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Abstract In this paper, we define the wavelet transform
for a class of distributions in G;_ﬁ(R). The corresponding
inversion formula is established by interpreting conver-
gence in the weak distributional sense.
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1 Introduction

By dilation and translation of the basic function , the
wavelet ¥, ,(¢) is defined by ([1, p. 63]):

o, (t—b
bal =l 0 (20), rem bemaen,

Ro = R\{0}, p > 0.

(1)

If p= % then the mapping ¥ — ,, , is a unitary operator
from L*(R) onto itself. Sometimes, to simplify analysis it is
assumed that a > 0 and p = 1.

The wavelet transform W (b, a) of f with respect to the
wavelet ;, ,(¢) is defined by
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W(b,a) = / a0, 2)

provided the integral exists. If p =1 and ¢ € L*(R), then
the wavelet transform maps each L2-function f on R to a
function W on R x Ry. From Eq. (2) it follows that

W(b7a> = (f * Ga,o)(b>7 (3)

where 0(x) := (—x).
If f € I’(R) and ¢ € LY(R) then by ([2, p. 122]),

f * ()a,O(b) (S Lr(R),

Now, applying Fourier transform:

flo) = F o) = [ e as 4)

to Eq. (3) and using convolution property, we get

Wib.a) =5 lal * [ &fw)ian)do 5
2n R

Moreover, if f € L*(R) and € L*>(R) satisfies the
following admissibility condition:

R,
c, '*/R o dw <oc, (6)

then the following inversion formula for the wavelet
transform (2) with p =1, holds:

CLW/R Roﬁww, a)lkC%b) b _ (). (7)

The existent applications of wavelet methods in mathe-
matical analysis are rich. Wavelet analysis is also used to
provide intrinsic characterizations of function and distri-
bution spaces [3]. The requirements of modern mathe-
matics, mathematical physics and engineering, need to

a
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incorporate ideas from distribution theory to wavelet
analysis.

From Eqs. (2) and (9) it is clear that there are two ways
for investigating properties of the wavelet transform. Using
representation (5) with p =1 and a > 0, the wavelet
transform has been extended to certain tempered distribu-
tions of Schwartz and inversion formulae have been
established in distribution setting by Pathak ([4], [5]),
Pathak et al. [6] using duality arguments. This form of the
wavelet transform has also been studied on certain Gel’-
fand-Shilov spaces of type S and wavelet transform of
certain ultradifferentiable function by Pathak and Singh
[7]. The Shannon wavelet transform has been extended to
Schwartz distributions by Pandey [8].

In the present work, the wavelet transform defined by
Eq. (2) with p =1 and a € Ry, is investigated using kernel
method.

2 Testing Function Space G, s(R) and Its Dual

Let us recall the definition of the space G, (R) from [9,
pp. 48—49]. Assume that a positive and continuous function
{4p(t) on R is given by

e 0<t<o0

é’a,/}(t) =

e —oo<t<0,

where o, f € R.

Then G, g(R) denotes the space of all complex-valued
smooth functions (¢) on —oo <t < oo such that for each
k=0,1,2,...,

Yapk(¥) = f‘;ﬂg ‘ga,/ﬁ(t)DkW(t) ’ <00,

where D* = (4), k=0,1,2,....

G, is a vector space. The topology over G, is gen-
erated by the sequence of seminorms {y.};o, [9]. A
sequence {y,} -, is a Cauchy sequence in G, g if for each
non-negative integer k, 7y, (¥, —,) — 0 as p,v — oo
independently of each other. The space G, g is a sequen-
tially complete space and therefore it is a complete
countably multinormed space and so a Fréchet space. D is
the space of smooth functions on R having compact sup-
port. The topology of D is that which makes its dual the
space D of Schwartz distributions on R. Since D C Gyp
and the topology of D is stronger than that induced on D by
Go s it follows that the restriction of any f € G;c, ptoDisin
D . For details, see ([9, 10]).

Lemma 1 If € G,p, then y(=2) € G, for <0 and
B >0 when |a|>1 and ¥(=2) € G, p for >0 and f<0
when 0<|a| <.

@ Springer

Catopy (“20)] = sup

—00<t<o0
Lop (@)

Proof Let a and b be fixed real numbers. Then for
Ca,[f(t)

k=0,1,2,...,
t—>b
@4ir>
Lap(5D) Cap(D)
g(x,/f(é Ca,ﬁ([)

1
Cop(5D) Gap(d) (a_|k> (W)
Gap(®)

Here, F’ is bounded on —oo <t<oo [9]. Thus, our

Lemma 1s proven if we show that the positive function

Ca,ﬁ(t)
Cap(Z)

is bounded on the (z,a) plane.
Step A. For t > 0,

sup
—00<t<0o0

() @)

sup
—00 <1 <00

3(t,a) =

(i) if «<0and |a| > 1, 3(t,a) = M0

(i) if «>0and |a|<1, 3(t,a) = "'~

Step B. For 1 <0,

- =

5]
=

I"'<oo
ld” < 00.
() if f<0and |a|<1, 3(t,a) = "W <00
(i) if f>0and |a| > 1, I(t,a) = "W < 0.
Thus, 3(¢,a) is bounded for & <0, >0 when |a| > 1 and
for x>0, <0 when O<|a|<1, and V7 € R.
This completes the proof of the Lemma. O

3 Distributional Wavelet Transform

We assume € G, 4(R) is the basic function generating
the wavelet i, ,(r) given in Eq. (1). Since function  (=2)
belongs to G, for fixed b and a # 0 as a function of ¢
under conditions of Lemma 1, for f € G;(‘i the wavelet
transform W (b, a) of f is defined by '

<f(f)7 ¢(t_ab>>, acRy, beR.

(3)

W(b,a) =

la

For convenience, in what follow, we shall deal with
~ t+b
W= (0. 6(")) acmber )

instead of W (b, a).

Theorem 1 Letr f € G;‘ﬂ, Y € G,y and W(b,a) be
defined by Eq. (9). Then W (b,a) is smooth and

D\W (b,a) = <f(z), D’,;¢<t+b>>, k=1,23...

a

and
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D\W (b, a) = <f(t), Dﬁw<#)>, k=1,2,3...

Proof Assuming at first that 5> 0 and |a| > 0. For a fixed
a and h # 0, we have

%W(Hha) ~ W(b,a)] - <f() Db‘p<t+b)>

(oa('2)

where
t+b 1 t+b+h t+b
w(5) =il () -+ (550)
a h a a
t+b
- Dblp( ) |
a

To prove differentiability of W (b,a) with respect to b we
show that 9, (“£) — 0in Gxﬁ ash — 0. Let 2 = u, where

b and a are fixed, and % (x) denote D”lﬁ( ). By using
Taylor’s formula with remainder, we write

,/,(p> (u + Z) — lp(ﬂ)(u) + le(pﬂ)(u)

/G
+ _ —
0 a

000 = + 2y + (%)

) Y (u+ y)dy — ) (u)]
_ 4ot
Ly

a
h

71/5}1
7]1061

Since (=2) € G, 4(R), using the technique of proof of
Lemma 1 it is shown that

14 b
w(””)( - +y>‘

is bounded by a constant C = C(p, a, b). Therefore, we have

h

L p(0)0?) (’Zb>‘<c/0<z )d _§C|h| ~0

as h — 0. Thus 1, converges in G, g to zero as i — 0. This
proves differentiability of i with respect to b. Similarly,
we can prove differentiability of W (b, a) with respect to a.

y> W) (u + y)dy.

Therefore,

y> W) (u + y)dy.

Cap(t) sup

| |<\h

Remark 1 Using change of variables and following the
above technique differentiability of W (b, a) is also be proved.

Theorem 2 For real band a € Ry let W(b, a) be defined
as in Eq. (8), then under conditions of Lemma 1,

1
W(b,a) = 0<||—k+l>’ |a| — 0, forsome k € N.
a 2

Proof By the boundedness property of generalized
functions there exist a constant C > 0 and a non-negative
integer r depending on / such that

\/1|7|<f(t), w(tab)>‘

€ max sup |4 )Df!//<t_ab)‘

| |O<k<rbl€R

C I t—>b
= max Su I
|a O<k<rbt€I[)R o a

A6)

C(x /f(
Cap(l)  Cap(t)
B CLzeR Ca/ﬁ( ) Caﬂ(é) ]

1
g (ﬁ) om22, Vuk()

by using boundedness property, as given in the Lemma 1.
This gives the required result. O

\W(b,a)| =

IN

Cap(G)  Lauplt)

%) Lup(@)

4 Inversion of the Distributional Wavelet
Transform

In order to derive inversion formula for the distributional
wavelet transform, we construct a structure formula for the
dlstrlbutlonf € Ga/; for o, f > 0 ([11, pp. 272-274]).

Iffe G and ¢ € G, p, then by boundedness property
of dlStrlbuthIlS there exist a C > 0 and a non-negative
integer m satisfying

(B <Comax 75ul@). (10)
Then from Eq. (10) we have

(.ol <C max sup) [ |

0<k<m cR
< CZ / | DEH (1) + e DE (1) |t

4 [Cp (D (1)) ar

+CZ/ |e/)’tDk+l¢()+Be[fer ‘dl
<c Z / g (ODE ()] + LoD (1)
0

HC D ()| + [15,5()DF S(0)] ).
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Where a<y,d<p [9, p. 49].

Now, using Hahn-Banach theorem and the Riesz rep-
resentation theorem we get g; belonging to the space L?(R)
satisfying

m

Z gu(t

(D (1))
k=0
+ <g2,k( )7 éy,&( )ths(t)ﬂ .

Therefore our structure formula is

- k+1 Dk+1 .
f= kz:; [£,.6()81.4(2)] an

DI, (824 (1]}

We now establish the inversion formula for the distribu-
tional wavelet transform using Eq. (7).

Theorem 3  Assume that the wavelet transform W (b, a) of

fe G;’ﬁ is given by Eq. (8). Then

Jim (& f / N W0, (0) 57 91 )

R —
=(f,9),
(12)

for each ¢ € D, a € Ry and b € R, where W, ,(x) is
defined by Eq. (1) with p = 1.

Proof Using the structure formula for f as given in
Eq. (11), we have

- Y (DR
; {D7 G 5(0)g14(2)) (13)

=D (550824}, Y (1))

Moreover,

Jin ([ [ wanm . o)

J= lim

R — o©

R T WAt

= lim )g1x(t Dk“‘ﬁba()
R— o0

ek (DT 0 (0] 2 >>

@ Springer

= lim

N—>oo<C¢// /x{;g D [-814(0)

R— o

D T 0+ 20T T ()12 6 ).

asDyy, (1) = =Dy ,(1).

Thus

) 1 R N poo _m
s= fim <C_w L)) 0@l
R— o0
dtdbd
DA 0 + 240Dl (9] 609
[byintegrationby parts]

N$o<>< ///oo;%(ﬂm(—l)"

= lim

R— o0

% [ g1 (VDK o (1) + 820 (1) DY ()] 222 ¢<x>>

a

:Nh:)nm@k 0/ / / t)lpba(t)'//ba( )s
R — o0
ghk@)Df“qs(x)+g2,k(r)sz¢<x>>@
(14)
The integrand
(a0 + 041D IR0 Y 1) 25"

is absolutely integrable with respect to x and 7 in the (x, 7)-
plane and so Fubini’s theorem is applicable with respect to
integration by x and ¢. Therefore Eq. (14) yields

kao/ / / / {g2k + g14(t)Dy)D ¢()}

X DO (210, (1)

:Ciwz / N / z / :vm{ufrwwb,a)wb.a(r)

dbfa[gl,k(f)@,é(t)]dt

X
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dbda
C,/,k 0/ / / Wy {Di¢(x) } (b, @)y )a—
X [g2x(1)C, 5(2)]dt

[invoking Fubini’s theorem]

— Z{/ D g(n) 1)g1 (1)L, 5(1)dt
+/_°° Di¢(1)g24(1 )Cy,(s(l)dt}

oo

[by inversion formula (7)]

=30 [ (g2al) + 41D 0
=0 J —o0
= f [(g1x(1)C,5(1), D (1))
k=0
+ <g2,k(I)C«/;75(I), Df¢(t)>] [using duality]

S D DE G, (0140)]

k=0
+H(=1)*DE[L, 5(1) 24 ()]} ¢(t)>
=(f.¢)

This completes the proof of the Theorem. U]

Il
T

[by structure formula(11)].

Example 1 Let us consider the Mexican hat wavelet,
which is an even wavelet defined by the second derivative
of a Gaussian function as

Y(r) = (1 —r*) exp(~
and its Fourier transform is given by
Y(w) = V2aw? exp(—w?/2).

It is a C*-function and well localized in time and
frequency domains. The kth derivative of Mexican hat
wavelet given by

2

2/2) =~ exp(~/2)

k

Dhy(r) =" (k ) DY (1 = 2)D% " exp(—£*/2).

r=0
Using property of Hermite polynomial [12] we write the
last expression as

k

Dy(n) =) <k>D<’>(1 — ) exp(—/2)Hy_, (1)

r=0
=k(1 — ) exp(—£*/2)H, (1)

k
+ ( r> (—2t) exp(—£*/2)H;_1 (1),

where Hy(t) denotes the Hermite polynomial. Therefore,
Y (1) € G,p(R) and the Mexican hat wavelet transform of
fe G;,ﬂ is then defined by Eq. (8).

5 Conclusions

A suitable testing function space G, g(R) containing the
wavelet ,, ,(¢) is constructed. The wavelet transform of a
generalized function f belonging to the corresponding
generalized function space G;‘ is investigated and inver-
sion formula is established by interpreting convergence in
D'. In most of the cases, in classical analysis, we study
wavelets belonging to the space L?(R) and establish
inversion formula in certain L?*(Ry x R)-space, where
Ry = R\{0}. Thus, our approach is based on the properties
of the wavelet whereas classical approach imposes condi-
tions on the wavelet as per requirement of L*(R). The
aforesaid analysis can be applied to develop the theory of
n-dimensional wavelet transform of generalized functions.
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