l] may be mere
apprepriate, We sﬁmmarize belew varieus results cencerning such
preblems, the proofs of which may be found in [11].

One cuestion that may arise 1s whether or net a tangential
cempenent of the magnetic field may be produced threugh a sheck
if it was absent ghead ef it, or whether or net 1t may be wiped
eut if it was present ahead of it. Shocks through which this
happens may be called "complete switch-en" er "switch-eff" shecks.

Clearly, a complete switch-on sheck must be fast er a cemplete

switch=-eff sheck must be slew,

It can be shown that complete switch-en shecks exist enly

if the Alfvén speed 1s supersenic shead of the sheck; and even

then enly if the shock strength (e.g. measured by the pressure

ratio pi/pe) lies belew a critical value, If ene lets the sheck
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strength increase, the gain in tangential component of B first

fnecreases and then decreases, becoming zero when the critical

strength is reached. On the other hand, complete switch-off

shocks always exist if the Alfven speed behind the shock front is

subsonic; if this speed is supersonic there, they exist only if

the shock strength exceeds a critical value.

Gas dynamical shocks have the property that the normal component
of the flow velocity relative to the shock velocity, u, - U, 1is
supersonic shead of the shock front, i.e. on the side (0) from where
the fluid comes, and subsonic behind it. For a hydromagnetic shock

we may state: The normal flow velocity relative to a fast shock is

greater than the fast disturbance speed ahead of the front and less

than it but greater than (or equal to) the transverse disturbance

speed behind it:

u, - U >ceoqy on side (0), ahead,

bo< u =-U<co . ¢ , on side (1), behind.

The equality sign holds only for complete switch-on shocks. The

normal flow velocity relative to a slow shock is greater than the

slow disturbance speed ahead of the front, but less than (or equsl

to) the transverse speed on both sides of the front:

w, -U<b, on side (1), behind,

b_ > u, - U >

n & a5 on side (0), ahead.

The second equality sign holds only for complete switch-off shocks.
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These facts may be illustrated in Figures 2 and 24, in
which the shock is assumed to be stationary, U = 0, Only those
disturbance motions are shown that travel against the flow,

Just as in gas dynamics, a fast or a slow hydromagnetic shock

is determined by prescribing all quantities ahead of it and the

(o) - (o)
pressure p > p or the relative velocity v, = u, - U < v,

behind it. It is, however, not possible to prescribe arbitrarily
the tangential component of the magnetic field behind the shock
front, and where 1t 1s possible to prescribe it at all, the shock
may not be uniquely determined. This fact 1s clearly indicated by
the remarks sbout switch-on and switch-off shocks made above,

An important insight into the connections between the various

types of shocks may be obtained by consideration of the family of
slow shocks starting from a given state (with a non=zero tangential
component of B) ahead of the front. As the shock strength increases,
the tangential magnetic field component behind the front first
decreases to zero, then increases with direction reversed, approach-
ing in the 1limit the negative of 1ts value ahead., In other words,
a continuous transition may be made from a weak slow shock, such as
is depicted in Figure 2A, through a complete switch-off shock to a
special case of the "transverse" shock considered in the following
section, This remarkable fact was first noticed by Ericson and

Bazer [11].
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9, Transverse Shocks, Contact Discontinuities

The root

(9.1)  m, = (B2/u ®)Y/2

r
of equation det (E) = 0, cf. (7.7), 1s assoclated with a type of
shock which will be called transverse,* Such transverse shocks

correspond to the transverse waves discussed in Section l; they

are sometimes called "Alfvén shocks." In analogy to expressions
(4o2) we find the eipressions

(9.2) [B] = kmB X n,

(9.3) [ul ku-ang X n,
(90'4-) [f] = O,A
(9.5) (8] = 0.
The last relation is derived from (7.2) and [Z] = 0. Also,

[un] = 0 holds, as seen from E3. Thus, the only quantities that

jump across a transverse shock are the tangential components of

the magnetic field and of the velocity.

Relation (9.2) implies relation
(9.6) (8°] = o.

In other words, the strength of the magnetic field is unchanged

across a transverse shock. The magnetic fleld therefore rotates

In the plane of the shock and the flow velocity undergoes a
tangential change parallel to [B]. All other quantities remain
continuous, The possibility of this occurrence necessitated the

qualification made in the statement preceding formula (7.2).

¥A transverse discontinulty is called a "shock" since fluid crosses

the surface; in other respects it is closer to a contact discontinuity.
See [16].
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In general, the angle through which the tengential magnetic
field Bn =B = Bnn rotates in crossing e transverse shock is
arbltrary. An interesting special case 1s that for which the
rotation angle is 1800, so that the tangentisl magnetic field
behind the shock is directed oppositely to that in front. As
pointed out 1in Section 8, this special case also occurs as the
limit of a slow shock when the shock strength approaches its
maximum admissible value, Thus transverse shocks are continuously
connected with the slow shocks considered earlier, This connection
i1s more clearly shown in Figure 3.

Returning to the general transverse shock, it 1is obvious from
(9.3) that a frame can be introduced such that the flow is parallel
to the front on both sides. Therefore, the term "transverse"
shock; introduced by de Hoffmann and Teller, would seem appropriate,

The possibility of such a transverse shock is, of course, to
be understood as a mathematical possibility, referring to the
existence of solutions of the equations (E) for the root (9.1).
Whether or not such shocks are possible in nature is another
question, In fact; 1t would seem that they are possible only
under unusual circumstancesj; cf. Section 12,

The root m = 0 of equation (7.7) corresponds to a discontinuity
of the normal component Bn of B. However, this possibility is
excluded by condition DO; cf. the arguments in Section 5, which
could be carried over here,

A second root m = 0 would have occurred if we had not omitted

relation DLL in changing the system (D) over into the system (E).
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The corresponding discontinuity would be a proper contact discon-

tinuity involving no flow across the front, i.e.

In case B_ # 0 relations (D) then imply
(u] =0, (B] =0, I[p] =0,

The latter relation does not require [p]l = 0, since [S] # O 1is
compatible with Du. Because of [B] = O we have a purely gas
dynamical contact discontinuity, in fact, since [u] =0, a

special onse.

In case Bn = 0, on the other hand, we can only conclude
[p + B%/2u] = o,

while the tangential components of u and of B may undergo any
Jumps. In fact, the contact discontinuities corresponding to
both roots m = O coalesce in the case Bn = 0,
A contact discontinuity which involves a jump in the tangential
flow velocity will be called a "shear flow discontinuity." It is

remarkable that in a conducting fluid no shear flow discontinuity

can be maintained if the magnetic field has a normal component

B # 0 at the front. This fact will be the starting point for

our discussion of special flow problems in Section 13.
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10, Simple Waves*

Naturally, the hydro-magnetic flows ﬁost easlly accessible
to treatment are the one-dimensional flows, These are characterized
by the condition that all quantities depend only on one space variable
X say, in addition to the time, and hence are constant on each
(y,2z)=-plane at each timé. No restriction need be imposed as to
the presence or absence of the y and z=-components of the vectors
B and u.

The problem of one-dimensional waves in a compressible con-
ducting medium 1is certalnly not the most urgent problem of magneto-
hydrodynamics that needs to be solved; nevertheless, as in gas
dynamics, the study of such problems contributes to an understand-
ing of significant hydro-magnetic phenomena.

| In gas dynamics, the simplest types of one-dimensional flows

"

are the so=called "simple waves", Because a flow region adjacent

to a region of constant state is always a simple ﬁave, these waves

may be used very effectively as bullding blocks in constructing
solutions of flow problems. (A state of flow is referred to as
constant in a region if all significant flow queantities are time-
and space-independent in the region.)

Simple waves are also possible in magneto-hydrodynamics,
They have essentially the same properties as those in gas dynamics.
Moreover, it appears that they also can be effectively used as
building blocks,

A simple wave may be characterized by describing, not the

*For a theory of simple waves associated with general systems of
differential equations whose coefficlents do not involve ths
independent variables, see P. Lax [16],
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motion of a particle, but the motion of a "phase", as determined

by a set of values for the quantities B, u, p. In a simple wave
each phase moves with constant velocity. That is, the values of B,

u, p are constant on certain straight lines
(10.1) x = Ut + &

in the (x,t) plane, The number U, as well as B, u, and p, may be
considered a function of the parameter £. Instead of U we intro-

duce the quantity ¢ > O defined by
(10.2) U=u_*%tec.

This quantity c¢ will turn out to be one of the characteristic
disturbance speeds; i.e., one of the roots of equation (2.6).

From this characterization of simple weves one may derive
the following recipe for setting up the equations governing them.
In equations A (see Section 1), one should repiace V¥V and g% by
{d/dg, 0, Q} and -(ux * ¢c)d/dg, or, leaving open the choice of
the parameter describing the phase, simply by {d, D 0} and
-(u_* c)d.

The equations thus obtained are

n
O
o

Fl o dBy + Bydux - Bxduy

zc de + Bzdux - BxduZ = 0,



F, pedu + dp + d(BZ/2u) = 0,
;jpcduy + ualedBy = 0,
spcdu, - p”'B aB, = 0,

F3 edp + pdu. =0,

F) cdS = 0,

When the equations F1 to Fu_are considered linear equations
for the seven differentilals dBy,o.o, dS it is clear that the
determinant of this system must vanish. One verifies - by direct
computation or by comparison with equations (B) in Section 2 = that,
except for a single factor of =c, this determinant is precisely
det (B), cf. (2,5), with the normal direction n taken as the
x-direction. Hence, the speed ¢ must be one of the roots of the
equation det (B) = 0, i.e., one of the characteristic disturbance
speeds corresponding to the phase B, u; p.

According to which kind of speed c¢ enters, the simple wave
is fast, slow, or transverse; if c = O the wave is a "contact
layer",

As we shall see in the subsequent sections, the differential
equations (F) can be greatly simplified. In the case of a poly-

tropic gas, they can even be solved explicitly.
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11, Fast and Slow Simple Waves

Equation (3.2) for the fast and slow disturbance speeds may

in the present case be written in the form

(11.1) w82 + BZ) = ¢72(c? - a?)(pe? - Bz/p.),
Yy z b

where, cf., (2),

a2 = dp/dp.

It 1s more convenient for the present purpose to introduce the

square ratio
(11.2) q = ¢c°/a®

of disturbance speed to sound speed as independent variable and
to try to express all other quantities in terms of q. It is also

convenient to introduce the square ratio
_ 2nl _ 2 /ne
{11.3) s = a%/b- = ppa /B
of sound speed to "normal" Alfven speed as dependent variable,
Relation (11.1) then becomes

2

(11.4) B2+ BZ = (q - 1)(s - a™1)BZ;

From relations F2 " and F3 one further derives the relation
’

(11.5) 2(q - 1)ds = yd(q - 1)(s - q”l),

where

(11.6) ~y=1+p cf—p(log %%).

(See the Appendix for a more systematic derivation of this relation.)

For polytropic gases, vy is a constant, and relation (11.5)
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becomes a linear differential equation for s as a function of q,
which can be solved explicitly, From relations F. and F F

1 2,y "2,z
one infers that the ratio Bz/By is constant)so that, except for
this constant, By and Bz can be determined explicitly in terms of
the constant B, by (11c4). Since p and a may be regarded as known
functions of s, cf, (11.3), also ¢ = afq mey be considered known.

The velocity u can now be determined by integrating the differentials

(11,7) du = *cp~lap,
(11.8) dug = _';(upc)"ledBy,

. -1
du, = T(ppe) B dB, .

As implied by relation (3.l),

(11.9) ppe® > Bi or s > ™l in a rast wave,
ppcz < Bi or 8 < a™l in a silow wave;

thus the wave speed ¢ may agree with the Alfvén speed, On the
other hand, 1t could be shown that the wave speed ¢ can never

coalesce with the sound speed a; i.e.
(11.10) g >1 1in a fast wave,
q <1 1in a slow wave,

In a fast wave the compression may tend to Infinity, and hence
S =-> oo, while in a slow wave cavitation may be reached, s -> 0,

Of course, a fast (or slow) wave may be either a compression
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wave or a rarefaction wave. The tangential components of the

magnetic field lByl and IBZ| increase across a fast, decrease

across a slow compression wave, but they decrease across a fast,

and Increase across a slow rarefaction wave,

Finally, we mention that "centered rarefaction waves" exist,
as In gas dynamics. They are characterized by the condition that
at some 1nitiael time, say t = 0, all phases involved are concen-
trated at the same point. (One then must set & = const. in formuls
(10.1) and use a different parameter to chesracterize phases.) If
we Imagine that a centered wave separates two constant states of
the fluld, these states will be adjacent at the time t = 0, 1In

other words, the centered wave then resolves an initial discon-

tinuity.
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12, Transverse Waves and Contact Layers

While the ratio of HZ to Hy is constant across fast and
slow waves, this is not the case for the transverse simple waves,
which we are now going to describe. The speed c¢c of these waves

is the Alfven speed

(12.1) c = (Bi/up)l/z.

Furthermore, Bx’ p, end S, end therefore p and u ., are constant
across these waves. The tangential magnetic field, however,

rotates:

(12.2) By = G cos ®, B_ =G sin 9,

with @ = 6(x) being any function of the phase, Further,

(12.3) u_=a_ g eB- 1 u = a3 et

P ¥y x 7y z z B

x 2’

with any numbers ay, a,e 'Thus, the flow in a transverse weve may

be considered a shear flow. All particles on the same (y,z)-plane
move in the same straight line. This shear flow 1s evidently &

steady flow if it 1s observed from & frame with respect tc which

+

w o-c¢= 0. Thus, in contrast to the situation in gas dynamics,

there do exist non-constant steady flows in magneto-hydrodynamics.

In order to maintaln such a shear flow, it would be necessary
to have at large (y,z)-distances a mechanism which supplies the
velocity u in the proper directions there. It would seem that
such a mechanism would not easily occur under nsatural circumstances

and that it would have to be rather artificial,
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A transverse wave may connect two constant states with

different velocities u and magnetic fields B. One may imagine
the layer covered by the wave to be arbitrarily thinj one then
may approximate the transition by a discontinuity. This discon-

tinuity would be exactly a transverse shock. Thus, a transverse

shock may be considered the limit of transverse simple waves. The

remark about the artificial nature of transverse waves, therefore,
apply Jjust as well to transverse shocks,

Only a short remark need be made about "contact layers"., In
accordance with ¢ = O, there 18 no flow across such a layer; i.e.,
u 1s constant across it. If Bx = 0, all other quantities may

vary except that the relation
(12.4) p + (B§ + Bi)/2p = constant

should hold. If Bx # 0, however, B, u, and p are constant, and

only p and S may vary. Thus, in contrast to gas dynamics, a shear

flow layer across which the tangential flow components uy, u, vary

cannot be maintained in a conducting fluid if the magnetic field

possesses a normal component B_ # 0,
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13, The Resclution of a Shear Flow Discontinuity

As was explained at the end of Section 9, no shear flow dis-
continuity can remain unchanged in the presence of a magnetic field
whose normal component is not zero. If such a discontinuity is
present at an initial time, a wave motion must result which resolves
ite The nature of this wave motion will now be described,

Specifically, we consider the following problem. At an initial
time, t = O, the fluid is at rest on one side, x > 0, of the plane
x = 0, while on the other side, x < O, it possesses a constant
tangential velocity (uy, uz) # 0, but no normal velocity, so that
w, = 0. The density is constant and the seame on both sides, and a
constant magnetic field is present - the same on both sides - with
a non-venishing normal componentrBx # 0.

The 1mpossibility of maintalning a shear flow discontinuity
may be visualized as follows, Instead of a discontinuity, consider
a thin shear flow layer across which a tangentisl flow component,
sey uy, varies smoothly from a positive value on the left hand side
to the velue zero on the right; forvsimplicity assume u, = 0
throughout. Also assume By = BZ = 0 and Bx > 0, The basic essump-
tion of magneto-hydrodynamics, embodied in formula (1), now implies
that the electric field component Ez does not vanish on the left
but does so on the right. Therefore, curl E # O in the layer.

From Al we then conclude‘that the tangential megnetic field,
specifically the component —By, will grow within the layer. Since
this component at first remains zero outside cf the layer, its
curl, and hence the current J, will be different from zero in the

layer. Specifically, the component Jz will vary from negative to
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positive values across the layer, Hence the fluid particles in
the layer will experience a force whose x-component varies from
negative to positive values across the layer and hence tends to
push the particles away from the layer,

Before describing the details of the resulting wave motion we
mention a concrete situation in which such initial shear flow
discontinuity may occur; namely, if a jJet of conducting fluid
shoots into conducting fluid at rest so quickly that the hydro-
magnetic adjustments just discussed have not yet developed. A
similar case was described by Alfven [1] in explaining the possible
origin of hydro-magnetic waves., Assuming the Jet to proceed in the
y-direction and to be much wider in the z-direction than in the
x-direction, we may approximate it by a constant flow in the y-
directlion between two parallel planes x = constant, The waves which
result from the two interfaces will interact only after some time,
Up to this time, therefore, the situation may be described in terms
of the wave motion resulting from a singlevinterface.

We maintain that the resolution of the shear flow discontinuity

is effected by two fast shocks followed by two slow centered rare-

faction waves. After the waves have formed, the fluld has acquired

the mean tangentlal velocity, while a tangential component of the

magnetic field has increased (or developed if none was present

originally).

A diagram of the resolving flow, in which only the x-compon-
ent of the particle motion is indicated, i1s given in Figure .

It may be mentioned, incidentally, without giving supporting

arguments, that after the waves coming from the two interfaces
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have interacted the fluid will come to rest in the jet region
while the tangential magnetic field has a further increased value,
at least for some time,

In attacking the problem in detail, we have, for simplicity,
assumed that all z-components vanish and that, at time t = O, Bx
is a positive constant and By = 0., Further, we have assumed that

p and p are constant, the same on both sides,
o 0
(13.1) P=Ps P =D,

and that u.x = 0 on both sides, For convenience we have assumed
that the flow 1s observed from a frame moving with the mean

tangential velocity, so that

(13.2) u_ =
¥ lfgy, x < 0,

o
'o.‘y being a positive constant,

Thé conditions to be satisfied after the passage of the
waves (i.e., in the region of constant state containing x = 0)

simplify because of the symmetry of the problem. They are

(1303)x w = 0
(1303)y u_y = 0,

Since B_ 1s even in X, no condition need be imposed on By’

It was mentioned at the end of Section 8 that a shock would
be determined if one quantity such as p or u is prescribed behind
1t, provided the state in front of it 1s known. Except for a
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qualification to be discussed below, the same 1is true for a simple
wave, It 1s, therefore, natural to expect that two quantities could
be prescribed behind a pair of waves when the state in front 1s
known. It is not obvious, however, whether or not the two velocity
components u, uy may be prescribed without limitation behind a
pair of waves., In the present problem this appears to- be the case,
The qualification mentioned above is this: Suppose a piston
at one end of a gas filled tube 18 withdrawn with speed greater
than a certain "escape speed", cf.-[IS]. Then the resulting
rarefaction Havé will lead to “cavifation"o The piston will
separate from the gas and a vacuum zone will be formed. The gas
at the edge of this zone will move with the escape veloclty and

not with the piston velocity. A similar phenomenon may occur here,

so that condition (13'3)x must be modified., It should read
(13.14.)x Either u =0 or p =0,

thus permitting the presence behind the rarefaction waves of a
vacuum zone which expands with an appropriate escape speed. When
this vacuum zone is present, condition (13°3)y must be replaced

. by the condition that

(lB,h)y u.yBx - uxBy = 0

at the edges of the vacuum zone., As noticed by Bazer [10], this
1s the correct condition to insure that the electric field E = BXu

vanishes there and in the whole vacuum region.

For the description of the wave motion in detall it is

hecessary to solve a number of transcendental equations which are
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expressed in terms of explicitly given integrals derived from
the considerations of Section 11.

Of particular interest is the magnitude of the tangential
component By of the magnetic field that has developed at the
center x = 0 after passage of the waves. For small values of
the initisl shear flow discontinuity 28y’ this component may be

described by the formula

_ 0.1/2 o
(13.5) By = (Lpp) oy,

in which X in turn depends on %y.

1f %y approaches zero, X approaches the value 1. In fact,
this same value of X would have been obtained if one had assumed
the fluid to be incompressible and had described the resolution
of the discontinuity with the aild of two Alfvén waves, one traveling
in each directlon.

If 3y is sufficiently large, cavitation occurs. In such a case,
the sound speed eventually becomes less than the Alfvén speed even
if it was much larger originally. Thus the medium could certainly
not be considered incompressible. The limiting form of the

tangential component By as gy -> oo is given by
1 ° ,1/2
(13.6) B~ [ )Y (3,302,

where ¥ 1s as defined by (11.6).
The derivation of formulas (13.5) and (13.6), as well as

complete details of the resolving flow, are given by Bazer [10].
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APPENDIX: Simple Waves and Groups of Transformations

by K. von Hagenow

In the following it 1is demonstrated how the inherent symmetry
of the equations of one-dimensional flow can be used to achieve
the reduction of the equations of hydromagnetic simple waves (see
Section 10) to a simple ordinary differential equation.

Simple waves are special solutions of the equations of one-
dimensional flow which are obtalned frqm equations Ay through Ah
of Section 1 by assuming all quantities to depend only on the
coordinate x and the time t. The divergence condition Ag then
reduces to B, = const. The equations are non-relativistic, and,
as physically no reference system can be preferred, they must be
invariant under the li~parameter group consisting of the following
transformations: a translation with constant speed in an arbitrary
direction and a rotation around the x-axis by an arbitrary angle.
The direction of the x-axis has to remain unchanged, of course, for
we have distinguished it from the other two coordinate axes by the
assumption of one-dimensional flow, Polytropic geses, where the

pressure p is given by
(1h4.1) p =o' e®

allow the additional similarity transformation

X = ax ,

(14.2) t' =t

with

(1h.3) woo= e,
S' = S + 2y log a
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and pressure p and magnetic field B unchanged. If Bx = 0, the

pressure p and field B can also be scaled by a factor:

p' = Bp

(1holy)
hoby Bt _ ﬁl/ZB.

Now in simple waves, all variasbles u,B,p,S are constant on a

family of straight characteristics (cf., eq. 10.1). As our trans-
formations map straight lines into straight lines (in the x-t plane)
end as invariance of the equation.implies mapping of charscteristics

into characteristics, they also map simple waves into simple waves.

That is, the system of ordinary differential equations F through

1
Fh (section 10) is invariant under the corresponding transformation

§ of the dependent variables.
Let us introduce new variables as follows: the pressure Ps

the square of the field, BZ, the angle @ between the y-z fleld

component and the y-axis, the velocity components u, in the x-
direction, V in the ‘direction of above field~-component, W
orthogonal to V in the y-z plane, and the entropy S. Then, if we

write the system Fl,through Fh'of Section 10 symbolically:

(14.5) S ay, dw, = o,

we see that we can add an arbltrary constant to each of the

variables ﬁ, ., V, W, 1.e. except for a factor common to each
row, the matrix ay, can but depend on the remaining variaebles

] ps B7, S.
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S is constant according to ﬁ+ 80 the system must be reducible
to a single equation involving the quantities p and B2 only,
containing S as a parameter.

Now that we know what equation to expect, we can obtain
the reduction without actually introducing our new variables.

Introducing the sound speed a with

(1h.6) dp = azdp,
and using equation F3, we can write equation FZ i
’
2 -

(1l.7) (1-q)dp + d(B“)/2p = 0
with

- 3
(14.8) a = ¢/a (ef. equation 11.2)

and we know that q depends on BZ, p and S only, the latter being
constant in e simple wave anyway. We can therefore express B2 as
a function of p and g, and get exactly equation (11.5), for the

quantityrs defined in equation (11.3) 1is related to p by

(149) ydp = B °/uds

with ¥ defined by equation (11.6), while equation (11.l) allows
one to express B2 in terms of s and q for fast and slow waves,

Transverse waves are trivial, because in them p and therefore Ba
are constants. Polytroﬁic gases allow furthermore the transforma-

tion (1L4.2), i.e. the entropy S does not esppear in (1L.7). The

special case of vanishing B_ ellows the transformation (1L.4),
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i.e. @ must be homogeneous of degree o0 in p and Bz. It is note-
worthy that we got our results without making explicit use of
(11.l4), which determines the disturbance speeds. If we actually
compute B2 in terms of p and q (for polytropic gases) we find that
it is linear in p, i.e., equation (1L4.7) can be integrated
explicitly. This fact cannot be deduced by looking at the
symmetries of the one-dimensional equations, but we can make the
following statement. If we treat also Ag:as an unknown, then the
equations A_ through Ah allow (14.2,3,4) even for B # 0, But now,

our reduction to (1lL.7) allows us only to conclude that

(14.10) B® = BZ(P,q,Bx).

The wave formation leaves q fixed, for, according to (1L.2), the
characteristic direction, i.e. ¢, is multiplied by a, and from
(14.1) we deduce théi the snund speed a is tfansformed by the same
factor. Then (1lL.l4) shows that B2 must be homogeneous of first

2 but linearity does not follow., If B, # 0 1%

degree in p and Bx
1s only the simplest possibility compatible with the transformation
properties of the equations, Equation (1L.7) allows an interesting

interpretation: With (1L.6,8) we can write it

2
B 2
(1lh.11) da(p + - ) = c“dp
i.e. the variation of the total "pressure"” with the density gives
the square of the disturbance speed. This 1is of course true for any

longitudinal wave in a compressible medium,

*We should really talk about a pressure-tensor, see Llist (7], for
the magnetic force is anisotropic, but for one-dimensional flow
only the 1-1 component gives a force in the x-direction,
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Thus we can already conclude from this remark that the fast and

slow waves are purely longitudinal, because the speed of tfansverse
waves is in general not given by (1L.11l), but depends on restoring

forces against torsion,

= BB -
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FIGURE 1

The Three Types of Disturbance Waves.
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FIGURE 1A

Wave fronts at a time t > O originating from a point
disturbance at the time t = 0. Their envelopes, alsc

shown, are given by the intersection of the character-
istic cone with t = constant and z = constant (Bz= 0).
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Transitions Through Stationary Shock Fronts
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FIGURE 3

Locus of the possible tangential components
of magnetic field behind the varlous types of
shock corresponding to the fixed tangential
component Bo ahead of the shock.
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