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Abstract. It is proved that if an exponential family £  — {e**nt}  forms a Riesz basis 
in L2(0, T ), then the normalized family forms a Riesz basis in Sobolev space H s (0, T) 
on addition of m  -  1 or m  exponentials, where m  — 1 <  s <  m  and s ^  m  — 1 /2 .

Introduction
In the present paper it is proved that if an exponential family £ — { elXnt} forms 

a Riesz basis in L2(0,T) then the normalized family forms a Riesz basis in the 
closure of its linear span in the Sobolev space H s(0,T ) and this family forms a 
Riesz basis after addition of m — 1 or m exponentials, where m — 1 < s < m and 
s ^  m — 1/2.

Notice that the Riesz basis theory of exponential families in L2(0, T) is well devel­
oped as in scalar (Pavlov 1979; Hrushchev, Nikol’skii and Pavlov 1981) as well in the 
vector case (Ivanov 1983b; Avdonin and Ivanov 1989; Avdonin and Ivanov 1995b), 
while the properties of £ in the Sobolev spaces has not been adequately stud­
ied. The current status of the H s-theory is that only results about connections of 
L2-basisness and / / s-basisness are known.

1.
Exponential families £ =  {e lXnt} or £ =  { rinelXrit}, r)n being elements of an 

auxiliary Hilbert space, arise in diverse fields of mathematics. Let us mention the 
following ones.

(i) Nonself ad joint Model Operator Theory
The inverse Fourier transform maps exponentials elXnt, t >  0, Ittl A > 0, into 

simple fractions l / ( x  +An) belonging to the Hardy space H\ of functions analytical 
in the upper halfplane. Simple fractions are the eigenfunctions of Sz.-Nagy -  Foias 
dissipative model operator (the shift operator), see (Nikol’skii 1980).

Some problems for vector exponentials rjnelXnt connected with the model oper­
ator, are studied in (Ivanov 1985; Avdonin and Ivanov 1989; Avdonin and Ivanov 
1995b).

(ii) Resonance Scattering
In (Pavlov 1971) it was established that completeness and basis properties of 

the resonance state family are equivalent to the same properties for joined system 
of the root functions of a model operator and its adjoint (joint completeness and 
joint basis property). Taking into account connection with exponentials mentioned 
above we reduce study of resonance state family to study of exponential family. 
For the Regge problem for multichannel system this approach was developed in 
(Ivanov and Pavlov 1978; Ivanov 1978; Ivanov 1983).
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(iii) Control Theory
The Fourier method for control problem for hyperbolic equations leads to a 

moment problem for scalar or vector exponential family 8, where An being eigen- 
frequences of the hyperbolic system (Russell 1967; Avdonin and Ivanov 1984; 
Avdonin and Ivanov 1989a,b; Avdonin and Ivanov 1995a,b; Avdonin, Ivanov, and 
Ishmukhametov 1991). In some control problems it is essential to study exponen­
tial families not only in L2 space but also in the Sobolev space H s (Narukawa and 
Suzuki 1986; Avdonin and Ivanov 1989b; Avdonin and Ivanov 1995a,b).

2.
In this section we introduce concepts and notations and cite known results about 

basis property of exponential families.
Let S be a family {£n} of elements of Hilbert space H. By \JE (or \Jn  S) we 

denote the closure of the linear span of S in H norm.
Definition. Family E is called an C-basis (Riesz basis in the closure of its linear 
span) if in 7i there exists an operator V (orthogonalizer) mapping family S onto 
orthonormalized family and V is an isomorphism onto its image.

Complete in H £-basis is called a Riesz basis.

Set en(t) :=  cnezXnt, n € Z, where cn, cn :=  \ /(l — e-2 *"T)/2  Im \n, are 
normalizing in L2(0,T ) coefficients. The set {An} is called the spectrum of 8.

In (Russell 1982) D.L. Russell studied basis property of exponential families in 
the Sobolev spaces H m(0,T) with m G Z. Let us cite the result for m > 0.

Proposition 1. (Russell 1982) Let family 8 =  {en} be d Riesz basis in L2(0, T), 
points H i,... ,/im be different and not belonging to the spectrum {An}. Then the 
family

{cnea “‘/(l +  |A„P)} |J{^*}r-i 

forms a Riesz basis in the Sobolev space H m(0,T).

So the “original” basis family 8 preserves £-basis property in H m(0, T), but it 
does not preserve completeness. Let us notice, that the “effect” is characteristic 
for exponential family. For example, Legendre polynomial family {Pn} is obviously 
complete in H m(—1,1) but this family is not even uniformly minimal; it is easy to 
check that angles (pn between polynomials Pn and Pn+1 tend to zero:

I (Pm Pn+l)Hm | 1
COS (fin || p  || || p  jl *

In (Avdonin and Ivanov 1989b; Avdonin and Ivanov 1995b) the Russell’s 
theorem was generalized to subspaces generated by groups of exponentials and 
the obtained result was used for the controllability problem for a rectangular mem­
brane (Avdonin and Ivanov 1989b; Avdonin and Ivanov 1995a,b)..

In (Narukawa and Suzuki 1986) basis property of special exponential family was 
studied in H s(0,T) for noninteger s.

*The book (Avdonin and Ivanov 1989b) contains an incorrect result about vector exponential 
family in H s (0 ,T ;C N ). The same mistake was made in (Joo 1993).
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P roposition  2. (Narukawa and Suzuki 1986) Let A2, n — 1 ,2 , . . . ,  be eigenvalues 
of a Sturm-Liouville operator

d2 ,  x

acting in L2(0,1) with a smooth potential p and Dirichlet boundary conditions at 
x =  0 and x  =  1. If s — 1/2 £ Z, and s > 0, i/ien the family

forms an C-basis in H s(0,2) and codimension of\JHs 8 (dimension of the orthog­
onal complement to the linear span of 8) is equal to entier(s +  1/2) +  1.

Lemma 1. (Narukawa and Suzuki 1986) Let $  =  {<pn}nez, <fn(t) — e27rm*/T, 
and s > 0, s £ Z +  1/2. Then the family :=  {ipn/{l +  \n\s) } nez forms an 
C-basis in H s(0,T ) and codim$(s) =  entier(s +  1/2).

The proof of the lemma is rather direct and rests on the fact that harmonics 
are the eigenfunctions of the operator Ap := —d2/dx2 with periodic conditions. 
Therefore after normalisation $  forms an £-basis in H s and the closure of its 
linear span has the form

\ J  9  =  v  ((i +  Apy ^ )
H s

=  { n e  H s(0,T) I u(0) =  u(T ) , u' (0) =  u\T) , . . .  , (0) =  w(<?) (T)},
q < s — 1/2.

So we have
cod im ^  $  =  entier(s +  1/2).

H s

Lemma is proved.

3. Main Result
In the present paper, we do not assume that the spectrum of 8 is the set of 

eigenfrequences of a Sturm-Liouville operator, but we suppose that 8 forms a 
Riesz basis in L2(0, T). In fact, the progress is that we change asymptotics

An =  2itn/T +  o(l)

by L2 basis property of 8 , which is more general than asymptotics, see (Avdonin 
1974; Hrushchev, Nikol’skii, and Pavlov 1981).

Theorem. Let the family 8 — { elXnt} nez be a Riesz basis in L2(0, T), points 
/ i i , . . .  ,/im be different and not belonging to the spectrum {\n} nez of 8, and s be 
a positive number such that m — 1 < s <  m, s ^  m — 1/2, for m G N.

Then the family 8 ^  := {cnelXnt/(l +  |An|s) } nez forms an C-basis in H s(0 ,T ) 
and, moreover, the family

£ (s) U { e ^ } r ~ \  (1)
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or the family
£ {s) (2)

forms a Riesz basis in H s(0,T).

The proof of the theorem is based on “interpolation” between basis property of 
£ in L2 space (assumption of the theorem) and basis property of £ ^  in H m space 
(Proposition 1).
Proof. We assume without loss of generality that the spectrum {An} of £ is in­
dexed as follows: ‘Re An > 0 for n > 0, %e\n < 0 for n <  0 , and %e\n increases 
together with n.

Lemma 2. For the spectrum of £ we have

jAn| __  ̂ 27T
|n| |n|—+oo T

P ro o f o f  the Lemma. It is known (Hrushchev, Nikol’skii and Pavlov 1981; 
Minkin 1991; Avdonin and Ivanov 1995b) that the spectrum of £ is the set of 
zeros of a Cartright class function and

n±(r) T
T r —+ o o  27T *

where

n+(r) =  card{An | |An| < r, %eXn >  0} ,n_(r)  =  card{An | |An| <  r, %e\n < 0}.

It follows from the definitions that for any e > 0

n+ (|A„| + e )  > n +  1, n+(|A„| -  e) <  n, n > 0,
n_(|A„| +  e) >  |n|, n_(|A„| -  e) <  |n| -  1, n <  0.

So we have for n >  0

n +  1 < n+ (|An| + e ) __  ̂ T_ n >  n+ (|Aw| -  g) __  ̂ T_
|An| + g _  |An|+g 71̂ 00 2^' | A „ | - e “  |An| -e  n-»oo 27r’

and similar relations for n_. Lemma is proved.
Let us introduce operator V on the linear span of £ by the formula

Ven =  (pn =  e2nint/T, n e  Z.

Since £ and $  are both Riesz bases in L2(0,T), operator V can be continued on 
the whole space L2 and the continuation is an isomorphism.

We consider the restriction of V on \JHm £■ The V maps family £ (m') -  an 
/2-basis in H m -  into family =  {e27rmt/T/ ( l  +  |An|m) } n€z. The latter family 
is also an £-basis in H m. Indeed, by Lemma 1, family

{ e 2 .m « /T / ( 1  +  |n |m)}n £ Z
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forms an £-basis in H m and by Lemma 2 we have |n| x  |An|, so elements of 3>(TO) 
are almost normed.

Since operator V|w maps one £-basis in H m into another £-basis
• V

it is an isomorphism of subspaces \J Hm £ and \J H™ $•
It follows by interpolation theorem (see, for example, (Lions and Magenes 1968)) 

that the restriction of V on interpolation space

Hi := [L2, V £},,
H m

with s =  6m, is also an isomorphism onto

H% :=  [Z,2, \ / $]«,.
H m

From topological inclusions

H™ C \ / S C H m, f f0m c \ / $ c f f m
H m H m

we deduce that metrics in interpolations spaces Tts£ and are equivalent to H s 
metric and these spaces may be considered as subspaces in H s(0,T).

Since is the preimage under the isomorphism V of family and is 
an £-basis in H s, the family 8 ^  is also an £-basis in H s.

So, we have the following situation:
(i) The family

{ < ^ - 7 ( 1 + w - ' i u y ^ r

forms a Riesz basis in H m~1(0,T).
(ii) The family

£<»> =  { ^ " 7 ( 1  +  | A „n }„ez

forms an £-basis in H s(0,T), m — 1 < s < m.

(ii) The family
{cne‘A" 7 ( l  +  |Anr ) } „ 6ZU {e i« , }J> (3)

forms a Riesz basis in H m(0,T) .

Since H m is dense in H s, family (3) is complete in H s(0, T). If family 
is complete in H s, then it is complete also in H m~l what contradicts to (i).

So we have an alternative: one of the two families

£ (s)  Qr e (s)

forms a Riesz basis in H s(0,T). Theorem is proved.
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4. Hypotheses
(i) In the main theorem we do not answer what family (family (1) or family

(2)) forms a Riesz basis in H s for given s. In the other words, we do not know the 
“defect” (codimension) of family £ ^  forming an £-basis.

Hypotheses 1. For m — 1 < s < m — 1/2

codim £ =  m — 1

and for m — 1/2 < s < m
codim £ — m.

(ii) By analogy with Proposition 2 and the results of D.L. Russell, and 
K. Narukawa and T. Suzuki (Russell 1982; Narukawa and Suzuki 1986) for ex­
ponential families in Sobolev spaces H s(0,T ) of negative orders we may offer the 
hypotheses.

Hypothesis 2. (Generalization of the D.L. Russell result). If family £  forms a 
Riesz basis in L2(0,T) and s <  0, s £ Z +  1/2, then after elimination of entier 
(|s| +  1/2) exponentials we obtain Riesz basis family in H S(Q,T) =  (Hq S(0, T )) '.

Hypothesis 3. (Generalization of the K. Narukawa and T. Suzuki results). If 
family £  forms a Riesz basis in L2(0,T) and s <  0, s £ Z  + 1/2, then after addition 
of entier(|s| +  1/2) exponentials we obtain Riesz basis family in (H~s(0,T )) .
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