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Introduction

This paper studies the nonstationary flow of a viscous incompressible fluid
in R? when the initial vorticity is very singular. The governing equations of motion
are the Navier-Stokes equations

W —vAu+ w-VYu+Vp=0, V-u=0, (
1)
u—>0 as |x|—>o0, ux,0)=a(x)y V-a=0,
where u and p represent the unknown velocity and pressure, respectively, » > 0
is the kinematic viscosity, (u*V)=2,u'0/0x;, V- -u=2,0u'[0x; and u =
oufot. By normalization the density of the fluid is assumed to be 1.
We consider problem (1) in two dimensions, assuming that the initial vorticity

Vxa= 0a®[0x, — da'/ox,

is a finite Radon measure on R?, and discuss its solvability. Velocity fields of this
type include those with vortex sheets and point sources of vorticity. A rigorous
relation between solutions of the Euler equations (system (1) with v = 0) and
the classical theory of the motion of point vortices has been established only re-
cently. See, e.g., MARCHIORO & PULVIRENTI [19], [20] and TURKINGTON [31].
For the Navier-Stokes system (1), BENFATTO, EsposiTO & PULVIRENTI [3] construct-
ed a global smooth solution, assuming that the initial vorticity is a finite atomic
measure whose variation is small compared with the viscosity, i.e.,

Vxa= 2 0;8(x — z)),
j=

and »/Z; | g;| is sufficiently Jarge; here d(x — z;) is the Dirac measure supported
at z;€ R?. The results in [3] show that point-source vorticities can diffuse follow-
ing the Navier-Stokes flow, provided » is large. We note that this result does not
follow from classical theories for the Navier-Stokes system, as developed by
LeRrAY [17], LADYZHENSKAYA [16] or TéMaM [30]. As pointed ou in [3], classical
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existence results for (1) fail to apply since the initial velocity a, with Vxa a
measure, is not necessarily square-summable, even locally.

Our main goal in this paper is to show that there is a smooth global (in time)
solution of (1), provided only that the initial vorticity Vxa is a finite measure
on R?. Evidently, this improves the result of [3] since no restriction is imposed on
v or on the size and the form of VXxa.

To show existence, we follow a standard procedure. We first regularize the
initial velocity a, consider the corresponding regular solutions of (1), and then take
a subsequence converging to the desired solution of the original problem. As is
well known, to carry out this process one needs good a priori estimates for regular
solutions. For this purpose we study the vorticity equation for v = Vxu:

vV —vAv+ @ -V)v=0, (2a)
u=K=*v (2b)
for smooth initial data v(x, 0) = V xa, where K is the vector function:
K(xy, x2) = (—x3, )27 |x 2, x = (%1, X2),

and * denotes convolution on R?. These equations are derived formally by apply-
ing the operator V x on (1) and using the condition V -u = 0. We note that
there is no vorticity stretching term in (2a) since the space dimension is 2.
We regard (2a) as a linear parabolic equation for v with coefficients depending
on u and write the corresponding fundamental solution as ['(x, £; 3, s), ¢t = s.
A bound for I', established by Osapa [25] yields our key a priori estimates:

Ci(t — ) texp[—C, lx - J’lz/(t — 3]
= Tlx, b5y, 9) = Cyt — s)  exp [—Cy [x — y |2/t — 9)], (3)

where the positive constants C;, j = 1, 2, 3, 4, depend only on » and the L'-norm
of Vxa. Estimate (3) makes it possible to control the behavior of v as t— 0,
uniformly in the approximation, so that the sequence of solutions with regularized
initial data converges to a solution of the original problem (1), with Vxa a
finite (Radon) measure on R?. Estimates of the form (3), with C; independent of
the smoothness of coefficients, were first established by ARONSON [1] and ARONSON
& SERRIN [2] for linear equations in divergence form. OsaDA [25] extends the esti-
mates in ARONSON [1] to a class of linear equations not in divergence form, which
includes equation (2a) as a typical example.

The problem of existence of solutions for nonlinear evolution equations with
measures as initial data has recently attracted the attention of many mathemati-
cians, For example, MCKEAN [22], OsapA & KoTaNI [24] and SzNITMAN [29]
study the existence and uniqueness of solutions for the Burgers equation

v+ uu, = vu,, xER'
with u(x, 0) = ¢ 0(x), ¢> 0. For the problem
W —Adu+u =0, xeR*; ux,0=cdlx), c¢c>0,
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BRrEzis & FRIEDMAN [5] prove that solutions exist when 0 << p << 1 + 2/n and do
not exist when p = 1 + 2/n; see also [35] for more general initial data. Their
results on existence were extended to more general equations of the form #" —
Au + f{u) = 0 by Niwa [23]. For the problem

W +fu), =0, x€ER'; u(x,0)=é®x),

Liu & PierreE [18] discuss existence, (non-)uniqueness and asymptotic behavior of
solutions satisfying the entropy admissibility criterion, under various assumptions
on the form of the function f. Our main result may be understood as an example
of existence of solutions in nonlinear parabolic equations with measures as initial
data, namely global solutions to the problem (2a), (2b) when v(x, 0) is an arbitrary
finite measure on R>.

In Section 1 we establish local existence of solutions for problem (1) in R”,
n = 2, with initial velocity a in L?, p > n, and show that this solution is regular
for ¢t > 0. For later use we discuss higher regularity up to ¢ = 0. Since (1) is
parabolic, these results are generally familiar. However, it is difficult to find the
appropriate version in the literature, because here the initial velocity a is not
necessarily square-summable, i.e., the initial energy may be infinite.

From Section 2 onward we consider only two-dimensional flows. We extend
the local solution obtained in Section 1 to global smooth solutions by appealing
to the vorticity equation (2a), (2b). An argument of this type is found in MCGRATH
[21]. Our results on global existence in Section 2 improve those in [19, 20] and [21]
by relaxing assumptions on the initial data.

As a byproduct of our analysis, we prove in Section 2 that our solutions are
persistent in the Sobolev spaces W™?(R?), p>2, m=0,1,2,... Namely, we
show that if a¢€ W™P(R?) and V xae€ LY R?) with 1/q = 1/p + 1/2, then the
corresponding solution stays in W™?(R?) for all time and is bounded there, uni-
formly on each finite interval of time, independently of the viscosity ». Such a
uniform bound enables us to take a subsequence converging, as v— 0, to a
solution of the Euler equations. In fact we construct a global solution to the Euler
equations under the same assumptions on a.

A property of persistence of this type is systematically studied by KaTo [15]
and Ponce [27] for the solutions of (1) with finite energy. Since our solution may
have infinite energy, our resiilts are not included in either [15] or [27]. After we
completed this work, we learned that KAaTo & PONCE [34] extend their results
+to solutions which may have infinite energy. Their result covers our results for
m = 2. However, our results for m = 0, 1 are not contained even in [34]. In
particular, our theorem of existence for the Euler equations seems new for initial
data a€ L?(R?), VxacLYR?», l/g=1/p + 1/2. Recently, we have learned
that DIPERNA & MaAIDA [36] obtain a similar theorem on existence, assuming in
addition V xa€ L'(R?). Their method seems different from ours.

Section 3 establishes our key a priori estimates for smooth solutions constructed
in Section 2. It is crucial that our bound depends only on the L!-norm of the initial
vorticity Vxa and is otherwise independent of the regularity of a.

In Section 4 we apply our a priori estimate derived in Section 3 and prove our
main existence theorems. More precisely, we construct a global solution of (1)
as well as of (2a), (2b) when the initial vorticity is a finite measure on R? and prove
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regularity for ¢ > 0 as well as some decay estimates as ¢ — co. We clarify the
meaning of the convergence to the initial velocity as ¢— 0 by using Lorentz
spaces. We further show that our solution is unique provided that the atomic
part of Vxa is “small”. We note that there is no restriction on the size of the
continuous part of Vxa. This conclusion covers the uniqueness theorem of [3]
since it is assumed there that V X g is a finite atomic measure with small total
variation.

We are grateful to Professor MASAO YAMAZAKI for some suggestions on Lorentz
spaces. We are also grateful to Professor NORIAKI SUZUKI for valuable suggestions
on the proof of Lemma 4.4.

1. Local Solutions in R" with Initial Data in L?

This section establishes local existence of solutions in L? for the Navier-Stokes
system (1) in R", n = 2, without assuming that the initial energy is finite. Although
there are many references on the local existence in R”, only a few results are known
when the initial energy is not finite (see e.g., [7, 12, 14, 16, 33, 34]). Consequently,
we give here the details of our derivation for later use. The basic tool for con-
structing solutions is a standard successive approximation scheme which goes
back to LErRAY [17] and is systematically studied in [10, 11, 14, 32, 33, 34].

We shall also discuss higher regularity up to ¢ =0 to be used in the sequel.
Since the equation is semilinear and parabolic, regularity for ¢t > 0 and up to
t = 0 is generally known (see, e.g., [7, 10, 34]). However, we state and prove here
our version of a regularity theorem which does not follow from a simple combina-
tion of known results.

Hereafter we use the following notation: BC denotes the class of bounded
continuous functions. L?(R") represents the space of LP-vector-valued or tensor-
valued functions on R", as well as the space of LP-scalar-valued functions on R”;
the norm of fin L?(R") is denoted by [ f1,. We denote BC([0, T); L?(R")) simply
by B, r. The norm of u(x, t) in B,y is defined by

|ulpr=sup |lull,(£).
0<I<T

If f=(f',...,f" is a vector-valued function on R", Vf denotes the tensor ¢,f,
1<i, j<n, where 9; = 9/dx;. Similarly, for a nonnegative integer k, V*f
denotes the tensor o7 ... 8:‘;1 i &y + ...+ «, = k. The expression 4,f denotes
the time derivative of f

Following the standard practice ([7, 10, 11, 12, 14, 32, 33, 34]), to solve (1) we
transform it into its integral form:

w(t) = e a+ Sl (), t=0, (1.1)
where

S[u] (t) = S[u, u] (£);  Slu, wl () = — f‘ et =9% Pu - V) w(s) ds. (1.2)
o
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Here ¢ is the solution operator for the heat equation; P is a singular integral
operator of convolution type (see [7]) namely the orthogonal projection onto the
subspace of divergence-free vector fields of L2(R"). A solution u of (1.1) is called
a mild solution of the initial value problem (1) since (1) and (1.1) are equivalent,
provided u and g are smoth and decay as |x|—oco. It turns out that the solu-
tions treated in this paper are all smooth and satisfy the equations in the classical
sense for ¢t > 0. However, we should consider carefully the behavior of the solu-
tions as ¢t — 0 in order to understand the meaning of the initial condition. We
first derive basic estimates in L? for the bilinear map S[u, w]. We observe that
Ziwow=2X; 6(ww)(=V -(u®w) for short) provided V-u = 0. This pro-
vides an alternative expression of S:

t
Slu,wl(t) = — [ &M PV (u® w)ds
V]

, (1.2)
=— [V Py w)ds
o

since P and V commute with ¢".

Lemma 1.1, Let 2<n<p<<oo, T>0 and o = 1/2 — n/2p. Then
() |Slu, Wl r < MGT)Y |ul,r|wl|, /v provided that V - u = 0;

(i) |6 VSlu, Wllp,r < MOTY” |l |61 Twl, 1iv;

(iii) |VS[u, wll,r < MOTY a2 |00)% Vu | 7% |Vw|, 1/v;

p,
with 1/g = 1/p + 1/n, where M is a positive constant depending only on n and p.

Proof. We estimate S and V.§ by applying the well known estimates:
Ve fl, < Cory~ 2k, 1 <s<r<oo, (1.3)
1Al = Clifley 1 <r<oo, (1.4)
(see [13, Chap. 9]) to (1.2) or (1.2"). Since the proofs of (i), (ii), (iii) are standard

and similar to others, we give here only the proof of (iii). We take the gradient of
Sfu, w] and use (1.3), (1.4) to get

IV S, wlll, (1) = Cof Bt — 91”2 |- V) wll, () ds

<C J b~ ™ |ulloo ()| Twl, (5) ds

where C depends only on p and n. Since p > n, the GAGLIARDO-NIRENBERG
inequality [9, p. 24, Theorem 9.3] yields

lullow < Cllullp | Vuly >

= )4
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We thus have
IV S[u, wll| (1)
=C oft Bt — 917 % 63) 77 2 () | G)E Vulh 2 (9) [T, () ds

l — a0
= MOT)Y [ul2r |(v)2 Vu L 727 |(Vwl,afv,
with M depending only on # and p. This yields (iii). [J
We now construct a local solution in L?, p > n.

Proposition 1.2. (i) Suppose that the initial velocity a is in LP(R") for some
p>n and NV -a=0. Then there is a unique local solution u of (1.1) such that
ue B,y for some T>0 and

u]pr = 2|all,- (1.5)

(ii) The time T can be selected so that
T= G all’, o= 12— n/2p; (1.6)
0O Vue B,r  with |t} Vul,; < Cllal,, (1.72)

where C depends only on n and p, and
(1.7b) If VaeL%R") with llg=1/p+ 1/n, then Vu€ B,r and |\Vul|,; =
2[[Vall,.

(iii) Let m be a nonnegative integer and suppose that V*ac L?(R") for k =
0,...,m. Then the time T can be selected so that

V*u€ B,y and |VFul,;=<C, k=0,...,m; (1.83)

GO Ve B, and  |tE VT ul < O (1.8b)

Vketue B,y and |V¥oiu|,r <C  for k+2h<=m, (1.8¢c)

where C’ depends only on n, m, p and on bounds for v and ||V*a|,, k = 0, ..., m.

Proof. (i), (ii). Consider the following scheme of successive approximations
for (1.1):

uj+1 = Uy + S[Uj], Ug = eWA a, _] = 0, 1, e (1.9)

vt

Lemma 1.1 (i) and the estimate [ al, = | al, together yield

(U1 lpr = lall, + MOTY w15 7y
This implies that, for all j =0

o K =20 al,, r=1—(1—60<1, (1.10a)
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provided
0<6=4|al, MOT) y < 1. (1.11)

For 8, 0 < 6 <1, we take T> 0 so that (1.11) holds.
Taking the gradient of (1.9) and then applying Lemma 1.1 (ii), together with
(1.3) and (1.10a), yields

|60} Vuyp |, < Clall, + MKGT)Y |01 V|, /v.

Here and hereafter we drop the subscript T to simplify the notation. By definition
of K and (1.11), the second term of the right-hand side does not exceed

(/2) |wt)? Vuy|,. Hence
|6)F V|, < 2C |all,, for all j=0, (1.10b)

with C depending only on p and n.
Similarly, we take the gradient of (1.9) and apply Lemma 1.1 (iii), (1.10a)
and (1.10b) to get

[Vuyi1lg = [Vall, + MLOTY |lall, | Vil

with L depending only on p and ». If 0 is sufficiently small, say 0 << 0 < 2/L,
then the above estimate gives

Vil = [ Vally + 3 |V,
which yields the bound
|Vujl,r = 2||Val|, for all j=0. (1.10¢)

Here and hereafter we fix T so that (1.11) holds with 6L < 2.

We claim that «; and (vt)% Vu; (or Vu;) are Cauchy sequences in B, r (or B, 7).
Indeed, we estimate the difference w; = w;; — u;, by applying Lemma 1.1 to
(1.9). After a routine calculation, we see that (1.10a)~(1.10¢) yield that X |w;|,,
Z; ](vt) Vw;lp Z;|Vw;|, are finite. Since the idea of the proof is standard, the
detalls may be omltted

The estimate (1.6) is obvious from our choice of § and T. Since »; and (vt)2 Vu;
(or Vu;) are Cauchy sequences in B, ;- (or B, ), we see that the llmlt u = lim u;,
is a solution of (1.1) in B, 7. Also u satisfies (1.5), (1.7a), (1.7b) by passing to the
limit, j— oo, in (1.10a), (1.10b), (1.10c). The proof of uniqueness in B, is
standard (see [12]), so (i), (ii) are proved.

(iii) The proof is routine and long so we just give an outline. We differentiate
(1.9) with respect to the spatial variables and prove that for k=0 ... m

Vayl, < C et vty <c,

with C independent of j. This follows from our a priori bounds (1.10a), (1.10b)
and Lemma 1.1. As in the proof of (i), (ii), we see that V*u; and (vt)% vl y; are
Cauchy sequences in B, r. This yields (1.8a), (1.8b). The estimate (1.8c) follows
from (1.8a), (1.8b) and the equation

W =vAu— Pu-V)u. [J
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Remark. The basic idea of the above proof goes back to LErRAY [17], who con-
structed a global regular solution, when n = 2, by a successive approximations
scheme assuming that a is in H' N L*®. A proof of (i) is given in Gica [12,
Theorem 1 and Sect. 4].

The next theorem shows that the solutions of (1.1) in Proposition 1.2 are regu-
lar.

Proposition 1.3. (i) Ler a€ LP(R"), for some p>n and V-a=0. Let u
be the solution of (1.1) given in Proposition 1.2. Then, V* o"uc BC([e, T); L*(R")
for all k,h=0 and 0 <<e<<T. Moreover,

sup ||V dul, 1) = C
1)

where C depends only on &, p, n, k, h and on an upper bound for | a||,. In particular,
u is smooth for t > 0 and solves the Navier-Stokes system in the classical sense for
t> 0.

(ii) Suppose further that V*a€ L?(R*) for all k = 0. Then V, ¢"u is bounded
and continuous on R*X[0 T) for all k, h = 0. Moreover,

sup || V* djull (1) = C,
(0.7

!
where C depends only on p, n, k, h, v and on upper bounds for oA (IVial,)-

Proof. (i) By (1.7) we have |Vu], (t,) < C for 0 < t, < T with C depending
only on n, p, t, and | a||,. We then solve the Navier-Stokes system for ¢ = 7, with
initial velocity u(-, #,) and obtain ||V2ul, (2t;) = C. Repeating this process, we
infer that |V™ul|, (mt,) is bounded by the same constant C so long as mf, < T.
Since #, can be taken arbitrarily small, this shows that V" is in BC([e, T); L”(R™)
for all ¢ > 0 and its norm is bounded by C depending only on p, n, m, ¢ and | af .
Combining this with (1.8¢) yields the estimate in (i). The assertion on smoothness
follows immediately from the Sobolev inequality.

(ii) This follows from (1.8c) by use of the Sobolev inequality. []

Remark. We note that Proposition 1.3 (ii) also follows from [7, Theorem 3.4]
or [34). However, apparently no estimate of the form (1.6) is given in [7] or [34]
for the time 7. Moreover, it seems that Proposition 1.3 (i) does not follow directly
from the results of [7] or [34].

2. Global Existence and Persistency by Use of the Vorticity Equation

The goal of this section is to show global existence of solutions for the Navier-
Stokes system (1) in R? without assuming that the initial energy is finite. As a
byproduct we show that our solutions persist in the Sobolev spaces W™?(R?),
p>2 m=0,1,2,... This leads to global existence of solutions for the Euler
equations as ¥ — 0. It should be noted that we are dealing here with solutions
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with infinite energy, so our results are not included in either [15] or [27]. Since the
standard energy method fails in our case, we are forced to appeal to the vorticity
equation in order to get the desired results. Such an argument is found in MCGRATH
[21], under more stringent assumptions on the initial vorticity. Here we base our
results on global existence for both the Navier-Stokes and the Euler equations
on the results in Section 1. This relaxes the assumptions and simplifies the proofs
of [21]. In what follows we always assume that the spatial dimension is 2, unless
otherwise specified.

Suppose that the initial velocity a and all its derivatives are in L°(R?) for some
p > 2. Proposition 1.3 (ii) then says that there is a unique local solution of (1)
which is smooth and bounded on R?x [0, T). We here apply V X to (1) and obtain
the vorticity equation for v = V Xu = ou?/ox, — ou'/ox,:

Ly=v —vAdv+ w-V)Yo=0, t€(©,T7), (V-1
v(x, 0) = Vxa.

Since u and all its derivatives are bounded on R?X [0, T), the linear parabolic
operator L, has a unique fundamental solution

L(x,t;y,5), 0=s<t<T, x,yER?

such that L,[, = 0 as a function of (x, ¢) and
lim J Luix, 85y, 5) () dy = f(x)
R2

for every f¢€ BC(R?); see [8, Chapter 1].
Let us quickly review some properties of I, which are needed later. It is well
known that I, > 0 and that the function

w(x, t) = R[ L(x, t;y, 8) f(y) dy .10

is a unique bounded classical solution of L,w = 0 (¢ > 5), w(x, s) = f€ BC(R?);
see [8, Chapter 1, 2]. Since L, has no zero't-order term, w = 1 is a unique bounded
solution to L,w =0 (> s), w(x,s) = 1. By (2.1) this yields

[T t;y,9dy=1 0=<s<t<T. (2.2)
RZ

The function IX(x, t;y,5) = I,(y,s;x,t), 0=1t<<s<<T, is the fundamental
solution of the adjoint problem

wHrAdw—V-(uw)=0, 0=r<T,
which is the same as
wt+vdw — u-V)w=0
since V -u = 0. In analogy to (2.2) we have

[Tys;x)dy=1, 0=t<s<T. (2.3)
R2
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The following result is immediately obtained from Propositions 1.2, 1.3 and the
identities (2.2) and (2.3).

Proposition 2.1. (i) Suppose that V*acLP(R?), k=0,1,2,..., for some
p>> 2 andthat V - a = 0. Let u be the local solution of (1) given in Proposition 1.2.
Then v =V Xu is given by

vx,t) = [Lx t;,00(Vxa)()dy, 0<1<T. 2.4

(ii) Suppose further that V xXa¢€ LY(R?) for some q with 1 < g < oco. Then
lol, ()< 1Vxal,, 0<1<T. 2.5)
We next consider how to recover the velocity field # from the solution v of the
equation (V-1). Since V -u =20, it is easily seen that
Au=Vip, where Viv = (—ov/ox,, dv/dx,).
It is thus to be expected that if u decays as |x|— oo, then
u=ExVio=V3iE)xv |

where E = (2n)~' log |x| is a fundamental solution of 4 in R? and * denotes
the convolution in R?. We shall now show that this is true in our setting, To this
end we introduce certain function spaces. By .# we denote the space of all finite
Radon measures on R? with norm defined by the total variation. A measurable
function f on R? is said to be in L#»*(R?), 1 << p < oo, if

1£lp,e0 = fgopl [mea {x; |f(x)| > AP < o0

where mea is Lebesgue measure in R2. Although ||fll, . does not satisfy the usual
triangle inequality, it is a pseudo-norm on the linear space L”* and L is a
Banach space with a norm equivalent to ||f]|, « (see [4]). L™ is often called a Lo-
rentz space.

" In what follows we let

K(x) = VIE(x) = (—x5, x,)27 [x|?  for x = (x, x,) € R?
and consider the convolution operator U = K=* V = f K(x — y) V() dy.
- RZ

Note that K€ L*®(R? and that K is not contained in any L?(R?), 1 < p < oo.

Lemma 2.2. (i) For U= K= V we have the estimates:

(Ul < ClKlpwll Vi, f1<g<2 VEL(R) and 1/p=1/g— 1/2;

(2.6a)
1Ullz,00 = CliKlo,0 | Ve for Ved; (2.6b)
VU, = C|[Vl, for VeL(R?), 1<r<oo, (2.6¢)

with C independent of V, where || V||.4 denotes the total variation of the Radon mea-
sure V. ‘
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(i) Suppose that U€ LF(R?), 2 < p << oo, with V-U =0 and that VxUcg
LY(R?) with /g = 1/p + 1/2. Then

U= K= (VxU).
(iii) Suppose that U L>*®(R* with V-U =0 and that VxU€ 4. Then
U= K=+ {VxU).

Proof. (i). (2.6a) is simply the generalized YOUNG’s inequality (see [28, p. 32]).
Since VK is a CALDERON-ZYGMUND kernel, (2.6¢) follows from the standard theory
of singular integral operators; see [13, Chapter 9]). To show (2.6b) consider the
linear operator Af = f* V for any fixed V€ .#. It is easily verified that 4
defines a bounded linear operator on each L?(R?), 1 =< p < oo, with norm
=< || ¥|.«- An interpolation theorem for Lorentz spaces ([4, Theorem 5.3.4]) now
implies that 4 is bounded on L>*(R?) with norm < C|| V|.,. This proves (2.6b).

(ii), (iii). The function W = K * (VX U) is in L(R?) (or L**(R?) by (2.6a)
and (2.6b), and satisfies V- W =0, VxW =V xU. Therefore, Z=U— W
is harmonic on R? and belongs to L”(R?) (or L*>*(R?)). The mean-value theorem for
harmonic functions yields, for every x¢€ R?,

|Z(x)| < mea (B)™* [[Z(y)|dy = C||Z], (respectively < C[Z{; )
B

where B is the unit disc in R? with center x and C is independent of x. Liouville’s
theorem for harmonic functions now implies that Z is a constant, which must
be equal to 0 since Z¢ L”(R?) (or L>*(R?). This proves (i) and (iii). [

Proposition 2.3. Let V¥ac LP(R?), k= 0,1,..., for some p> 2. Suppose
further that V -a =0 and Vxa€ LY(R?) with 1/q = 1/p + 1/2. Then the local
solution u given in Section 1 satisfies

ux,t) = K+ (Vxuw)= [Kx—y)(Vxw)(p,)dy, 0=t<T. (V-2)
R2

Moreover, the estimate
full, ) = CIVXull,}) = C|VXal,, 0=t<T 2.7
holds with C depending only on p.

Proof. By Proposition 1.2 (i), u(-, ?) is in L(R*). Thus (V-2) follows from
Lemma 2.2 (ii). (2.7) is then immediately obtained from (V-2), (2.6a) and (2.5). []

We can now prove our result on global extension, using the estimate (2.7).

Theorem 2.4. Suppose that V*ac L”(R?), k=0,1,..., for some p> 2,
and that V - a = 0. Suppose further that V xa¢ LYR?) with 1/qg = 1/p + 1/2.
Then the local solution of (1) given in Proposition 1.2 may be extended uniquely to
a global (in time) solution u such that u€ B, ., Vué€ B, o and

lu,p,wécl’vxa”qa lvufq,ooSCHVXqu
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where C depends only on p. Moreover, the derivatives V* 8fu belong to B, 1 for every
finite T > 0 and satisfy

|VEotu|,r < C

. . 1
ﬁvgl:( S”dependmg only on p, k, h, T, v, and on bounds for oJmax (IV'al,) and
o

Proof. Take T as in the proof of Proposition 1.2 with [|a||, replaced by C ||V x a|,,
where C is the constant in (2.7). For any ¢, € (0,T), (2.7) shows that |u],(z)
has a bound depending only on p and |V xal|,. Therefore, the argument in the
proof of Proposition 1.2 ensures the existence of a unique solution on
[to, to + T) with initial value u(:, t,). Suppose now that « may be extended uni-
quely to some finite interval [0 T,). Then (2.7) holds on [0 T;) as seen from
Propositions 2.2 and 2.3. Thus » may be extended uniquely to the interval
[0, Ty + T). Since T is independent of T, we conclude that ¥« may be extended
in a unique way to the whole interval [0, o0). By (2.7) and (2.6¢), we easily see
that u€ B, ., and Vu€ B, ., and admit the required bounds. Bounds for V* 0%y
are obtained from Proposition 1.2 (iii). []

The assumption V¥ac L#(R?), k = 0,1 ..., is made so that the local solu-
tion u(x, t) be sufficiently regular up to ¢ = 0. Since the equation (1) is parabolic,
it is natural to expect global existence even if we drop the regularity assumptions
on a.

Theorem 2.5. Suppose that a¢ L?(R?) for some p>2 with V-a=0 and
VxacLYR?, l/q= 1/p -+ 1/2. Then there is a unique global solution u of (1)
such that u€ B, ., Vu€ B, ., and

lt|poo = CliVal, |Vul,o=<C|VXadl,

with C depending only on p. Moreover, all derivatives V* 8"u exist on R?X [e, 00)
for any ¢ >0 and satisfy

sup |V dulle (1) = C
[e,T]
where C depends only on p, T, k, h, ¢, v, and on a bound for ||V Xal,.

Proof. Let u be the local solution in Proposition 1.3 (i). Since we have Vae¢
LYR?*) by Lemma 2.2 (i) (ii), (1.7b) now implies that Vu is in B, for some T.
For every ty,, 0 <<ty << T, we have

IVEu@t)l, = C, k=0,1,2,... (2.8)

by Proposition 1.3 (i), where C = C(p, k, t,,7, ||a|,). Applying Theorem 2.4
with initial data u(¢,), we find that our solution can be extended globally in time.
In particular we obtain u¢€ B, and Vu€ B, and

lul, @),  [IVul, () = A|VXul,(t) t=1o
with 4 depending only on g¢.
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Letting 7, — 0 we show that

lullp (0, [Vul, (1) = 4|V Xal,, =0, 29

and this proves the first part of Theorem 2.5.
By (2.8) and (2.9), Theorem 2.4 yields

sup [|V* ofull, () = C (2.10)
{20, 7]

with C = C(p, k, h,v, t,, T, |V X al|,). The proof is now completed by applying
the Sobolev inequality to (2.10). []

Remark. MARCHIORO & PULVIRENTI [19] and OsaDA [26] establish existence
assuming that Vxa€ L'\ L% This assumption implies that Vxa€ L9 so
one can apply Theorem 2.5 to get global existence.

We finally prove that our solution is persistent in the sense of Kato [15] and
PoNCE [27]. Although our argument is not original, we state our precise result
since it concerns solutions with infinite energy and therefore is not contained in
either [15] or [27]. In what follows, W™?(R?), m =0, 1, ..., denotes the usual
Sobolev space. The norm of W™P(R?) is written as [ —

Theorem 2.6. Let ac W™P(R?) for some p> 2 with V-a=0 and Vxac
LY(R?), where 1/q = 1/p + 1/2. Then the solution u of (1) given in Theorem 2.5
is in BC([0, T]; W™P(R?)) for all T> 0 and satisfies

sup | 4|l ym,p (1) = C uniformly for v> 0. 2.11)
0,71

Proof. It suffices to prove (2.11) since that «¢€ BC([0, T], W™P(R?)) follows
directly from (1.82a) and (2.10). Since (2.11) for m = 0 follows from Theorem 2.5,
we may assume m == 1. First assume that m = 1 and consider the equation for
the vorticity:

vV—vdo+@w-VYo=0 (@>1), (2.12)
v=VXxu olx t) =VXxulx,ty),

where #,> 0. By (2.9) and (2.10), applying (2.5) to (2.12) yields o], () =
IV Xul,(to) for all =1, and therefore, by (2.6¢), |Vul, (1) < C o], (1) <
C|IVXul, (to) for all t= ¢, with C depending only on p. Since Vu€ B, s, by
(1.8a) and Vac LA(R?), letting t,— 0 yields ||Vul,(t) < C||Vxa], for all
t =0 and this establishes (2.11) for m = 1.

We next assume that m = 2. We apply V to (2.12), multiply the resulting equa-
lity by |Vo[P~? Vv and integrate by parts, using V-u =0, to get

L IVolp < CIIVullo Vol 12 1, .13
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with C depending only on p. To estimate || Vu||, we appeal to the following result
of Kato [15, Lemma A3]:

Voo = Clvlloo + lIwll2 + 2]l log I + (IVoll /2]l )]) (2.14)

where C depends only on p. Using (2.5) and the Sobolev inequality, we have
[Pl S|V Xallw=Clal,a, and ol = {vlg" " [0|7? <V xal;~ 7|V < al3?.
Thus (2.14) gives

w2.p

Vil = C(1 + log* || Vol,)

with C depending only on p, ||V xall, and |a|
and integrating with respect to # now yields

wa.p- Combining this with (2.13)

[Vol,(t) < C  for teft,, T] (2.15)

where C depends also on 7. Since VZu = VK = (Vv) and since VK is a Calderon-
Zygmund kernel (2.15) implies that ||V2u|, (#) = C on [0, T]. This implies (2.11)
for m=2.

Suppose finally that m = 3. We apply V* to (2.12), multiply the resulting
equality by | V¥v|?~2 Vv and integrate over R®. Integrating by parts and using the
condition V - u = 0 and the Sobolev inequality, we deduce, after summation over
k=0,1,....,m— 1,

d
E “v”me—l,p =C ” u”Wm~1,p ” U“iym—l,p

where C depends only on m and p. Integrating this and then using the estimate
l#ll,ymp = C10 ym—1, + IV Xal), which follows from (2.7) and the relation

Vku = VK » (V¥~1v), we arrive at (2.11) by induction on m. []J

Theorem 2.6 suggests that we can obtain a solution of the Euler equations (sys-
tem (1) with » = 0) by passing to the limit v — 0. For m = 2, this is carried
out by Kato & PoNCE [34] with no assumption on the vorticity V xa. For the
cases m = 0, 1, which are excluded in [34], our Theorem 2.6 gives the following
result.

Corollary 2.7. (i) Let a¢ L?(R?), p>2, V-a=0 and Vxac LY(R?) with
l/g = 1/p + 1/2. Then there is a function u such that:
(a) u:[0,00)— LP(R?) is bounded and continuous in the weak topology and
u(:, 0) = a.
(b) PV - (u®u) is defined as an element of L*(0,00; W™ "2(R?)).
© v +PV-u®@uy=0 for t>0.

(ii) Let ac W'(R?), p>2, V-a=0 and VxacLYR*» with 1/q = 1/p
+ 1/2. Then there is a function u such that:
(d) u:[0,00)— W'P(R?) is bounded and continuous in the weak topology and
u(-, 0) = a.
(€) P(u-V)u is defined as an element of L*(0, cc; LP(R?)).
€ «+Pu-VYu=0 for t>0.



Navier-Stokes Flow 237

Proof. We fix a and denote by u,, » > 0, the corresponding solution of (1).

(i) From (2.6¢) and (2.7) we see that || Vu, |, and ||%, ||, are bounded in L*(0, o).
Since g < p, this implies that the u, are bounded in L*(0, co; W"4D)) for any
fixed open disc D. Also, Au, and P(u,*V)u, = PV - (u, ® u,) are bounded in
L®(0,00; W™9(R?)) and L>(0,c0; W P%(R?), respectively. Since g < p/2,
w—LP2(Dy C W~14(D) with continuous injection. Thus the equation

w,—vAu, + PV, ® u) =0, >0,

implies that the u, are bounded in L*(0, co; W“"’(D)). Since D is arbitrary,
Lemma 2.1 in [30, Chapter II1] ensures the existence of a subsequence of u, (which
we denote also by u,) so that u, — u a.e.in R?>Xx(0,o0) as v — 0. The preceeding
observation shows that we may assume u € L*(0, oo; L?(R?)) and Vu € L*=(0, co;
LYR?)). Since »Au,—~0 as y—0 in L*(0,c0; W~ 4(R?), a simple limiting
argument gives

d
E(u,cb)—(u@u,Vcb):O in >0

for every smooth and divergence-free vector field ¢ with compact support. We can
thus apply de Rham’s theorem [30, Chapter 1] to conclude that

v +V-w@u+VIl=0, >0, (2.16)
for some distribution /7 on R?x(0,occ). Taking the divergence of (2.16) gives
All = —ZX;, 8,0, (),

which shows that we may take I7 = X, R;R,(u'u*), where R; are the Riesz trans-
forms. By the boundedness of the operators R; in L'(R?), 1 < r < oo, the func-
tion VIT is in L=(0,00; W~ 1"2(R?)). Thus (2.16) implies '€ L*(0,00; W~ P2(R?)),
so that (¢) follows by applying P to (2.16). (b) follows from the boundedness of P
in W=LP2(R?), From (b) and (¢) it follows that u is continuous from [0, co) to
W-1PI(R?), and so from [0, o0) to W~14(D), for any D. Since L?(D) C LYD) C
W~149(D) with continuous injections, Lemma 1.4 in [30, Chapter 111} implies that
u is continuous from [0, oo) to L?(D) in the weak topology. Since D is arbitrary
and ||u|,(¢) is bounded, the Banach-Steinhaus theorem implies (a).

(ii) Theorem 2.6 shows that the u, are bounded in L>(0, co; W"?(R?)). Since
p > 2, the Gagliardo-Nirenberg inequality: |f]l. < C|f]5~%7 | V27 yields the
boundedness of P(u, " V) u, in L=(0, co; LP(R?)). This, together with the bounded-
ness of Au, in L*=(0, co; W“”’(Rz)), implies that the u, are bounded in L*(0, co;
W~12(R%). We can thus apply Lemma 2.1 in [30, Chapter III] to conclude that
u,—u as v—0, a.e. in R2x(0,00). As in the proof of (i), one can show that

W+ PV-u@u=0, >0. (2.17)

Since u(-,t)€ W' (R? for almost all >0 and V-u=0, we see that
V:(u® u) = (u-V)u. Thus(2.17)is rewritten in the form (f). (¢) is obtained easi-
ly by applying the Gagliardo-Nirenberg inequality. (¢) and (f) together imply that
u is continuous from [0,00) to L?(R?). Since u lies in L*(0,00; W'?(R?), Lemma 1.4
in [30, Chapter I1I] ensures the continuity of u as asserted in (d). [J
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Recently, Kato & PONCE [34] have extended their results in {15] and [27] to
L? spaces. They prove the persistency of solutions of (1) with » = 0 in H*?,
s> 1+ 2/p. However, our Theorem 2.6 and Corollary 2.7 are not covered by
their results when m is 0 or 1.

3. New a priori Estimates

This section establishes new a priori estimates for solutions of (1) in R?, which
depend only on the norm of the measure V X a. These estimates allow us to take
a subsequence of solutions for the regularized initial data which converges to the
desired solution of the original problem. Qur argument is based on a comparison
theorem of OsADA [25] for the fundamental solution of the heat operator 0, — v 4
and also of the operator L, = 8, — v A + (b-V) with V-b = 0. We note that
[25] extends results in [1, 2] to operators in non-divergence form.

To be precise, we consider a parabolic operator in R* (n = 2) of the form:

Lb: 6I—VA —l—-(b'V),
under the following assumptions:

The vector function b = b(x, t) is bounded and continuous on
R*x [0, T), together with all its derivatives, and satisfies V -5 = 0. 3.1

There are functions c¢“(x, t), i,j=1,...,n, such that (3.2)
sup |[Hx, )| <, ij=1,...,n,
for some « >0 and
b'=2Z,0¢", i=1,...,n, & =20[dx;

where &' is the i component of b.

Since b is assumed to be smooth and bounded, L, has a unique fundamental
solution (see [8, Chapter 1, 2]), which we denote by I,(x,t;¥,s),x, y€R",
0=s<t<T.

Theorem 3.1. ([25]). Suppose that b satisfies (3.1) and (3.2). Then the following
estimates hold for the fundamental solution I', of L,.

(i) There are positive constants C;, j = 1,2, 3, 4, depending only on n, « and v
such that

Cy(t — )™ exp [~ C; |x — y P/t — 9]
S Tyx, 159,90 = Gyt — s) " exp [ Cy |x — y[/t — 9] (3.3)

for all x,y€ R" and 0 =s<<t<T.
(ii) There is a B, 0<<f <1, depending only on o and v such that

| Ty(x, t5 3, 8) — Ty(x', 5 3, 8)|
SC(s—sPr+y—yP+t—tPP+ix—x) (34
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forall v<<t—s, t'— 5 <oo and x,x',y,y € R", where Cs depends only on
n, v, & and ©> 0.

The smoothness assumption on b is in fact unnecessary and is made here only
in order to render the fundamental solution unique. For the full version of Theo-
rem 3.1 and its proof, we refer the reader to [25].

Let us now consider the equation for the vorticity in R? for v = V Xu:

Ly=v —vAv+@-VYv=0, >0, v 0)=Vxa; (V-1)
u=Kxv, Kx) = (—x5x)2n|x2, x=1(x1,x3). (V-2)
The next two propositions show that Theorem 3.1 is applicable to L, provided
that the solution u of (1) is smooth on R?*x [0, T) and V xa is a finite measure

on R?,
Lemma 3.2 ([25]). The function K = (K, K?) given in (V-2) is expressed as

K' = 9,4% + 9,4, K?>= —8,A* — 2,42,
where
A' = —xIx3n | x|}, A= —3xxpf27 |x|* + xixyfm | x|,

A = —3x3,/27 | x|* + x3/m | x|*.
Proof. The lemma is verified by direct calculation. []

Lemma3.3. Let U= K=V with V€ .# . Then U may be expressed as
2
U'=X¢c i=12 |dx))<M on R
j=1
with M depending only on an upper bound of | V|| 4.

Proof. We define
A=AV, cP=A'+V, Al=—A'%V, *P=—A*xV,

where A%, k = 1, 2, 3, are the functions introduced in Lemma 3.2. Since each 4*
is in L®(R?), we have ¢“/¢€ L®(R?) with |c¥||, < N | V|., where N depends only

on || A*||lw, k = 1, 2, 3. The expression for U follows immediately from Lemma 3.2

d

Using Theorem 3.1, Lemma 3.2 and 3.3, we now prove the main theorem of
this section.

Proposition 3.4. Let u be the unique global solution of (1) given in Theorem 2.4.
Suppose further that v, =V X a is in L*(R?) with ||vo|, = m, and let T, be the
Jundamental solution of the operator L,. Then the following hold:

ol &) = lvol,  v=VXu Julpe ()= Cllogly for t=0, (3.5
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where ||*|2,« is the norm of L>*(R?) and C depends only on || K3, .
Cy(t — s)t exp [ Cy |x — y[*/(t — 9)]
SN 60,0 =Gt — ) exp[~Co|x — yP/t — )}, t>s5=20, (3.6)
with C;, j = 1,2, 3, 4, depending only on v and m.
Iol, () < Ct~1 W gl for t>0 and 1<r<oo,  (37a)
[Vall, () < Ct "1 pgll;, for t>0 and 1 <r<oo, (3.7b)
Null, (1) < Ct"r =12 ||gofly for t>0 and 2<<r=oo, 3.7¢)

with C depending only on r, m and v.
sup | V¥ dulle (N =C, £>0 (3.8)
[e,T]

with C depending only on ¢, h, k, v, T and m.

Proof. By the assumption, u together with its derivatives on each slab R?X
[0, T} are smooth and bounded. Therefore, the fundamental solution I, exists
and is unique. The estimates (3.5) follow from (2.5) and (2.6b). The estimate
(3.6) is obtained from Theorem 3.1, since Lemma 3.3 applies to u = K*v in
view of the estimate (3.5) for v.

The estimate (3.7a) follows from (3.6). Lemma 2.2 together with (3.7a) yield
(3.7b) and (3.7¢) for 2 < r << oo. The remaining case (3.7¢) for r = oo, namely,

—1
lullew = Ct™ 2 0ol 1

is deduced by applying the Gagliardo-Nirenberg inequality: [|ue = C |lul; ="
IVul, r>2 (see [9, p. 24, Theorem 9.3]) to (3.7b) and (3.7¢) for finite r.

r oo

It remains to prove (3.8). Taking t, = ¢/2, we see by (3.7¢) that
ful, () =C, r>2

with C depending only on t,, ,» and m, where f, = ¢/2. Applying Proposition 1.3
(i) with initial data u(t,) and p = r yields (3.8) by uniqueness. []

Our next theorem concerns the continuity of the function v(:, £) = (Vxu) (-, t)
when V xa is a measure, and enables us to give a precise meaning to the initial
condition u(-, 0) = a.

Proposition 3.5. Let u and a be as in Proposition 3.4, and let v =V Xu, vo =
Vxa. Then for each m>0 and T > 0 the functions v(, t), |[volls = m, are
equicontinuous from [0, T to # under the topology of weak convergence of measures.
In other words, the pairing (v(,t), ) of ¢ € BC(R?) with the measure v(,1)
satisfies

((, 1), ) > (v(-, ) $) as 1—>s

for all s€[0,T], and the convergence is uniform in v for [voly = m.
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Proof. On 4} ={u€ M;u=0,|ull.qy = m} consider the function
R(/h,,uz) = inf f (’x - )’I A 1) d}'(x’ y): M1 Y2 € ﬂr-:

RIXR?
where the infimum is taken over all measures 4 =0 on R2x R? such that
ITA=pu, and I1,A = pu,. Here I, (or II,) is the projection from R*Xx R?
onto the first (or second) factor, and /1,4, i = 1, 2, is the image of the image A
under I7;. For arbitrary measures ¢, and g, on R* with |plle < m, i =1, 2, we
define
R(uys p2) = R(ui, 1) + Rlpr, p3)

where 4" and u; denote the positive and negative part of y;, respectively. It is
known (see [6]) that the function R is a distance function on {u € 4 ; ||u|.» < m}
which defines a topology equivalent to that of weak convergence. We shall use
the function R in showing equicontinuity. Without loss of generality we may
assume that v, == 0 and therefore v(-, t) = 0 forall ¢ = 0. Consider the meas-
ures u(t) = v(x,t)dx on R? and Mt, s) = I'(x, t; y,s) v(y, s) dx dy on R:X RZ.
Then we have u(t)=0, A(f,s) =0 and

1T Mz, s5) = [f L(x, t;y,89)0(y, ) dy] dx = v(x, t) dx = u(t);
R2

1060,9) = | [ 12w 15,9 x| o009 dy = o3, 9) dy = ).

Note that here we have used the positivity of I',, the identity (2.3), the integral
representation (2.4) for v and the Chapman-Kolmogorov equality:

Lx, t;p,8) = f L, tz,t YOz, t;y,8)dz, 0=s<<t' <t. (3.9)
R?

By (3.6) and the definition of R we see that
R, pN = [[ [x—y|Tfx, ;1,5 v(p, s) dx dy

R*x R?

=Gt =9 [f |x—ylexp[=C|x—y[*/(t— )] v(y, 5) dx dy

RZx R2
— C(t — ) [o]l, (5) < Clwoll, (¢ — $)* < mC(t — s)*

for 0 < s <t < T, where C depends only on m and ». This shows the desired
equicontinuity. [

Remark. Proposition 3.5 can be proved directly without introducing R. In
fact, since o(x,t) = f L'(x, t; y.8) v(y, s) dy, by using (3.5) and the upper esti-
R2

mate for I, in (3.6) one can prove, by a standard argument, that (v(-, ¢} ¢) converges
to (v(-, 5), ¢) uniformly in s = 0 and |[[pof; = m as t|s. Clearly this implies
the equicontinuity of (v(+, t) ¢) on [0, T]. However, the proof using R seems con-
ceptually simpler. The function R is used in [3, 19] and [20] in a similar context.

The results obtained in this section are applied in Section 4 to construct a
global solution of the problem (1) when VXxa is a measure.
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4. Main Theorems

In this section, we apply the a priori estimates derived in Section 3 to construct
a global solution of (1) as well as of (2a), (2b) when the initial vorticity V xa is
a general finite Radon measure on R2. It turns out that our solution is smooth for
t> 0 and decays as t— oo, We also study how the velocity converges to a as
t— 0. We further show that our solution is unique provided that the atomic
part of the measure V xa is sufficiently small.

We begin by selecting a reasonable function space for ¢ when Vxa is a
finite Radon measure on R? and V -a=0. By (2.6b) and Lemma 2.2 (iii), a
is expressed as the sum of K x (Vxa)€ L>®(R*) and a harmonic vector field.
Since our initial velocity a is supposed to decay as |x| — oo itis natural to assume
that g is in L**(R?) with V-a=0 and VXa€.# so that a = K* (Vxa).

To study convergence to the initial velocity, we give a sufficient condition for
continuity under the weak* topology of L**(R?). Since L*»*(R?) is the dual space
of the Lorentz space L>!(R?) (see [4]) the weak* topology is well defined in that
space.

Lemma 4.1. Suppose that uec L0, T; L**(R?) with V-u=0 and that
v = V Xu is continuous from [0, T] to .# under the topology of weak convergence
of M. Then u, modified if necessary on a set of Lebesgue measure zero in [0, T,
is continuous from [0, T] to L**(R?) in the weak* topology.

Proof. By Lemma 2.2 (iii), K*v€L®0 T;L**(R*) and u— K*xv =20
a.e. in [0 TJ, as an element of L>*(R?). The assertion of the lemma will thus be
verified if we show that U = K * v is continuous. Take an arbitrary sequence #,
in [0, T) with t;—~ ¢ as [—oco. By the Banach-Alaoglu theorem we can extract
a subsequence, which is again denoted by #; such that U(y)— U, weakly*
in L**(R?). By assumption, VX U(t) = (VXxu) (t)— (Vxu)(t) in the weak
topology of measures. On the other hand, weak* convergence in L>*(R?) implies
the convergence in the topology of distributions; thus Vx U(t) -V x U, as
l—o0. Hence VXU, = (VXu)(t)=10v(t) and therefore U, = K* v(t) =
U(t) does not depend on the choice of #;. []

Theorem 4.2. (Existence for the Navier-Stokes system). Suppose that ac¢€
L2®(R%, V-a=0 and that VxXa is a finite measure. Then problem (1) has a
global solution u which is smooth for t> 0 such that

(i) u: [0, 00) — L>®(R?) is bounded and continuous under the weak* topology
and u(,0) = a.

(i) v = Vxu:[0,00) = A is bounded and continuous under the weak topology
and v(-,0) =V xa.

(iii) The estimates

lull, @) < CtV =12 for t>0, 2<r=oo; (4.1)
IVul,( @) < Ct~ U for t>0, 1<r<oo (4.2)

hold with C depending only on r, v and |V X a| 4.
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(iv) For 0 < & <<T and nonnegative integers k, h, there is a constant C such
that

sup || V¥ ol (1) < C.
[e,T]

with C depending only on ¢, k, h, T, v and on a bound for |V Xa| 4.
(v) The function u(t) = u(:, t) solves the integral equation (1.1) in L*®(R?.

Proof. Define a, = ¢”" a for n> 0. By the generalized Young’s inequality
and properties of the heat kernel, we obtain that V"aﬂeL”(Rz), k=0,1,...
for all p> 2, and that Vxa,€ LYR? for all ¢ = 1. Hence, by Theorem 2.4
a unique global smooth solution u, of (1) with u/(, 0) = a, exists. Since
IVxa,ll; =||VXal.e the estimate (3.8) guarantees that there is a subsequence
u,, converging to a function u(x, t) uniformly on every compact subset in
(0, o) X R*> together with all its derivatives, as %" — 0. The asserted estimates for
u in (iii), (iv) above now follow from (3.7c¢), (3.7b) and (3.8) by the lower semi-
continuity of integrals. Since each u, solves (1) for ¢ > 0, it is clear that the limit
u(x, t) solves (1) for #> 0.

We next prove (i) and (ii). By Proposition 3.5, a subsequence of V Xu,.(:, t)
converges to V Xu(-, t) uniformly on [0, T], as " — 0, in the weak topology
of .#. We conclude that v = V X« is continuous from [0, o) to .# in the weak
topology of .# and v(x, 0) = V X a(x). By (3.5) we see that | v|.« (¢) is bounded on
[0,00). This completes the proof of (ii). Since {u,} is bounded in L>*(0,00; L*>*(R?))
by (3.5), a subsequence {u,} converges to u weakly* in L*(0, co; L>*(R")). Since
v = Vxu satisfies (ii), applying Lemma 4.1 now yields (i).

It remains to prove (v), i.e.

u(t) = e a— of t Vet MPpu@u)(s)ds in L>¥(R?).
For ¢> 0 our solution u(t) solves
u(t) = e y(e) — f ’ Ve MPu@u(s)ds, t=e¢
in all L?(R?, p> 2. By (4.1) with r =4 and (1.3) with r = s = 2, we have
ftV =91 Py ® u) (5) ds—)oftv M Pu@u)(s)ds as £—>0
in L*(R?) and, therefore, in L»*(R?), because L%(R?) is continuously embedded
to L*»*(R?). Hence we need only show that, for each fixed 7> 0

e y(e) > " a  weakly* in L>®(R? as ¢ — 0. ™

Assertion (i) and the boundedness of the operators e*! in L>*(R?) together imply
that e’“~94 y(¢) is bounded in L>*(R?) for each fixed 7> 0. On the other hand,
it is easily verified that

(€M ue), ¢) > (¢ a,¢) as e—>0
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for any smooth vector function ¢ with compact support in R2. Since such functions
¢ are dense in the Lorentz space L*>!(R?) (see e.g. [4]), and since L>®(R?) is the dual
of the space L*!(R?), (*) follows from the Banach-Steinhaus theorem. []
The next proposition discusses properties of the vorticity v = Vxu of the
solution u obtained in Theorem 4.2. The main assertion is that v has an integral
representation in terms of a well behaved function I'(x,t;y,s), t>s=0,
which is obtained as a limit of the fundamental solutions of parabolic operators
L,,,7 with smooth wu,. This representation plays an important role in discussing

the uniqueness for solutions constructed in Theorem 4.2.

Theorem 4.3. (Integral representation for V xu). Under the assumption of
Theorem 4.2, the vorticity v =V Xu is expressed as

v(x, 1) = f I'ix,t; 9,0 (Vxa)(dy), t>0, 4.3)
R2

in terms of a continuous function I'(x,t;y,s), x,y¢ R?, t>s=0, with the
following properties (4.4)~(4.6):

fF(x,t;y, s)dy = fF(x, ty.s)dx =1, t>s5=0; 4.4
R2 R2
I'(x t;y §) = fF(x, Lz, Yz V;y,8)dz, t>t>s5=0; 4.5)
R2

Ci(t — sy exp [—C, |x — p[*/(t — 5)]
STx t9,) =Gt —s)ytexp[~Culx— pP/(t—9)), t>5=20, (46)
with C;, j = 1,2, 3, 4, depending only on v and on a bound for |V Xall 4.
Moreover, the estimate
lol, (1) < Ct= " |[Vxally, t>0, 1=Zr=<oc 4.7

holds with C depending only on r, v and on an upper bound of |V Xa| 4.

Proof. As in the proof of Theorem 4.2, we consider the functions u, and
v, = VXu, By (2.4

v, )= [ I, (x, ;5,00 (Vxa)(»dy, t>0, (4.8)
RZ

where I‘,,n is the fundamental solution of L, =—va+ (u, - V). Since
u, = K*v, and (o] (#) <[V xal., Lemma 3.3 implies that the estimates
(3.3) and (3.4) with b = u, are uniform in #. We can thus apply Ascoli’s theorem
to conclude that, by passing to a subsequence of {u,},

LG, t;59,9—>L(x, t;y,5) asy”—>0 4.9)

uniformly on compact subsets of points (x, t; y, s) with ¢ > s =0, and that the
limit function I” satisfies (4.6). Further, since Vxa,—V xa as y— 0, weakly
in .#, (4.8), (4.9) together with (3.3) for b = u,, yield (4.3). Identities (4.4) and
(4.5) are obtained in a similar fashion, since they hold for the fundamental solu-
tions I’,,n (see (2.2), (2.3) and (3.9)). Finally, (4.7) follows from (4.3) and (4.6). []
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We next consider the question of uniqueness for the solution obtained in this
section. Let us recall that by the Lebesgue decomposition of a finite Radon measure
4 (see [28, volume I, p. 22, Theorem 1.13]), u is written uniquely as

H# = HBpp + ue

where g, is the continuous part, i.e., u({x}) =0 for all x€ R* and y,, is the
purely atomic part, ie., u,, = >, &; 6(x — z;), ®;€ R, z;€ R*. This is easily
j=1

verified by defining u,, = E_1 x4 with E = {x€ R?; u({x]}) + 0} and proving
that E is a countable set. Here E _| u denotes the Borel measure defined by
E_1 u(A) = p(A N E).

Lemma 4.4. For any finite Radon measure u on R* we have

lim sup £' =" & pl, < C, lpppllac Sor all r> 1,

where C, depends only on r.

Proof. We first assert the estimate

le ull, < Gt |4

Indeed, since the linear operator Af = f*u is bounded in both L! and L%
with operator-norm not exceeding | 4||.«, applying the Riesz-Thorin theorem ([4],
[28, Volume II]) to 4 yields the above estimate if we take f as the heat kernel.

This estimate shows that to complete the proof of the lemma we need only
prove that

l’i¢r(r)1 e ), =0 for all r>1, (4.10)
under the assumption that u is continuous, i.e., u({x}) =0 for any x¢€ R2.
Without loss of generality we may assume that x = 0. For any fixed ¢> 0

we take N> 0 so that, writing B(0, N) = {x; |x| < N}, we conclude that
u[R*\ B(0, N)] < & and hence u, = (R*\ B(0, N)) I u satisfies

= e u,ll, < Ce  for all r> 1. @.11)
U

The support of the measure u, = u — u, is contained in B(0, N) and a direct
calculation gives

(=1 e gy |y = C,'I_IR[( J exp[—|x— yl2/4t1m<dy))’dx

Iy =N

_ ! (m [+ im) ( [ exp [— [x — yPj4e] ,u,(dy))rdx

YIEN
= 1,() + L,(0). 4.12)
Since |x — y|> |x|/2 if |x|> 2N and |y| <N,
LOSClmlet™ [ expl—r|xP/i6tldx—>0 as 1—>0. (4.13)

x| >2N
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For I,(t), applying Minkowski’s inequality yields

O = exp [ |x = y Fjarl (@) dx

|x|<2N (lx-—yl>a
b exp [~ |x = Al (@) dx

= L,((¢) + 1,5(0), (4.14)
where 6 > 0 is to be chosen later. Obviously, for any fixed é > 0,

x|=2N (lx—yl =4

L,(t) < C, mea [B(0, 2N)] ||y 'y t=* exp (—r 62/4t) >0, as t >0  (4.15)

where mea is the Lebesgue measure on R2. On the other hand, Hélder’s inequality
yields

LO=C [ [mB 6)1'—‘( [ explr |x = y Pacd () it
Ix|<2N I/}

x—yl<

< G/ sup [ Bx, OV & s
xl <2
= G liplax sup [uB(x, I, (4.16)
x| <2N
where B(x, ) = {y; |y — x| = é}. We shall now show that

u1[B(x,9]—0, as d—0, uniformly in |x| < 2N. 4.17)

The desired result (4.10) will then follow from (4.11)—(4.15) by taking J such that
I,(t) < & and recalling that ¢ is arbitrary.

Suppose that (4.17) were false. Then there would exist > 0, 6, 0 and x;
with |x;] < 2N such that

wi[B(x, 8)1= n for all I. (4.18)

By passing to a subsequence we may assume that x;—x as /—-oco. For any
8> 0, B(x;, 6)) C B(x, 8) provided / is sufficiently large. Since u,({x}) =0, we
have l.is?(} u[B(x, 6)] =0, so }1{1}0 u1[B(x;, 6)] = 0, which contradicts (4.18).

We thus obtain (4.17). []

Theorem 4.5. (Uniqueness). Suppose that a€L*>®(R*), VXa€.#, and
V-a=0. Take m> 0 so that |Vxal.g = m and let u be the solution of (1)
given in Theorem 4.2. Then

(i) For all p> 2,

tim sup #1217 Jul, (1) < C |V X @) l.a (4.19)

with C depending only on p, m and v.

(ii) For each p > 2 there is a positive constant & = e(p,v, m) such that if
(VX a),,ll.e <&, then the solution u is unique in the class of functions w with the
Jfollowing properties:

(a) w: [0,00) — L>¥(R?) is weakly* continuous and w(-,0) = a;
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(b) w: (0,00) — L?(R?) is continuous and satisfies (4.19) for p > 2.

(c) w solves (1.1) in L>*(R?).
In particular the solution u is unique provided that V X a is a continuous measure.

Proof. (i) Since p>2 and u= K=+v with v =V Xu, we get by (2.6a)
lul, ) = Cl Kz lloll, (6), 1/ = 1/p + 1/2
with C depending only on p. By (4.3), (4.6) and Lemma 4.4 we see that
lim sup ' o)y () < C (VX @)yl
where C’ depends only on ¢, m and . Combining these two estimates gives (4.19).

(ii) Let u be another solution of (1) with the same initial data a satisfying
properties (a) and (b) above. By (c) the difference w = u — u satisfies

t
wit)=— [ Ve Plw @ u(s) + i ® w(s)] ds,
0
so that, as in the proof of Lemma 1.1 (i),

£
Iwl, (1) = Mof (¢ — )72 ul, + llal,] () 1w, (s) ds.
Thus, |[wl,r= sup t"2717 | w|,(z) satisfies
0<t<T

Iwlp,r = MB(1/2 — 1/p, 2/p) [ull,,; + llullyz] | Wi,z (4.20)

where B is the beta function. We here assume that (Vxa),, satisfies
2CMB(1/2 — 1/p, 2[p) [(V X a)pp e < 1 4.21)

where C is the constant in (4.19). Estimates (4.19)—(4.21) together imply that if
we take T > 0 sufficiently small, then |w|,r < c|w|,r for some c¢<1,
and this yields w =0 on [0, T7] since ||w||, is finite. On the interval [T, co),
both u and # are classical solutions belonging to L?, so we get w = 0 on [T, co0)
by the result on uniqueness established in Proposition 1.2. []

Theorem 4.5 shows, in particular, that the solution is unique whenever Vxa
is a continuous measure. When the measure V X a has a density, i.e., when Vxa
is in L'(R?), we can also prove additional regularity at ¢ = 0, as shown in the
following theorem.

Theorem 4.6. If acL*>*(RY), V-a=0 and if Vxac L(R?, then the
(unique) solution u of (1) belongs to BC([0, o0); L>*(R?).

Proof. By assumption, ¢"/(V X a) is in BC([0, o0); L'(R?)). Thus, by (2.6b),
the function e“a=¢e"K=*(Vxa)=Kx [¢"(Vxa)] belongs to
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BC([0, o0); L**(R?)). By (v) of Theorem 4.2 it suffices, therefore, to show that the
function

Sl (1) = — oftV <=9 P(y @ u) (s) ds

is in BC([0, 00); L**(R?). By (1.3) with r =s=2, and (4.1) with r =4,

I:S[u]ll2,00 (1) = | STulll2 (1)
<cC ft(t—s)"%s_%ds —= CB(1/2,1/2) for t> 0,
0

which implies that « is bounded and continuous for ¢ > 0. On the other hand,
since VX a contains no pure point part, Theorem 4.5 (i) yields

lim "7 |lufl, (1) = 0 for all p> 2. 4.22)

Hence, using again (1.3) with » = s = 2 and (4.1) with r = 4 we get,as t— 0,

I STulll2,00 (£) = 1 STudllz (1)

= CB(1/2,1/2) |ulls,— O

because ||ully,= sup st u]ls 5)—=0 as t—0, by (4.22). This shows that
0<s<t

u is also continuous at ¢ =0. [J

Remark. BENFATTO, EsposiTo & PULVIRENTI [3] prove existence and uniqueness
of solutions to (1) under initial data & such that

m
Vxa= X o0(x—1z), o€R, z;€R
=1

J

where X[o;| is sufficiently small. Here 8(x — z;) is the Dirac measure supported
by z;. Our theorem of uniqueness covers that of [3]; moreover, our theorem of
existence improves that of [3] since no restriction is imposed here on either the
size or the form of the measure V xa.

Note. After this paper was submitted, the authors learned that CorTeET [37]
proved a theorem similar to Theorem 4.2. He constructs a weak solution of the
vorticity equation when initial vorticity is a finite measure. However, his method
is different from ours and he does not take up regularity of weak solutions. Our
theorem of uniqueness (Theorem 4.5) is stronger than his because he needs to
assume that the total variation of the initial vorticity itself is small.

The research reported here was partially supported by the Japan Ministry of Educa-
tion, Science and Culture.
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