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Abstract 

A simple qualitative one-dimensional model for the 3-D vorticity equation of incompressible fluid 
flow is developed. This simple model is solved exactly; despite its simplicity, this equation retains 
several of the most important structural features in the vorticity equations and its solutions exhibit 
some of the phenomena observed in numerical computations for breakdown for the 3-D Euler 
equations. 

I. Introduction 

In regions far away from boundaries, the physical mechanism of vortex 
stretching is an important factor responsible for the complexity of incompressible 
fluid flow. In two space dimensions, where vortex stretching does not occur, the 
conservation of vorticity leads to the global existence of smooth solutions for the 
incompressible Euler equations. In three space dimensions, where vortex stretch- 
ing is a prominent effect, it is an outstanding unsolved problem of mathematical 
fluid dynamics to determine whether solutions of the Euler equations develop 
singularities in finite time. This problem is important from the physical point of 
view because the existence of such singularities signifies the onset of turbulence in 
high Reynolds number flows and the structure of this conceivable singularity has 
direct bearing on the inertial cascade in such turbulent flows (see [7]). The 
possible breakdown of solutions and the structure of singularitites has been 
studied recently through a wide range of ingenious numerical methods by many 
authors (see [2], [3], [4], [8], [lo]). Several recent theorems support the link 
between vortex stretching, breakdown for the Euler equations, and the onset of 
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turbulence. In [l], the authors proved that the only way in which smooth solutions 
of the Euler equations can become singular is that the vorticity become infinite in 
finite time in a precise fashion; i.e., vortex stretching is the controlling mechanism 
for breakdown. Another recent theorem (see [ 5 ] )  establishes that on any closed 
interval of time, where solutions of the Euler equations remain smooth, the 
Navier-Stokes equations have a unique smooth regular solution for sufficiently 
high Reynolds numbers. 

In this paper, a simple qualitative one-dimensional mathematical model for 
the 3-D vorticity equation is developed. Despite its simplicity, this equation 
retains several of the most important structural features in the vorticity equation, 
and its solutions exhibit some of the phenomena observed in-numerical computa- 
tions for breakdown of the 3-D Euler equations; a detailed discussion is given at 
the end of this paper. One great advantage of the simple model which we present 
is that it can be integrated explicitly. Since the numerical computation of 
solutions forming singularities involves many subtle issues, this simplified model 
provides a class of elementary unambiguous test problems for the numerical 
methods used in studying the breakdown for the 3-D Euler equations. This work 
is in progress and will be described elsewhere. 

2. Heuristic Derivation of the Model Vorticity Equation 

The Euler equations for the velocity u =' (uI ,u2 ,u3)  and scalar pressure p are 
given by 

div u = 0, 

u(x,o) = u o ( x ) ,  

where D / D t  is the convective derivative, D / D t  = d / d t  + Z ~ , , u j d / a x j .  With 
w = v X u, the vorticity, the Euler equations can be written in the equivalent 
form 

W ( X , O )  = w o ( x )  = v x uo,  

where the velocity u is determined by the vorticity w from the equations 

div u = 0, curl u = W ,  

resulting in the familiar Biot-Savart formula, 

u ( x , t ) =  --I (. -d x w ( y , t ) d y .  
4~ lX - y 1 3  
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The vector w = curl u belongs to the nullspace of the antisymmetric part of the 
matrix vu. Therefore, the term w Vu can be replaced by Dw, where the 
deformation matrix D is the symmetric part of vu: 

D 2 ~ ( V U  + T ~ ~ )  = ( D i j )  

Formula (2.B) can be differentiated to express D as a strongly singular integral 
operator acting on w: 

here 9,',(AZ) = A-39,'J(Z') for x' # 0 and the mean of 9:J over the unit sphere 
vanishes. The explicit formulae for the kernels 9/j are not needed in the 
developments below. Through, the formulae in (2.B) and (2.C) we obtain an 
integro-differential equation for the vorticity above which is equivalent to the 
Euler equations in (l), 

(3) 
x E R3, t > 0, 

w ( x , o )  = w o ( x ) .  

For completeness, we remark here that with u defined by (2.B) every smooth 
solution of (2.A) automatically satisfies ( D / D t )  div w = 0. Since div wo = 0, the 
fact that div w = 0 automatically guarantees that the velocity u from (2.B) 
satisfies both div u = 0 and v X u = w.  

In two space dimensions, D ( w ) w  = 0, and vorticity is conserved, i.e., Dw/Dt 
= 0. In three dimensions, the matrix D ( w )  is a symmetric matrix with trD = 0 
and vortex-stretching occurs when o roughly aligns with an eigenvector of D ( w )  
corresponding to a positive eigenvalue. Thus, essential differences in fluid behav- 
ior in two and three space dimensions are manifested through the appearance of 
the term D ( w ) w  on the right-hand side of (3). 

The reformulation of the Euler equations in (3) and the above comments 
motivate the qualitative model which we present next. The matrix-valued function 
D depends linearly on the function w ;  the operator relating w to Dw is a linear 
singular integral operator that commutes with translation, i.e., it is given by the 
convolution of w with a kernel homogeneous of degree - 3 and with mean value 
on the unit sphere equal to zero. In the one space dimension, there is only one 
such operator, the Hilbert transform, 

(4) 

The quadratic term H(w)u is a scalar one-dimensional analogue of the vortex 
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stretching term D ( w ) o .  We replace the convective derivative D / D t  by a / &  in 
order to have a one-dimensional incompressible flow and arrive at the model 
uorticity equation, 

( 5 )  

aw - = H ( w ) w ,  at 

o(x,o) = W,( . ) .  

For the Euler equations, the velocity is determined from the vorticity by convolu- 
tion with a mildly singular kernel, homogeneous of degree 1 - N ,  and the 
analogue of the velocity for the model is defined withn a constant by such a 
convolution, i.e., 

Since the Hilbert transform is a skew-symmetric operator, 

H ( w ) w d y  = ( H w , w )  = 0. lWm 
Integrating (5) with respect to y on W shows then that all smooth solutions of (5) 
that decay sufficiently rapidly as IyI -, co satisfy for all t 

(7) 

Thus, if w o ( x )  is the derivative of a function vanishing for 1x1 -+ 00, smooth 
solutions of ( 5 )  also retain this property for t > 0. Many studies for the Euler 
equations concentrate on periodic fluid flow; there is an obvious analogue of the 
Hilbert transform in (4) on the circle and the periodic model vorticity equation 
can be defined as in (5 ) .  In this case, the mean of w per period is conserved and u 
is defined unambiguously by 

provided that the initial data w o ( x )  satisfies 

with p the period. 
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3. Integration of the Model Vorticity Equation and 
Explicit Breakdown of Solutions 

The nonlinear equation in (5) is well posed in many standard function spaces, 
for example, H’(W), the Sobolev space of functions which are square integrable 
with square integrable first derivative. The local existence and uniqueness follows 
from the fact that H’(R) is a Banach algebra of continuous functions and the 
Hilbert transform maps H’(W) continuously into itself so that standard existence 
and uniqueness results for Lipschitz nonlinear ordinary differential equations in 
Banach space apply. We have the following explicit solution formula for the 
model equation in (5): 

THEOREM. Suppose o o ( x )  is a smooth function decaying suflciently rapidly as 
00 ( w o  E H’(R) suffices). Then the solution to the model vorticity equation in 1x1 

( 5 )  is given explicitly by 

4 u 0 W  o ( x ,  t )  = 
( 2  - t H o o ( x ) ) 2  + t z o ; ( x )  ‘ 

Remark 1. The equation in (5) can also be defined on any smooth closed 
curve I’, using the Hilbert transform H for that curve I?. The explicit formulae 
and method of proof given below are exactly the same with this modification-in 
particular, when r is a circle. However, the constraint jrwdz = 0 is no longer 
automatically preserved by solutions of (5) except when I‘ is the circle or the real 
line. 

Remark 2. The proof also provides an explicit expression for H(o), 

(9) 
2Hw0(x) (2  - tHw,(x)) - 2 t w 3 x )  

( 2  - tHwo(x))2 + t’wo”(x) 
( f J w ) ( x ,  t )  = 

The formula in (8) immediately yields the following: 

COROLLARY 1. (Breakdown of smooth solutions for the model vorticity 
The smooth solution to the differential equation in ( 5 )  blows up in finite equation). 

time if and only if the set Z defined by 

(10) Z = {x lo , ( x )  = 0 and Hw,(x) > 0 }  

is not empty. In this case, o ( x ,  t )  becomes infinite as t t T ,  where the blow-up time 
is given explicitly by T = 2 / M  with M = sup{ H w o ) + ( x ) ~ ~ o ( x )  = O}. 

Proof of Theorem 1: To display the generality of the proof, we shall use the 
following identities for the Hilbert transform on the line which are also valid for 
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any closed curve r (see [9]): 

From these identities it follows that 

By applying H to the model vorticity equation and using (12), we obtain an 
equation satisfied by ( H w ) ( x ,  t ) :  

-Hw a = - a’). 
at 

We introduce the quantity 

(14) z ( x ,  2) = H w ( x ,  t )  + i w ( x ,  t )  

and by combining (5) and (13), we see that Z ( X ,  t )  satisfies the local equation 

with the explicit solution 

aZ 
- ( x , t )  = $ z 2 ( x , t )  at 

z&) 
1 - + t z o ( x )  . z ( x ,  t )  = 

Formulas (8) and (9) are the real and imaginary parts of (16). 
Formula (16) defines z(x,t) as an analytic function in Y m x  < 0. It is well 

known that the Hilbert transform on the line can be interpreted in terms of 
complex-valued functions z on the real axis which are boundary values of analytic 
functions in the lower half-plane that tend to zero sufficiently fast at infinity. The 
Hilbert transform relates the imaginary part of such a function to its real part on 
the real axis. Thus a function of the form 

z = Hw + iw 

is always the boundary value of a function analytic in the lower half-plane. The 
identity in (ll.A) is then merely the observation that if z is analytic in the lower 
half-plane, so is iz. The identity (ll.B) is the observation that if z and w are 
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analytic in the lower half-plane, so is their product z w. Equation ( 5 )  is then the 
imaginary part of (15); by analyticity (15) holds. 

Next, we give an instructive explicit example in the 2n-periodic case. 

EXAMPLE. We choose o o ( x )  = cos(x) so that H(w,(x) )  = sin(x) and com- 
pute that 

cos( x )  
1 + t 2  - 2tsin(x) 

o ( x , 2 t )  = 

and 

u ( x , 2 t )  = / * w ( x ’ , 2 t ) d x ’  = (2t)-’log(l + t 2  - 2 t s i n ( x ) ) .  
0 

In this specific example, the breakdown time is T = 2 and, as t f T, w ( x , t )  
develops a non-integrable local singularity like l / x  near x = 0. There are two 
interesting facets to this breakdown process. First, 

(18.A) ( o ( x , t ) ( P d x  f 00 as t f T I_: 
for any fixed p with 1 

(18.B) l u ( x , t ) J P d x  5 Mp as t 7 T 

p < + 00. Also, there are finite constants Mp such that 

for any p with 1 5 p < 00. In particular, the kinetic energy of u remains 
uniformly bounded as t approaches the breakdown time T. The behavior in the 
above example is typical for solutions of the model vorticity equation as the 
following corollary of the theorem indicates: 

COROLLARY 2. Given the initial data o o ( x )  for the model uorticity equation, 
assume that the points xo with wo(xo)  = 0 and defining the breakdown time T are 
simple zeroes of wo(x) .  Then as t f T with T the breakdown time, ~ ( x ,  t )  and 
u(x ,  t )  have the same properties as giuen in (18.A) and (18.B). 

We omit the proof since it is a straightforward but tedious calculation using 
the explicit solution formulae. It is easy to show that if the initial data oo satisfies 
the assumption of Corollary 2, then, for T < t c T + 7 with T the breakdown 
time and 7 small enough, the analytic function 

1 - $ t z o ( x )  

has a zero in the lower half-plane 9 m  x < 0. Thus for such t the function z ( x , t )  
defined by (16) has a pole in the lower half-plane, and therefore its imaginary part 
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given by the formula (8) is not related to its real part by the Hilbert transform. In 
particular, for such t ,  formula (9) does not hold and therefore w ( x , t )  as given in 
(8) does not continue the solution of (5) for T < t < T + T. 

4. Qualitative Comparison of Solutions for the Model Vorticity Equation 
and the 3-D Euler Eguations 

First, we recall that H ( w )  in the model vorticity equation has the analogous 
role as the deformation matrix in the 3-D Euler equations. With this identifica- 
tion, the qualitative fact that blow-up for solutions of the model vorticity 
equation occurs only at points where Ho has positive sign is reminiscent of the 
fact that vorticity for solutions of the 3-D Euler equations increases when it 
roughly aligns with eigenvectors of the deformation matrix with positive eigenval- 
ues. Below, in discussing properties regarding the conjectured breakdown of 
solutions for the 3-D Euler equations, we refer to information which can be 
extracted from various numerical experiments (see [2] ,  [3], [4]). 

Smooth solutions of the 3-D Euler equations have the following well-known 
elementary properties: 

SCALE INVARIANCE: If u ( x ,  t )  satisfies (l), then for constants A,  a, 

~ ~ , ~ ( x ,  t )  = Au(Aax,  A'+?) also satisfies (1). 

CONSERVATION OF ENERGY: For solutions of (l), 

/ l u ( x , t ) \  2 dx = J I u , , ( ~ ) ~ ~ d x  forall t .  

The reader can easily verify that the function u ( x , t )  defined in (6)  through 
solutions of the model vorticity equation has the same scale invariant properties 
for x E Iw' as for solutions of the 3-D Euler equations with x E R 3 .  We mention 
this explicitly here because some of the numerical methods for studying the 
blow-up of solutions for the 3-D Euler equations exploit this scale invariance in 
the numerical algorithm (see [3]). The functions u ( x ,  t )  associated with solutions 
of the model vorticity equation do not satisfy conservation of L2 norm. However, 
the computations reported in [3], (41 suggest that for the 3-D Euler equations, as t 
approaches the conjectured breakdown time T, the vorticity satisfies 

while the kinetic energy of u ( x , t )  remains constant as t 7 T. Corollary 2 
establishes that typical solutions of the model vorticity equation behave in an 
analogous fashion as the breakdown time is approached. Chorin also reports in 
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[3], [4], the results of two different numerical procedures which indicate that 

the set of breakdown points is a set of Lebesgue measure zero in R’ 
with Hausdorff dimension - 2.5. (19) 

Such a relation was first suggested by Benoit Mandelbrot. For typical solutions of 
the model vorticity equation, according to Corollary 1, the set of conceivable 
breakdown points is also a set of Lebesgue measure zero contained in the zero set 
of w o ( x )  and typically consists of a finite number of points. In the inviscid 
calculations for the 3-D Euler equations in [2], it is reported that the deformation 
matrix D( w )  becomes large on open sets where w vanishes. In the model vorticity 
equation, it is easy to construct explicit examples in which H ( w )  becomes 
arbitrarily large on an open set where w vanishes-in fact, an earlier non-con- 
structive breakdown argument for special initial data by Constantin [6] directly 
exploits this property. 

We end this section by remarking that the properties of solutions of the model 
vorticity equation described in Corollary 2 and also referred to below (16) are 
neuer satisfied for solutions which blow up for the local scalar quadratic equation, 

as the reader can easily verify. Of course, this quadratic equation arises from the 
characteristic form of the equation for w = ui, where u satisfies the local 
quadratic equation, u, - uuI = 0. 
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