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Introduction 

This paper studies the nonstationary flow of a viscous incompressible fluid 
in R 2 when the initial vorticity is very singular. The governing equations of motion 
are the Navier-Stokes equations 

u ' - - ~ , A u + ( u . V )  u +  V p = O ,  V . u = O ,  
(1) 

u ~ 0 as  I x l  - +  ~ ,  uCx, o) = a ( x ) ,  V "  a = O, 

where u and p represent the unknown velocity and pressure, respectively, r > 0 
is the kinematic viscosity, (u" V) ----- X,. u i 8/Sxi, V �9 u = Xi  ~ui/8xi and u' = 
8u/~t. By normalization the density of the fluid is assumed to be 1. 

We consider problem (1) in two dimensions, assuming that the initial vorticity 

V • a -~ ~a2/~x~ - -  ~al/~x2 

is a finite Radon measure on R 2, and discuss its solvability. Velocity fields of this 
type include those with vortex sheets and point sources of vorticity. A rigorous 
relation between solutions of the Euler equations (system (1) with v ---- 0) and 
the classical theory of the motion of point vortices has been established only re- 
cently. See, e.g., MARCHIORO & PULVmENTI [19], [20] and TURKINGTON [31]. 
For the Navier-Stokes system (1), BENFATTO, ESPOSITO & PULVIRENTI [3] construct- 
ed a global smooth solution, assuming that the initial vorticity is a finite atomic 
measure whose variation is small compared with the viscosity, i.e., 

V •  = ~ o~ r - -  zj) ,  
j - 1  

and v/@. l ajl is sufficiently large; here O(x - -  zj) is the Dirac measure supported 
at zy 6 R z. The results in [3] show that point-source vorticities can diffuse follow- 
ing the Navier-Stokes flow, provided ~, is large. We note that this result does not 
follow from classical theories for the Navier-Stokes system, as developed by 
LERAY [17], LADYZHENSKAYA [16] or T~MAM [30]. AS pointed ou in [3], classical 
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existence results for (1) fail to apply since the initial velocity a, with V x a a 
measure, is not necessarily square-summable, even locally. 

Our main goal in this paper is to show that there is a smooth global (in time) 
solution of (1), provided only that the initial vorticity V • a is a finite measure 
on R 2. Evidently, this improves the result of [3] since no restriction is imposed on 

or on the size and the form of  V • a. 
To show existence, we follow a standard procedure. We first regularize the 

initial velocity a, consider the corresponding regular solutions of (1), and then take 
a subsequence converging to the desired solution of the original problem. As is 
well known, to carry out this process one needs good a priori estimates for regular 
solutions. For  this purpose we study the vorticity equation for v ---- ~7 • u: 

v' --  ~,Av + (u" ~7) v ---- O, (2a) 

u = K * v (2 b) 

for smooth initial data v(x, O) = V • a, where K is the vector function: 

K(x,, x2) = ( - x2 ,  xl)/2~ Ixl 2, x = (xl ,  x~),  

and * denotes convolution on R 2. These equations are derived formally by apply- 
ing the operator V • on (I) and using the condition V �9 u = 0. We note that 
there is no vorticity stretching term in (2a) since the space dimension is 2. 

We regard (2a) as a linear parabolic equation for v with coefficients depending 
on u and write the corresponding fundamental solution as Fu(X, t; y, s), t ~ s. 
A bound for /'u established by OSADA [25] yields our key a priori estimates: 

C l ( t -  s) -1 exp [ - -C 2 [ X - - y [ 2 / ( t -  s)] 

<= F, (x ,  t; y, s) <= C3(t --  s) -1 exp [--C4 ] x -- y 12[(t --  s)], (3) 

where the positive constants Cj, j = 1, 2, 3, 4, depend only on ~, and the L~-norm 
of  V • a. Estimate (3) makes it possible to control the behavior of v as t ~ 0, 
uniformly in the approximation, so that the sequence of  solutions with regularized 
initial data converges to a solution of  the original problem (1), with V •  a 
finite (Radon) measure on R E. Estimates of the form (3), with Cj independent of 
the smoothness of  coefficients, were first established by ARONSON [1 ] and ARoNsoN 
& SERRI~ [2] for linear equations in divergence form. OSADA [25] extends the esti- 
mates in ARONSON [1 ] to a class of  linear equations not in divergence form, which 
includes equation (2 a) as a typical example. 

The problem of  existence of  solutions for nonlinear evolution equations with 
measures as initial data has recently attracted the attention of many mathemati- 
cians. For  example, MCKEAN [22], OSADA & KOTANI [24] and SZNITMAN [29] 
study the existence and uniqueness of  solutions for the Burgers equation 

u" + uux = ~'uxx, x C R t 

with u(x, O) = c O(x), c > O. For  the problem 

u ' - - A u + u ~ ' = O ,  x E • " ;  u ( x , O ) = c O ( x ) ,  c > 0 ,  
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BR~ZIS 86 FRIEDMAN [5] prove that solutions exist when 0 < p < 1 + 2/n and do 
not exist when p ~ 1 + 2In; see also [35] for more general initial data. Their 
results on existence were extended to more general equations of  the form u" --  
Au + f ( u )  = 0 by NIWA [23]. For  the problem 

u" + f (u)  x = O, x E RI ;  u(x, O) ---- O(x), 

LIU 86 PIERRE [18] discuss existence, (non-)uniqueness and asymptotic behavior of  
solutions satisfying the entropy admissibility criterion, under various assumptions 
on the form of the function f .  Our main result may be understood as an example 
of  existence of  solutions in nonlinear parabolic equations with measures as initial 
data, namely global solutions to the problem (2a), (2b) when v(x, 0) is an arbitrary 
finite measure on R z. 

In Section 1 we establish local existence of solutions for problem (1) in R", 
n ~ 2, with initial velocity a in L p, p > n, and show that this solution is regular 
for t > 0. For  later use we discuss higher regularity up to t ----- 0. Since (1) is 
parabolic, these results are generally familiar. However, it is difficult to find the 
appropriate version in the literature, because here the initial velocity a is not 
necessarily square-summable, i.e., the initial energy may be infinite. 

From Section 2 onward we consider only two-dimensional flows. We extend 
the local solution obtained in Section 1 to global smooth solutions by appealing 
to the vorticity equation (2 a), (2 b). An argument of  this type is found in MCGRATH 
[21]. Our results on global existence in Section 2 improve those in [19, 20] and [21] 
by relaxing assumptions on the initial data. 

As a byproduct of our analysis, we prove in Section 2 that our solutions are 
persistent in the Sobolev spaces w~n'p(R2), p > 2, m = 0, 1, 2, ... Namely, we 
show that if a E wm'p(R 2) and V • a E Lq(R 2) with 1/q = l ip  + 1/2, then the 
corresponding solution stays in Wm'P(R 2) for all time and is bounded there, uni- 
formly on each finite interval of time, independently of the viscosity v. Such a 
uniform bound enables us to take a subsequence converging, as v ~ 0, to a 
solution of  the Euler equations. In fact we construct a global solution to the Euler 
equations under the same assumptions on a. 

A property of persistence of this type is systematically studied by KATO [15] 
and PONCE [27] for the solutions of (1) with finite energy. Since our solution may 
have infinite energy, our restilts are not included in either [15] or [27]. After we 
completed this work, we learned that KATO & PONCE [34] extend their results 

,to solutions which may have infinite energy. Their result covers our results for 
m ~ 2. However, our results for m = 0, 1 are not contained even in [34]. In 
particular, our theorem of existence for the Euler equations seems new for initial 
data aELP(R2),  V •  1/q = l ip + 1/2. Recently, we have learned 
that DIPERNA & MAJDA [36] obtain a similar theorem on existence, assuming in 
addition V • a E La(R2). Their method seems different from ours. 

Section 3 establishes our key apriori  estimates for smooth solutions constructed 
in Section 2. It is crucial that our bound depends only on the L~-norm of the initial 
vorticity ~7 • a and is otherwise independent of  the regularity of a. 

In Section 4 we apply our a priori estimate derived in Section 3 and prove our 
main existence theorems. More precisely, we construct a global solution of  (1) 
as well as of (2a), (2b) when the initial vorticity is a finite measure on R 2 and prove 
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regularity for t > 0 as well as some decay estimates as t --* cx~. We clarify the 
meaning of the convergence to the initial velocity as t ~ 0 by using Lorentz 
spaces. We further show that our solution is unique provided that the atomic 
part of V • a is "small". We note that there is no restriction on the size of  the 
continuous part of V • a. This conclusion covers the uniqueness theorem of [3] 
since it is assumed there that V • a is a finite atomic measure with small total 
variation. 

We are grateful to Professor MASAO YAMAZAKI for some suggestions on Lorentz 
spaces. We are also grateful to Professor NORIAKI SUZUKI for valuable suggestions 
on the proof  of Lemma 4.4. 

1. Local  Solutions in R n with Initial Data  in L 1' 

This section establishes local existence of solutions in L p for the Navier-Stokes 
system (1) in R n, n :> 2, without assuming that the initial energy is finite. Although 
there are many references on the local existence in R n, only a few results are known 
when the initial energy is not finite (see e.g., [7, 12, 14, 16, 33, 34]). Consequently, 
we give here the details of our derivation for later use. The basic tool for con- 
structing solutions is a standard successive approximation scheme which goes 
back to LERAY [17] and is systematically studied in [10, 11, 14, 32, 33, 34]. 

We shall also discuss higher regularity up to t = 0 to be used in the sequel. 
Since the equation is semilinear and parabolic, regularity for t > 0 and up to 
t = 0 is generally known (see, e.g., [7, 10, 34]). However, we state and prove here 
our version of a regularity theorem which does not  follow from a simple combina- 
tion of  known results. 

Hereafter we use the following notation: BC denotes the class of bounded 
continuous functions. LP(R ~) represents the space of LP-vector-valued or tensor- 
valued functions on R n, as well as the space of LP-scalar-valued functions on R"; 
the norm o f f  in LP(R n) is denoted by [IfLlp- We denote BC([O, 7"); LP(Rn)) simply 
by Bp, T. The norm of u(x, t) in Bp, T is defined by 

]Ulp,T= Sup Ilulf~(t). 
O~t<~T 

I f  f =  ( f l  . . . . .  f~) is a vector-valued function on R ~, Vf  denotes the tensor ~if j, 
1 ~ i, j ~ n, where ~ : ~/~xi. Similarly, for a nonnegative integer k, Vkf 
denotes the tensor ~ ... ~n"fl, o~ 1 + ... + or n = k. The expression ~tf denotes 
the time derivative o f f .  

Following the standard practice ([7, 10, 11, 12, 14, 32, 33, 34]), to solve (1) we 
transform it into its integral form: 

u(t) = e vta a + S[u] (t), t >~ O, (1.1) 

where 
t 

S[u] (t) = S[u, u] (t); S[u, w] ( t )  - -  - f e ~(t-')a P(u " V) w(s) ds. (1.2) 
0 



Navier-Stokes Flow 227 

Here e ta is the solution operator for the heat equation; P is a singular integral 
operator of  convolution type (see [7]) namely the orthogonal projection onto the 
subspace of  divergence-free vector fields of L2(R"). A solution u of (1.1) is called 
a mild solution of the initial value problem (1) since (1) and (1.1) are equivalent, 
provided u and a are smoth and decay as Ixl--->o0. It turns out that the solu- 
tions treated in this paper are all smooth and satisfy the equations in the classical 
sense for t > 0. However, we should consider carefully the behavior of the solu- 
tions as t ~ 0 in order to understand the meaning of  the initial condition. We 
first derive basic estimates in L ~ for the bilinear map S[u, w]. We observe that 

u j ~jw : Xj ~j(uJw) ( =  V .  (u | w) for short) provided ~7 �9 u = 0. This pro- 
vides an alternative expression of  S: 

t 

S[u, w] (t) : -- f e "tt-s)a P V . (u | w) ds 
0 

t 

= -- f V"  e "tt-Oa P(u | w) ds 
0 

since P and V commute with e ~t~. 

(1.2') 

Lemmal .1 .  Let  2 <: n < p < o% T >  O and a =  l/2 -- n/2p. Then 

(i) IS[u, wl [v,r <: M(~T) ~ [U]p,T IW[p,r/~ provided that V -u = 0; 

(ii) [(~t) �89 VS[u, w] Iv 7- ~ M(~T) ~ [u [, r [ 0,t)�89 Vw [p r/~; 
(iii) [VS[u, w] ]q,T <: M(vT)  ~ [u ]2~,T [(~t) ~ Vu I ~  2~ ]Uw [q,T/~'; 

with 1/q : l ip -]- 1/n, where M is a positive constant depending only on n and p. 

Proof. We estimate S and VS by applying the well known estimates: 

[[VeVtAfl[r ~ C(~t)-  �89 Ilfll,, 1 ~ s _< r ~ oo, (1.3) 

11 efllr <= C Ilfl[,, 1 < r < o0, (1.4) 

(see [13, Chap. 9]) to (1.2) or 0.2 ') .  Since the proofs of  (i), (ii), (iii) are standard 
and similar to others, we give here only the proof  of  (iii). We take the gradient of 
S[u, w] and use (1.3), (1.4) to get 

t 

IIUS[u, w]l[a (t) <: C f [v(t -- s)]-  �89 II(u" V) w[I q (s) ds 
0 

t 

c f [~(t - s)]-  } [I ull o~ (s)II VW[lq (s) as 
0 

where C depends only on p and n. Since p > n, the GAGLIARDO-NIRENBERG 
inequality [9, p. 24, Theorem 9.3] yields 

Ilul[oo =< c Ilu/f~ ~ tlVull. '-2~. 
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We thus have 

11 VS[u, w] IJ (t) 
t 

<: C f [v(t -- s)]- �89 (vs)- �89 +" Ilull~ ~ (s)II O,s)�89 Vull~ -2~ (s)IIVwllq (s) ds 
0 

M(vT)" [ul2p,~r [(vt) �89 Vu ' 2, _ , ,~ t V w l J ~ ,  

with M depending only on n and p. This yields (iii). [ ]  

We now construct a local solution in L p, p > n. 

Proposition 1.2. (i) Suppose that the initial velocity a is in LP(R n) for some 
p > n and V �9 a : O. Then there is a unique local solution u of (1.1) such that 
U E Bp,T for some T > 0 and 

[U]p,T ~ 2 Ilal!.- (1.5) 

(ii) The time T can be selected so that 

T ~  Cv-l+'/~/[lal[~/~ ~ = 1/2 -- n/2p; (1.6) 

(vt) �89 Vu E Bp,T with I(vt) �89 Vu I.,r ~ C II all . ,  (1.7a) 

where C depends only on n and p, and 
(1.7b) I f  ~TaE Lq(R n) with I / q :  I / p +  I/n, then VuE Bq, T and l~Tu[q,r~ 
2 II ~Taliq. 

(iii) Let m be a nonnegative integer and suppose that Vka E LP(R ~) for k = 
0 . . . . .  m. Then the time T can be selected so that 

VkuE Bp,T and [Vkulp,r <: C', k = 0, . . . ,  m; ( l .8a)  

(vt)�89 and I(vt)�89 T ~  C'; ( l .8b)  

~7k ~ u E  Bp,r and IVk ~t'ulp, r <= C' for k + 2h <= m, (1.8c) 

where C" depends only on n, m, p and on bounds for v and [IVkallp, k ----- 0 . . . . .  m. 

Proof. (i), (ii). Consider the following scheme of successive approximations 
for (1.1): 

Uj+ 1 : U 0 + S [ u j ] ,  u 0 : e vtA a, j : 0, 1 . . . .  (1.9) 

Lemma 1.1 (i) and the estimate lie vtA all p ~ Ilallp together yield 

luj§ Ip,T ~ I!all, + MO, T) ~ luj]~J~. 

This implies that, for all j ~ 0 

l uj ]r,r <= K = 2rO -~ l[allp r = 1 -- (1 -- O) �89 < 1, (1.10a) 
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provided 
0 < 0 = 4 Ilallp M(vT)~/v < 1. (1.11) 

For 0, 0 < 0 <  I, we take T > 0  so that(1.11) holds. 
Taking the gradient of (1.9) and then applying Lemma 1.1 (ii), together with 

(1.3) and (1.10a), yields 

I (vt)�89 ~TUj+l rp --< c [lal[, § MK(vT)  ~ [(vt) �89 Vujlp/v. 

Here and hereafter we drop the subscript T to simplify the notation. By definition 
of  K and (1.11), the second term of the right-hand side does not exceed 
(r/2) l(vt)�89 ~Tuj [p. Hence 

](vt) �89 Vuj [p ~ 2C [[ al[~,, for all j ~ 0, (1.10b) 

with C depending only on p and n. 
Similarly, we take the gradient of (1.9) and apply Lemma 1.1 (iii), (1.10a) 

and (1.10b) to get 

]~Tuj+z [q =< IlVallq § ML(vT)  ~ [la[lp [~7Ujlq/l) 
with L depending only on p and n. If  0 is sufficiently small, say 0 < 0 < 2/L, 
then the above estimate gives 

[Vllj4-11q ~ IlVallq + �89 IVujlq 
which yields the bound 

IVujla, r _-< 2 ItVallq for all j ~ 0. (l.10c) 

Here and hereafter we fix T so that (1.1 I) holds with OL < 2. 

We claim that uj and (rt)�89 ~Tuj (or Vuj) are Cauchy sequences in Bp, r (or Bq.r). 
Indeed, we estimate the difference wj = uy+l --  uj, by applying Lemma 1.1 to 
(1.9). After a routine calculation, we see that (1.10a)-(1.10c) yield that Sj [wj It, 
~j I('pt)�89 ~Wj]p, ,~j [VWj[q are finite. Since the idea of the proof is standard, the 
details may be omitted. 

The estimate (1.6) is obvious from our choice of 0 and T. Since uj and 0,t) �89 Vu i 
(or Vuj) are Cauchy sequences in Bp, r (or Bq,r), we see that the limit, u = lim uj, 
is a solution of (1.1) in Bp.r. Also u satisfies (1.5), (l.7a), (1.7b) by passing to the 
limit, .j---~oo, in (1.10a), (1.10b), (1.10c). The proof of uniqueness in Bp, r is 
standard (see [12]), so (i), (ii) are proved. 

(iii) The proof  is routine and long so we just give an outline. We differentiate 
(1.9) with respect to the spatial variables and prove that for k = 0 ... m 

IVkUjlp ~ C I(~t)�89 VmWl zljlp ~ C, 

with C independent o f j .  This follows from our a priori bounds (l.10a), (1.10b) 
and Lemma 1.1. As in the proof  of  (i), (ii), we see that ~Tkuj and (~t) �89 ~7 m+l uj are 
Cauchy sequences in Bp,r. This yields (1.8a), (1.8b). The estimate (1.8c) follows 
from (1.8a), (1.8b) and the equation 

u" = ~ Au  - -  P(u " V) u. []  
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Remark. The basic idea of the above proof goes back to LERAY [17], who con- 
structed a global regular solution, when n ---- 2, by a successive approximations 
scheme assuming that a is in H I f~ L ~176 A proof of (i) is given in GIGA [12, 
Theorem 1 and Sect. 4]. 

The next theorem shows that the solutions of (1.1) in Proposition 1.2 are regu- 
lar. 

Proposition 1.3. (i) Let a E LV(R"), for some p > n and V �9 a = O. Let u 
be the solution of  (I.1) given in Proposition 1.2. Then, V k Ohtu E BC([e, T); LV(R")) 
for all k, h >= O and O < e < T. Moreover, 

sup IIV k ~ul[~ (t) ~ c 
[~, T) 

where C depends only on e, p, n, k, h and on an upper bound for [lallv. In particular, 
u is smooth for t ~ 0 and solves the Navier-Stokes system in the classical sense for 
t > 0 .  

(ii) Suppose further that ~Tka E LP(R ") for all k >= O. Then V k ~htu is bounded 
and continuous on R ' •  [0 T) Jbr all k, h >~ O. Moreover, 

sup [[ ~7 k 8thU [I oo (t) ~ C, 
[o, r )  

where C depends only on p, n, k, h, ~ and on upper bounds for max (llVta[Ip). 
O < l ~ k + 2 h +  1 

Proof. (i) By (1.7) we have ll~7ull~ (to) ~ C for 0 < to < T with C depending 
only on n, p, to and II ally. We then solve the Navier-Stokes system for t ~ to with 
initial velocity u(., to) and obtain IIV2ull~ (2to) ~ C. Repeating this process, we 
infer that ll~Tmullp (mto) is bounded by the same constant C so long as mto < T. 
Since to can be taken arbitrarily small, this shows that ~Tmu is in BC([e, 7"); LV(R')) 
for all e > 0 and its norm is bounded by C depending only onp,  n, m, e and Ilal[p. 
Combining this with (1.8c) yields the estimate in (i). The assertion on smoothness 
follows immediately from the Sobolev inequality. 

(ii) This follows from (1.8c) by use of the Sobolev inequality. [ ]  

Remark. We note that Proposition 1.3 (ii) also follows from [7, Theorem 3.4] 
or [34]. However, apparently no estimate of the form (1.6) is given in [7] or [34] 
for the time T. Moreover, it seems that Proposition 1.3 (i) does not follow directly 
from the results of [7] or [34]. 

2. Global Existence and Persistency by Use of the Vorticity Equation 

The goal of this section is to show global existence of solutions for the Navier- 
Stokes system (1) in R 2 without assuming that the initial energy is finite. As a 
byproduct we show that our solutions persist in the Sobolev spaces Wm'p(R2), 
p > 2, m ---- 0, 1, 2 . . . .  This leads to global existence of solutions for the Euler 
equations as ~ ~ 0. It should be noted that we are dealing here with solutions 
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with infinite energy, so our results are not included in either [15] or [27]. Since the 
standard energy method fails in our case, we are forced to appeal to the vorticity 
equation in order to get the desired results. Such an argument is found in MCGRATH 
[21], under more stringent assumptions on the initial vorticity. Here we base our 
results on global existence for both the Navier-Stokes and the Euler equations 
on the results in Section 1. This relaxes the assumptions and simplifies the proofs 
of  [21]. In what follows we always assume that the spatial dimension is 2, unless 
otherwise specified. 

Suppose that the initial velocity a and all its derivatives are in LP(R 2) for some 
p > 2. Proposition 1.3 (ii) then says that there is a unique local solution of  (1) 
which is smooth and bounded on R 2 • [0, T). We here apply V • to (1) and obtain 
the vorticity equation for v = V x u  = ~u2/~x, -- ~ul/~x2: 

L u v ~ - v ' - - ~ A v + ( u ' V )  v = O ,  tE(O,T) ,  (V-l) 

v(x, O) = V x a .  

Since u and all its derivatives are bounded on R 2 • [0, T), the linear parabolic 
operator Lu has a unique fundamental solution 

_P~(x, t; y, s), O ~ s < t < T, x, y E R 2 

such that LuFu : 0 as a function of  (x, t) and 

lim f I'~(x, t; y, s) f (y)  dy : f ( x )  
t~s R2 

for every fE BC(R2); see [8, Chapter I]. 
Let us quickly review some properties o f / ' ~  which are needed later. It  is well 

known that  F~ > 0 and that the function 

w(x, t) = f _ru(x, t; y, s ) f ( y )dy  (2.1) 
R 2 

is a unique bounded classical solution of  Luw = 0 (t > s), w(x, s) = f E BC(R2); 
see [8, Chapter 1,2]. SinceLu has no zeroth-order term, w ~ 1 is a unique bounded 
solution to L~w = 0 (t > s), w(x, s) ---- 1. By (2.1) this yields 

f F,(x, t; y, s) dy ----1 O ~ s < t < T. (2.2) 
R2 

The function -P*(x, t; y, s) = F~(y, s; x, t), 0 ~ t .< s < T, 
solution of  the adjoint problem 

w' + ~ A w - -  V �9 (uw) = O, 0 ~ t < T, 

which is the same as 

w" + ~, A w  - -  ( u .  V)  w = 0 

since V �9 u = 0. In analogy to (2.2) we have 

f I 'u (y , s ;x , t )dy= l, O < = t < s < T .  (2.3) 
R 2 

is the fundamental 
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The  following result is immediately  obta ined f rom Proposi t ions  1.2, 1.3 and the 
identities (2.2) and (2.3). 

Proposition 2.1. (i) Suppose that ~Tka6LP(R2), k = O, 1, 2 . . . .  , for  some 
p > 2 and that V �9 a = O. Let  u be the local solution o f ( l ) g i v e n  in Proposition 1.2. 
Then v :  V x u is given by 

v(x, t) : f r , ( x ,  t; y, o) ( v  • a) (y) dy, 0 < t < T. (2.4) 
R 2 

(ii) Suppose further that V • a 6 Lq(R 2) for  some q with 1 <: q ~ oo. Then 

Ilvll~(t)G [[V• 0 ~ t <  T. (2.5) 

We next  consider how to recover  the velocity field u f rom the solution v of  the 
equat ion (V-I) .  Since ~7 �9 u = 0, it is easily seen tha t  

Au = V• where V• = (--Sv/Sx2, 8v/~x~). 

I (  is thus to be expected that  if u decays as ]x] --> ~ ,  then 

u = E ,  V l v  -~ ( V I E ) ,  v 

where E : (2zt) -~ log Ix[ is a fundamenta l  solution of  A in R 2 and * denotes  
the convolut ion in R 2. We shall now show that  this is true in our  setting, T o  this 
end we introduce certain funct ion spaces. By ~ '  we denote the space of  all finite 
R a d o n  measures  on R z with n o r m  defined by the total  variat ion.  A measurable  
funct ion f on R z is said to be in LP'~(R2), 1 < p < ~ ,  if  

Ilfll~,~ = sup;t  [mea {x; If(x) l > Z~]'/p< 
4 > 0  

where mea  is Lebesgue measure  in R 2. Al though IIfl[p,~ does not  satisfy the usual  
tr iangle inequality, it is a p seudo-norm on the linear space L p'~ and L p'~ is a 
Banach  space with a n o r m  equivalent to llfllp,~ (see [4]). L p'~ is often called a Lo-  
rentz space. 

In what  follows we let 

K(x) = V IE(x )  = (--Xz, xl)/2z~ Ix[ z for  x = (x , ,  x2) E R 2 

and  consider the convolut ion opera to r  U =  K *  V =  f K ( x - - y ) V ( y ) d y .  
R 2 

Note  that  K E  L2'~176 2) and that  K is not  contained in any LP(R:), 1 < p < ~ .  

Lemma  2.2. (i) For U : K ,  V we have the estimates: 

llUll,< CllKll2,o~ttVll~, i f  l < q <  2, V6Lq(R  2) and l i p =  1 /q - -  1/2; 

(2.6a) 

I[ UIIz, oo _-__ Cllgll~,~llVll~ for  V 6 d g ;  (2.6b) 

I[ v ut[, =< c II vii, for  v 6 L'(R2),  1 < r < oo,  (2.6 c) 

with C independent o f  V, where J[ Vl]~g denotes the total variation o f  the Radon mea- 
sure V. 
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(ii) Suppose that U E LP(R2), 2 < p <S 0% with ~7 �9 U ~- 0 and that V x U E 
Lq(R 2) with 1/q = lip q-1/2. Then 

U =  K * ( V x U ) .  

(iii) Suppose that UELZ'~176 z) with ~7. U =  0 and that V x U E  ~g. Then 

U =  K ,  (Vx U). 

Proof. (i). (2.6a) is simply the generalized YOUNG'S inequality (see [28, p. 32]). 
Since ~TK is a CALOERoN-ZYGMUND kernel, (2.6c) follows from the standard theory 
of singular integral operators; see [13, Chapter 9]. To show (2.6b) consider the 
linear operator A f = f ,  V for any fixed VE Jr It is easily verified that A 
defines a bounded linear operator on each LO(R2), 1 ~ p  ~ 0% with norm 

1] VII ~ .  An interpolation theorem for Lorentz spaces ([4, Theorem 5.3.4]) now 
implies thatA is bounded on L2'~~ 2) with norm ~ CI] Vll~. This proves (2.6b). 

(ii), (iii). The function W = K* (V • U) is in LP(R 2) (or L2'~176 by (2.6a) 
and (2.6b), and satisfies V . W = 0 ,  V x W = ~ 7 •  Therefore, Z = -  U - -  W 
is harmonic on R 2 and belongs to LP(R 2) (or L 2' ~176 The mean-value theorem for 
harmonic functions yields, for every x E R 2, 

I Z(x) ] ~ mea (B) -I f ] Z(y) I dy <= C ll Zllp (respectively =< C II Ztlz,~) 
B 

where B is the unit disc in R 2 with center x and C is independent of x. Liouville's 
theorem for harmonic functions now implies that Z is a constant, which must 
be equal to 0 since Z E LP(R 2) (or L2'~ This proves (ii) and (iii). [ ]  

Proposition 2.3. Let Vka E LP(R2), k : 0, 1 . . . . .  for some p ~ 2. Suppose 
further that ~7 " a : 0 and V •  Lq(R z) with 1/q ~- lip + 1/2. Then the local 
solution u given in Section 1 satisfies 

u(x, t) = K ,  (V x u) = f K(x  - y) (V • u) (y, t) dy, 0 ~ t < T. (V-2) 
R 2 

Moreover, the estimate 

[lullp (t) =< CllVxul lq( t )  <= C IIV xallq, 0 ~ t <  T (2.7) 

holds with C depending only on p. 

Proof. By Proposition 1.2 (i), u(-, t) is in LP(R2). Thus (V-2) follows from 
Lemma 2.2 (ii). (2.7) is then immediately obtained from (V-2), (2.6a) and (2.5). [ ]  

We can now prove our result on global extension, using the estimate (2.7). 

Theorem 2.4. Suppose that Vka E L~(R2), k = 0, 1 . . . . .  for some p > 2, 
and that V " a =  O, SupposeJurther that V x a E L q ( R  2) with 1 /q= 1 /p+ 1/2. 
Then the local solution of ( I )  given in Proposition 1.2 may be extended uniquely to 
a global (in time) solution u such that u E Bp, o~, ~Tu E Bq,~o and 

lUlp, o~ ~ C[[V• [ ~ T U l q o  o ~ Cl l~xa l l  q 
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where C depends only on p. Moreover, the derivatives V k Ohtu belong to Bp.rfor every 
finite T > 0 and satisfy 

I vk 6 S c 

with C depending only on p, k, h, T, ~, and on bounds for m a x  (l[ Vlalle) and 
O ~ l ~ k  + 2h 

11 V x a I1~. 

Proof. Take T as in the proof of Proposition 1.2 with II a I[p replaced by C [[ V x a ][q, 
where C is the constant in (2.7). For any to E (0, T), (2.7) shows that Ilullp(to) 
has a bound depending only on p and IlV x allq. Therefore, the argument in the 
proof of Proposition 1.2 ensures the existence of a unique solution on 
[to, to 4- T) with initial value u(., to). Suppose now that u may be extended uni- 
quely to some finite interval [0 T1). Then (2.7) holds on [0 T1) as seen from 
Propositions 2.2 and 2.3. Thus u may be extended uniquely to the interval 
[0, 7"1 4- T). Since T is independent of 7"1, we conclude that u may be extended 
in a unique way to the whole interval [0, oo). By (2.7) and (2.6c), we easily see 
that u E Bp, oo and Vu E Bq,~ and admit the required bounds. Bounds for V k ~thu 
are obtained from Proposition 1.2 (iii). [ ]  

The assumption Vka E LP(R2), k : 0, 1 . . . .  is made so that the local solu- 
tion u(x, t) be sufficiently regular up to t : 0. Since the equation (1) is parabolic, 
it is natural to expect global existence even if we drop the regularity assumptions 
on a. 

Theorem 2.5. Suppose that a E LP(R 2) for some p > 2 with V �9 a = 0 and 
V • a E Lq(R2), 1/q = lip 4- 1/2. Then there is a unique global solution u o f  (1) 
such that u E Bp,oo, ~UE Bq, eo and 

lul ,oo_-__ C[[Vxa[l~, IVulq,~ =< cI Ivxal l~  

with C depending only on p. Moreover, all derivatives V k ~htu exist on R z x [e, oo) 
for any e > 0 and satisfy 

sup IIV k etnu[[oo (t) ~ C 
[e,T] 

where C depends only on p, T, k, h, e, ~,, and on a bound for [IVxallq. 

Proof. Let u be the local solution in Proposition 1.3 (i). Since we have Va E 
Lq(R 2) by Lemma 2.2 (i) (ii), (1.7b) now implies that Vu is in Bq,r for some 7'. 
For every to, 0 <  t o < T ,  we have 

11Vk u(to)[[. ~ C, k = 0, 1, 2 . . . .  (2.8) 

by Proposition 1.3 (i), where C = C(p, k, to, ~, I]alJp). Applying Theorem 2.4 
with initial data U(to), we find that our solution can be extended globally in time. 
In particular we obtain uEB.,o~ and VuEBq, oo and 

Ilulb (t), IlVul[~ (t) :< A IIV x ull~ (to) t ~ to 

with A depending only on q. 
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Letting to ~ 0 we show that 

11 ul[p (t), ]l ~Tullq (t) ~ A 1] V • allq, 

and this proves the first part of Theorem 2.5. 
By (2.8) and (2.9), Theorem 2.4 yields 

sup [IV k Ohtu[] p (t) ~ C 
[to, T] 

with C = C(p ,k ,h , v ,  to, T, IIVxallq). 
the Sobolev inequality to (2.10). [ ]  

t > 0 ,  (2.9) 

(2.10) 

The proof  is now completed by applying 

Remark. MARCHIORO & PULVIRENTI [19] and OSADA [26] establish existence 
assuming that V • a 6 L t A L ~176 This assumption implies that V • a 6 L q, so 
one can apply Theorem 2.5 to get global existence. 

We finally prove that our solution is persistent in the sense of KATO [15] and 
PONCE [27]. Although our argument is not original, we state our precise result 
since it concerns solutions with infinite energy and therefore is not contained in 
either [15] or [27]. In what follows, wm'p(R2), m = 0, 1 . . . . .  denotes the usual 
Sobolev space. The norm of  wm'p(R 2) is written as []'[[wm,p. 

Theorem 2.6. Let a 6 wm'p(R 2) for some p > 2 with V �9 a = 0 and ~ • a 6 
Lq(R2), where l/q = lip + 1/2. Then the solution u o f ( l )  given in Theorem 2.5 
is in BC([0, T],  wm'p(R2)) for all T >  0 and satisfies 

sup [[U[[w,n. p (t) <= C uniformly for v > 0. (2.11) 
[O,TI 

Proof. It suffices to prove (2.11)since that u6  BC([0, T], wm'v(R2)) follows 
directly from (1.8 a) and (2.10). Since (2.11) for m = 0 follows from Theorem 2.5, 
we may assume m > I. First assume that m = I and consider the equation for 
the vorticity: 

v ' - - v d v + ( u ' V )  v = O  (t > to), (2.12) 

v =  V• v(X, to)= Vxu(x, to), 

where to > 0. By (2.9) and (2.10), applying (2.5) to (2.12) yields Ilvilp(t ) 
I[ V • ul[p (to) for all t ~ to and therefore, by (2.6c), [[ Vu[[, (t) < C I[ v [lp (t) < 
C][Vxulfp (to) for all t => to with C depending only on p. Since Vu6 Bp, r, by 
(1.8a) and Va6LP(R2), letting to--~0 yields IIVull,(t)<=CllVxaHp for all 
t >  0 and this establishes (2.11) for m : 1. 

We next assume that m = 2. We apply V to (2.12), multiply the resulting equa- 
lity by IVy f - 2  Vv and integrate by parts, using ~7 �9 u = 0, to get 

d 
Ilvvll~ <~ cIIVuLo IIVvll~, t > to (2.13) 
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with C depending only on p. To  estimate I[ Vu [] ~ we appeal to the following result 
of  KATO [15, Lemma  A3]: 

[IVulloo ~ C(llvlloo + Ilvl12 + Ilvllo~ log [1 q -  (l lVvll~/llvi[~)]) (2.14) 

where C depends only on p. Using (2.5) and the Sobolev inequality, we have 

II v [I ~ =< II V • a ][ ~o _-< C II a II w2,. and It v I1= < l[ v II'~ -=/" 11 v II~/" < II ~ • a [llo -2/p II V • a I1~/p. 
Thus  (2.14) gives 

IlVull~ ~ c(1 + log + [l~Tvll~) 

with C depending only on p, ]1V • a llq and I[ a llw2,p. Combining this with (2.13) 
and integrating with respect to t now yields 

IlVvl[~ (t) ~ C for  tE [to, T] , (2.15) 

where C depends also on T. Since V2u ---- V K ,  (Vv) and since VK is a Calderon- 
Zygmund kernel (2.15) implies that  IIV2ulI~ (t) _< c on [0, T]. This implies (2.11) 
for  m = 2 .  

Suppose finally that  m ~ 3. We apply ~7 k to (2.12), multiply the resulting 
equality by I Vkv [p-z Vkv and integrate over R 2. Integrating by parts and using the 
condit ion V �9 u = 0 and the Sobolev inequality, we deduce, after summation over 
k = 0 ,  1 . . . . .  m - -  1, 

d 
_ _  p ~ P dt l[ vllwm-l,~ = C II UlIwr.--1,~ II VlIw..-1,~ 

where C depends only on m and p. Integrating this and then using the estimate 
II u II wm,p <= C(ll v II wm--~,P + 11V X a IIq), which follows f rom (2.7) and the relation 
~7ku ---- V K *  (V k-1 v), we arrive at (2.11) by induction on m. [ ]  

Theorem 2.6 suggests that  we can obtain a solution of  the Euler equations (sys- 
tem (1) with ~, = 0) by passing to the limit ~ --~ 0. Fo r  m ~ 2, this is carried 
out  by KATO & PONCE [34] with no assumption on the vorticity V • a. For  the 
cases m ---- 0, 1, which are excluded in [34], our  Theorem 2.6 gives the following 
result. 

Corollary 2.7. (i) Let a E LP(R2), p > 2, V �9 a = 0 and V x a E Lq(R 2) with 
1/q ---- lip + 1/2. Then there is a function u such that: 
(a) u : [ 0 ,  c ~ ) - +  LP(R 2) is bounded and continuous in the weak topology and 
u(', O) = a. 
(b) P V  "(u | u) is defined as an element of  L ~ ( O , ~ ;  W-I'Pl2(R2)). 
(c) u" + P V " (u | u) = O for t > O. 

(ii) Let aE WI'p(R2), p >  2, V "a = 0 and V •  Lq(R 2) with 1/q =- lip 
+ 1/2. Then there is a function u such that: 
(d) u:  [0, oo)--+ WI,P(R 2) is bounded and continuous in the weak topology and 
u(., o)  = a. 
(e) P(u" 7)  u is defined as an element o f  L~(O, oo; LP(RZ)). 
(f) u' + P(u " V) u = O for t > O. 
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Proof. We fix a and denote by u ,  v > 0, the corresponding solution of (1). 
(i) From (2.6 c) and (2.7) we see that I] Vu~ Ilq and 1[ u~ [Ip are bounded in L~176 oo). 

Since q < p, this implies that the u~ are bounded in L~176 oo; W1.q(D)) for any 
fixed open disc D. Also, du~ and P(u~ �9 V) u~ = P V �9 (u~ | u~) are bounded in 
L~176 oo; W-l,q(R2)) and L~176 cx~; W-1.p/2(R2)), respectively. Since q < p/2, 
W-I'P/2(D) ~ W-I'q(D) with continuous injection. Thus the equation 

u ' ~ - - v A u ~ + P V ( u ~ |  t > 0 ,  

implies that the u~ are bounded in L~(0, oo; W-1'q(D)). Since D is arbitrary, 
Lemma 2.1 in [30, Chapter III] ensures the existence of a subsequence of u, (which 
we denote also by u~) so that u, -+ u a.e. in R z • (0, oo) as v ~ 0. The preceeding 
observation shows that we may assume u E L~176 c,~; LP(R2)) and Vu E L~(0, oo; 
Lq(R2)). Since v A u~ ~ 0 as v --~ 0 in L~ oo; W-I'q(R2)), a simple limiting 
argument gives 

d 
( u , ~ ) - - ( u |  in t > 0  

for every smooth and divergence-free vector field 4, with compact support. We can 
thus apply de Rham's theorem [30, Chapter 1] to conclude that 

u' + V �9 (u | u) + V / / =  0, t > 0, (2.16) 

for some dis t r ibut ion/7  on R2• o~). Taking the divergence of (2.16) gives 

- 4 1 1  = - s j , k  ~ p ~ , ( u J u k )  , 

which shows that we may take /7  = .Sj,kRjRk(uJuk), where Rj are the Riesz trans- 
forms. By the boundedness of the operators Rj in Lr(R2), 1 < r < oo, the func- 
tion V/-/is in L~176 oo; IV-I'P/Z(R2)). Thus (2.16) implies u" E L~176 oo; If '- 1"pIE(R2)), 
so that (c) follows by applying P to (2.16). (b) follows from the boundedness of P 
in W-I'P/2(R2). From (b) and (c) it follows that u is continuous from [0, oo) to 
W-I'P/2(R2), and so from [0, oo) to  W-I'q(D), for any D. Since LP(D) (Lq(D)  ( 
W-Lq(D) with continuous injections, Lemma 1.4 in [30, Chapter III] implies that 
u is continuous from [0, o~) to LP(D) in the weak topology. Since D is arbitrary 
and I[u[Jp(t) is bounded, the Banach-Steinhaus theorem implies (a). 

(ii) Theorem 2.6 shows that the u, are bounded in L~176 oo; W~.p(R2)). Since 
p > 2, the Gagliardo-Nirenberg inequality: Ilfll~ ~ C llfll~ -2/p II Vfl[~/p yields the 
boundedness of P(u~. V) u~ in L~176 o~; LP(R2)). This, together with the bounded- 
ness of Au~ in L~(0 ,oo ;  W-I'p(R2)), implies that the u'~ are bounded in L~~ o0; 
W-I,p(R2)). We can thus apply Lemma 2.1 in [30, Chapter III] to conclude that 
u~ --> u as v --~ 0, a.e. in R 2 • (0, oo). As in the proof  of (i), one can show that 

u ' + P V ' ( u |  t > 0 .  (2.17) 

Since u( . , t )E WLP(R 2) for almost all t > 0  and V . u = 0 ,  we see that 
V �9 (u | u) = (u.  V) u. Thus (2.17) is rewritten in the form (f). (e) is obtained easi- 
ly by applying the Gagliardo-Nirenberg inequality. (e) and (f) together imply that 
u is continuous from [0, oo) t o  LP(R2). Since u lies in L~176 oo; WLP(R2)), Lemma 1.4 
in [30, Chapter III] ensures the continuity of  u as asserted in (d). [ ]  
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Recently, KATO & PONCE [34] have extended their results in [15] and [27] to 
L p spaces. They prove the persistency of solutions of  (1) with ~, >= 0 in H s,p, 
s > 1 + 2/p. However, our Theorem 2.6 and Corollary 2.7 are not covered by 
their results when m is 0 or 1. 

3. New a priori Estimates 

This section establishes new a priori estimates for solutions of  (1) in R 2, which 
depend only on the norm of  the measure V • a. These estimates allow us to take 
a subsequence of solutions for the regularized initial data which converges to the 
desired solution of  the original problem. Our argument is based on a comparison 
theorem of  OSADA [25] for the fundamental solution of the heat operator 8t -- ~' A 
and also of the operator L b = ~t - -  v A + (b �9 V) with V �9 b = 0. We note that 
[25] extends results in [l, 2] to operators in non-divergence form. 

To be precise, we consider a parabolic operator in R" (n _> 2) of the form: 

L b : 8 , - v A  + ( b . V ) ,  

under the following assumptions: 

The vector function b = b(x, t) is bounded and continuous on 
R~• [0, T), together with all its derivatives, and satisfies ~7 �9 b = 0. (3.1) 

There are functions ce(x, t), i , j  = 1 . . . . .  n, such that (3.2) 

sup ice(x, t) I <= o~, i, j = I . . . . .  n,  

for some o~ > 0 and 

b i = S j  ejC ij, i = 1, . . . ,  n, ~j = e/exy 

where b; is the i th component of  b. 
Since b is assumed to be smooth and bounded, Lb has a unique fundamental 

solution (see [8, Chapter 1, 2]), which we denote by I'b(X, t ; y ,  S), x ,  y E  R n, 
O < = s < t < T .  

Theorem 3.1. ([25]). Suppose that b satisfies (3.1) and (3.2). Then the fol lowing 
estimates hold f o r  the fundamental  solution I '  b o f  Lb. 

(i) There are positive constants Cj, j = 1, 2, 3, 4, depending only on n, o~ and ~ 
such that 

G ( t  - -  s) -hI2 exp [ - -C 2 I X  - -  yl2/(t - s)] 

< I'b(x, t; y ,  s) <= C3(t - -  s) -n/2 e x p  [ - - C 4  L x - -  y 12/(t - -  s)]  (3 .3 )  

f o r  all x ,  y E R ~ and O ~ s < t < T. 
(ii) There is a t ,  0 < fl < 1, depending only on o~ and v such that 

t rb(x, t; y, s) - rb(x', t '; y', s') [ 

< c , ( I s - s ' ( / : +  ] y - y ' l a  + I t - V i m +  I x - x ' l  a) (3.4) 
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f o r  all ~ < t - -  s, t '  - -  s' < oo and x ,  x ' ,  y ,  y" E R", where Cs depends only on 
n, v, o~ and T > O. 

The smoothness assumption on b is in fact unnecessary and is made here only 
in order to render the fundamental solution unique. For  the full version of  Theo- 
rem 3.1 and its proof, we refer the reader to [25]. 

Let us now consider the equation for the vorticity in R 2 for v = V • U: 

L,v  :~ v' - -  ~ Av  + (u " V) v = O, t > O, v(x, O) : T • a; (V-l) 

U = K *  v ,  K ( x )  : ( - - x 2 ,  xl)/2717 I x [  2, x : (Xl ,  x 2 ) .  ( V - 2 )  

The next two propositions show that Theorem 3.1 is applicable to Lu provided 
that the solution u of (1) is smooth on R 2 • [0, T) and V • a is a finite measure 
o n  R 2. 

Lenuna 3.2 ([25]). The funct ion K : (K 1, g 2) given in (V-2) is expressed as 

K 1 : 81A a + 6q2 A1 ,  K 2 = --t31 A1 - -  t~2 A 2 ,  

where 

a '  = -xl l= Ixl 4, A 2 = -3x:x212n Ixt 2 + xlx21  Ixl ' ,  

A 3 = Ixl z + xix l  txl" 

Proof. The lemma is verified by direct calculation. [ ]  

Lemma3.3. Let  U : K * V with V E X .  Then U m a y b e e x p r e s s e d a s  

2 
ui ~- E ~j eij' i = 1, 2, [eiJ(X) l <: M on R 2 

j = l  

with M depending only on an upper bound o f  1[ V[[~. 

Proof. We define 

C 11 : A 3 * V, c 12 : A 1 * V~ c 21 = - - A  1 * V~ c 22 = - - A  2 * V,  

where A k, k : 1, 2, 3, are the functions introduced in Lemma 3.2. Since each A k 

is inL~(R2), we have ciJE L ~ ( R  2) with [[c~ ~ N ][ V[[~ where N depends only 
on I[AkIl~, k : l, 2, 3. The expression for U follows immediately from Lemma 3.2 

[ ]  

Using Theorem 3.1, Lemma 3.2 and 3.3, we now prove the main theorem of 
this section. 

Proposition 3.4. Let  u be the unique global solution o f ( l )  given in Theorem 2.4. 
Suppose fur ther  that Vo :~ T •  is in L I ( R  2) with IlVo[[1 <: m, and let l~u be the 
fundamenta l  solution o f  the operator Lu. Then the following hold: 

Ilvlh (t) =< tlVo][l, v : V •  I]u][2.oo (t) <: C[[vo[[l f o r  t ~: O, (3.5) 
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where [1"112,oo is the norm of  L2"~(R 2) and C depends only on IIK[[2.~. 

Cl(t -- s) -1 exp [--C2 I x -- yl2/(t -- s)] 

< p ~ ( x , t ; y , s ) ~ C 3 ( t - - s ) - ~ e x p [ - - C 4 1 x - -  y l2 / ( t - - s ) ] ,  t > s ~ O ,  (3.6) 

with Cj, j = 1, 2, 3, 4, depending only on v and m. 

I lvl l , ( t )  ~ Ct-l+llrt[volll for t >  0 and 1 < r ~ < ~ ,  (3.7a) 

IIVull, (t) <~ Ct -1+11" l[Volll for t > 0 and 1 < r < ~x~, (3.7b) 

[[ullr(t)<=Ctl/r-l/2]lvolll for t > 0  and 2 < r ~ ,  (3.7c) 

with C depending only on r, m and v. 

sup II Vk O~u lifo (t) _<- c, 
[e, T] 

with C depending only on e, h, k, v, T and m. 

> o (3.8) 

Proof. By the assumption, u together with its derivatives on each slab R2X 
[0, T] are smooth and bounded. Therefore, the fundamental solution _P, exists 
and is unique. The estimates (3.5) follow from (2.5) and (2.6b). The estimate 
(3.6) is obtained from Theorem 3.1, since Lemma 3.3 applies to u ---- K*  v in 
view of the estimate (3.5) for v. 

The estimate (3.7a) follows from (3.6). Lemma 2.2 together with (3.7a) yield 
(3.7b) and (3.7c) for 2 < r < ~ .  The remaining case (3.7c) for r = ~ ,  namely, 

1 
]lulloo <= Ct - ~  Ilvoll,, 

is deduced by applying the Gagliardo-Nirenberg inequality: [[ u ll~ < c II u llr 
ll~Tu[l~/r, r >  2 (see [9, p. 24, Theorem 9.3]) to (3.7b) and (3.7c) for finite r. 

It remains to prove (3.8). Taking to = e/2, we see by (3.7c) that 

Ilull, (to) <= C, r > 2 

with C depending only on to, r, �9 and m, where to = e/2. Applying Proposition 1.3 
(i) with initial data U(to) and p = r yields (3.8) by uniqueness. [ ]  

Our next theorem concerns the continuity of the function v(., t) = (~7 x u) (., t)  
when U x a is a measure, and enables us to give a precise meaning to the initial 
condition u(', 0) = a. 

Proposition 3.5. Let u and a be as in Proposition 3.4, and let v = ~7 x u, Vo = 
V x a .  Then for each m >  0 and T >  0 the functions v(. , t) ,  [Ivolh =<m, are 
equicontinuous from [0, T] to dg under the topology of  weak convergence of  measures. 
In other words, the pairing (v(', t), 4)) of  4) C BC(R 2) with the measure v(', t) 

satisfies 

(v(', t), 4)) ---> (v(., s) 4)) as t ---> s 

for  all sE [0, T], and the convergence is uniform in v for Ilvolll ~ m. 
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Proof. On ~/m + = {it E ~ ' ; #  ~ 0, Ilitl[~ ~ m} consider the function 

R(itl,it2) = inf f ( I x - - y ]  A l )d2(x ,y ) ,  I t .  it~C~t+m 
R 2 • R z 

where the infimum is taken over all measures 2 ~ 0 on R2)< R 2 such that 
H~2 = Itt and /I22 = Itz. Here / / t  ( o r / / 2 )  is the projection from R2• R: 
onto the first (or second) factor, and/ / i2 ,  i = l, 2, is the image of the image ;t 
under/ / / .  For arbitrary measuresit~ and It2 on R E with IIIti[Lg ~ m, i -- 1, 2, we 
define 

g(itl, It9 = g(it +, It+) + g(iti-, ITS-) 

where It+ and It2 denote the positive and negative part of Iti, respectively. It is 
known (see [6]) that the function R is a distance function on ~u E d'r lilt [[~,e ~ m} 
which defines a topology equivalent to that of weak convergence. We shall use 
the function R in showing equicontinuity. Without loss of generality we may 
assume that Vo ~ 0 and therefore v(., t) ~ 0 for all t ~ 0. Consider the meas- 

2 2 ures It(t) = v(x, t) dx on R 2 and 2(t, s) = I , ( x ,  t; y, s) v(y, s) dx dy on Rx•  R~. 
Then we have It(t) ~ 0, 2(t, s) ~ 0 and 

//12(t, s ) =  [ j  F~(x, t; y, s)v(y ,  s )dy]  dx --- v(x, t ) d x  = It(t); 

//22(t, s ) :  [ !  In(X, t; y, S)dx] v(y, s )dy  : v(y, s )dy  = it(s). 

we have used the positivity o f / ' . ,  the identity (2.3), the integral Note that here 
representation (2.4) for v and the Chapman-Kolmogorov equality: 

t , y , s ) d z ,  O < s < t ' <  t. Iu(x ,  t; y, s) = f I , ( x ,  t; z, t') l , ( z ,  "" = 
R 2 

By (3.6) and the definition of R we see that 

R(it(t),it(s)) < f f I x -- Yl r.(x, t; y, s) v(y, s) dx dy 
R 2 X R 2 

(3.9) 

Cl(t - s) -~ f f  Ix  - y l exp [-- C2 Ix- Y [21(t -- s)] v(y, s) dx dy 
R 2 • R 2 

= C(t --  s) �89 Ilv[[1 (s) =< Cl/vo[[t (t --  s)�89 <= mC(t --  s)�89 

for 0 ~ s < t _< T, where C depends only on m and v. This shows the desired 
equicontinuity. [ ]  

Remark.  Proposition 3.5 can be proved directly without introducing R. In 
fact, since v(x, t) = f lu(x, t; y. s) v(y, s) dy, by using (3.5) and the upper esti- 

R 2 

mate for / 'u  in (3.6) one can prove, by a standard argument, that (v(., t)4~) converges 
to (v(', s), 4~) uniformly in s ~ 0 and Hvolll ~ m as t+ s. Clearly this implies 
the equicontinuity of (v(., t) 40 on [0, T]. However, the proof using R seems con- 
ceptually simpler. The function R is used in [3, 19] and [20] in a similar context. 

The results obtained in this section are applied in Section 4 to construct a 
global solution of the problem (1) when 7 • a is a measure. 
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4. Main Theorems 

In this section, we apply the apriori estimates derived in Section 3 to construct 
a global solution of (1) as well as of  (2a), (2b) when the initial vorticity V x a is 
a general finite Radon measure on R 2. It  turns out that our solution is smooth for 
t > 0 and decays as t -+ cx~. We also study how the velocity converges to a as 
t - ~  0. We further show that our solution is unique provided that the atomic 
part  of  the measure V x a is sufficiently small. 

We begin by selecting a reasonable function space for a when V x a is a 
finite Radon measure on R 2 and V . a - - - - 0 .  By (2.6b) and Lemma 2.2 (iii), a 
is expressed as the sum of K ,  (V x a)E L2'~176 2) and a harmonic vector field. 
Since our initial velocity a is supposed to decay as I x I -+ oo it is natural to assume 
that a is in L2'~176 2) with V . a = 0  and V x a 6 ~ / /  so that a = K * ( V x a ) .  

To study convergence to the initial velocity, we give a sufficient condition for 
continuity under the weak* topology of L2'~(R2). Since L2'~176 2) is the dual space 
of  the Lorentz space L2'I(R 2) (see [4]) the weak* topology is well defined in that 
space. 

Lemma 4.1. Suppose that u E L~176 T; L2'~(R2)) with V �9 u = 0 and that 
v ~- V x u is continuous from [0, 7] to ~g under the topology o f  weak convergence 
o f  J/I. Then u, modified i f  necessary on a set o f  Lebesgue measure zero in [13, T], 
is continuous from [0, 7] to L2'~(R 2) in the weak* topology. 

Proof. By Lemma 2.2 (iii), K *  v E L~176 T; L2'~176 and u --  K *  v = 0 
a.e. in [0 7], as an element of L2'*~ The assertion of the lemma will thus be 
verified if we show that U = K ,  v is continuous. Take an arbitrary sequence tt 
in [0, T] with t 1-+ t as l - ~  oo. By the Banach-Alaoglu theorem we can extract 
a subsequence, which is again denoted by h such that U(h)-~ Uoo weakly* 
in L 2,~~ By assumption, V x U(h) = (V x u) (tt) -+ (V x u) (t) in the weak 
topology of measures. On the other hand, weak* convergence in L2'~176 2) implies 
the convergence in the topology of distributions; thus V x U(h)-+ V x Uo~ as 
l ~ o o .  Hence V • 2 1 5  and therefore U o o = K * v ( t ) =  
U(t) does not depend on the choice of  h. [ ]  

Theorem 4.2. (Existence for  the Navier-Stokes system). Suppose that a E 
L2,~(R2), V �9 a = 0 and that V x a is a finite measure. Then problem (1) has a 
global solution u which is smooth for t > 0 such that 

(i) u : [0, ~ )  --~ L2'~(R 2) is bounded and continuous under the weak* topology 
and u(., O) : a. 

(ii) v = V x u : [0, c~) --~ Jr '  is bounded and continuous under the weak topology 
and v(', O) : V x a. 

(iii) The estimates 

Ilull,(t)<=Ct 1/'-1/2 for  t > O ,  2 < r ~ ;  (4.1) 

ll•ull, (t) ~ Ct -l+l/r for  t > 0, 1 < r < eo (4.2) 

hold with C depending only on r, ~ and 11~7xa[[~. 
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(iv) For 0 < e ,< T and 
that 

nonnegative integers k, h, there is a constant C such 

sup [I Vk tg~u [l~o (t) ~ C. 
[e, T]  

with C depending only on e, k, h, T, v and on a bound for [[~7• 
(v) The function u(t) --- u(', t) solves the integral equation (1.1) in L:'~176 

Proof. Define a,~ = e "~ a for *1 > 0. By the generalized Young's inequality 
and properties of the heat kernel, we obtain that V~a, E LP(R2), k = O, 1, . . .  
for all p > 2, and that ~7 • a,1E Lq(R 2) for all q ~ 1. Hence, by Theorem 2.4 
a unique global smooth solution u, of (1) with u,(., 0 ) =  a~ exists. Since 
IIV • a~lh _-< II v • alia, the estimate (3.8) guarantees that there is a subsequence 
u~, converging to a function u(x, t) uniformly on every compact subset in 
(0, oo) • R 2 together with all its derivatives, as r / ~  0. The asserted estimates for 
u in (iii), (iv) above now follow from (3.7c), (3.7b) and (3.8) by the lower semi- 
continuity of integrals. Since each u~ solves (1) for t > 0, it is clear that the limit 
u(x, t) solves (1) for t > 0. 

We next prove (i) and (ii). By Proposition 3.5, a subsequence of V • un,(-, t) 
converges to ~7 • u(., t) uniformly on [0, T], as ~/-+ 0, in the weak topology 
of  d / .  We conclude that v = ~7 • u is continuous from [0, oo) to de' in the weak 
topology of o/r and v(x, O) = V • a(x). By (3.5) we see that [[ vl[.g (t) is bounded on 
[0, oo). This completes the proof of (ii). Since ~u~} is bounded in L~176 z ~176 
by (3.5), a subsequence {u~,} converges to u weakly* in L~(0, oo; L2,~176 Since 
v = ~7 • u satisfies (ii), applying Lemma 4.1 now yields (i). 

It remains to prove (v), i.e. 

t 

u(t )  = e ~'~ a - f V . e "(t-`)~ e ( u  | u) (s) ds  in L 2'~(R2). 
0 

For e > 0 our solution u(t) solves 

u(t) : e "O-OA u(e) -- f v . e ~(t-s)a P(u | u) (s) ds, t ~ e 
e 

in all LV(R2), p > 2 .  By (4.0 with r : 4  and (1.3) with r = s = 2 ,  we have 

t t 

f V .  e v(t-s)A P(u @ u) (s) ds --+ f V"  e v(t-s)A P(u | u) (s) (Is as e --~ 0 
�9 0 

in LZ(R 2) and, therefore, in Lz'~176 because L2(R 2) is continuously embedded 
to Lz'~176 Hence we need only show that, for each fixed t > 0 

e ~(t-e)~ u(e) ~ e vta a weakly* in L2'~(R z) as e -+ 0. (*) 

Assertion (i) and the boundedness of the operators e t~ in L2'~(R 2) together imply 
that e v(t-~ u(e) is bounded in L2,~(R 2) for each fixed t > 0. On the other hand, 
it is easily verified that 

(e ~(`-Oa u(e), qb) -+ (e vt'~ a, ~) as e -+ 0 
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for any smooth vector function $ with compact support in R 2. Since such functions 
are dense in the Lorentz space L2'I(R 2) (see e.g. [4]), and since L2'~176 2) is the dual 

of the space L2'I(R2), (*) follows from the Banach-Steinhaus theorem. [ ]  
The next proposition discusses properties of the vorticity v = V x u of the 

solution u obtained in Theorem 4.2. The main assertion is that v has an integral 
representation in terms of a well behaved function F(x,  t; y,  s), t 3> s >~ O, 
which is obtained as a limit of the fundamental solutions of parabolic operators 
L~  with smooth u~. This representation plays an important role in discussing 

the uniqueness for solutions constructed in Theorem 4.2. 

Theorem 4.3. (Integral representation for  V x u). Under the assumption of  
Theorem 4.2, the vorticity v ~- ~7 x u is expressed as 

v(x, t) = f F(x,  t ; y , O ) ( V x a ) ( d y ) ,  t3> O, (4.3) 
R 2 

in terms of  a continuous function _F(x, t; y, s), x, y E R 2, t > s >~ O, with the 
following properties (4.4)-(4.6): 

f I ' (x ,  t; y, s) dy --- f F(x,  t; y, s) dx = I, t 3> s >= 0; (4.4) 
R 2 R 2 

F(x  t; y s) ----- f I '(x, t; z, t') F(z  t' ; y, s) dz, t 3> t" 3> s ~ 0; (4.5) 
R z 

Ct( t  -- s) -1 exp [--C2 Ix -- yl2/(t  -- s)] 

<= F(x,  t; y, s) ~ C3(t -- s)- l  exp [ - -C ,  lx  -- yl2/(t  -- s)], t > s >= O, (4.6) 

with Cj, j = 1, 2, 3, 4, depending only on ~, and on a bound for IIVxall~. 
Moreover, the estimate 

Ilvllr(t) ~ Ct-l+l/rllVTxall~, t >  O, 1 <- r<_oo (4.7) 

holds with C depending only on r, ~, and on an upper bound of  IIV x all~,. 

Proof. As in the proof  of Theorem 4.2, we consider the functions u n and 
v n - - V •  n. By (2.4) 

v~(x,t)---- f F u n ( x , t ; y , O ) ( V •  t > O ,  (4.8) 
R 2 

where F~n is the fundamental solution of Lun = O t -  ~d q- (u  n �9 V). Since 

un = K .  v n and [[vn[[1 (t) ~ I[Vxa[[~, Lemma 3.3 implies that the estimates 
(3.3) and (3.4) with b ---- u n are uniform in ~/. We can thus apply Ascoli's theorem 
to conclude that, by passing to a subsequence of {u~,}, 

I'un,,(x, t; y, s) --7 F(x ,  t; y, s) as r/" --~ 0 (4.9) 

uniformly on compact subsets of points (x, t; y, s) with t 3> s ~> 0, and that the 
limit func t ion / "  satisfies (4.6). Further, since V x a n --~ V x a as ~/-* 0, weakly 
in ./r (4.8), (4.9) together with (3.3) for b ----- u n, yield (4.3). Identities (4.4) and 
(4.5) are obtained in a similar fashion, since they hold for the fundamental solu- 
tions/'~n (see (2.2), (2.3) and (3.9)). Finally, (4.7) follows from (4.3) and (4.6). [ ]  
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We next consider the question of uniqueness for the solution obtained in this 
section. Let us recall that by the Lebesgue decomposition of a finite Radon measure 
/z (see [28, volume I, p. 22, Theorem 1.13]),/~ is written uniquely as 

# : [~pp ~- #C 

where #c is the continuous part, i.e., /~c((X}) = 0 for all x E R 2 a n d / %  is the 
o o  

purely atomic part, i.e., #vv = ~ ~ ~(x -- zj), 09 E R, zj E R 2. This is easily 
j = l  

verified by defining t% = E__l g with E = {x E R 2; #({x]}) + 0} and proving 
that E is a countable set. Here E m/z denotes the Borel measure defined by 
E_J /4A)  = #(A A E). 

Lemma 4.4. For any finite Radon measure # on R 2 we have 

lim sup t l - l /r  jletA /~ll r < C~ II~p~ll~, for all r >  1 
t~O = ' 

where Cr depends only on r. 

Proof. We first assert the estimate 

[I eta ~ l [ r  ~ Cr t - l + l l r  I[~l[~t , .  

Indeed, since the linear operator A f =  f *  # is bounded in both L 1 and L ~176 
with operator-norm not exceeding I[/~ H~, applying the Riesz-Thorin theorem ([4], 
[28, Volume II]) to A yields the above estimate if we take f as the heat kernel. 

This estimate shows that to complete the proof of the lemma we need only 
prove that 

lira t 1-1/r [[e tA/'~[[r = 0 for all r > I (4.10) 
t~0 

under the assumption that # is continuous, i.e., /~({x})= 0 for any x E R 2. 
Without loss of generality we may assume that /z __> 0. For any fixed e > 0 
we take N >  0 so that, writing B ( O , N ) =  {x; Ix I _--<N}, we conclude that 
/~[R 2 \ B(0, N)] < e and hence [~2 = ( R2 \ B(0, N)) m # satisfies 

tl-1/rlletdl~2ll. <: C~e for all r >  1. (4.11) 

The support of the measure #1 = / z  -- #2 is contained in B(0, N) and a direct 
calculation gives 

( t l -1/rl leta#ll l~f= C~t -I  f e x p [ - - I x - y [ 2 / 4 t ] # l ( d y )  dx 
R 2 lY[ _ 

= Cr t - I  (,x, f2N + ,x, f2N) (,ylfN exp [ - - I X -  yl2/4t]~l(dy))rdX 

I~(t) + I2(t). (4.12) 

Since Ix -- Yt > Ixl/2 if Ix t > 2N and lyl =< N, 

I~(t) <: C; ll/zlllr~ t - j  f exp [--r [x]2/16t] dx ~ O as t ~ 0 .  (4.13) 
lxl > 2N 
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For  I2(t), applying Minkowski 's  inequality yields 

( :  ) I2(t) < C" t -~ f exp [ -  Ix - yl~/4tl~(dy) dx 
I x l ~ 2 N  Ix-- > 

(fo ) + C~t-' f exp [-- I x - -  yl2/4tl~(dy) dx 
[xl N2N Ix-- 

I2~(t) -[- I22(t), 

where t~ > 0 is to be chosen later. Obviously, for any fixed t~ > 0, 

(4.14) 

I2~(t)<:C'rmea[B(O, 2N)]ll/z~ll~t-~exp(--r~2/4t)--->O, as t---> 0 (4.15) 

where mea is the Lebesgue measure on R 2. On the other hand,  H61der's inequality 
yields 

<= c" f [#lB(X, 6)1'-' (\ yl <f exp [--r  I x -- yl2/4t]tt~(dy))dx/t I 2 2 ( t )  
Ixl ~ 2 N  Ix-- _ 

< C~' sup [I~IB(x, ~)y- l  [[e,-,,a/~llh 
Ixl ~ 2 N  

<= c:' 11#11~• sup ~ ln (x ,  O)] ' - I ,  (4.16) 
[xl ~ 2 N  

where B(x, ~) = {y; [y -- x] --< O}. We shall now show that  

/zl[B(x, t~)]---> 0, as t~---> 0, uniformly in Ixl--__2N. (4.17) 

The desired result (4.10) will then follow from (4.11)-(4.15) by taking t~ such that  
I22(t) "< e r and recalling that  e is arbitrary. 

Suppose that  (4.17) were false. Then there would exist B > 0, 61 ~ 0 and xz 
with I Xl] <: 2N such that  

#l[B(xt, t~l)] ~ ~/ for all l. (4.18) 

By passing to a subsequence we may assume that  xt---> x as I---> o0. For  any 
> O, B(xl, ~l) ( B(x, ~) provided l is sufficiently large. Since #l({x}) = 0, we 

have limo#l[B(x, 6)] = 0, so liml~l[B(xl, 6t)] ---- 0, which contradicts (4.18). 

We thus obtain (4.17). [ ]  

Theorem 4.5. (Uniqueness). Suppose that a E Lz'~(RZ), V • a E ~t', and 
V .  a = O. Take m > 0 so that I IVxal[~  <= m and let u be the solution o f ( I )  
given in Theorem 4.2. Then 

(i) For all p > 2, 

l imo  sup t ll2-1/p II ullp (t) = < C II(V • a)ppll~, (4.19) 

with C depending only on p, m and v. 
(ii) For each p > 2 there is a positive constant e = e(p, ~, m) such that i f  

I[ 67 • a)p~ll~ < ~, then the solution u is unique in the class of  functions w with the 
following properties: 

(a) w : [0, ~ )  --> L2:C(R 2) is weakly* continuous and w(., O) = a; 
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(b) w: (0, oo)---~LP(R 2) is continuous and satisfies (4.19)for p > 2. 
(c) w solves (1.I) in L2'~176 

In particular the solution u is unique provided that V • a is a continuous measure. 

Proof. (i) Since p > 2  and u = K , v  with v----Vxu, we get by(2.6a)  

I[ull~(t)~ C[IKII2.oo Ilvllq (t), I /q = l ip + 1/2 

with C depending only on p. By (4.3), (4.6) and Lemma 4.4 we see that 

lim sup t 1- l/q II l)Ilq (t) ~ C' I] (~7 • a)pp I1~ 
t~t0 

where C" depends only on q, m and v. Combining these two estimates gives (4.19). 
(ii) Let ~ be another solution of (1) with the same initial data a satisfying 

properties (a) and (b) above. By (c) the difference w : u -- ~ satisfies 

t 
w(t) = --  f T " e ~t'-s)a P[w | u(s) + {t | w(s)] ds, 

0 

so that, as in the proof of Lemma 1.1 (i), 

t 

IIwlle (t) ~ g f (t - -  s) -1/p-1/2 [llul[, + I[ ~l[p] (s)Ilwll, (s) ds. 
0 

Thus, Ilwl[p,r~ sup t l / 21 / ' l lw l l , ( t )  satisfies 
O<t~T 

[[ wJlp.r ~ MB(1/2  --  I/p, E/p) [llull~,, + II~llp,r] Ilwllp,~ (4.20) 

where B is the beta function. We here assume that (~7 • a)pp satisfies 

2CMB(1/2  --  I/p, 2/p) II(V x a)~ll~ < 1 (4.21) 

where C is the constant in (4.19). Estimates (4.19)-(4.21) together imply that if 
we take T > 0  sufficiently small, then ]lwllp, r<=cl[wllp, r for some c <  1, 
and this yields w = 0 on [0, T] since /Iwrlp, r is finite. On the interval [T, oo), 
both u and fi are classical solutions belonging to L p, so we get w ----- 0 on [T, c~) 
by the result on uniqueness established in Proposition 1.2. [ ]  

Theorem 4.5 shows, in particular, that the solution is unique whenever V • a 
is a continuous measure. When the measure V • a has a density, i.e., when x7 • a 
is in LX(R2), we can also prove additional regularity at t = 0, as shown in the 
following theorem. 

T h e o r e m  4 . 6 .  / f  a 6 L2 '~ (R2) ,  ~7 �9 a = 0 and i f  ~7 • a 6 LI(R2), then the 
(unique) solution u o f  (1) belongs to BC([0, oo); L 2 , e Q ( R 2 ) ) .  

Proof. By assumption, d t n ( V •  is in BC([0, oO), LI(R2)). Thus, by (2.6b), 
the function e vtA a = e ~t~ K * (V • a) = K �9 [d t~ (V • a)] belongs to 
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BC([0, oo); L2'~176 By (v) of Theorem 4.2 it suffices, therefore, to show that the 
function 

t 

S[u] (t) = -- f ~7 �9 e v(t-s)A P(u ~ U) (S) ds 
0 

is in BC([0, e~); L2,~ By (1.3) with r ~ s ---- 2, and (4.1) with r = 4, 

[IS[u]ll2,~ (t) ~ I[S[u]I[2 (t) 

t 

< : c f ( t - - s ) - � 8 9 1 8 9  for t > 0 ,  
0 

which implies that u is bounded and continuous for t > 0. On the other hand, 
since V • a contains no pure point part, Theorem 4.5 (i) yields 

lim t I/2-1/p [1 ullp (t) = 0 for all p > 2. (4.22) 
t~o 

Hence, using again (1.3) with r = s ~- 2 and (4.1) with r ----- 4 we get, as t---~ 0, 

tl S[u] 112,oo (t) ~ I[ S[u] 112 (t) 

<: CB(I/2,  1/2)Ilull4,,~ 0 

because [lull4,t:~ sup s&llull,(s)~O as t---~0, 
O < s ~ t  

u is also continuous at t = 0 .  [ ]  

by (4.22). This shows that 

Remark. BENFATTO, ESPOSITO 8~ PULVIRENTI [3] prove existence and uniqueness 
of solutions to (1) under initial data a such that 

V •  ~ ccj ~ (x - -  zj), 0~jE R 1, z j q R  2 
j ~ l  

where Ej[0~jl is sufficiently small. Here 6(x -- zj) is the Dirac measure supported 
by zj. Our theorem of uniqueness covers that of [3]; moreover, our theorem of 
existence improves that of [3] since no restriction is imposed here on either the 
size or the form of the measure V • a. 

Note. After this paper was submitted, the authors learned that COTrET [37] 
proved a theorem similar to Theorem 4.2. He constructs a weak solution of the 
vorticity equation when initial vorticity is a finite measure. However, his method 
is different from ours and he does not take up regularity of weak solutions. Our 
theorem of uniqueness (Theorem 4.5) is stronger than his because he needs to 
assume that the total variation of the initial vorticity itself is small. 

The research reported here was partially supported by the Japan Ministry of Educa- 
tion, Science and Culture. 
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