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AN ABEL-TAUBER THEOREM FOR HANKEL TRANSFORMS

N. H. BINGHAM and A. INOUE

§1. Abel-Tauber theorems

We write Ry for the class of slowly varying functions at infinity, that is, the class of
positive measurable £, defined on some neighbourhood of infinity, satisfying

Lz)/4(z) > 1 (z—>o00) VA>O.
For £ € Ry, the class II, is the class of measurable f satisfying
{f(Zz) — f(z)}/(z) — clog A (z—>00) VA>O0
- for some constant c, called the £-indez of f. For details, we refer to [BGT].
Let v > —1/2, t**3f(t) € L}, [0,00), and let f be ultimately decreasing to zero at

infinity (this plays the role of our Tauberian condition; see [BI1], §2 for discussion of the
possibility of weakening it). We consider the Hankel transform

Foln) i= Am_ F#)(zt)3d,(zt)dt  (z > 0), .(1.1)

where [ denotes an improper integral lim/_,c0 fOM and J, is the Bessel function

T -1\ T.2n
@) = (3) ; n!I‘(r(/ +1z+ nG) W S % oo

Since the improper integral converges uniformly on each (a,o00) with a > '0, F, is finite
and continuous on (0, c0).
Here is our main theorem:

THEOREM 1.1. Let £ € Ry, and let v,f and F, be as above. We set F,(z) :=
z*+3 F,(1/z) for £ > 0. Then

F@) ~ =) (¢ > o) (1.2)

if and only if i
2 - —i = 1.3
F,elle with ¢—index s (1.3)

Both imply



(o) - rpry [ 0/ 1)

1 g

— PTo 1) 1){10g2 =5 -;-w(v + 1)} (z = o), (1.4)

where 7y is Euler’s constant and v is the digamma function: ¢(z) := I'(z)/T'(z) for = > 0.

The theorem above treats the boundary case of the following known Abel-Tauber
theorem for Hankel transforms:

THEOREM 1.2 ([B1], [RS]). Let v,f,F, and £ be as in Theorem 1.1. Then for
pE(—~v= %! 0),
f@@) ~t°Lt)  (t — o) (1.5)

if and only if

. N3+45+%)
~ p—1 Lopti_\d 2 2 1
F(z)~z f(l/:.r:) 2 r—-——-(% — (z — 0+)

2 2

See also [SS, pp. 617-619].

The point of Theorem 1.1 is that one obtains II-variation rather than regular variation
- or in the terminology of [BGT], one uses de Haan theory rather than Karamata theory
- in the boundary case p = —v — 3. The cosine case v = —1/2 and sine case v = 1/2 of
Theorem 1.1 were recently proved in [I1] and [I2] respectively. However, the proofs of [I1]
and [I2] do not apply to general Hankel transforms directly. Our proof of Theorem 1.1 in
§2 is closer to those of [B2, Th. 3b] and [BGT, Th. 4.10.1] than those of [I1], [12].

§2. Proof of Theorem 1.1.
Step 1. Choose X so large that f is positive and non-increasing on [X, 00). We first

show that we lose no generality by supposing that f vanishes on [0, X).
Set f(t) := Ix,00)(t) f(t), and let F, be its Hankel transform:

Bolz) = / &) (@) 2 (@t)dt (2> 0).
0
By the mean-value theorem, there exists ¢; € (0, 00) such that
e @) -y LW Sals -y (0<zy <)

So for A > 1,

77 (P 002) = R@)} = {00) 4 1/ 3s) = 2+ E, (1/2)
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R Ny t/Az) ™" J,(t/ A =
- 75 _[0 FONE/A2) ™0t/ 2a) — (/)" T, (t/x)}d]

1-x71) ® i
<¢g—————=. X vty —
<aitox fo #HFOldE >0 (3 oo).
So (1.3) holds if and only if z*+2 F,(1/z) € II, with £-index 1/{2"T(v +1)}.
On the other hand, there exists c; € (0,,00) such that

1

Im—vJv(m) = m

|<cz®  (0<z<1). (2.1)

So for z > X,

X ' X
mv—é}%uw% / FE/) At )t = s /0 Feyetha

S ot | O K e f) -
= 7@ Jo 2R - e Ty

X? X
< g ), CIO#=0 o)

under (1.2). Thus when proving that (1.2) is equivalent to (1.3) and implies (1.4), we may
replace f by f - that is, we may assume that f vanishes on [0, X).
Step 2: Abelian part. First we assume (1.2) and show (1.4) and (1.3). For z > 0,

- F - ) vHidt) = I(z x
i O - gy [ fOrTe =10+ 1), ()

where

- 1 (gu)r+2f v+3 d
I(-’B) = /[; .(_m.g_).;éf_(it)u){ulfz.fy(b'a) ™= 2”;‘1‘(;; T 1)}1"’;:2 3

" f(zu) 1/
II:::)::] 2wl g, (w)du.
( @ (u)
By the uniform convergence theorem for regularly varying functions ([BGT, Th. 1.5.2]),
(zu)+? f(zu)/z¥+? f(x) converges to u!/? as z — oo uniformly in u € (0, 1], whence using .
(2.1) we find that

I() -/1 1 {1/2J()____.1i}du (:c-»oo)
Ty R T G '

In the same way, for any Y > X,

Y f(zu) 1 - Y
1 f(m)u Tl -[

:l-ﬁ cut J, (u)du (z — o).
uvta
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By the second integral mean-value theorem ([WW, §4.14]), for z > 1,

=T Mulﬂ _ f=Y+) ¥ 172 30
_/}; f(z) Ju(u)du @ Jy u gy (u)du

for some Y’ € (Y, 00). If we set

y ¥,
¢y = sup{| / w2 J,(u)du|: 0 < z < y < o0},
; T

then

. *~ f(eu) ; f(zY)
h::n—rsolipl 3 -mu”z.fu(u)du!-ﬁ llﬂ‘s:p @)

which can be made arbitrarily small by choosing Y large enough. So

.C3 = C3/Yv+% 3

) — / L T3 T
1 uvt:

The sum of the limits of I(z) and II(z) is identified in the Appendix by classical results
on special functions, and we obtain (1.4).

We can prove the implication from (1.4) to (1.3) by a standard argument (see e.g. [I1,
p. 767)).
Step 3: Tauberian part. We now prove the implication from (1.3) to (1.2). By a formula
of Gegenbauer,

- +1 —zt;, \1/2 gt = d zy*ti
tYT2e~ t Jy(yt)dt = d,  ——— (x>0

where 3
dyi= w“1f22"+11‘(u + E)

((WW, §13.2 (5)]; cf. [BIL, §2]). So by Parseval’s formula for Hankel transforms ([RS]; cf.
[BIL, §1]), for z > 0

o co— vt 1
fo f@)*tietdt = d, f Fy(y) (mfy - (2.3)
0+

4 y2)V+§ dy

(for fo 4 on the right, recall the assumption at the end of Step 1). By the second integral
mean-value theorem,

Fo)] S esf(X)/y  (0<y <o), (2.4)

whence

oo yy+%
F,(y)| - ————dy < oo.
| 1m0 EaeE L
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On the other hand, by [BGT, Th. 3.7. 4] (1.3) implies |F,| € Ry, whence

S F,(u
[ ROl iy 2),,+% = [ d <

Thus the integral on the rlght of (2.3) converges absolutely - and so the results of [BGT
Ch. 4] apply. _
We use Laplace transforms. Write

t
Ut) := /0 Ffluyutidu (¢ >0),

] .,= —zt o * vl —at
0(z) /[O’m)e du (t) /0 feetie=tas (@ > 0).

Then by (2.3), A ~
U(l/z) = (k* F,)(z) (z >0),

where
$2v+2
k(:l?) = d,_, (1—+x2—)y_‘-_—§-

and k * F,, denotes the Mellin convolution

By fu " k(z/t)F (t)dt /.

The absolute convergence strip of the Mellin transform

k(z) :== /; E t=*k(t)dt/t

is =1 < Rz < 2v + 2, and for z in the strip

(z > 0)

v
-

2 Boosl %
k(z) = ;rl—ﬂl-‘(v +1- E)I‘(E + E)’

in particular, 5

k(0) = 2"T'(v + 1).
By (2.4), F, is locally bounded on [0, 00). So by the argument of [BGT, p. 242] (Abelian
theorem for differences), we find that (1.3) implies k * F,, € II, with f-index 1 - i.e., so
is U(1/.). So by a Tauberian theorem of de Haan (cf. [BGT, Th. 3.9.1]), we see tha,t

U € Il with £-index 1. Finally, by [BGT, Th. 3.6.10] (with slow decrease repla.cecl by slow
increase), we obtain (1.2), completing the proof. e

§3. Mercerian theorems.
For positive f, the upper order p(f) is defined by

ol P T T 2,

T—00 lOgﬂ?

In [BI1, BI2| we recently proved the following Mercerian counterpart to Theorem 1.2:
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THEOREM 3.1. Let v, f, F, be as in Theorem 1.1. We write p:=p(f). I

3 1
-V—§<.0<Ua P#—ﬁ
and
z7'F,(1/z)/f(z) - ¢ >0 (z — o0),
then ¢ = 2""‘51‘(3 +%5+4)/T(3+%—%) and f € R,: f varies regularly with index p.

The question arises of proving the Mercerian counterpart of Theorem 1. 1, that is, the
implication from (1.4) to (1.2), under mild assumptions. We leave this question open here,
but we think that the techniques of [BI1, BI2] will be helpful in this problem too. For
corresponding results for Laplace transforms, see Embrechts [E] and [BGT, Th. 5.4.1].

~ Appendix

We complete the proof above by showing

fl kot il oo B O .}du-i- Tl e
0 uvts v 2"I'(v + 1) urti !

E 1 1p(u P(v+1)
= ST 1D {10g2 2 —1}

By Weber’s integral ([W, §13.24 (1); cf. [BIL, §1]) for the Mellin transform of the Bessel
function, for z € (—v — $,v + 1),

(A1)

1 y.l..l.
zr, 1/2 z,1/2
/0 u{u*J,(u) — PTO+T) +1)}du+/ u®au ', (u)du

1 1 1
-z . =3/2 _ z+v+5d
-——/; u™ " uwT AT, (1 /u)dufu _Z”F(v 1)/(; u U

1 3
- 2”I‘(u+1)(:c+v+%){gl(m+y+§)_1}= (A2)

where
2°T(§ +1) -

r(-%3+v+1)
We have g1(0) = 1. For z € (—2,2v + 2), we write

g1(z) :=T(v +1)

g2(z) :=log g1(z) = zlog2 + logI'(v + 1) + logI'(1 +§) - logr(—g +v+1).

Then

1 1
91(2)/9:1(z) = g5(w) = log2 + =9p(1+ ) + §¢(—5’2‘1 +v+1),

2 2)
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and so

1
91(0) = g3(0) =log2 — 2 + Zy(v + 1),
Letting | —v — 3 in (A2), we obtain (A1), as required.
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