
ar
X

iv
:1

71
2.

10
04

5v
1 

 [
gr

-q
c]

  2
8 

D
ec

 2
01

7

The global nonlinear stability of

Minkowski space.

Einstein equations, f(R)–modified gravity,

and Klein-Gordon fields

Philippe G. LeFloch∗ and Yue Ma†

December 2017

∗Laboratoire Jacques-Louis Lions and Centre National de la Recherche Scientifique, Sorbonne
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Abstract. We study the initial value problem for two fundamental theories of gravity,

that is, Einstein’s field equations of general relativity and the (fourth-order) field equations

of f(R)-modified gravity. For both of these physical theories, we investigate the global dy-

namics of a self-gravitating massive matter field when an initial data set is prescribed on an

asymptotically flat and spacelike hypersurface, provided these data are sufficiently close to

data in Minkowski spacetime. Under such conditions, we thus establish the global nonlinear

stability of Minkowski spacetime in presence of massive matter. In addition, we provide

a rigorous mathematical validation of the f(R)-theory based on analyzing a singular limit

problem, when the function f(R) arising in the generalized Hilbert-Einstein functional ap-

proaches the scalar curvature function R of the standard Hilbert-Einstein functional. In this

limit we prove that f(R)-Cauchy developments converge to Einstein’s Cauchy developments

in the regime close to Minkowski space.

Our proofs rely on a new strategy, introduced here and referred to as the Euclidian-

Hyperboloidal Foliation Method (EHFM). This is a major extension of the Hyperboloidal

Foliation Method (HFM) which we used earlier for the Einstein-massive field system but for

a restricted class of initial data. Here, the data are solely assumed to satisfy an asymptotic

flatness condition and be small in a weighted energy norm. These results for matter space-

times provide a significant extension to the existing stability theory for vacuum spacetimes,

developed by Christodoulou and Klainerman and revisited by Lindblad and Rodnianski.

The EHFM approach allows us to solve the global existence problem for a broad class

of nonlinear systems of coupled wave-Klein-Gordon equations. As far as gravity theories

are concerned, we cope with the nonlinear coupling between the matter and the geometry

parts of the field equations. Our method does not use Minkowski’s scaling field, which is the

essential challenge we overcome here in order to encompass wave-Klein-Gordon equations.

We introduce a spacetime foliation based on glueing together asymptotically Euclidian

hypersurfaces and asymptotically hyperboloidal hypersurfaces. Well-chosen frames of vector

fields (null-semi-hyperboloidal frame, Euclidian-hyperboloidal frame) allow us to exhibit the

structure of the equations under consideration as well as to analyze the decay of solutions in

time and in space. New Sobolev inequalities valid in positive cones and in each domain of

our Euclidian-hyperboloidal foliation are established and a bootstrap argument is formulated,

which involves a hierarchy of (almost optimal) energy and pointwise bounds and distinguishes

between low- and high-order derivatives of the solutions. Dealing with the (fourth-order)

f(R)-theory requires a number of additional ideas: a conformal wave gauge, an augmented

formulation of the field equations, the quasi-null hyperboloidal structure, and a singular

analysis to cope with the limit f(R) → R.

2



Contents

I Formulation of the problem 7

1 Purpose of this Monograph 7

1.1 Main objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Evolution of self-gravitating massive matter . . . . . . . . . . . 7

1.1.2 A new method for the global existence problem . . . . . . . . . 8

1.1.3 Two conjectures made by physicists . . . . . . . . . . . . . . . . 9

1.2 Background and methodology . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Massless vs. massive problems . . . . . . . . . . . . . . . . . . . 10

1.2.2 The Euclidian-Hyperboloidal Foliation Method (EHFM) . . . . 11

1.2.3 Kinetic equations and other generalizations . . . . . . . . . . . . 12

1.3 Gravity field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 The Hilbert-Einstein functional . . . . . . . . . . . . . . . . . . 13

1.3.2 The generalized gravity functional . . . . . . . . . . . . . . . . . 14

1.3.3 Evolution of the spacetime scalar curvature . . . . . . . . . . . 16

1.3.4 Dynamics of massive matter . . . . . . . . . . . . . . . . . . . . 16

2 The initial value formulation 17

2.1 The Cauchy problem for the Einstein equations . . . . . . . . . . . . . 17

2.1.1 Einstein’s constraint equations . . . . . . . . . . . . . . . . . . . 17

2.1.2 Einstein’s Cauchy developments . . . . . . . . . . . . . . . . . . 19

2.2 The formulation of the f(R)-gravity theory . . . . . . . . . . . . . . . . 20

2.2.1 Evolution of the scalar curvature . . . . . . . . . . . . . . . . . 20

2.2.2 Field equations for the conformal metric . . . . . . . . . . . . . 21

2.2.3 The conformal field formulation of f(R)-gravity . . . . . . . . . 23

2.3 The Cauchy problem for the f(R)-field equations . . . . . . . . . . . . 24

2.3.1 The f(R)-constraint equations . . . . . . . . . . . . . . . . . . . 24

2.3.2 The notion of f(R)-Cauchy developments . . . . . . . . . . . . 26

2.3.3 Equivalent formulation in the conformal metric . . . . . . . . . 27

3



II Nonlinear stability statements 28

3 The global stability of Minkowski space 28

3.1 Initial data sets of interest . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Minkowski and Schwarzschild spacetimes . . . . . . . . . . . . . 28

3.1.2 The class of initial data sets of interest . . . . . . . . . . . . . . 29

3.2 Three main results of nonlinear stability . . . . . . . . . . . . . . . . . 31

3.2.1 The Einstein theory . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 The theory of f(R)-gravity . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 The infinite mass problem . . . . . . . . . . . . . . . . . . . . . 33

4 The wave-Klein-Gordon formulation in EH foliations 34

4.1 A class of wave-Klein-Gordon systems . . . . . . . . . . . . . . . . . . . 34

4.1.1 Gauge freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 The formulation in coordinates . . . . . . . . . . . . . . . . . . 35

4.1.3 The formal limit toward Einstein’s equations . . . . . . . . . . . 37

4.1.4 Derivation of the wave-Klein-Gordon system . . . . . . . . . . . 38

4.2 The Euclidian-hyperboloidal foliation (EHF) . . . . . . . . . . . . . . . 39

4.2.1 A decomposition of the spacetime . . . . . . . . . . . . . . . . . 39

4.2.2 Definition of the time foliation of interest . . . . . . . . . . . . . 41

4.2.3 Weighted Sobolev-type energy norms . . . . . . . . . . . . . . . 43

5 The nonlinear stability in wave gauge 44

5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Einstein equations in wave gauge . . . . . . . . . . . . . . . . . 44

5.1.2 The f(R)-equations in wave gauge . . . . . . . . . . . . . . . . 45

5.2 A new strategy of proof: the EHF method . . . . . . . . . . . . . . . . 46

5.2.1 Dealing simultaneously with the Einstein and f(R)-equations . 46

5.2.2 The notion of Euclidian-Hyperboloidal Foliation (EFH) . . . . . 46

5.2.3 Main challenge and difficulties . . . . . . . . . . . . . . . . . . . 47

5.2.4 Main technical contributions in this Monograph . . . . . . . . . 48

5.2.5 From geometric data to wave gauge data . . . . . . . . . . . . . 49

4



III The notion of Euclidian-Hyperboloidal foliations 51

6 Defining Euclidian-hyperboloidal foliations (EHF) 51

6.1 Defining the time function . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Defining the foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Jacobian of the coordinate transformation . . . . . . . . . . . . . . . . 55

7 Frames of interest and the null condition 57

7.1 The semi-hyperboloidal frame (SHF) . . . . . . . . . . . . . . . . . . . 57

7.2 The null frame (NF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 The Euclidian-hyperboloidal frame (EHF) . . . . . . . . . . . . . . . . 59

8 The weighted energy estimate 60

8.1 Statement of the energy estimate . . . . . . . . . . . . . . . . . . . . . 60

8.2 Derivation of the energy estimate . . . . . . . . . . . . . . . . . . . . . 61

IV Sobolev and commutator estimates for EHF 65

9 Revisiting standard Sobolev’s inequalities 65

9.1 A Sobolev inequality on positive cones. I . . . . . . . . . . . . . . . . . 65

9.2 A Sobolev inequality on positive cones. II . . . . . . . . . . . . . . . . 67

10 Sobolev inequalities for EHF 69

10.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.2 A sup-norm Sobolev estimate . . . . . . . . . . . . . . . . . . . . . . . 70

10.3 A Sobolev inequality for the transition and exterior domains . . . . . . 72

10.4 A Sobolev inequality for the interior domain . . . . . . . . . . . . . . . 73

11 Commutators in the interior domain. A summary 75

11.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.2 Commutators for vector fields in the interior domain . . . . . . . . . . 76

11.3 Commutators and estimates for second-order operators . . . . . . . . . 78

5



12 A general framework for the commutator estimates on the EHF 79

12.1 Basic commutation relations and homogeneous functions . . . . . . . . 79

12.2 Decompositions of commutators. I . . . . . . . . . . . . . . . . . . . . . 82

12.3 Decomposition of commutators. II . . . . . . . . . . . . . . . . . . . . . 84

12.4 Decomposition of commutators. III . . . . . . . . . . . . . . . . . . . . 87

12.5 Decomposition of commutators. IV . . . . . . . . . . . . . . . . . . . . 87

V Field equations for self-gravitating matter 89

13 Nonlinear structure of the field equations in conformal wave gauge 89

13.1 The wave Klein-Gordon formulation in symbolic notation . . . . . . . . 89

13.2 Homogeneous functions and nonlinearities of the field equations . . . . 92

14 The quasi-null structure for the null-hyperboloidal frame 98

14.1 The nonlinear wave equations for the metric components . . . . . . . . 98

14.2 Reduction of the expression of quasi-null terms . . . . . . . . . . . . . . 101

14.3 The null-semi-hyperboloidal (0, 0)-component . . . . . . . . . . . . . . 105

15 Ricci curvature in conformal wave coordinates 108

15.1 Expression of the curvature . . . . . . . . . . . . . . . . . . . . . . . . 108

15.2 Higher-order contributions . . . . . . . . . . . . . . . . . . . . . . . . . 109

15.3 Quadratic contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 111

15.4 Concluding the calculation . . . . . . . . . . . . . . . . . . . . . . . . . 114

References 215

6



Part I

Formulation of the problem

1 Purpose of this Monograph

1.1 Main objectives

1.1.1 Evolution of self-gravitating massive matter

Two theories of gravity. We are interested in the global evolution problem for self-

gravitating massive matter, which we formulate as an initial value problem associated

with the Einstein equations of general relativity or with the field equations of the f(R)-

modified theory of gravity. Einstein’s theory goes back to 1915, while the f(R)-theory

was formulated in 1970 by Buchdahl [21]. In this latter gravity theory, the integrand of

the Hilbert-Einstein functional, i.e. the spacetime scalar curvature R (cf. (1.1), below),

is replaced by a nonlinear function satisfying f(R) ≃ R+ κ
2
R2 for some small constant

κ > 0 (cf. (1.5), below).

Both theories play a central role in the foundations of astrophysics and cosmol-

ogy and it is natural to investigate the global nonlinear stability of the ‘ground state’

of these theories, i.e. Minkowski spacetime. This spacetime represents the geome-

try of a vacuum Universe at equilibrium. While building on the pioneering work by

Christodoulou and Klainerman [33] on the vacuum stability problem (cf. our review in

Section 1.2.1, below), our aim in this Monograph is to solve the global stability prob-

lem for massive matter, i.e. to study the global evolution of a self-gravitating massive

field.

Three main results. More precisely, by prescribing an initial data set on a spacelike

hypersurface which is asymptotically flat (in a suitable sense) and is sufficiently close

to a slice of (empty, flat) Minkowski spacetime, we solve the following three nonlinear

stability problems:
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(1) The global existence problem for the Einstein-massive field system.

(2) The global existence problem for the field equations of f(R)-gravity.

(3) The global validation of the f(R)-theory in the limit1 f(R) → R.

In particular, we prove that global Cauchy developments of f(R)-gravity are “close”

(in a sense we specify) to global Cauchy developments of Einstein theory.

The problems under consideration are geometric in nature and require a choice of

gauge. Our analysis relies on the wave gauge, i.e on coordinate functions satisfying

the wave equation (in the unknown metric). We built here on Lindblad and Rodni-

anski’s pioneering work [95] concerning the vacuum Einstein equations, while bringing

in significantly new insights and techniques required in order to cope with the three

new problems above. We emphasize that, even for vacuum spacetimes, our results are

stronger than those established earlier in [95] since we include a broader class of initial

data sets.

1.1.2 A new method for the global existence problem

The mathematical analysis of self-gravitating massive fields was initiated by the authors

in [87, 88], where the first of the above three problems was solved for the restricted class

of initial data sets coinciding with Schwarzschild data outside of a spatially compact

domain. In the present Monograph, we remove this restriction entirely and, moreover,

provide a resolution to all of the three problems above. Our stability theorems encom-

pass initial data sets which are characterized in terms of weighted Sobolev-type norms

and pointwise decay conditions at spacelike infinity.

Several novel techniques of analysis are introduced in this Monograph, which are

expected to be useful also for other problems. Namely, the fourth contribution of

the present Monograph is a vast generalization of the Hyperboloidal Foliation Method

(HFM) discussed by the authors in the earlier work [87, 88]. We refer to our approach

as:

(4) The Euclidian-Hyperboloidal Foliation Method (EHFM).

1We can also refer to this problem as the infinite mass problem.
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While we develop this approach primarily for problems arising in gravity theory, we ex-

pect it to be useful to tackle the global existence problem for a broad class of nonlinear

systems of coupled wave-Klein-Gordon equations.

1.1.3 Two conjectures made by physicists

Asymptotically flat spacetimes. Numerical investigations of the stability problem

(1) above for small perturbations of massive fields had originally suggested a potential

mechanism for nonlinear instability. Indeed, the family of oscillating soliton stars

(defined in [48, 116]) provides a potential candidate for instabilities that may develop

during the evolution of matter governed by the Einstein equations. After several

controversies, only the most recent numerical developments(cf. [106]) have finally led

to a definite conjecture: in asymptotically flat spacetimes, one expects massive fields

to be globally nonlinearly stable.

Advanced numerical methods (including mesh refinement and high-order accuracy)

were necessary and, in the long-time evolution of arbitrarily small perturbations of

oscillating soliton stars, the following nonlinear mechanism takes place: in a first phase

of the evolution, the matter tends to collapse and, potentially, could evolve to a black

hole; however, in an intermediate phase of the evolution and below a certain threshold

in the mass amplitude, the collapse significantly slows down, until the final phase of

the evolution is reached and a strong dissipation mechanism eventually prevents the

collapse from occurring.

It was thus conjectured that dispersion effects are dominant in the long-time evo-

lution of self-gravitating matter. The present work provides the first rigorous proof of

this conjecture.

Asymptotically AdS spacetimes. It is worth mentioning that, in asymptotically

anti-de Sitter (AdS) spacetimes, it was observed numerically that the evolution of

generic (and arbitrarily small) initial perturbations leads to the formation of black

holes. In such spacetimes, matter is confined (i.e. timelike geodesics reach the AdS

boundary in a finite proper time) and cannot disperse; the effect of gravity remains

dominant during all of the evolution, unavoidably leading to the formation of black

holes; cf. Bizon et al. [16, 17, 18] and Dafermos and Holzegel [35, 36].

9



It is only in a recent work by Moschidis [103, 104] that the instability phenom-

ena in asymptotically AdS spacetimes was rigorously established when the spherically

symmetric Einstein–massless Vlasov system is considered.

The theory of f(R)-gravity. Another important conjecture made by physicists is

relevant to the present study and concerns the theory of modified gravity theory. By

construction, this theory is expected to be a “correction” to Einstein’s theory, so that

solutions to the f(R)-field equations (discussed below) are conjectured to be “close”

to those of Einstein’s equations when the defining function f(R) is close to the scalar

curvature function R.

Of course, at a formal level it is straightforward to check that the field equations

determined from the nonlinear function f(R) ≃ R + κ
2
R2 “converge” to Einstein’s

field equations when the defining parameter κ → 0. The challenge is to establish

this property rigorously for a class of solutions. Indeed, in this work we resolve this

conjecture for the class of spacetimes under consideration.

We establish that f(R)-Cauchy developments converge to Einstein’s Cauchy de-

velopments, and this result therefore provides a mathematical validation of the f(R)-

modified theory of gravity.

1.2 Background and methodology

1.2.1 Massless vs. massive problems

Previous works. As far as the global evolution problem in 3 + 1 dimension is con-

cerned, only spacetimes satisfying the vacuum Einstein equations have received at-

tention in the past twenty five years. The subject was initiated in 1993 when the

global nonlinear stability of Minkowski spacetime was established by Christodoulou

and Klainerman in a breakthrough and very influential work [33]. The method of

proof introduced therein is fully geometric in nature and, among other novel ideas,

relies on a clever use of the properties of the Killing fields of Minkowski spacetime in

order to define suitably weighted Sobolev norms and on a decomposition of the Ein-

stein equations within a (null) frame associated with the Lorentzian structure of the

spacetimes.
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Later on, Bieri succeeded to weaken the spacelike asymptotic decay assumptions

required in [33]; cf. the monograph [15] written together with Zipser. Next, Lindblad

and Rodnianski [95] discovered an alternative proof, which is technically simpler but

provides less control on the asymptotic behavior of solutions. (For instance, Penrose’s

peeling estimates were not established in [95]. This method relies on a decomposition

of the Einstein equations in wave coordinates [94] and takes its roots in earlier work

by Klainerman [76, 77, 79, 80] on the global existence problem for nonlinear wave

equations; see also [31] for a different approach and [67, 68].

Restriction to massless fields. Importantly, both methods [33, 95] only apply

to vacuum spacetimes or, more generally, to massless fields, since the scaling vector

field of Minkowski spacetime is used in a very essential manner therein. In contrast,

massive fields considered in the present Monograph are governed by Klein-Gordon

equations which are not invariant under scaling. Minkowski’s scaling vector field does

not commute with the Klein-Gordon operator and, therefore, cannot be used in defin-

ing weighted Sobolev norms and deriving energy estimates. Without this field, the

weighted Sobolev norms in [33, 95] are too lax to provide a suitable control on solu-

tions.

1.2.2 The Euclidian-Hyperboloidal Foliation Method (EHFM)

A new method. The main challenge we overcome in this Monograph is the res-

olution of the global evolution problem for massive matter fields. We introduce a

method of mathematical analysis for nonlinear wave equations, which does not re-

quire Minkowski’s scaling field. This new method, referred to here as the Euclidian-

Hyperboloidal Foliation Method (EHFM), generalizes the method we introduced in

[85, 87, 88] and referred to there as the Hyperboloidal Foliation Method (HFM). The

latter already allowed us to tackle a large class of nonlinear systems of coupled wave-

Klein-Gordon equations.

In [85, 87, 88], we relied on a foliation of the interior of the light cone in Minkowski

spacetime by spacelike hyperboloids and we derive sharp pointwise and energy esti-

mates in order to be able to study the nonlinear coupling taking place between wave

and Klein-Gordon equations. Our method had the advantage of relying on the Lorentz

11



boosts and the translations only, rather than on the full family of (conformal) Killing

fields of Minkowski spacetime.

With the Hyperboloidal Foliation Method, we solved the global nonlinear stability

problem when the Einstein equations are coupled to a massive scalar field and are

expressed in wave gauge. Only the restricted class of initial data sets coinciding with

Schwarzschild data outside a spatially compact domain was treated in [88].

The present Monograph provides a vast extension of our previous arguments and

covers a broad class of initial data sets while, simultaneously, treating a significant

generalization of Einstein’s theory. The approach we propose here relies on a space-

time foliation based on glueing together asymptotically Euclidian hypersurfaces and

asymptotically hyperboloidal hypersurfaces. For our main tools, we refer to Part III

and IV below. A presentation of the method is also provided in [90].

Hyperboloidal foliations. In the case of wave-Klein-Gordon equations in 1 + 1

dimensions to be discussed in [98], solutions enjoy much better properties [37, 123].

The use of hyperboloidal foliations for wave equations was suggested first by Klain-

erman [77, 78] and, later, investigated by Hormander [62]. Earlier on, in [49, 50, 51],

Friedrich also studied hyperboloidal foliations of Einstein spacetimes and succeed to

establish global existence results for the Cauchy problem for the conformal vacuum

field equations.

Hyperboloidal foliations can also be constructed in fully geometric manner by gen-

eralizing Christodoulou-Klainerman’s method. In this direction, Wang [137] indepen-

dently also obtained a very different proof of the restricted theorem [88]. We also

mention that Donninger and Zenginoglu [40] recently studied cubic wave equations

which exhibit a non-dispersive decay property. Furthermore, such foliations for the

Einstein equations were constructed numerically by Moncrief and Rinne [100], and is

a very active domain of research for numerical relativity [5, 45, 46, 59, 141].

1.2.3 Kinetic equations and other generalizations

Kinetic equations. We expect the Euclidian-Hyperboloidal Foliation Method of this

Monograph to be relevant also for the study of the coupling of the Einstein equations

with kinetic equations, such as the Vlasov equation (cf. [4, 111] for an introduction).
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In this direction, recall that Fajman, Joudioux, and Smulevici [41, 43] have analyzed

the global existence problem for a class of relativistic transport equations and their

coupling to wave equations, and relying on [88] together with a new vector field tech-

nique [121, 41], established the stability of Minkowski spacetime for the Einstein-Vlasov

system [43] for initial data sets coinciding with vacuum Schwarzschild data outside a

spatially compact domain. Such a stability result for the Einstein-Vlasov system was

also independently proven by Lindblad and Taylor by a completely different method

[96, 132].

The application to kinetic equations, therefore, needs to be be further investigated

and it would be desirable to extend our new approach EHFM to the Einstein-Vlasov

equations and, more generally, to the Einstein-Boltzmann equations.

Klein-Gordon equations. Concerning the global existence problem for the Einstein-

Klein-Gordon system with non-compact data, we also mention an ongoing research

project by Wang [138] based on the fully geometric approach [33, 137] and, while

our project came under completion, we also learned that Ionescu and Pausader [66]

were also studying this problem by using a completely different methodology including

the notion of resonances from [118] and [14, 55, 56, 81, 109, 110]. In this direction,

our wave-Klein-Gordon model in [87] is already successfully revisited by Ionescu and

Pausader [65] for a class of non-compact matter fields.

We conclude this brief review by mentioning that nonlinear wave equations of Klein-

Gordon type, especially when they are posed on curved spacetimes, have been the

subject of extensive research in the past two decades. A vast literature is available in

this topic and we refer the interested reader to our former review in the introduction

of [88], as well as [8, 9, 62, 63, 69, 70, 78, 92, 117, 119, 125] and the references cited

therein.

1.3 Gravity field equations

1.3.1 The Hilbert-Einstein functional

Einstein curvature. Throughout this Monograph, we are interested in four-dimen-

sional spacetimes (M, g) whereM is a topological manifold (taken to beM ≃ [1,+∞)×

13



R3) and g is a Lorentzian metric with signature (−,+,+,+). The Levi-Civita connec-

tion of the metric g is denoted by ∇g = ∇ from which we can determine the (Riemann,

Ricci, scalar) curvature of the spacetime.

The standard theory of gravity is based on the Hilbert-Einstein action defined from

the scalar curvature Rg = R of the metric g:
∫

M

(
Rg + 16π L[φ, g]

)
dVg, (1.1)

where dVg denotes the canonical volume form on (M, g). It is well-known that critical

points of this action satisfy Einstein’s field equations

Gαβ = 8πTαβ in (M, g), (1.2)

in which

Gαβ := Rαβ −
Rg

2
gαβ (1.3)

is the Einstein curvature tensor and Rαβ denotes the Ricci curvature of the metric g,

which later we will express explicitly in coordinates in Proposition 13.1.

Matter tensor. The Lagrangian 16π L[φ, g] describes the matter content of the

spacetime and allows us to determine the right-hand side of (1.3), given by the energy-

momentum tensor

Tαβ = Tαβ[φ, g] := −2
δL

δgαβ
[φ, g] + gαβ L[φ, g]. (1.4)

Throughout, Greek indices describe 0, 1, 2, 3 and we use the standard convention of

implicit summation over repeated indices, as well as raising and lowering indices with

respect to the metric gαβ and its inverse denoted by gαβ. For instance, we write

Xα = gαβX
β for the duality between vectors and 1-forms.

1.3.2 The generalized gravity functional

A modified gravity action. The so-called f(R)-modified theory of gravity is a

generalization of Einstein’s theory and is based on the following modified gravity action
∫

M

(
f(Rg) + 16π L[φ, g]

)
dVg, (1.5)

14



in which f : R → R is a given (sufficiently smooth) function. In order for the modified

theory to be a formal extension of Einstein’s theory, we assume that f(r) ≃ r in the

zero curvature limit r → 0. More precisely, we assume that

f(R) ≃ R +
κ

2
R2 as R→ 0 (1.6)

for some positive coefficient1 κ > 0. For some historical background about this theory,

we refer to Buchdahl [21] and Brans and Dicke [19], as well as [25, 26, 105, 114] and

the references therein.

Critical points of (1.5) satisfy the following f(R)-field equations

Nαβ = 8π Tαβ [φ, g] in (M, g), (1.7)

in which

Nαβ := f ′(Rg)Gαβ −
1

2

(
f(Rg)− Rgf

′(Rg)
)
gαβ +

(
gαβ �g −∇α∇β

)(
f ′(Rg)

)
(1.8)

is referred to as the modified gravity tensor. Here, �g := ∇α∇α is the wave operator

associated with the metric g.

The limit problem f(R) → R. We observe the following:

• Within the above theory, Einstein’s equations are obviously recovered by choosing

the function f(R) to be the linear function R.

• In the limit κ → 0 in (1.6), one has f(R) → R and the field equations (1.7)

formally converge to the Einstein equations (1.2).

Clearly, taking the limit f(R) → R is singular in nature, since (1.2) involves up to

second-order derivatives of the unknown metric g, while (1.7) contains fourth-order

terms. One of our objectives will be to rigorously prove that solutions of (1.7) converge

(in a sense to be specified) to solutions of (1.2).

1The positive sign of κ := f ′′(0) is essential for the global-in-time stability of solutions, but is

irrelevant for their local-in-time existence.

15



1.3.3 Evolution of the spacetime scalar curvature

Next, taking the trace of the field equations (1.7), we obtain

3�gf
′(Rg) +

(
− 2f(Rg) +Rgf

′(Rg)
)
= 8π gαβTαβ in (M, g), (1.9)

which is a second-order evolution equation for the spacetime curvature R. It will play

a central role in our analysis. Interestingly enough, from (1.6), we have

(
− 2f(R) + f ′(R)R

)
≃ −R (when R → 0),

so that the linear part of the differential operator in (1.9) reads (with κ > 0)

�Rg −
1

3 κ
Rg. (1.10)

Hence, the scalar curvature function Rg : M → R satisfies a nonlinear Klein-Gordon

equation. In view of (1.10), we can refer to 1/κ as the mass parameter.

The study of the convergence problem “modified gravity toward Einstein gravity”,

or infinite mass problem, will require to understand the singular limit κ→ 0 in solutions

to the differential operator (1.10).

1.3.4 Dynamics of massive matter

Massive scalar field. From the twice-contracted Bianchi identities∇αRαβ = 1
2
∇βR,

the Einstein tensor as well as the modified gravity tensor are easily checked to be

divergence free, that is,

∇αGαβ = ∇αNαβ = 0 (1.11)

and, consequently, the following matter evolution equations hold

∇αTαβ = 0 in (M, g). (1.12)

We are interested here inmassive scalar fields φ : M → R corresponding to the following

energy-momentum tensor:

Tαβ := ∇αφ∇βφ−
(1
2
∇γφ∇γφ+ U(φ)

)
gαβ, (1.13)

in which the potential U = U(φ) is a prescribed function depending on the nature of

the matter field under consideration.
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Nonlinear Klein-Gordon equation. By combining (1.12) and (1.13), we see that

the field φ satisfies a nonlinear Klein-Gordon equation associated with the unknown

curved metric g:

�gφ− U ′(φ) = 0 in (M, g), (1.14)

which is expected to uniquely determine the evolution of the matter (after prescribing

suitable initial data). Throughout, we assume that

U(φ) =
c2

2
φ2 + O(φ3). (1.15)

for some constant c > 0, referred to as the mass of the scalar field.

For instance, with the choice U(φ) = c2

2
φ2, (1.14) is nothing but the Klein-Gordon

equation �gφ − c2φ = 0, which would be linear for a known metric g. However, our

challenge is precisely to understand the nonlinear coupling problem when the metric

g itself is one of the unknowns and is given by solving (1.3) or (1.7) (with suitably

prescribed initial data).

2 The initial value formulation

2.1 The Cauchy problem for the Einstein equations

2.1.1 Einstein’s constraint equations

We begin with a discussion of the initial value problem for Einstein’s field equations

coupled with a massive scalar field and, next, present our generalization to the f(R)-

field equations.

The formulation of the initial value problem for the Einstein equations is based

on the prescription of an initial data set, denoted here by
(
M0, g0, k0, φ0, φ1

)
, which

provides us with the intrinsic and extrinsic geometry of the initial hypersurface (i.e.

the induced metric and the second fundamental form of the hypersurface), and with

the matter variables on this hypersurface, denoted here by (φ0, φ1), which provide us

with the initial value of the scalar field and its Lie derivative in the timelike direction

(normal to the hypersurface).

Importantly, such an initial data cannot be chosen arbitrarily, but must satisfy

certain constraint conditions of Gauss-Codazzi-type. We assume that the spacetime
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under consideration is foliated (at least locally, for the sake of this argument) by a

time function t : M → [1,+∞), so that a local chart can be expressed as (t, xa) with

a = 1, 2, 3. Obviously, a solution to (1.2) may exist only if, in these coordinates, at

least the equations1

G00 = 8πT00, G0a = 8πT0a, (2.1)

are satisfied. However, these four equations turn out to involve only the induced metric

and second fundamental form to the initial hypersurface
{
t = 1

}
as well as matter data.

This motivates the introduction of the following definition.

Observe that the following definition does not require any topological or asymptotic

assumptions on the data.

Definition 2.1. An initial data set for the Einstein-massive field system (1.2) consists

of data (M0, g0, k0, φ0, φ1) satisfying the following conditions:

• M0 is a 3−dimensional manifold, endowed with a Riemannian metric g0 and a

symmetric (0, 2)-tensor field k0.

• φ0 and φ1 are scalar fields defined on M0.

• The so-called Hamiltonian constraint holds:

R0 − k0,abk
ab
0 + (ka0,a)

2 = 8π
(
∇0,aφ0∇a

0φ1 + (φ1)
2 + 4U(φ0)

)
, (2.2)

in which R0 = Rg0 denotes the scalar curvature of the Riemannian metric g0 and

∇0 denotes its Levi-Civita connection.

• The so-called momentum constraints hold:

∇0,bk
a
0,a −∇0,ak

a
0,b =8π φ1∇0,bφ0. (2.3)

Of course, the indices in (2.2) and (2.3) are raised or lowered with the metric g0,

so that for instance k0,abk
ab
0 = gaa

′

0 gbb
′

0 k0,abk0,a′b′′ and ∇0,aφ0∇a
0φ1 = g0

ab∇0,aφ0∇0,bφ1.

1The remaining equations Gab = 8πTab provide us with genuine evolution equations.
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2.1.2 Einstein’s Cauchy developments

A geometric notion of solution. Relying on Definition 2.1, we can now formulate

the Cauchy problem, as follows. (In the following, we focus on the future evolution of

the data so that M0 is taken to be the past boundary of the spacetime.)

Definition 2.2. Given an initial data set (M0, g0, k0, φ0, φ1), the initial value problem

for the Einstein equations consists of finding a Lorentzian manifold (M, g) (endowed

with a time-orientation) and a scalar field φ : M → R such that:

• (M, g) satisfies Einstein’s field equations (1.2)-(1.3)-(1.13).

• There exists an embedding i : (M0, g0) → (M, g) with pull-back metric i∗g = g0
and second fundamental form k0, so one can write M0 ⊂ M.

• The field φ0 coincides with the restriction φ|M0, while φ1 coincides with the Lie

derivative Lnφ|M0, where n denotes the unit future-oriented normal along M0.

A solution satisfying the conditions in Definition 2.8 is referred to as Einstein’s

Cauchy development of the initial data set (M0, g0, k0, φ0, φ1). Moreover, by definition,

a globally hyperbolic development is a solution such that every inextendible causal

curve (whose tangent vector is either timelike or null) meets the initial hypersurface

exactly once. Furthermore, by analogy with the theory of ordinary differential equa-

tions, one actually seek for the maximal development associated with a given initial

data set. These notions were introduced in Choquet-Bruhat together with Geroch [29];

see [44] and the textbook [30] for further details.

The main challenge of the gravitation theory. In general relativity, the main

mathematical chalenge is to determine, at least for certain classes of initial data sets,

the global geometry of the Cauchy developments. It is known that solutions can

become “singular” and the evolution may lead to the formation of trapped surfaces

and eventually to the formation of black holes. (Cf. the textbook by Hawking and Ellis

[58].)

It is natural to restrict this problem to initial data sets that are perturbations of

particular solutions and, of course, the Minkowski geometry stands out as the ground

state of the theory of gravity. By considering perturbations of Minkowski spacetime,

19



possibly in presence of matter as we do in this Monograph, the challenge is to establish

that the Cauchy developments in Definition 2.2 are geodesically complete in future

timelike directions. This means that a timelike geodesic can be extended for arbitrary

large values of its affine parameter. From a physical standpoint, in such a spacetime,

an observer (represented by a timelike curve) can live forever and its proper time may

approach infinity.

2.2 The formulation of the f(R)-gravity theory

2.2.1 Evolution of the scalar curvature

A new unknown metric. Next, we turn our attention to the f(R)-field equations

(1.7) which, as we already pointed out, are fourth-order in the metric g. Remarkably,

these equations can be conformally transformed to a third-order form, as follows.

Definition 2.3. The (unphysical) conformal metric g† associated with a solution (M, g)

to the f(R)-field equations (1.7) is defined from the (physical) metric g by setting

g†αβ = eκρgαβ , ρ =
1

κ
ln(f ′(Rg)), (2.4)

in which the conformal factor ρ : (M, g) → R is referred to as the scalar curvature

field.

In view of (1.6), we have f ′(R) ≃ 1 + κR, so that the field ρ approaches the scalar

curvature R in the limit κ → 0. Denoting by ∇† and �g† the Levi-Civita connection

and wave operator associated with the conformal metric g†, respectively, the trace

equation (1.9) yields us

3�g†f
′(Rg) = 8πe−κρgαβTαβ + e−κρ

(
2f(Rg)− f ′(Rg)Rg

)
− 3κ2gαβ∇αρ∇βρ.

It is straightforward to check the identity

�g†f
′(Rg) =�g†e

κρ = eκρ
(
κ�g†ρ− κ2 g†

αβ∇†
αρ∇†

βρ
)
,

and we therefore obtain

3κ�g†ρ = 8πe−2κρg†
αβ
Tαβ + e−2κρ

(
2f(Rg)− f ′(Rg)Rg

)
. (2.5)
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A Klein-Gordon equation. To better extract the structure of the equation (2.5),

it is then convenient to introduce the following notation:

• We set

f0(s) :=
f(R)

f ′(R)2
, f1(s) :=

f(R)− f ′(R)R

f ′(R)2
,

e2κs := f ′(R), R ∈ R.

(2.6)

• The Legendre transform of the function f , by definition, reads

f ∗(y) := sup
R∈R

y R − f(R)

=f ′(R(y))R(y)− f(R(y)), f ′(R(y)) = y = eκs.
(2.7)

Hence, we find

f1(s) = −e−2κs f ∗(eκs), s ∈ R

and thus the last term in (2.5) reads

e−4κρ
(
2f(Rg)− f ′(Rg)Rg

)
= f0(ρ) + f1(ρ) =: ρ+ f2(ρ). (2.8)

We can thus rewrite (2.5) as follows.

Proposition 2.4. With the notation above, the f(R)-field equations (1.7) imply the

following Klein-Gordon equation for the curvature field

3κ�g†ρ− ρ = f2(ρ) + 8πe−κρg†
αβ
Tαβ, (2.9)

in which f2(ρ) = κO(ρ2) is of quadratic order at least, as follows from (1.6).

2.2.2 Field equations for the conformal metric

Modified gravity tensor. Next, rewriting (1.8) as

Nαβ =eκρRαβ −
1

2
f(R)gαβ + κeκρ

(
gαβ �g −∇α∇β

)
ρ

+ κ2eκρ
(
gαβg(∇ρ,∇ρ)−∇αρ∇βρ

)
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and, recalling the conformal transformation formula for the Ricci curvature

Rαβ = R†
αβ +∇α∇βρ−

κ2

2
∇αρ∇βρ+

κ

2

(
�gρ+ κg(∇ρ,∇ρ)

)
gαβ,

we obtain

Nαβ =eκρR†
αβ −

3κ2

2
eκρ∇αρ∇βρ+

3κ

2
eκρgαβ�gρ

+
3κ2

2
e2κρgαβg(∇ρ,∇ρ)−

1

2
f(R)gαβ.

(2.10)

The trace of this tensor reads

tr (N) =f ′(R)R− 2f(R) + 3�gf
′(R)

=f ′(R)R− 2f(R) + 3κe2κρ�g†ρ+ 3κ2eκρg(∇ρ,∇ρ)

and, therefore, from (2.10) we deduce that

3κe2κρ�g†ρ =
1

2
tr (Ng) + f(R)− R

2
f ′(R)− 6κ2e2κρg(∇ρ,∇ρ).

Hence, the identity (2.10) is equivalent to saying

Nαβ −
1

2
gαβtr (N) = e2κρR†

αβ +
1

2

(
f(R)− Rf ′(R)

)
gαβ − 6κ2e2κρ∇αρ∇βρ. (2.11)

In view of this relation, we have reached the following.

Proposition 2.5. With the notation above, the f(R)-field equations (1.7) take the

equivalent form

e2κρR†
αβ − 6κ2 e2κρ∇†

αρ∇†
βρ−

1

2
f1(ρ) g

†
αβ = 8π

(
Tαβ −

1

2
g†αβg

†α′β′

Tα′β′

)
, (2.12)

which will be referred to as the conformal field equations of the f(R)-gravity theory

and in which f1(ρ) = κO(ρ2) is of quadratic order.

A third-order modification of Einstein equations. At this stage, the following

observations are in order:

• Our reduced equations involve up to three derivatives of the new metric, only.
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• The expression (2.12) contains

– Ricci curvature terms,

– only up to first-order derivatives of the scalar curvature,

– but no other third-order derivatives,

– nor fourth-order derivative of the new metric.

• Also, it is easy to compute the limit κ → 0 in (2.12) and, since f(r) → r and

f1(r) → 0, we obtain g → g†,

ρ→ R,

R†
αβ − 6κ2∇†

αρ∇†
βρ+

1

2
e−4κρf ∗(e2κρ) g†αβ → Rαβ

(2.13)

and in this limit (2.12) are nothing but Einstein’s equations

R†
αβ = 8πTαβ − 4πgαβ

(
gα

′β′

Tα′β′

)
. (2.14)

2.2.3 The conformal field formulation of f(R)-gravity

Coupling to matter fields. Although the vacuum f(R)-equations are interesting

in their own sake, in our analysis we also allow for the coupling with a massive scalar

field, denoted again by φ and described by the same energy-momentum tensor (1.13).

In the physics literature, the f(R)-equations (1.7)-(1.13) are referred to as the Jordan

coupling.

On the other hand, we point out that the alternative formulation of the matter

model in which the physical metric is replaced by the conformal metric leads to an ill-

posed evolution problem; see [89] for more details. We also point out that it would not

be difficult to generalize the nonlinear stability theory established in this Monograph

and encompass the coupling with a massless scalar field.

A summary. In summary, in terms of the conformal metric g† defined in (2.4), the

field equations of modified gravity (1.7) contain only up to third-order derivatives of

the metric g† and read

R†
αβ − 6κ2 ∂αρ∂βρ+

1

2
e−4κρf ∗(e2κρ) g†αβ

= 8π
(
e−2κρ∇†

αφ∇†
βφ+ e−4κρU(φ) g†αβ

)
,

(2.15)
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while the scalar curvature field ρ : M → R satisfies

3κ�g†ρ− ρ = f2(ρ)− 8π
(
g†
αβ∇†

αφ∇†
βφ+ 4e−2κρU(φ)

)
, (2.16)

and the matter field φ : M → R satisfies

�̃g†φ− c2φ = c2
(
e−κρ − 1

)
φ+ κg†

αβ
∂αφ∂βρ. (2.17)

The following definition (cf. [89]) is motivated by the fact that the compatibility

condition ρ = 1
2κ

ln(f ′(Rg)) does hold throughout the spacetime, provided it holds

(together with a timelike Lie derivative of this condition) on a Cauchy hypersurface.

This property is stated in Proposition 2.9, below, after introducing a suitable notion

of Cauchy development.

Definition 2.6. The conformal field formulation of f(R)-gravity consists of

• the equations (2.15)–(2.17), which provide one with a second-order system in

(g†, ρ, φ),

• together with the defining condition relating ρ to the spacetime scalar curvature

Rg of the physical metric gαβ = e−2κρg†αβ:

ρ =
1

2κ
ln(f ′(Rg)). (2.18)

2.3 The Cauchy problem for the f(R)-field equations

2.3.1 The f(R)-constraint equations

Since ρ satisfies a second-order evolution equation, we may anticipate that, similarly to

what we did for the matter field φ, two initial data for ρ are required for formulating the

initial value problem. Indeed, the formulation of the initial value problem associated

with the f(R)-equations requires an initial data set
(
M0, g0, k0, R0, R1, φ0, φ1

)
which,

in addition to the intrinsic and extrinsic geometry and matter content, also provides

us with the spacetime scalar curvature, denoted by R0, and its Lie derivative in time

R1. Observe again that the following definition is very general and does not require

any topological or asymptotic assumptions.
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Definition 2.7. An initial data set for modified gravity consists of data

(M0, g0, k0, R0, R1, ρ0, ρ1)

satisfying the following conditions:

• M0 is a 3−dimensional manifold, endowed with a Riemannian metric g0 and a

symmetric 2-covariant tensor field k0.

• R0 and R1 denote two scalar fields defined on M0, which represent the scalar

curvature field and a timelike Lie derivative of this field.

• φ0 and φ1 denote two scalar fields defined on M0, which represent the matter field

and a timelike Lie derivative of this field.

• In terms of the conformal metric g†0 and the conformal second fundamental form

k†0 defined (by analogy with (2.4)) by

g†0,αβ := f ′(R0)g0,αβ,

k†0,αβ := f ′(R0)k0,αβ + f ′′(R0)R1g0,αβ,
(2.19)

the Hamiltonian constraint of modified gravity holds:

R†
0 − g†

aa′

0 g†
bb′

0 k
†
0,abk

†
0,a′b′ + (kb0,b)

2

= 8π e−κρ0
(
g†0
ab∇†

0,aφ0∇†
0,bφ0 + (φ1)

2 + 4e−κρ0U(φ0)
)

+ 6κ2(ρ1)
2 + 6κ2g†0

ab∇†
0,aρ0∇†

0,bρ0 − e−2κρ0f ∗(e2κρ0),

(2.20)

in which R†
0 denotes the scalar curvature of the Riemannian metric g†0, and ∇†

0

is the corresponding Levi-Civita connection.

• The momentum constraints of modified gravity hold:

∇†
0bk

†a
0a −∇†

0ak
†a
0b =8π e−κρ0 φ1∇†

0,bφ0 + 6κ2ρ1∇†
0,bρ0. (2.21)
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2.3.2 The notion of f(R)-Cauchy developments

We are now able to generalize Definition 2.2 (which concerned the Einstein equations),

as follows.

Definition 2.8. Given an initial data set (M0, g0, k0, R0, R1, φ0, φ1) as in Definition 2.7,

the initial value problem for modified gravity consists of finding a Lorentzian manifold

(M, g) (endowed with a time-orientation) and scalar fields ρ, φ defined on M such that:

• The field equations of modified gravity (1.7)-(1.8)-(1.13) are satisfied.

• There exists an embedding i : (M0, g0) → (M, g) with pull-back metric i∗g = g0
and second fundamental form k0, hence one can write M0 ⊂ M.

• The field ρ0 coincides with the restriction ρ|M0, while ρ1 coincides with the Lie

derivative Lnρ|M0, where n denotes the unit future-oriented normal to M0.

• The scalar fields φ0 and φ1 coincide with the restriction of φ and its Lie derivative

Lnφ on M0, respectively.

A solution satisfying the conditions in Definition 2.8 is referred to as a modified

gravity Cauchy development of the initial data set (M0, g0, k0, R0, R1, φ0, φ1). The no-

tion of maximally hyperbolic development then follows by straightforwardly extending

the definition in Choquet-Bruhat [30]. In comparison with the classical gravity the-

ory, the modified gravity theory has two extra degrees of freedom specified from the

two additional data (R0, R1). Similarly as in classical gravity, these fields cannot be

arbitrarily prescribed and suitable constraint equations must be assumed, as stated by

(2.20)-(2.21).

The following observations are in order:

• From Definition 2.8, in the special case of vanishing geometric data R0 = R1 =

φ0 = φ1 ≡ 0 we recover the classical formulation in Definition 2.8.

• On the other hand, by taking a vanishing matter field φ ≡ 0 but non-vanishing

geometric data (R0, R1), the spacetimes in Definition 2.8 generally do not satisfy

Einstein’s vacuum equations.
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2.3.3 Equivalent formulation in the conformal metric

All of the above notions could be equivalently stated in terms of the conformal metric

g†, while regarding the field ρ as an independent unknown. This standpoint is justified

by the following property of the f(R)-field equations [89].

Proposition 2.9. If (M, g†, ρ, φ) is a Cauchy development to the augmented conformal

system of modified gravity (2.15)-(2.16)-(2.17), then by introducing the physical metric

gαβ = e−2κρg†αβ,

the condition

ρ =
1

2κ
ln(f ′(Rg)) (2.22)

holds throughout the spacetime M, provided it holds on the initial Cauchy hypersurface

M0 and the same identity also holds for the normal time Lie derivative on M0.

While the conformal formulation will play an essential role in the forthcoming

proofs, as far as the statements of our main results are concerned it is more natural to

give statements in the physical metric g rather than in the unphysical metric g†., as we

have done in this section. However, let us also observe that the scalar curvature data

R0, R1 can be equivalently replaced by initial data ρ0, ρ1 with the correspondence:

ρ0 =
1

κ
ln(f ′(R0)), ρ1 =

1

κ

f ′′(R0)

f ′(R0)
R1. (2.23)
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Part II

Nonlinear stability statements

3 The global stability of Minkowski space

3.1 Initial data sets of interest

3.1.1 Minkowski and Schwarzschild spacetimes

Minkowski metric. We are interested in solving the initial value problem when the

initial data sets represent perturbations of a flat hypersurface in Minkowski spacetime.

The initial data sets are assumed to have the topology of R3 and be covered by a single

coordinate chart denoted by x = (xa) = (xa) ∈ R3 with a = 1, 2, 3. Our spacetimes

will also be endowed with a foliation determined by a global time function denoted by

t :M 7→ [1,+∞) in which
{
t = 1

}
represents the initial hypersurface. It is convenient

also to define the radial vector (ωa) and the radius r > 0 by

ωa :=
xa
r
, r2 :=

3∑

a=1

(xa)2. (3.1)

Recall first that, in standard Cartesian coordinates (which are also wave coordi-

nates, in the sense (4.2) below), the Minkowski metric gM reads

gM = (gM,αβ) = −dt2 +
3∑

a=1

(dxa)2

= −dt2 + (gM,ab) = −dt2 + (δab).

(3.2)

We also use the notation

gM,0 = (δab) (3.3)

to denote the restriction of the Minkowski metric on t = 1.
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Schwarzschild metric. By the positive mass theorem [115, 139], a metric coinciding

with the flat metric outside a compact region necessarily coincides with the Minkowski

metric. Hence, only mild decay in spacelike directions is compatible with the Einstein

equations.

Given any parameter mS > 0, consider next the so-called Schwarzschild metric

defined for r > mS by its components

gS,00 = −r −mS

r +mS
,

gS,0a = 0,

gS,ab =
r +mS

r −mS

ωaωb +
(r +mS)

2

r2
(δab − ωaωb),

(3.4)

in which we use the notation (3.1). This metric represents the geometry of a spherically

symmetric and static black hole with mass mS > 0 and, more precisely, the domain of

outer communication of this solution to the vacuum Einstein equations. As observed

in [7], the formulas (3.4) provide the metric in wave coordinates (cf. (4.2) below).

Furthermore, the restriction of the Schwarzschild metric to a hypersurface of con-

stant time t = and the corresponding second fundamental form kS,ab of this hypersur-

face satisfy

gS,ab ≃
(
1 +

2mS

r

)
δab + (mS)

2O(r−2), r → +∞,

kS,ab = 0,
(3.5)

since the coefficients in (3.4) is independent of t.

For our purpose, the Schwarzschild metric only tells us about the asymptotic be-

havior at spacelike infinity which is compatible with the constraint equations and,

therefore, physically admissible. We conclude that (3.5) is the typical asymptotic be-

havior that our global stability theory should cover. In fact, our framework will be

more general and will include (3.5) as a special case.

3.1.2 The class of initial data sets of interest

Asymptotically tame data. We begin by presenting our sup-norm conditions which

play a special role in the present work and have no analogue within the standard global

existence theory for nonlinear wave equations. These conditions concern the geometry
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of the initial hypersurface but not the matter and curvature components of the initial

data sets. In addition the conditions below, “small energy” conditions will be also

required on the initial data sets (cf. (3.11) and (3.12), below).

Definition 3.1. Let ǫ > 0 and σ ∈ [0, 1/2) be given parameters and N be an integer.

An initial data set

(M0 ≃ R3, g0, k0, φ0, φ1) (as in Definition 2.2)

or (M0 ≃ R3, g0, k0, R0, R1, φ0, φ1) (as in Definition 2.8)

is said to be (σ, ǫ, N)–asymptotically tame if in a coordinate chart (xa) = (r, ωA)

(with r = |x| and A = 1, 2) the components of the metric h0 = g0 − δ and the 2-tensor

field k

hrr0 :=
1

r2
h0,abx

axb, kA0,A :=
1

r2
k0,ab

(
δab − xaxb

)
, (3.6)

satisfy the decay conditions for all r = |x| . R:

|∂Ihrr0 (x)| ≤ ǫ (1 + r)−|I|−1+σ, |I| ≤ N + 1,

|∂IkA0,A(x)| ≤ ǫ (1 + r)−|I|−2+σ, |I| ≤ N,
(3.7)

1

1 +R

∣∣∣
∫

SR(x)

(
hrr0 (y), (y − x)∇hrr0 (y), R kA0,A(y)

)
dσ(y)

∣∣∣ ≤ ǫ, (3.8)

over the sphere SR(x) :=
{
y ∈ R3 / |x− y| = R

}
.

Examples of initial data sets. Other formulations of our asymptotic decay con-

ditions will be provided and discussed below. At this stage, let us mention that it

is straightforward to check that the Schwarzschild metric does satisfy both conditions

(3.7) and (3.8) with σ = 0 while ǫ can be taken to be a multiple of the massmS (arising

in (3.5)). Our theory for the stability of Minkowski spacetime for instance applies to

this important class of metrics with Schwarzschild-like behavior. Our decay conditions

in (3.7) allow for a decay at a slower rate in comparison to the Schwarzschild metric.

For instance let us recall that the condition σ < 1/2 suffices in order for the ADM

mass to be well-defined. Observe also that the decay (3.7) is guaranteed in [28] for a

broad class of data sets with σ possibly arbitrarily close to 1.
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3.2 Three main results of nonlinear stability

3.2.1 The Einstein theory

The global existence statement. The first mathematical result concerning the

local-in-time existence for the Einstein equations (possibly coupled to matter fields)

was established by Choquet-Bruhat in 1952 and in subsequent works; see the textbook

[30] and the references therein. Solutions are defined according to Definition 2.2.

Several theorems that are global-in-nature are established in this work.

We begin with our existence statements. The initial data are assumed to have small

“energy” defined as a weighted Sobolev-type norm which involves the Killing fields of

Minkowski spacetime. As far as the initial data sets are concerned, in addition to the

spatial translations corresponding to the vector fields

∂a, a = 1, 2, 3, (3.9)

we also rely on the spatial rotations corresponding to the vector fields

Ωab := xb∂a − xa∂b, a, b = 1, 2, 3. (3.10)

The notation ∂I1ΩI2 is used in which I1 and I2 are multi-indices in 1, 2, 3.

Theorem 3.2 (Nonlinear stability of Minkowski space for self-gravitating massive

fields). For all sufficiently small ǫ > 0 and all sufficiently large integer N , one can find

σ, η > 0 depending upon (ǫ, N) so that the following property holds.

Consider any (σ, ǫ, N)–asymptotically tame initial data set (cf. Definitions 2.2 and

3.1) for the Einstein-massive field system (1.2), i.e.

(M0 ≃ R3, g0, k0, φ0, φ1),

which is assumed to be sufficiently close to a flat and vacuum spacelike slice of Minkowski

spacetime (R3+1, gM) in the sense that, in a global coordinate chart x = (xa) with

r = |x|,
‖(1 + r)η+|I|ZI∂(g0 − gM,0)‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|ZIk0‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|+1/2ZIφ0‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|+1/2ZIφ1‖L2(R3) ≤ ǫ,

(3.11)
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for all ZI = ∂I1ΩI2 with |I1|+ |I2| ≤ N , in which gM,0 = (δab). Then, the corresponding

initial value problem associated with (1.2) admits a globally hyperbolic Cauchy devel-

opment (M, g, φ), which is future causally geodesically complete1 and asymptotically

approaches Minkowski spacetime.

Properties of the solutions. The following observations should be made:

• In our proof we will establish energy and sup-norm estimates on the difference

g − gM , which show that the spacetime metric and the Minkowski metric are

globally close to each other and the difference tends to zero in causal and spacelike

directions.

• For instance, for the Schwarzschild metric (in the domain of outer communication

away from the horizon), the energy (3.11) is finite and, therefore, our theorem

applies to metrics that have a Schwarzschild-like decay (3.5) at spacelike infinity.

• In comparison with the geometric data (g0, k0), a stronger decay is assumed on

the matter data (φ0, φ1). Analyzing a possible long-range effect2 in these fields

is out of the scope of the present work.

Remark 3.3. Our proof will use the radial part of the spacetime boosts, defined as

Lr := t∂r + r∂t. Our energy functional will be formulated in terms of the derivatives

∂αh of the spacetime correction h := g − gM , and the weight arising in the first two

inequalities in (3.11) will be motivated from the following schematic calculation:

∂IαL
J
r ∂(g − gM)|M0 ≃ ∂Iα∂

J
r ∂(g − gM)|M0 + (1 + r)|J |∂Iα∂

J
t ∂(g − gM)|M0

≃ (1 + r)|J |∂I∂J∂(g0 − gM,0) + (1 + r)|J |∂I∂Jk0.

3.2.2 The theory of f(R)-gravity

The method leading to Theorem 3.2 can be generalized in order to establish the fol-

lowing result in which κ is viewed as a fixed parameter.

1We recall that a future causally geodesically complete spacetime, by definition, has the property

that every affinely parameterized geodesic (of null or timelike type) can be extended toward the future

(for all values of its affine parameter).
2This question was recently studied in [24, 123] for 1 + 1 scalar equations.
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Theorem 3.4 (Nonlinear stability of Minkowski space in modified gravity). Let f =

f(R) be a function satisfying the condition (1.6) for some κ ∈ (0, 1). For all sufficiently

small ǫ > 0 and all sufficiently large integer N , one can find σ, η depending upon (ǫ, N)

so that the following property holds.

Consider any (σ, ǫ, N)–asymptotically tame initial data set (cf. Definitions 2.8 and

3.1) for the field equations of modified gravity (1.7), i.e.

(M0 ≃ R3, g0, k0, R0, R1, φ0, φ1),

which is assumed to be sufficiently close to a flat spacelike slice of Minkowski spacetime

(R3+1, gM) in the sense that, in a global coordinate chart x = (xa) with r = |x|,

‖(1 + r)η+|I|ZI∂(g0 − gM)‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|ZIk0‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|+1/2ZIR0‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|+1/2ZIR1‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|+1/2ZIφ0‖L2(R3) ≤ ǫ,

‖(1 + r)η+|I|+1/2ZIφ1‖L2(R3) ≤ ǫ

(3.12)

for all ZI = ∂I1ΩI2 with |I1|+ |I2| ≤ N . Then, the corresponding initial value problem

associated with (1.7) admits a globally hyperbolic Cauchy development (M, g, φ), which

is causally geodesically complete and asymptotically approaches Minkowski spacetime.

More precise versions of our existence results will be stated in Section 5, after

introducing a spacetime foliation and weighted Sobolev-type energy norms adapted to

our problem. (Cf. Theorems 5.1 and 5.2.)

3.2.3 The infinite mass problem

The nonlinear function f(R). In order to study the limit f(R) → R, we will

be able to specify the dependency of our estimates with respect to the parameter

κ ∈ (0, 1):

• We are primarily interested in the quadratic action
∫

M

(
Rg +

κ

2
(Rg)

2 + 16πL[φ, g]
)
dVg, (3.13)
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which is most often considered in the physics literature (and corresponds to a

vanishing right-hand side in (3.14) below).

• More generally, expanding the function f at the origin we can assume that, in

some interval [−r∗, r∗] at least,
∣∣∣ d

n

drn

(
f(r)− r − κ

2
r2
)∣∣∣ . κn+2r3, r ∈ [−r∗, r∗], (3.14)

at any order n = 0, . . . ,M up to a sufficiently large (but fixed) M .

Hence, the pointwise convergence property f(R) → R is equivalent to the condition

that κ converges to zero.

Resolution of the singular limit problem. Our convergence statement below

addresses the fundamental question of the mathematical consistency of the modified

gravity theory: the field equations admit a well-defined limit κ → 0 and we recover

the Einstein theory. Our theorem applies to a sequence of initial data sets for the

f(R)-theory which is assumed to satisfy suitable κ-independent uniform bounds (to be

specified later).

Theorem 3.5 (Convergence of the modified gravity theory toward Einstein’s gravity

theory). Suppose that the condition (3.14) holds. Then, in the limit κ → 0 when

the defining function f(R) arising in the generalized action (1.5) approaches the scalar

curvature function R, the Cauchy developments (M, g, φ) of f(R)-modified gravity given

by Theorem 3.4 converge to Einstein’s Cauchy developments given by Theorem 3.2.

4 The wave-Klein-Gordon formulation in EH folia-

tions

4.1 A class of wave-Klein-Gordon systems

4.1.1 Gauge freedom

Choosing the coordinate functions. Since the field equations under considera-

tion are geometric in nature, it is essential to fix the degrees of gauge freedom before
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tackling any stability issue from the perspective of the initial value problem for partial

differential equations. As already pointed out, our analysis relies on a single global

coordinate chart (xα) = (t, xa) and, more specifically, on a choice of coordinate func-

tions xα satisfying the homogeneous linear wave equation in the unknown metric. This

means that we impose that the functions xα : M → R satisfy the so-called wave gauge

conditions (α = 0, 1, 2, 3)

�gx
α = 0 for the Einstein field equations, (4.1)

and, more generally, these functions are chosen to satisfy the conformal wave gauge

conditions as we call them here (α = 0, 1, 2, 3)

�g†x
α = 0 for the f(R)-field equations. (4.2)

Second-order systems. In such a gauge, we obtain a nonlinear system of second-

order partial differential equations with second-order constraints, as follows:

• For the Einstein theory, the unknowns are the metric coefficients gαβ in the chosen

coordinates together with the scalar field φ. It is well-known that the constraints

are preserved during the time evolution [30].

• For the f(R)-theory, the unknowns are also the conformal metric coefficients

g†αβ , the scalar curvature field ρ, and the matter field φ. It was established in

[89] that the associated constraints are preserved during the time evolution.

In the present section, we write the equations in a schematic form, while the al-

gebraic structure of this system of nonlinear and coupled equations will be analyzed

in further details later in Part V. In the case of Einstein’s gravity theory and a mass-

less scalar field, we recover the nonlinear structure exhibited first by Lindblad and

Rodnianski [94].

4.1.2 The formulation in coordinates

Christoffel symbols and Ricci curvature. Following [89], we thus choose coordi-

nate functions xα satisfying (4.2) or, equivalently,

Γ†α = g†
αβ
Γ†λ

αβ = 0, (4.3)
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in terms of the Christoffel symbols of the conformal metric g†:

Γ†λ
αβ =

1

2
g†
λλ′(

∂αg
†
βλ′ + ∂βg

†
αλ′ − ∂λ′g

†
αβ

)
. (4.4)

We also introduce the modified wave operator

�̂† = �̂g† := g†
α′β′

∂α′∂β′ , (4.5)

which, in the coordinates under consideration, coincides with the geometric wave op-

erator whenever the conditions (4.3) are enforced.

While we postpone the discussion of the expression of the Ricci curvature to Propo-

sition 13.1, below, let us just recall here that the Ricci curvature reads

R†
αβ = ∂λΓ

†λ
αβ − ∂αΓ

†λ
βλ + Γ†λ

αβΓ
†δ
λδ − Γ†λ

αδΓ
†δ
βλ, (4.6)

which is second-order in the unknown metric. The functions Fαβ = Fαβ(g
†, ∂g†) arising

in (4.7) below represent the quadratic nonlinearities of the Ricci curvature.

The nonlinear wave system. The following formulation is explained further in

Section 4.1.4, below.

Proposition 4.1 (The f(R)-gravity equations in conformal wave gauge). In the con-

formal wave gauge (4.3), the field equations of modified gravity (1.7) for a massive

field φ satisfying (1.13) take the following form of a nonlinear system of 11 coupled

wave and Klein-Gordon equations for the conformal metric components g†αβ, the scalar

curvature field ρ, and the matter field φ:

�̂†g†αβ = Fαβ(g
†, ∂g†) + Aαβ +Bαβ ,

3κ �̂†ρ− ρ = Wκ(ρ)− σ,

�̂†φ− U ′(φ) = 2κ g†
αβ
∂αρ∂βφ,

(4.7)

in which
Aαβ := −3κ2∂αρ∂βρ− Vκ(ρ)g

†
αβ ,

Bαβ := 16π
(
− e−κρ∂αφ∂βφ+ U(φ)e−2κρ g†αβ

)
,

σ := 8πe−κρ
(
g†
αβ
∂αφ∂βφ+ 4 e−κρU(φ)

)
,

(4.8)

for some nonlinear functions Vκ = Vκ(ρ) and Wκ =Wκ(ρ).
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The algebraic and differential constraints. We observe the following:

• The functions Vκ andWκ are quadratic, since (with the notation ρ = 1
κ
log f ′(R))

Vκ(ρ) :=
f(R)− Rf ′(R)

f ′(R)2
= −κ

2
ρ2 + κ2O(ρ3),

Wκ(ρ) := 6
Vκ(ρ)

f ′(R)
− ρ+

f(R)

f ′(R)2
= κO(ρ2).

(4.9)

• The system (4.7) is also supplemented with the algebraic constraint on the scalar

curvature, that is,

ρ =
1

κ
log f ′(Rg), g†αβ = eκρgαβ . (4.10)

• It must as well be supplemented with the gauge wave constraints (4.3)-(4.4), and

the Hamiltonian and momentum constraints of modified gravity (2.20)-(2.21).

4.1.3 The formal limit toward Einstein’s equations

In the limit κ → 0 we can formally recover the Einstein equations since we find

f(R) → R and g† → g, so that

Aαβ → 0,

Bαβ → 16π
(
− ∂αφ∂βφ+ U(φ) g†αβ

)
.

(4.11)

Moreover, the wave equation for ρ yields us (again formally)

ρ→ 8π
(
gαβ∇αφ∇βφ+ 4U(φ)

)
when κ→ 0, (4.12)

which is the standard expression for the spacetime curvature of an Einstein-scalar field

spacetime.

Proposition 4.2 (The Einstein equations in wave gauge). In wave gauge (4.1), the

Einstein equations (1.2) for a massive field φ satisfying (1.13) take the following form

of a nonlinear system of 10 coupled wave-Klein-Gordon equations for the metric com-

ponents gαβ and the scalar field φ:

�̂gαβ =Fαβ(g, ∂g) + 16π
(
− ∂αφ∂βφ+ U(φ) gαβ

)
,

�̂φ− U ′(φ) = 0.
(4.13)
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Furthermore, the system (4.13) must be supplemented

• with the gauge wave constraints (4.3)-(4.4), that is,

Γα = gαβΓλαβ = 0,

Γλαβ =
1

2
gλλ

′(
∂αgβλ′ + ∂βgαλ′ − ∂λ′gαβ

)
,

(4.14)

• and with Einstein’s Hamiltonian and momentum constraints (2.2)-(2.3).

4.1.4 Derivation of the wave-Klein-Gordon system

We give a proof of Proposition 4.1, which relies on the previous calculations made in

[89]. We recall the following set of equations:

Ngαβ −
gαβ
2

tr (Ng) = e2ρ
♯

R†
αβ +

1

2
e2ρ

♯

gαβW
♯♯
2 (ρ♯♯)− 6e2ρ

♯♯

∂αρ
♯♯∂βρ

♯♯,

Tαβ −
1

2
gαβtr (T ) = ∂αφ∂βφ− U(φ)gαβ,

�g†ρ
♯♯ =

W2(ρ
♯♯)

6e2ρ♯♯
+
W ♯♯

3 (ρ♯♯)

6e4ρ♯♯
+

tr (Ng)

6e4ρ♯♯
,

∇†αTαβ = e−2ρ♯♯∇αTαβ + 4g†
αγ
∂γρ

♯♯Tαβ ,

�g†φ− U ′(φ) = 2 g†(∇ρ♯♯,∇φ),

(4.15)

in which, in [89], we set g†αβ = e2ρ
♯♯
gαβ for the conformal metric and ρ♯♯ = 1

2
log f ′(Rg)

is regarded as an additional unknown. The potential functionsW ♯♯
2 andW ♯♯

3 are defined

by

W ♯♯
2 (ρ♯♯) :=

f(r)− f ′(r)r

f ′(r)
,

W ♯♯
3 (ρ♯♯) := f(r), e2ρ

♯♯

= f ′(r), r ∈ R.

(4.16)

Let us define the new functions (with ρ♯♯ = 1
2
log f ′(r)):

V ♯♯
κ (ρ♯♯) :=

f(r)− rf ′(r)

f ′(r)2
, W ♯♯

κ (ρ
♯♯) :=

W ♯♯
κ (ρ

♯♯)

f ′(r)
− ρ♯♯

3κ
+

f(r)

6f ′(r)2
, (4.17)
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With the notation above and according to [89], the field equations of modified

gravity in conformal wave gauge read

�̂†g†αβ = Fαβ(g
†, ∂g†) + Aαβ +Bαβ ,

�̂†ρ♯♯ − ρ♯♯

3κ
= W ♯♯

κ (ρ
♯♯)− Σ♯♯,

�̂†φ− U ′(φ) = 2 g†
αβ
∂αρ

♯♯∂βφ,

(4.18)

where we have set

Aαβ =− 12∂αρ
♯♯∂βρ

♯♯ − V ♯
κ (ρ

♯♯)g†αβ,

Bαβ =8π
(
− 2e−2ρ♯♯∂αφ∂βφ+ 2U(φ)e−4ρ♯♯ g†αβ

)
,

Σ♯♯ =
4π

3
e−2ρ♯♯

(
g†
αβ
∂αφ∂βφ+ 4 e−2ρ♯♯U(φ)

)
.

(4.19)

Expressing the above equations in our notation, we write ρ = 2
κ
ρ♯♯ and we set Vκ(ρ) :=

V ♯♯
κ (ρ♯♯), Wκ(ρ) := 6W ♯♯

κ (ρ
♯♯), and σ := 6Σ♯♯. This is equivalent to the system stated

in Proposition 4.1.

4.2 The Euclidian-hyperboloidal foliation (EHF)

4.2.1 A decomposition of the spacetime

Three distinct regions. It remains to specify the time slicing of our spacetime.

Our choice of a foliation is based on a decomposition of the future M of the initial

hypersurface M0, which distinguishes between three regions, referred to as the interior

domain, transition domain, and exterior domain, respectively, and denoted by

M = Mint ∪Mtran ∪Mext. (4.20)

Without loss of generality, we label the initial hypersurface as
{
t = 1

}
in our global

coordinate chart (t, x1, x2, x3). Recall also that r2 =
∑

(xa)2.

After identification, we thus write

M ≃
{
t ≥ 1

}
⊂ R3+1, (4.21)

and we can use the symmetries of Minkowski spacetime and regard them as approxi-

mate symmetries for our spacetime M.

39



The symmetries of Minkowski spacetime. The vector field method we propose

in this Monograph relies on the following:

• The translations generated by the vector fields

∂α, α = 0, 1, 2, 3, (4.22)

which, for instance, will be tangent to the time slices in the exterior domain.

• The Lorentz boosts generated by the vector fields

La = xa∂t + t∂a, a = 1, 2, 3, (4.23)

which, for instance, will be tangent to the time slices in the interior domain.

• The spatial rotations generated by the vector fields

Ωab = xa∂b − xb∂a, a = 1, 2, 3, (4.24)

which will be tangent to the time slices in, both, the exterior and the interior

domains.

We refer to (4.22)–(4.24) as the family of admissible vector fieds. Importantly, these

fields commute with the wave and Klein-Gordon operators in Minkowski spacetime,

namely [
Z,�gM − c2

]
φ = 0 for all admissible fields Z, (4.25)

so that, for any solution to the wave equation or Klein-Gordon equation,

�gMφ− c2φ = f imply �gMZφ− c2Zφ = Zf, (4.26)

for any vector field Z in the list above.

Importantly, throughout our analysis we avoid to rely on Minkowski’s scaling field,

defined as

S = t∂t + r∂r, (4.27)

or, at least, we never apply this vector field to our equations, since it does not commute

with the Klein-Gordon operator in Minkowski spacetime.
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Decay of solutions. More precisely, our basic strategy is as follows:

• Within an interior domain denoted by Mint, we rely on the foliation based on the

hyperboloidal slices {
t2 − r2 = s2

}
⊂ R3+1 (4.28)

with hyperbolic radius1 s ≥ 2. These slices are most convenient in order to

analyze wave propagation issues and establish the decay of solutions in timelike

directions.

• Within an exterior domain denoted by Mext, we rely on Euclidian slices of con-

stant time c ≥ 1 {
t = c

}
⊂ R3+1.

These slices are most relevant in order to analyze the asymptotic behavior of

solutions in spacelike directions and the properties of asymptotically flat space-

times.

4.2.2 Definition of the time foliation of interest

The time function. In order to take advantage of both foliations above, we propose

to glue them together by introducing a transition region Mtran, as follows. Consider a

cut-off function χ = χ(y) (see next paragraph) satisfying

χ(y) =




0, y ≤ 0,

1, y ≥ 1,
(4.29)

which is globally smooth and is increasing within the interval (0, 1). Then, we introduce

the following transition function

ξ(s, r) := 1− χ(r + 1− s2/2) ∈ [0, 1], (4.30)

which is globally smooth and is defined for all s ≥ 1 and all r ≥ 0. It also satisfies

ξ(s, r) =




1, r ≤ −1 + s2/2,

0, r ≥ s2/2.
(4.31)

1The region s ∈ [1, 2] will require a specific treatment.
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Hence, the function ξ is not constant precisely in a transition region around the light

cone 2r ≃ s2 = t2 − r2.

Definition 4.3. The Euclidian-hyperboloidal time function is the function T = T (s, r)

defined by the following ordinary differential problem:

∂rT (s, r) = χ(s− 1)ξ(s, r)
r√

r2 + s2
,

T (s, 0) = s ≥ 1.
(4.32)

Then, by definition, the Euclidian-Hyperboloidal foliation is determined from this

time function and consists of the following family of spacelike hypersurfaces

Ms :=
{
(t, x) / t = T (s, |x|)

}
. (4.33)

Analyzing the spacetime foliation. It is convenient to also define the following

spacetime regions:

M[s0,s1] : =
{
(t, x) / T (s0, |x|) ≤ t ≤ T (s1, |x|)

}
⊂ R3+1,

M[s0,+∞) : =
{
(t, x) / T (s0, |x|) ≤ t

}
⊂ R3+1,

(4.34)

and the interior, transition, and exterior domains (with r = |x|)

Mint
s : =

{
t2 = s2 + r2, r ≤ −1 + s2/2

}
hyperboloidal region,

Mtran
s : =

{
t = T (s, r), −1 + s2/2 ≤ r ≤ s2/2

}
transition region,

Mext
s : =

{
t = T (s), r ≥ s2/2

}
Euclidian region.

(4.35)

By construction, we thus have:

• In the interior, the relation T 2 = s2 + r2 holds and the slices consist of hyper-

boloids of Minkowski spacetime.

• In the exterior, one has T = T (s) ≃ s2 which is independent of r and represents

a “slow time”, and the slices consists of flat hyperplanes of Minkowski spacetime.

One important task will be to analyze the geometric and algebraic properties of this

foliation; see Part III.
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4.2.3 Weighted Sobolev-type energy norms

In order to state our nonlinear stability theorems, we still need to define the Sobolev-

type norm of interest. We use the energy norm associated to the wave and Klein-

Gordon equations and induced on our Euclidian-hyperboloidal slices. In addition, in

the exterior domain we introduce a weight function which provides us with the required

control of the decay in spacelike directions.

Our weight depends upon the variable

q := r − t, (4.36)

that is, the distance to the light cone from the origin and so, for some η ∈ (0, 1] and

using our cut-off function (4.29), we set

ωη(t, r) := χ(q)(1 + q)η = χ(r − t)(1 + r − t)η. (4.37)

Clearly, ωη is a smooth function vanishing in
{
r < t

}
.

To any function v defined in the domainM[s0,s1] limited by two slices of our foliation

(say 1 ≤ s0 ≤ s ≤ s1), we define the (flat) energy functional

Eη,c(s, v)

:=

∫

Ms

(1 + ωη)
2
((

1− χ(1− s)2ξ2
r2

t2

)(
∂tv
)2

+
∑

a

(
ξ
xa

t
∂tv + ∂av

)2
+ c2v2

)
dx,

in which, by definition, one has t = T (s, r) and r = |x| on Ms. With the notation (see

Part III, below)

∂a := ∂aT (s, r)∂t + ∂a

= χ(1− s)ξ(s, r)
xa

T (s, r)
∂tv + ∂a,

(4.38)

we obtain the alternative form

Eη,c(s, v) =

∫

Ms

(1 + ωη)
2
(
|ζ(s, r)∂tv|2 +

∑

a

|∂av|2 + c2v2
)
dx, (4.39)

in which the coefficient ζ = ζ(s, r) ∈ [0, 1] is defined as

ζ := χ(1− s)

√
s2 + χ2(r − 1 + s2/2)r2

s2 + r2
. (4.40)
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This energy (together with its generalization to a curved metric) will lead us to a control

of the weighted wave-Klein-Gordon energy associated with the operator �v− c2v with

c ≥ 0.

The choice of the cut-off function will be presented later in Part 3.

5 The nonlinear stability in wave gauge

5.1 Main results

5.1.1 Einstein equations in wave gauge

We are now in a position to state our main results in coordinates. We treat first the

Einstein equations (1.2) in which case the physical and the conformal metrics coincide.

It is convenient to denote by

ZI := ∂I1LI2ΩI3, I = (I1, I2, I3),

an arbitrary combination of translations, boosts, and rotations, that is

∂ ∈
{
∂0, ∂1, ∂2, ∂3

}
, L ∈

{
L1, L2, L3

}
, Ω ∈

{
Ω12,Ω13,Ω23

}
. (5.1)

Theorem 5.1 (Global nonlinear stability of self-gravitating massive fields). For all suf-

ficiently small ǫ > 0 and all sufficiently large integer N , one can find σ ∈ [0, 1), η, δ ∈
(0, 1), and C0 > 0 depending upon (ǫ, N) so that the following property holds for the

Einstein-massive field equations in wave gauge (4.13) in the Euclidian-Hyperboloidal

Foliation (EHF) (cf. Definition 4.3).

Consider any (σ, ǫ, N)–asymptotically tame initial data (hαβ := gαβ − gM,αβ, φ),

prescribed on the hypersurface
{
t = 1

}
=
{
s = 1

}
and satisfying the energy bounds

Eη(1, Z
Ihαβ)

1/2 + Ec,η+1/2(1, Z
Iφ)1/2 ≤ ǫ, |I| ≤ N, (5.2)

as well as the sup-norm estimates (3.7) in Definition 3.1. Then, a global solution

(hαβ := gαβ−gM,αβ, φ) satisfying the Einstein equations (4.13) exists, which enjoys the

following bounds (for all s ≥ 1)

Eη(s, Z
Ihαβ)

1/2 ≤ C0ǫs
δ, |I| ≤ N,

Ec,η+1/2(s, Z
Iφ)1/2 ≤ C0ǫs

δ+1/2, |I| ≤ N,

Ec,η+1/2(s, Z
Iφ)1/2 ≤ C0ǫs

δ, |I| ≤ N − 4.

(5.3)
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Moreover, the spacetime (M ≃ R3, g, φ) determined by this solution is future timelike

geodesically complete.

5.1.2 The f(R)-equations in wave gauge

Next, our statement for the f(R)-theory reads as follows.

Theorem 5.2 (Global nonlinear stability for the theory of modified gravity). Let f =

f(R) be a function satisfying the condition (1.6) for some κ ∈ (0, 1). For all sufficiently

small ǫ > 0 and all sufficiently large integer N , one can find σ ∈ [0, 1), η, δ ∈ (0, 1),

and C0 > 0 depending upon (ǫ, N, κ) so that the following property holds for the f(R)-

field equations in wave gauge (4.7) in the Euclidian-Hyperboloidal Foliation (EHF)

(cf. Definition 4.3).

Consider any (σ, ǫ, N)–asymptotically tame initial data consisting of a metric hαβ :=

gαβ − gM,αβ, a scalar curvature field ρ, and a matter field φ prescribed on the hyper-

surface
{
t = 1

}
=
{
s = 1

}
and satisfying the energy bounds

Eη(1, Z
Ihαβ)

1/2 +
1

b
Eb,η+1/2(1, Z

Iρ)1/2 + Ec,η+1/2(1, Z
Iφ)1/2 ≤ ǫ, |I| ≤ N, (5.4)

in which b := κ−1/2, as well as the sup-norm estimates (3.7) in Definition 3.1. Then

a global solution (hαβ = g†αβ − g†M,αβ, ρ, φ) satisfying the f(R)-field equations in con-

formal wave gauge (4.7) exists, which enjoys the following bounds for all s ≥ 1

Eη(s, Z
Ihαβ)

1/2 ≤ C0ǫs
δ, |I| ≤ N,

Eb,η+1/2(s, Z
Iρ)1/2 ≤ C0bǫs

δ+1/2, |I| ≤ N,

Eb,η+1/2(s, Z
Iρ)1/2 ≤ C0bǫs

δ, |I| ≤ N − 4.

Ec,η+1/2(s, Z
Iφ)1/2 ≤ C0ǫs

δ+1/2, |I| ≤ N,

Ec,η+1/2(s, Z
Iφ)1/2 ≤ C0ǫs

δ, |I| ≤ N − 4.

(5.5)

Moreover, the spacetime (M ≃ R3, g†, ρ, φ) determined by this solution is future timelike

geodesically complete.

The mathematical validity of the theory of modified gravity will be justified by

establishing that our estimates can be made to be essentially independent of κ ∈ (0, 1)

and by next analyzing the convergence κ→ 0.
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Remark 5.3. 1. Note that the energy may grow in time. We will actually show that

the exponent δ = δ(ǫ) can be chosen to approach zero when the initial norms approach

zero, that is, lim supǫ→0 δ(ǫ) = 0. This type of behavior was first observed by Lindblad

and Rodnianski [95] for asymptotically flat foliations of vacuum spacetimes.

2. Sup-norm bounds will also be established for g − gM which shows that our sup-

norm conditions (3.7) in Definition 3.1 also hold within the spacetime.

5.2 A new strategy of proof: the EHF method

5.2.1 Dealing simultaneously with the Einstein and f(R)-equations

While a more technical description of our method will be given in the next parts, at

this stage we can already outline our strategy of proof.

Before we can proceed with the analysis of the Cauchy problem for the f(R)-system

we perform a conformal formulation based on the unknown scalar curvature. Namely,

as explained earlier, we propose to express the field equations and the initial value

problem in terms of a conformally equivalent metric denoted by g†. Following [89],

we supplement the field equations (1.7) with the equation (1.9) satisfied by the scalar

curvature field.

We also emphasize that Theorems 5.1 and 5.2 are going to be established simul-

taneously. We write all of our estimates in the context of the f(R)-gravity equations.

By taking κ = 0 and suppressing the equation for the scalar curvature field, we will

establish that (essentially) all of our estimates carry over to the Einstein equations. In

the last part of the analysis, we will give a proof of Theorem 3.5 by analyzing carefully

the dependency of our estimates with respect to the mass parameter κ.

5.2.2 The notion of Euclidian-Hyperboloidal Foliation (EFH)

Our method is based on distinguishing between interior and exterior spacetime do-

mains, in which different foliations are required, which we will glue together along a

transition region concentrated near the light cone from the origin in our coordinate

system.

• Interior domain. In our approach, this region Mint ⊂ M is foliated by spacelike

hypersurfaces which are (truncated) hyperboloids in Minkowski spacetime R3+1
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and coincides with the future of a truncated asymptotically hyperboloidal initial

hypersurface. We could solve the field equations globally from an initial data set

prescribed on such a hypersurface.

• Exterior domain. In our approach, this region Mext ⊂ M is foliated by

asymptotically flat hypersurfaces of M, which are flat spacelike hypersurfaces

in Minkowski spacetime R3+1. We can solve the field equations in this exterior

domain (containing spacelike infinity) by prescribing suitable initial data.

• Transition domain. These two domains are glued together by introducing a

transition region around the light cone in which the geometry of the foliation

changes drastically from begin hyperboloidal to being Euclidian in nature.

We distinguish between several frames of vector fields. The Cartesian frame ∂α,

the semi-hyperboloidal frame ∂α, as well as the null frame ∂̃a will be used at various

stages of our analysis:

• Vector fields tangent to the foliation: ∂a = (xa/t)∂t + ∂a in the interior domain

and ∂a in the exterior domain, which for instance are used in expressing the

energy estimates.

• Vector fields relevant for decomposing the metric and the nonlinearities: ∂a in

the interior domain and ∂̃a = (xa/r)∂t + ∂a in the exterior domain.

5.2.3 Main challenge and difficulties

A major challenge is to cope with the nonlinear coupling taking place between the

geometry and the matter terms of the gravity field equations, which potentially could

lead to a blow-up phenomena and prevent global existence. To proceed, we need to

handle the following difficulties:

• The Einstein equations, and more generally the f(R)–equations as we discuss

them here, do not satisfy the standard null condition. Importantly, understand-

ing the quasi-null structure of the (Einstein or f(R)) field equations is essential in

the proof and requires understanding the interplay with the wave gauge condition

and identifying certain cancellations.
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• According to the positive mass theorem, physically admissible initial data (with

the exception of Minkowski spacetime itself) must have a non-trivial tail at spa-

tial infinity which typically behaves like Schwarzschild spacetime. We include a

spatial weight ωη in our energy norm which allows to encompass this behavior.

• We will formulate a bootstrap argument and establish (uniform in κ) energy

bounds of sufficiently high order satisfied by the metric, the scalar curvature

field, and the scalar matter field. Our bootstrap involves a suitable hierarchy of

(almost optimal) energy and pointwise bounds, and distinguishes between low-

and high-order derivatives of the solutions.

5.2.4 Main technical contributions in this Monograph

We rely on basic high-order energy estimates obtained by applying the translations,

boosts, and spatial rotations of Minkowski spacetime.

• Considering a simpler model first and then analyzing the full problem of interest,

we provide a classification of the nonlinearities arising in wave-Klein-Gordon

equations and systematically we compare them with the terms we control with

our energy functional.

• By proposing a general and synthetic proof, we establish that our frames of

vector fields enjoy favorable commutator estimates in order for high-order energy

estimates to be derived, and, especially, enjoy good commutation properties with

the Killing fields of Minkowski spacetime

• We derive new Sobolev inequalities for Euclidian-hyperboloidal foliations, which

are established by studying cone-like domains first.

• We establish sharp sup-norm estimates for solutions to wave and Klein-Gordon

equations on curved spacetime, after decomposing the solution operators in suit-

able frames and building on the following three approaches: an ordinary differ-

ential equation argument along rays, a characteristic integration argument, and

Kirchhoff’s explicit formula.
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The wave gauge conditions play a central role in the derivation of energy and

pointwise bounds and especially provide a control on the components of the metric

associated with a propagation equation that does not satisfy the null condition.

Importantly, the dependency w.r.t. the mass parameter κ must be carefully traced

throughout, in order to encompass the regime κ → 0. We introduce a scaling of the

scalar curvature field which is most suitable for deriving uniform bounds and analyzing

the singular convergence κ→ 0.

5.2.5 From geometric data to wave gauge data

Wave conditions on the initial hypersurface In order to complete the formula-

tion in coordinates (4.7), we must connect the initial data required in wave coordinates

to the prescribed geometric initial data introduced in Definitions 2.1 and 2.7. While

the field equations are coordinate-independent, our analysis does require a choice of

coordinates and all geometric degrees of freedom must be fixed.

This is a standard issue which is extensively treated in the literature on the local-in-

time existence theory [30, 136] and we only briefly discuss this issue here. The starting

point is the four wave gauge conditions for the conformal metric g†, that is,

g†
αβ(

2∂αg
†
βγ − ∂γg

†
αβ

)
= 0, γ = 0, . . . , 3. (5.6)

By imposing the orthogonality condition

g†0a = 0 on t = 1, (5.7)

on the initial slice (only), we obtain

g†
00
∂tg

†
00 − g†

ab
∂tg

†
ab = 0,

2 g†
00
∂tg

†
0a + 2 g†

bc(
∂bg

†
ac − ∂ag

†
bc

)
= 0.

(5.8)

This suggests us how to define the initial data in coordinates on the initial hypersurface

from the prescribed geometric data g†0 and k†0.

Lapse function The precise definition may depend on the choice of asymptotic

conditions assumed on the initial data set. When the lapse function on the initial
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hypersurface is chosen to be 1, one defines the initial data for (4.7) on
{
t = 1

}
as

follows:
g†00

∣∣
t=1

= −1, g†0a
∣∣
t=1

= 0, g†ab
∣∣
t=1

= g†0ab,

∂tg
†
00

∣∣
t=1

= 2g†0
ab
k†0ab,

∂tg
†
0a

∣∣
t=1

= g†0
bc
∂cg

†
0ba −

1

2
g†0
bc
∂ag

†
0bc,

∂tg
†
ab

∣∣
t=1

= −2 k†0ab,

(5.9)

while, for the matter and curvature fields,

ρ
∣∣
t=1

= ρ0, ∂tρ
∣∣
t=0

= ρ1, φ
∣∣
t=1

= φ0, ∂tφ
∣∣
t=0

= φ1. (5.10)

On the other hand, for the class of metrics that are asymptotic to a given Schwarz-

schild metric with mass mS, we can choose the lapse function l > 0 on the initial

hypersurface from its expression for the Schwarzschild metric expressed in wave gauge.

In this case, we select a smooth interpolating function l satisfying

l(r) =




1, r ≤ 1/2,
r−2mS

r+2mS
, r ≥ 1.

(5.11)

We define the initial data for (4.7) on
{
t = 1

}
as follows:

g†00
∣∣
t=1

= −l2, g†0a
∣∣
t=1

= 0, g†ab
∣∣
t=1

= g†0ab,

∂tg
†
00

∣∣
t=1

= 2l3g†0
ab
k†0ab,

∂tg
†
0a

∣∣
t=1

= l2g†0
bc
∂cg

†
0ba −

l2

2
g†0
bc
∂ag

†
0bc − l∂al,

∂tg
†
ab

∣∣
t=1

= −2l k†0ab,

(5.12)

while, for the matter and curvature fields, we have

ρ
∣∣
t=1

= ρ0, ∂tρ
∣∣
t=0

= lρ1, φ
∣∣
t=1

= φ0, ∂tφ
∣∣
t=1

= lφ1. (5.13)
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Part III

The notion of

Euclidian-Hyperboloidal foliations

6 Defining Euclidian-hyperboloidal foliations (EHF)

6.1 Defining the time function

The cut-off function This part together with the next one presents some of main

tools required for the EHF method (with the exception of the sup-norm estimates that

will be presented later), while the treatment of a class of equations is presented in the

following. From now on we focus on the region s ≥ s0 = 2, so that the factor χ(s− 1)

introduced in the previous part is now identically 1. For this reason and for clarity in

the presentation, we allow ourselves to repeat some of the notation that were introduce

earlier. Hence, this Part together with the next one can be read mostly independently

from the previous two Parts and therefore provide the reader an introduction to the

new tools required in our method.

First of all, a cut-off function χ : R → [0, 1] is defined by introducing first a function

ρ : R → [0,+∞) by

ρ(y) :=




e

−2
1−(2y−1)2 , 0 < y < 1,

0, otherwise,
(6.1)

which is clearly globally smooth. Setting

ρ0 :=

∫ +∞

−∞
ρ(y) dy =

∫ 1

0

ρ(y) dy > 0, (6.2)

our cut-off function is defined as

χ(y) := ρ−1
0

∫ y

−∞
ρ(y′) dy′, y ∈ R. (6.3)
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It follows that χ is a smooth function satisfying

χ(y) =




0, y ≤ 0,

1, y ≥ 1,
(6.4)

which is also strictly increasing on the interval (0, 1).

Within the spacetime, we define a smooth function1 χ = χ(s, r) by

ξ(s, r) := 1− χ(r − 1 + s2/2), s ≥ 2, r > 0, (6.5)

which satisfies

ξ(s, r) =




1, r ≤ −1 + s2/2,

0, r ≥ s2/2.
(6.6)

This function is chosen to be non-constant precisely in a neighborhood of the light

cone, as will become clear below.

The time function. We define the function T = T (s, r) ≥ 1 by the following two

conditions:

∂rT (s, r) = ξ(s, r)
r√

r2 + s2
, T (s, 0) = s. (6.7)

In view of (6.6), it is clear that, for sufficiently small values of r,

T (s, r) =
√
s2 + r2 for all r ≤ −1 + s2/2. (6.8)

On the other hand, in the intermediate region, we find

T (s, r) =
1

2

√
s4 + 4 +

∫ r

−1+s2/2

(s2 + ρ2)−1/2ρ ξ(s, ρ)dρ

for all s2/2 ≥ r ≥ −1 + s2/2,

(6.9)

and finally

T (s, r) =
1

2

√
s4 + 4 +

∫ s2/2

−1+s2/2

(s2 + ρ2)−1/2ρ ξ(s, ρ)dρ

=: T (s) for all r ≥ s2/2,

(6.10)

which does not depend upon the radius r. Observe that this last coefficient satisfies

1

2

√
s4 + 4 < T (s) <

1

2

√
s4 + 4s2. (6.11)

1We now restrict attention to s ≥ 2.
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6.2 Defining the foliation

The slices. Consider the family of slices associated with the time function T :

Ms :=
{
(t, x) ∈ R× R3 / t = T (s, r), r = |x|

}
. (6.12)

The following property is easily checked. The slices Ms form a family of smooth

3-dimensional spacelike hypersurfaces, whose future oriented normal vector ns (with

respect to the Euclidian metric) reads

ns =
1√

(1 + ξ2(s, r))r2 + s2

(√
s2 + r2,−xaξ(s, r)

)
(6.13)

and whose volume element σs (with respect to the Euclidian metric) reads

σs =

√
s2 + r2(1 + ξ(s, r)2)√

s2 + r2
dx. (6.14)

We introduce the following notation:

M
int
s : =

{
(t, x) ∈ R3+1 / t =

√
s2 + r2, r ≤ −1 + s2/2

}
,

Mtran
s : =

{
(t, x) ∈ R3+1 / t = T (s, r), −1 + s2/2 ≤ r ≤ s2/2

}

Mext
s : =

{
(t, x) ∈ R3+1 / t = t(s), r ≥ s2/2

}
.

(6.15)

The decomposition of the spacetime. Our construction provides us with a de-

composition of each slice in three parts

Ms := Mint
s ∪Mtran

s ∪Mext
s . (6.16)

Next, we set

M[s0,+∞) : =
{
(t, x) ∈ R3+1 / t ≥ t(s0, r)

}
,

M[s0,s1] : =
{
(t, x) ∈ R3+1 / t(s0, r) ≤ t ≤ t(s1, r)

}
,

(6.17)

and we thus have

M[s0,+∞) =
⋃

s≥s0
Ms. (6.18)
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This foliation is referred to as the Euclidian-Hyperboloidal Foliation (EHF). We also

write
Mint

[s0,+∞) =
⋃

s≥s0

Mint
s ,

Mtran
[s0,+∞) =

⋃

s≥s0

Mtran
s ,

Mext
[s0,+∞) =

⋃

s≥s0

Mext
s ,

(6.19)

and we refer to these regions as the interior, transition, and exterior domains of the

spacetime, respectively.

Choice of coordinates. In M[s0,+∞) we rely on the coordinate functions

x0 = s, xa = xa,

and the natural frame associated with this parametrization reads

∂s = ∂sT (s, r)∂t,

∂a = ∂a + ∂aT (s, r)∂t = ∂a +
xaξ(s, r)√
s2 + r2

∂t.
(6.20)

Then we analyse the transition region Mtran
s we can write

t− r = T (s, r)− r =
1

2

√
s4 + 4− 1 + s2/2 +

∫ r

−1+s2/2

ξ(s, r)ρdρ√
s2 + ρ2

−
(
r − 1 + s2/2

)

=
2√

1 + 4s−4 + 1− 2s−2
+

∫ r

−1+s2/2

ξ(s, r)ρdρ√
s2 + ρ2

−
(
r − 1 + s2/2

)
,

(6.21)

thus we obtain the folllowing lower and upper bounds for the distance to the light cone

within the transition region:

1 <
2√

1 + 4s−4 + 1− 2s−2
− 1 < t− r ≤ 2√

1 + 4s−4 + 1− 2s−2
< 2

in the transition region Mtran
s .

(6.22)
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6.3 Jacobian of the coordinate transformation

The following identity relates the volume elements in both coordinates (t, x) and (s, x):

dxdt = Jdxds, (6.23)

in which J denotes the Jacobian of the corresponding change of variables, that is,

J = |∂sT (s, r)|. The following technical observation will play a role later.

Lemma 6.1. The Euclidian-hyperboloidal time-function T = T (s, r) satisfies

|∂sT (s, r)| .





s
T (s,r)

= s
(s2+r2)1/2

, r ≤ −1 + s2/2,
ξ(s,r)s

(s2+r2)1/2
+ 2(1− ξ(s, r))s, −1 + s2/2 ≤ r ≤ s2/2,

2s, r ≥ s2/2,

(6.24)

in which the implied constant is a universal constant.

Thanks for this lemma, we thus obtain

J .





s/t = s
(s2+r2)1/2

, r ≤ −1 + s2/2,
ξ(s,r)s

(s2+r2)1/2
+ 2(1− ξ(s, r))s, −1 + s2/2 ≤ r ≤ s2/2,

2s, r ≥ s2/2.

(6.25)

Proof. We have

∂r∂sT (s, r) = ∂s∂rT (s, r) =
r∂sξ(s, r)√
s2 + r2

− srξ(s, r)

(s2 + r2)3/2

and observe that ∂sξ(s, r) = −s∂rξ(s, r), so that

∂r∂sT (s, r) =
−s∂rξ(s, r)r√

s2 + r2
− srξ(s, r)

(s2 + r2)3/2
. (6.26)

Recall that, at the center r = 0, one has t(s, 0) = s and thus ∂sT (s, 0) = 1. Then we

see that for 0 ≤ r ≤ −1 + s2/2,

∂sT (s, r) = 1−
∫ r

0

sρ

(s2 + ρ2)3/2
dρ =

s√
s2 + r2

= s/t.
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For −1 + s2/2 ≤ r ≤ s2

2
, we have

∂sT (s, r) = 1−
∫ −1+s2/2

0

sρ

(s2 + ρ2)3/2
dρ−

∫ r

−1+s2/2

sρξ(s, ρ)dρ

(s2 + ρ2)3/2

− s

∫ r

−1+s2/2

∂rξ(s, ρ)ρdρ√
s2 + ρ2

=
2s√
s4 + 4

−
∫ r

−1+s2/2

sρξ(s, ρ)dρ

(s2 + ρ2)3/2
− s

∫ r

−1+s2/2

∂rξ(s, ρ)ρdρ√
s2 + ρ2

=
sξ(s, r)

(s2 + r2)1/2
− 2s

∫ r

−1+s2/2

ρ∂rξ(s, r)dρ

(s2 + ρ2)1/2

=
sξ(s, r)

(s2 + r2)1/2
+ 2sT1(r).

We write Ts(ρ) :=
ρ

s2+ρ2
and, by integration by parts, we find

T1(r) = ξ(s, ρ)Ts(ρ)

∣∣∣∣
−1+s2/2

r

+

∫ r

−1+s2/2

ξ(s, ρ)T ′
s(ρ)dρ

= (ξ(s,−1 + s2/2)− ξ(s, r))Ts(r) + ξ(s,−1 + s2/2)
(
Ts(−1 + s2/2)− Ts(r)

)

+

∫ r

−1+s2/2

ξ(s, ρ)T ′
s(ρ)dρ

= (1− ξ(s, r))Ts(r) +
(
Ts(−1 + s2/2)− Ts(r)

)
+

∫ r

−1+s2/2

ξ(s, ρ)T ′
s(ρ)dρ.

We observe that T ′
s(ρ) ≥ 0 and ξ(s, r) ≤ 1, hence

∫ r

−1+s2/2

ξ(s, ρ)T ′
s(ρ)dρ ≤

∫ r

−1+s2/2

T ′
s(ρ)dρ ≤ Ts(r)− Ts(−1 + s2/2).

Thus we see that

T1(r) ≤ (1− ξ(s, r))Ts(r) ≤ 1− ξ(s, r)

and this conclude the case −1 + s2/2 ≤ r ≤ s2/2.

For r ≥ s2/2, we see that

∂sT (s, r) =1−
∫ −1+s2/2

0

sρdρ

(s2 + ρ2)3/2
−
∫ s2/2

−1+s2/2

sρξ(s, ρ)dρ

(s2 + ρ2)3/2

− s

∫ s2/2

−1+s2/2

∂rξ(s, ρ)ρdρ√
s2 + ρ2

,

56



thus we keep the bound given in the last case with r = s2/2.

7 Frames of interest and the null condition

7.1 The semi-hyperboloidal frame (SHF)

We now introduce several frames of vector fields, which will play a key role on our

analysis. From [85], we recall the definition of the semi-hyperboloidal frame defined

globally in M[2,+∞) by

∂0 := ∂t, ∂a :=
xa

t
∂t + ∂a. (7.1)

The transition matrix between this frame and the natural frame ∂α is given by the

relations

∂α = Φα′

α ∂α′ , Φαα = 1, Φ0
a = xa/t, (7.2)

that is

(
Φβα
)
=




1 0 0 0

x1/t 1 0 0

x2/t 0 1 0

x3/t 0 0 1


 . (7.3)

The inverse of Φ is denoted by Ψ and satisfies

∂α = Ψα′

α ∂α′ , Ψβ
α =




1 0 0 0

−x1/t 1 0 0

−x2/t 0 1 0

−x3/t 0 0 1


 . (7.4)

We also introduce the corresponding dual frame associated with ∂α, that is,

θ0 = dt− (xa/t)∂a, θa = dxa. (7.5)

Finally, observe that, in the semi-hyperboloidal frame, the Minkowski metric gM =

mreads as follows:

(
gαβ
M

)
=
(
mαβ

)
=




1− (r/t)2 x1/t x2/t x3/t

x1/t −1 0 0

x2/t 0 −1 0

x3/t 0 0 −1


 . (7.6)
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The semi-hyperboloidal frame will be most suitable in the interior domain in order to

exhibit the (quasi-)null form structure of the nonlinearities of the field equations.

7.2 The null frame (NF)

Within the region {r > t/2} ∩M[2,+∞), we have r > 2√
3
so that the radial variable is

bounded below and we can introduce the null frame (NF):

∂̃0 = ∂t, ∂̃a :=
xa

r
∂t + ∂a. (7.7)

The transition matrix between this frame and the canonical frame is given by

∂̃α = Φ̃βα ∂β, Φ̃βα =




1 0 0 0

x1/r 1 0 0

x2/r 0 1 0

x3/r 0 0 1


 . (7.8)

The inverse of this transition matrix reads

Ψ̃β
α =




1 0 0 0

−x1/r 1 0 0

−x2/r 0 1 0

−x3/r 0 0 1


 . (7.9)

We also note that the dual frame associated with this null frame is

θ̃0 := dt− (xa/r)dxa, θ̃a = dxa. (7.10)

Finally, in the null frame, the Minkowski metric takes the following simple form:

(
g̃αβM

)
=
(
m̃αβ

)
=




0 x1/r x2/r x3/r

x1/r −1 0 0

x2/r 0 −1 0

x3/r 0 0 −1


 . (7.11)

The null frame will be most suitable in the exterior domain in order to exhibit the

(quasi-)null form structure of the nonlinearities of the field equations.
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7.3 The Euclidian-hyperboloidal frame (EHF)

Based on the parametrization ofM[2,+∞) by (s, x
a), we introduce the following Euclidian-

hyperboloidal frame (EHF)
(

∂ 0 = ∂t,

(

∂ a = ∂at ∂t + ∂a = (xa/r)∂rt ∂t + ∂a =
ξ(s, r)xa√
r2 + s2

∂t + ∂a,
(7.12)

(which we sometimes call the Euclidian-semi-hyperboloidal frame (ESHF)). The tran-

sition matrix between this frame and the canonical natural frame is given by

(

∂α =

(

Φ
β

α∂β ,

(

Φ
β

α =




1 0 0 0
ξ(s,r)x1√
s2+r2

1 0 0
ξ(s,r)x2√
s2+r2

0 1 0
ξ(s,r)x3√
s2+r2

0 0 1



, (7.13)

while its inverse reads

(

Ψ
β

α =




1 0 0 0
−ξ(s,r)x1√
s2+r2

1 0 0
−ξ(s,r)x2√
s2+r2

0 1 0
−ξ(s,r)x3√
s2+r2

0 0 1



. (7.14)

This frame coincides with the semi-hyperboloidal frame in the interior domain, but

with the canonical frame in the exterior domain. In the region of transition,
(

∂a are

also tangent to the slices Mtran
s .

The corresponding dual frame is given by

(

θ
0
= dt− ξ(s, r)xa√

s2 + r2
dxa,

(

θ
a
= dxa. (7.15)

In this frame the Minkowski metric gM takes the form

(

(g
αβ
M

)
=
(

(m
αβ
)
=




1− ξ2(s,r)r2

s2+r2
ξ(s,r)x1√
s2+r2

ξ(s,r)x2√
s2+r2

ξ(s,r)x3√
s2+r2

ξ(s,r)x1√
s2+r2

−1 0 0
ξ(s,r)x2√
s2+r2

0 −1 0
ξ(s,r)x3√
s2+r2

0 0 −1



. (7.16)
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The Euclidian-hyperboloidal frame is appropriate in order to express our (high-order)

energy functionals associated with solutions to the field equations.

Later, it will be convenient to use the coefficient ζ = ζ(s, r) defined by

ζ(s, r) :=

√
1− ξ2(s, r)r2

s2 + r2
. (7.17)

Finally, we also point out the relation

∂t = (∂st)
−1∂s = J−1∂s. (7.18)

Of course, a tensor can be expressed in different frames and we adopt the following

notation for any two-tensor T :

T = T αβ∂α ⊗ ∂β = Tαβ∂α ⊗ ∂β

=

(

T
αβ (

∂α ⊗
(

∂β = T̃ αβ∂̃α ⊗ ∂̃β.
(7.19)

8 The weighted energy estimate

8.1 Statement of the energy estimate

In the domain M[s0,+∞), we introduce the distance to the light cone

q = r − t

and for any η > 0 we define

ωη(q) :=




0, q ≤ 0 ⇔ t ≥ r,

χ(q)(1 + q)η, q ≥ 0 ⇔ r ≥ t.
(8.1)

Clearly, ωη is smooth within M[s0,+∞) and

∂αωη = ω′
η(q)∂αq

=

{
0, q ≤ 0 ⇔ t ≥ r,
(
χ′(q)(1 + q)η + ηχ(q)(1 + q)η−1

)
∂αq, q ≥ 0 ⇔ r ≥ t,

(8.2)

while ω′
η(q) ≥ 0.
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We are ready to establish a basic energy estimate. Recall that the wave operator

on Minkowski spacetime is denoted by

� = �gM = −∂t∂t +
3∑

a=1

∂a∂a. (8.3)

A weighted energy estimate valid in a general curved spacetime will also be established

later on.

Proposition 8.1 (Weighted energy estimate in flat spacetime). Let u be a smooth

function defined in M[s0,s1] and decaying sufficiently fast at infinity (with respect to

r → ∞). If

�u− c2u = f, (8.4)

then the following estimate holds

Eη,c(s, u)
1/2 ≤ Eη,c(s0, u)

1/2 + C‖f‖L2(Mint
s )

+ C
∥∥(1 + (1− ξ(s, r))1/2s)f

∥∥
L2(Mtran

s )

+ C ‖s(1 + ωη)f‖L2(Mext
s )

(8.5)

for some uniform constant C > 0, in which the energy on the slice Ms is defined by

Eη,c(s, u) :=

∫

Ms

(1 + ωη)

(
s2 + (1− ξ2(s, r))r2

s2 + r2
(
∂tu
)2

+
∑

a

(
ξ(s, r)xa√
s2 + r2

∂tu+ ∂au

)2

+ c2u2

)
dx.

(8.6)

8.2 Derivation of the energy estimate

We provide here a proof of Proposition 8.1 by applying the classical multiplier ∂tu to

the equation (8.4). We obtain

2(1 + ωη)
2∂tu�u = ∂t

(
(1 + ωη)

2|∂tu|2 +
∑

a

(
∂au
)2)

− ∂a

(
2(1 + ωη)

2∂tu∂au
)

+ 2(1 + ωη)ω
′
η(q)

∑

a

((xa/r)∂tu− ∂au)
2 .

(8.7)
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Let

Vη = (1 + ωη)
2
(
|∂tu|2 +

∑

a

(
∂au
)2
,−2∂tu∂au

)
(8.8)

be the associated energy flux. Integrating the identity (8.7) in the region M[s0,s1] and

assuming that u tends to zero sufficiently fast, Stokes’ theorem applies and gives us

2

∫

M[s0,s1]

(1 + ωη)
2∂tu�u dxdt

=

∫

Fs1

Vη · ns1dσs1 −
∫

Fs0

Vη · ns0dσs0

+ 2
∑

a

∫

M[s0,s1]

(1 + ωη)ω
′
η(q) ((x

a/r)∂tu− ∂au)
2 dxdt.

This leads us to the energy identity

2

∫

M[s0,s1]

(1 + ωη)
2∂tu�u Jdxds

=

∫

Fs1

Vη · ns1dσs1 −
∫

Fs0

Vη · ns0dσs0

+ 2
∑

a

∫

M[s0,s1]

(1 + ωη)ω
′(q) ((xa/r)∂tu− ∂au)

2 Jdxds.

We then differentiate the above equation with respect to s and obtain

∫

Ms

(1 + ωη)∂tu�u Jdx =
d

ds

∫

Fs1

Vη · nsdσs

+
∑

a

∫

Ms

(1 + ωη(q))ω
′(qη) ((xa/r)∂tu− ∂au)

2 Jdx

≥ d

ds

∫

Fs1

Vη · nsdσs.

(8.9)

62



Introducing as in (8.6)

Eη,c(s, u) =

∫

Ms

Vη · nsdσs

=

∫

Ms

(1 + ωη)
2

(
|∂tu|2 +

∑

a

(
∂au
)2

+
2ξ(s, r)xa√
s2 + r2

∂tu∂au

)
dx

=

∫

Ms

(1 + ωη)
2

(
s2 + (1− ξ2(s, r))r2

s2 + r2
|∂tu|2 +

∑

a

(
ξ(s, r)xa√
s2 + r2

∂tu+ ∂au

)2
)

dx

or

Eη,c(s, u) =

∫

Mint
s

(
(s/t)2|∂tu|2 +

∑

a

(
xa

t
∂tu+ ∂au

)2
)
dx

+

∫

Mtran
s

(
s2 + (1− ξ2(s, r))r2

s2 + r2
|∂tu|2 +

∑

a

(
ξ(s, r)xa√
s2 + r2

∂tu+ ∂au

)2
)

dx

+

∫

Mext
s

(1 + ωη)
2

(
|∂tu|2 +

∑

a

(
∂au
)2
)

dx,

we see that
∫

Ms

(1 + ωη)
2∂tu�u Jdx

=

(∫

Mint
s

+

∫

Mtran
s ∪Mext

s

)

J
√
s2 + r2√

s2 + (1− ξ2(s, r))r2
(1 + ωη)

2

√
s2 + (1− ξ2(s, r))r2√

s2 + r2
∂tu�u Jdx.

(8.10)

Finally, we use the following bound deduced from (6.25)

J
√
s2 + r2√

s2 + (1− ξ2(s, r))r2
≤





1, Mint
s ,

C
(
1 + s

√
1− ξ(s, r)

)
, Mtran

s ,

2s, Mext
s .

(8.11)
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Now (8.10) leads to (observing also that |ωη(q)| = 1 on Mint
s )

∫

Ms

(1 + ωη)
2∂tu�u Jdx

≤ C Eη,c(s, u)
1/2
(
‖�u‖L2(Mint

s ) +
∥∥(1 + s(1− ξs(r))

1/2)(1 + ωη)�u
∥∥
L2(Mtran

s )

+ ‖s(1 + ωη)�u‖L2(Mext
s )

)
.

(8.12)

Combining the above estimate with (8.9), we arrive at

d

ds
Eη,c(s, v)

≤ C Eη,c(s, v)
1/2
(
‖�u‖L2(Mint

s ) +
∥∥(1 + s(1− ξs(r))

1/2)(1 + ωη)�u
∥∥
L2(Mtran

s )

+ ‖s(1 + ωη)�u‖L2(Mext
s )

)

which leads us to

d

ds
Eη,c(s, v)

1/2 ≤ C
(
‖�u‖L2(Mint

s ) +
∥∥(1 + s(1− ξs(r))

1/2)(1 + ωη)�u
∥∥
L2(Mtran

s )

+ ‖s(1 + ωη)�u‖L2(Mext
s )

)
.

It remains to integrate this inequality in s over an interval [s0, s1].
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Part IV

Sobolev and commutator estimates

for EHF

9 Revisiting standard Sobolev’s inequalities

9.1 A Sobolev inequality on positive cones. I

With the notation x = (xa) ∈ Rn and a = 1, . . . , n we introduce the region

Rn
+ := {x ∈ Rn / xa ≥ 0}

and throughout this Part we restrict attention to sufficiently regular functions defined

in Rn
+ and smoothly extendible outside Rn

+. As usual, a function u : Rn
+ → R is said

to be compactly supported if there exists a real R > 0 such that u(x) vanishes for all

|x| ≥ R.

We begin with the following result.

Proposition 9.1. For all sufficiently regular and compactly supported functions u

defined on R3
+, one has the inequality

‖u‖L6(R3
+) .

3∑

a=1

‖∂au‖L2(R3
+), (9.1)

where the implied constant is a universal constant.

Proof. Writing ∂au
6 = 6u5∂au and integrating this identity with respect to the variable

xa, we obtain

u4 ≤ 6

∫ +∞

0

|u3 |∂au| dxa. (9.2)
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Then, introducing the functions

w1(x) = w1(x2, x3) := sup
x1≥0

|u(x)|2,

w2(x) = w2(x1, x3) := sup
x2≥0

|u(x)|2,

w3(x) = w3(x1, x2) := sup
x3≥0

|u(x)|2.

(9.3)

We thus see that

|wa(x)|2 ≤ 6

∫ +∞

0

|u3| |∂au| dxa. (9.4)

Next, writing dx̂1 = dx2dx3, dx̂2 = dx1dx3, and dx̂3 = dx1dx2, we can write for each

a = 1, 2, 3 ∫

xb≥0,b6=a
(wa)2dx̂a ≤ 6

∫

xb≥0,b6=a

∫ +∞

0

|u3| |∂au|dxa

= 6

∫

R3
+

|u3| |∂au|dx

≤ 6‖u3‖L2(R3
+) ‖∂au‖L2(R3

+).

(9.5)

On the other hand, we can write

∫

R3
+

u6dx ≤
∫

R3
+

w1(x)w2(x)w3(x) dx. (9.6)

We see that
∣∣∣
∫

x1≥0

w2(x1, x3)w3(x1, x2)dx1
∣∣∣ ≤ ‖w2(x1, x2)‖L2(R+

x1
) ‖w3(x1, x2)‖L2(R+

x1
) (9.7)

and

∣∣∣
∫

x1,x2≥0

w1(x2, x3)w2(x1, x3)w3(x1, x2)dx1dx2
∣∣∣

≤ ‖w2(x1, x3)‖L2(R+
x1

)

∫

x2≥0

|w1(x2, x3)| ‖w3(x1, x2)‖L2(R+
x1

)dx
2

≤ ‖w2(x1, x3)‖L2(R+
x1

)‖w1(x2, x3)‖L2(R+
x2

)

∥∥‖w3(x1, x2)‖2
L2(R+

x1
)

∥∥
L2(R+

x2
)

= ‖w2(x1, x3)‖L2(R+
x1

)‖w1(x2, x3)‖L2(R+
x2

)‖w3(x1, x2)‖L2(R+

x1,x2
).

(9.8)
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Then we have
∣∣∣
∫

R3
+

w1(x2, x3)w2(x1, x3)w3(x1, x2)dx1dx2dx3
∣∣∣

≤ ‖w3(x1, x2)‖L2(R+

x1,x2
)

∫

x3≥0

‖w2(x1, x3)‖L2(R+
x1

)‖w1(x2, x3)‖L2(R+
x2

)dx
3

≤ ‖w3(x1, x2)‖L2(R+

x1,x2
)

∥∥‖w1(x2, x3)‖2
L2(R+

x2
)

∥∥
L2(R+

x3
)

∥∥‖w2(x1, x3)‖2
L2(R+

x1
)

∥∥
L2(R+

x3
)

= ‖w1(x2, x3)‖L2(R+

x2,x3
)‖w2(x1, x3)‖L2(R+

x1,x3
)‖w3(x1, x2)‖L2(R+

x1,x2
).

Then applying (9.5), we find

∣∣∣
∫

R3
+

w1(x2, x3)w2(x1, x3)w3(x1, x2)dx1dx2dx3
∣∣∣

≤ C‖u3‖L2(R3
+)‖∂1u‖L2(R3

+)‖∂2u‖L2(R3
+)‖∂3u‖L2(R3

+)

and combined with (9.6), we obtain

‖u‖L6(R3
+) ≤ C

(
‖∂1u‖L2(R3

+)‖∂2u‖L2(R3
+) ‖∂3u‖L2(R3

+)

)1/3

≤ C
∑

a

‖∂au‖L2(R3
+).

9.2 A Sobolev inequality on positive cones. II

Next, to any point x ∈ R3
+ and any scale ρ > 0, we associate the cube

Cρ,x := {y ∈ R3
+|xa ≤ ya ≤ xa + ρ}. (9.9)

We then establish the following result.

Proposition 9.2. For all sufficiently regular functions u defined on R3
+, one has

|u(x)| ≤ C(ρ)
∑

|I|≤2

‖∂Iu‖L2(Cρ,x), x ∈ R3
+, ρ > 0, (9.10)

where C(ρ) > 0 is a constant depending upon ρ only.
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Proof. Fix a point x0 ∈ R3
+ and consider the cube Cρ,x0. For all x ∈ Cρ,x0, we have

|u(x0)− u(x)| ≤
∫ 1

0

|(x− x0) · ∇u(x0 + (x− x0)t)| dt,

which leads us to

∣∣∣u(x0)− ρ−3

∫

Cρ,x0

u(x)dx
∣∣∣ ≤ ρ−3

∫

Cρ,x0

|u(x)− u(x0)|dx

≤ ρ−3

∫

Cρ,x0

∫ 1

0

|(x− x0) · ∇u(x0 + (x− x0)t)| dtdx

= ρ−3

∫ 1

0

∫

Cρ,x0

|(x− x0) · ∇u(x0 + (x− x0)t)| dtdx

and, therefore,

∣∣∣u(x0)− ρ−3

∫

Cρ,x0

u(x)dx
∣∣∣ ≤ Cρ−2

∫ 1

0

∫

Cρ,x0

|∇u(x0 + (x− x0)t)| dx dt

= Cρ−2

∫ 1

0

t−3

∫

Ctρ,0

|∇u(x0 + y)|dy dt.
(9.11)

We then observe that
∫

Ctρ,0

|∇u(x0 + y)|dy ≤ ‖∇u(x0 + ·)‖L6(Ctρ,0)(tρ)
5/2 ≤ ‖∇u‖L6(Cρ,x0 )

(tρ)5/2

and we write ∣∣∣u(x0)− ρ−3

∫

Cρ,x0

u(x)dx
∣∣∣ ≤ Cρ1/2‖∇u‖L6(Cρ,x0 )

. (9.12)

In the same manner we obtain
∣∣∣u(x1)− ρ−3

∫

Cρ,x0

u(x)dx
∣∣∣ ≤ Cρ1/2‖∇u‖L6(Cρ,x0 )

. (9.13)

Combining (9.12) and (9.12), we thus arrive at the inequality:

|u(x0)− u(x1)| ≤ Cρ1/2‖∇u‖L6(Cρ,x0 )
. (9.14)
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Next, we introduce a cut-off function χ defined on R, which is smooth and satisfy

χ(x) = 0 for x ≤ 0 and χ(x) = 1 for x ≥ 1. We use this cut-off function in order to

construct, from the given function u, an auxiliary function v defined by

vx0(x) :=
(
1− χ(d−2|x− x0|2)

)
u(x), x ∈ Cd,x0. (9.15)

We also set x1 := (x10 + d, x20 + d, x30 + d) and then we see that

vx0(x0) = u(x0), vx0(x1) = 0 (9.16)

as well as

|vx0(x0)− vx0(x1)| ≤ C(d)‖∇vx0‖L6(Cd,x0
). (9.17)

The function ∂αvx0 is sufficiently regular and by construction is compactly supported

in R3
+, thus we conclude that

|vx0(x0)− vx0(x1)| ≤ C(d)
∑

1≤|I|≤2

‖∂Ivx0‖L2(R3
+)

= C(d)
∑

1≤|I|≤2

‖∂Ivx0‖L2(Cd,x0
).

This establishes the desired result since, in view of (9.15), the norm of v can be bounded

by the norm of u, namely

∑

1≤|I|≤2

‖∂Ivx0‖L2(Cd,x0
) ≤ C

∑

|I|≤2

‖∂Iu‖L2(Cd,x0
).

10 Sobolev inequalities for EHF

10.1 Notation

We introduce the following regions in R3:

Dtrs(s) :=
{
x ∈ R3 / |x| ≥ −1 + s2/2

}
,

Dext(s) :=
{
x ∈ R3 / |x| ≥ s2/2

}
,

(10.1)
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consider functions defined onDtrs(s) or on Dext(s), which are assumed to be sufficiently

regular and extendible outside their domain of definition. As usual, such a function

u is said to be compactly supported, if there exists a real R ≥ −1 + s2/2 or a real

R ≥ s2/2 such that u vanishes outside the ball {|x| > R}.
Recall our expressions of the boosts and rotations generated by the vector fields:

La = xa∂t + t∂a, Ωab = xa∂b − xb∂a, a, b = 1, 2, 3. (10.2)

In the parametrization (s, xa) of M[s0,+∞) introduced earlier, the associated canonical

frame is

∂s =
∂t

∂s
∂t, ∂a = ∂a +

∂t

∂xa
∂t.

Observe that, in the interior domain {r ≤ −1 + s2/2} ∩M[s0∞), one has

∂s = (s/t)∂t,

∂a = ∂rt(x
a/t)∂t + ∂a =

xa

t
∂t + ∂a.

(10.3)

First of all, by combining Propositions 9.1 and 9.2 together, we deduce the following

result.

Proposition 10.1. For any sufficiently regular and compactly supported function u

defined on Dtrs(s) or Dext(s), respectively, one has

sup
Dtrs(s)

|u| ≤ C
∑

|I|≤2

‖∂Iu‖L2(Dtrs(s)),

sup
Dext(s)

|u| ≤ C
∑

|I|≤2

‖∂Iu‖L2(Dext(s)),
(10.4)

respectively

10.2 A sup-norm Sobolev estimate

We begin with the following preliminary inequality.
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Proposition 10.2. For any sufficiently regular function u defined onDtrs(s) or Dext(s),

respectively, the following inequalities hold:

|u(x)| ≤ C(1 + |x|−1)
∑

|I|+|J |≤2

‖∂IΩJu‖L2(Dtrs(s)), |x| ≥ −1 + s2/2,

|u(x)| ≤ C(1 + |x|−1)
∑

|I|+|J |≤2

‖∂IΩJu‖L2(Dext(s)), |x| ≥ s2/2,
(10.5)

respectively.

Proof. We only treat the case of Dext(s), since the case of Dtrs(s) is completely anal-

ogous. For a point x0 ∈ Dext(s), without loss of generality we can suppose that

x0 = (r0, 0, 0) (by a rotation). Then we consider the standard spherical coordinates,

and we consider the following region:

Rx0 :=
{
r0 ≤ r ≤ r0 + 1, 0 ≤ θ ≤ π/6, π/3 ≤ ϕ ≤ π/2

}
. (10.6)

Case r0 ≥ 1. We focus first on the difficut case r0 ≥ 1 and we consider the function

vx0(r, θ, ϕ) := u(x1, x2, x3)

with

x1 = r sinϕ cos θ, x2 = r sinϕ sin θ, x3 = r cosϕ.

Observe that

∂θ = sinϕΩ12, ∂ϕ = − sinϕΩ23 − cos θΩ13,

∂θ∂θ = sin2 ϕΩ12Ω12,

∂θ∂ϕ = − sin2 ϕΩ12Ω23 + sin θ · Ω13 − sinϕ cos θΩ12Ω13,

∂ϕ∂ϕ = sin2 ϕΩ23Ω23 + sinϕ cos θΩ12Ω23

+ cos θ sinϕΩ23Ω13 + cos2 θΩ13Ω13 − cosϕΩ23.

Now we observe the function vx0 taking (r, θ, φ) as its variables with φ = π/2−ϕ, is a

function defined in the truncated positive cone

{
r0 ≤ r ≤ r0 + 1, 0 ≤ θ ≤ π/6, 0 ≤ φ ≤ π/6

}
.
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Thus by Proposition 9.2 we have

|u(x0)| = |vx0(0)| ≤ C
∑

|I|≤2

‖∂Ivx0‖L2(C1/2,0). (10.7)

And we observe that

|∇vx0| ≤ C
∑

α

|∂αu|+ C
∑

a6=b
|Ωabu|

and

|∂I′vx0 | ≤ C
∑

|I|+|J |≤2

|∂IΩJu|, |I ′| ≤ 2.

On the other hand, we see that for a

‖∂I′vx0‖2L2(R3
+,1/2

) =

∫

R3
+,1/2

|∂I′vx0(r, θ, φ)|2 drdθdφ

≤
∑

|I|+|J |≤2

∫

R3
+,1/2

|∂IΩJu|2 drdθdϕ

≤ Cr−2
0

∑

|I|+|J |≤2

∫

Rx0

|∂IΩJu|2 r2 sinϕdrdθdϕ,

where we have used that, in Rx0 , 1 ≤ r/r0 ≤ 2 and that
√
3/2 ≤ sinϕ ≤ 1. Then we

see that
‖∂I′vx0‖2L2(R3

+,1/2
) ≤ Cr−2

0

∑

|I|+|J |≤2

‖∂IΩJu‖2L2(Rx0 )

≤ C(1 + r0)
−2

∑

|I|+|J |≤2

‖∂IΩJu‖2L2(Dext(s)).

In combination with (10.7), the desired result is established for r0 ≥ 1.

Case r0 ≤ 1. This region is treated by a standard Sobolev inequality and details are

omitted.

10.3 A Sobolev inequality for the transition and exterior do-

mains

Proposition 10.3 (Global Sobolev inequality for the transition and exterior domains).

For all sufficiently regular functions defined on M[s0,s1] with 2 ≤ s0 ≤ s ≤ s1, one has
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for all x ∈ Mtran

s ∪Mext

s

|u(x)| ≤ C(1 + r)−1
∑

|I|+|J |≤2

‖∂IxΩJ‖L2(Mtran
s ∪Mext

s ), (10.8)

and for all x ∈ Mext

s

|u(x)| ≤ C(1 + r)−1
∑

|I|+|J |≤2

‖∂IxΩJ‖L2(Mext
s ). (10.9)

Here, ∂
I

x denotes any |I|-order operator determined from the fields {∂a}a=1,2,3, while

∂Ix denotes any a |I|-order operator determined from the fields {∂a}a=1,2,3.

Proof. We consider the parametrization (s, r) of M[s0,+∞), and recall that on Mtran
s ∪

Mext
s , s is constant and t = T (s, r), −1+ s2/2 ≤ r. We consider the restriction of u on

Mtran
s ∪Mext

s , that is, the function

vs(x) = u(T (s, r), x) (10.10)

and we remark the relations

∂avs = ∂au = (xa/r)
∂t

∂r
∂tu+ ∂au =

ξs(r)x
a

t
∂tu+ ∂au,

∂b∂avs = ∂b∂au,

Ωabvs = (xa∂b − xb∂a)u = Ωabu.

(10.11)

Now we apply Proposition 10.2 on vs, and we see that (10.8) is established, while (10.9)

is established in the same manner.

10.4 A Sobolev inequality for the interior domain

Proposition 10.4 (Global Sobolev inequality for interior domain). For all sufficiently

regular functions defined in a neighborhood of the hypersurface Mint

s , the following

estimate holds

t3/2 |u(x)| ≤
∑

|J |≤2

‖LJu‖L2(Mint
s ), x ∈ M

int

s (10.12)

for some uniform constant C > 0.
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Proof. We consider the restriction of the function u on the hyperboloid Hs with |x| ≤
−1 + s2/2:

vs(x) := u(
√
s2 + r2, x).

Then we see that

∂avs = ∂au = t−1Lau = (s2 + r2)−1/2Lau.

Take a x0 ∈ Hs, with out loss of generality, we can suppose that x0 = −3−1/2(r0, r0, r0).

We consider the positive cone Cs/2,x0 ⊂ {|x| ≤ −1 + s2/2}. (Recall that s ≥ 2 is

assumed throughout.)

In this cone we introduce the following change of variable:

ya := s−1(xa − xa0).

and we define

ws,x0(y) := vs(sy + x0), y ∈ C1/2,0. (10.13)

Therefore, we obtain

∂aws,x0 = s∂avs =
s√

s2 + r2
Lau,

∂b∂aws,x0 =
s2

s2 + r2
LbLau− s2xb(s2 + r2)−3/2Lau.

(10.14)

Thus, for |I| ≤ 2, we obtain

|∂Iws,x0| ≤ C
∑

|J |≤2

|LJu|.

Then by Proposition 9.2, we see that

|ws,x0(0)|2 ≤ C
∑

|I|≤2

∫

C1/2,0

|∂Iws,x0|2dy = Cs−3
∑

|J |≤2

∫

C1/2,0

|LJu|2dx,

which leads to

|u(x0)| ≤ Cs−3/2‖LJu‖L2(Hs). (10.15)

On the other hand, when r0 ≥ 1, we consider the cone Cr0/2,x0 and we introduce

the function

wx0(y) := vs(r0y + x0), y ∈ C1/2,0.
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It is clear that

∂awx0 =
r0√
r2 + s2

Lau (10.16)

and

∂b∂awx0 =
r20

r2 + s2
LbLau− r20x

b(s2 + r2)−3/2Lau.

In the cube Cr0/2,x0 one has r ≥
√
3
2
r0. Thus for |I| ≤ 2 we find

|∂Iwx0| ≤
∑

|J |≤2

|LJu|.

Then by Proposition 9.2, we have

u(x0)|2 = |wx0(0)|2 ≤ C
∑

|J |≤2

∫

C1/2,0

|∂Iwx0|2dy

= Cr−3
0

∑

|J |≤2

∫

C1/2,0

|LJu|2dx,

which leads us to

|u(x0)| ≤ Cr
−3/2
0

∑

|J |≤2

‖LJu‖L2(Hs). (10.17)

When r0 ≤ 1, we have
√
s2 + r20 ≤ 2s, thus it remains to combine (10.16) with

(10.17) and the desired result is proved.

11 Commutators in the interior domain. A sum-

mary

11.1 Objective

An essential role will be played by the commutators [X, Y ]u := X(Y u) − Y (Xu)

of certain operators X, Y , applied to function u and associated with the Euclidian-

hyperboloidal foliation and the wave operators. We therefore present here various

results concerning such commutators, by distinguishing between the exterior and inte-

rior domains.
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Considering commutators involving the translations, Lorentz boosts, and hyper-

boloidal frame vectors, we will begin by deriving the estimates in Mint, since this is

comparatively easier and, in order to derive suitably uniform bounds, we will rely on

homogeneity arguments and on the observation that all the coefficients in the follow-

ing decomposition are smooth in Mint. On the other hand, dealing with Mext is more

involved and require to introduce suitable weights, as we discuss below.

First of all, all admissible vector fields ∂α, La under consideration are Killing fields

for the flat wave operator �, so that the following commutation relations hold:

[∂α, �] = 0, [La, �] = 0. (11.1)

11.2 Commutators for vector fields in the interior domain

We find it convenient to summarize our results in this section first for Mint, before

providing a detailed proof covering both the interior and the exterior domains in the

next section. All the estimates this section are restricted to Mint.

We now analyze the relevant commutators of the vector fields under consideration

(in the future of the hypersurface Hs0). On one hand, we need to decompose the

differential operators of interest in the frame ∂t, ∂a and, on the other hand, we will

be using the translations ∂I and the boosts LJa . In any given equation or inequality,

the contribution due to the commutators have better decay (compared to the vector

fields under consideration): they either involve good derivatives (tangential to the

hyperboloids) or contain a weight providing better decay in time.

• Commutators of the semi-hyperboloidal frame:

[∂t, ∂a] = −xa
t2
∂t, [∂a, ∂b] = 0. (11.2)

• Commutators for the boosts and tangent fields:

[LI , ∂b] =
∑

|J,K|<|I|
σIabJ∂aL

J ,
∣∣∂I1LJ1σIabJ

∣∣ . t−|I1|. (11.3)

• Commutators for the translations and tangent fields:

[∂I , ∂a] = t−1
∑

|J,K|≤|I|
ρIaJ∂

J ,
∣∣∂I1LJ1ρIaJ

∣∣ . t−|I1|. (11.4)
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• Commutators for the translations and boosts:

[∂I , La] =
∑

|J,K|≤|I|
ξIaJ∂

J , ξIaJ being constant,

[LI , ∂α] =
∑

|J,K|<|I|
γ=0,...,3

θIγαJ∂γL
J , θIγαJ being constant.

(11.5)

• Commutators of the semi-hyperboloidal frame and the admissible fields:

[∂ILJ , ∂α] =
∑

|J′|≤|J|
|I′|≤|I|
β=0,...,3

θIJβαI′J ′∂β∂
I′LJ

′

(11.6)

and

∣∣∂I1LJ1θIJβαI′J ′

∣∣ .





t−|I1|, |J ′| < |J |,
t−|I1|−1, |I ′| < |I|,
0, otherwise.

(11.7)

Next from the decompositions above, for the operators ∂ILJ we deduce that

∣∣[∂ILJ , ∂a]u
∣∣ .

∑

|J′|<|J|

|I′|≤|I|

∑

b=1,2,3

|∂b∂I
′

LJ
′

u|+ t−1
∑

|I|≤|I′|

|J,K|≤|J′|

|∂I′LJ ′

u|, (11.8)

∣∣[∂ILJ , ∂α]u
∣∣ .

∑

|J′|<|J|
β=0,...,3

|∂β∂ILJ
′

u|, (11.9)

and

∣∣[∂ILJ , ∂α]u
∣∣ . t−1

∑

|I′|<|I|

|J′|≤|J|

∑

β=0,...,3

∣∣∂β∂I
′

LJ
′

u
∣∣+

∑

|I′|≤|I|

|J′|<|J|

∑

β=0,...,3

∣∣∂β∂I
′

LJ
′

u
∣∣. (11.10)

Observe again that the terms in the right-hand sides contain either fewer derivatives

in L or a favorable factor 1/t.
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11.3 Commutators and estimates for second-order operators

Similarly, still in the interior region, for the second-order operators ∂α∂β and ∂α∂β, we

find ∣∣[∂ILJ , ∂α∂β ]u
∣∣ .

∑

|I|≤|I′|

|J′|<|I|

∑

γ,γ′=0,...,3

∣∣∂γ∂γ′∂I
′

LJ
′

u
∣∣ (11.11)

and ∣∣[∂ILJ , ∂a∂β]u
∣∣+
∣∣[∂ILJ , ∂α∂b]u

∣∣

.
∑

|I′|≤|I|

|J′|<|J|

∑

c=1,2,3
γ=0,...,3

∣∣∂c∂γ∂I
′

LJ
′

u
∣∣+

∑

|I′|<|I|

|J′|≤|J|

∑

c=1,2,3
γ=0,...,3

t−1
∣∣∂c∂γ∂I

′

LJ
′

u
∣∣

+
∑

|I′|≤|I|

|J′|≤|J|

∑

γ=0,...,3

t−1
∣∣∂γ∂I

′

LJ
′

u
∣∣.

(11.12)

We now derive further identities involving the semi-hyperboloidal frame and the

boosts. These inequalities allow us to replace tangential derivatives (arising in our

decomposition of the wave and Klein-Gordon operators) by Lorentz boosts (arising in

our definition of the high-order energy). First of all, since ∂a = t−1La, we write

∂ILJ∂au = ∂ILJ
(
t−1Lau

)
=

∑

I1+I2=I
J1+J2=J

∂I1LJ1
(
t−1
)
∂I2LJ2Lau,

therefore we have proven the following.

Lemma 11.1. An expression involving the semi-hyperbloidal derivatives ∂a can be

controlled from the boosts and translations, as follows:

∣∣∂ILJ∂au
∣∣ . t−1

∑

|I′|≤|I|

|J′|≤|J|

∣∣∂I′LJ ′

Lau
∣∣. (11.13)

It follows that, with now one tangential derivative and one arbitrary derivative,

∣∣∂ILJ∂a∂νu
∣∣ . t−1

∑

|I′|≤|I|

|J′|≤|J|

∣∣∂I′LJ ′

La∂νu
∣∣ = t−1

∑

|I′|≤|I|

|J′|≤|J|

∣∣∂I′LJ ′

La
(
Φν′

ν ∂ν′u
)∣∣,

in which the coefficients Φν′

ν are homogeneous of degree 0, implying the following result.
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Lemma 11.2. An expression involving a tangential derivative and a semi-hyperboloidal

derivative can be controlled as follows:

∣∣∂ILJ∂a∂u
∣∣+
∣∣∂ILJ∂∂au

∣∣ . t−1
∑

|I′|≤|I|

|J′|≤|J|

|∂I′LJ ′

La∂u|
(11.14)

Finally, with two tangential derivatives, we find

∂ILJ
(
∂a∂bu

)
= ∂ILJ

(
t−1La(t

−1Lb)u
)

= ∂ILJ
(
t−2LaLbu

)
+ ∂ILJ

(
t−1La(t

−1)u
)

=
∑

I1+I2=I
J1+J2=J

∂I1LJ1
(
t−2
)
∂I2LJ2LaLbu+

∑

I1+I2=I
J1+J2=J

∂I1LJ1
(
t−1La(t

−1)
)
∂I2LJ2Lbu,

so that (improving upon (11.14), since we now consider only tangential derivatives) we

reach the following conclusion.

Lemma 11.3. An expression involving two tangential derivative can be controlled as

follows:

∣∣∂ILJ
(
∂a∂bu

)∣∣ . t−2
∑

|I′|≤|I|

|J′|≤|J|

∣∣∂I′LJ ′

LaLbu
∣∣+ t−2

∑

|I′|≤|I|

|J′|≤|J|

∣∣∂I′LJ ′

Lbu
∣∣.

(11.15)

12 A general framework for the commutator esti-

mates on the EHF

12.1 Basic commutation relations and homogeneous functions

We now present a general framework for establishing commutator estimates valid for

the Euclidian-hyperboloidal foliation. We point out the following relations:

[∂t, Lb] = ∂b, [∂a, Lb] = δab∂t,

[∂t,Ωbc] = 0, [∂a,Ωbc] = δab∂c − δac∂b,

[La,Ωbc] = δabLc − δacLb.

(12.1)
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In {r < t− 1} ∩ {t > 1} one has

[(s/t)∂t, Lb] = (s/t)∂b,

[∂a, Lb] = (xa/t)∂b,

[(s/t)∂t,Ωbc] = 0,

[∂a,Ωbc] = δab
t− xb

t
∂c − δac

t− xc

t
∂b + δac

(t− xc)xb

t2
− δab

(t− xb)xc

t2
∂t.

(12.2)

In {r > t/2} ∩ {t > 1} one has

[
r − t

r
∂t, Lb] =

r − t

r
∂̃b +

t

r

r − t

r
∂t,

[∂̃a, Lb] =
xa

r
∂̃b +

(
δab −

xaxb

r2

)
r − t

r
∂t,

[
r − t

r
∂t,Ωbc] = 0,

[∂̃a,Ωbc] = δca∂̃b − δcb∂̃a.

(12.3)

For convenience, we introduce the following families of vector fields:

T : = {∂α}, T := {(s/t)∂t, ∂a}, T̃ := {(r − t)r−1∂t, ∂̃a}
Tx : = {∂a}, T x := {∂a}, T̃x := {∂̃a},
L : = {La}, R := {Ωab}.

We also introduce a special class of smooth functions defined in the interior domain

{t− 1 > r} or in the exterior domain {r > t/2}.

Definition 12.1 (Homogeneous functions in the exterior domain). A smooth function

u defined in the region {r > t/2} ∩ {t > 0} is called homogeneous of degree k in the

exterior domain (EH of degree k for short) if u satisfies the following two properties:

u(λt, λx) = λku(t, x), λ > 0,

|∂Iu(t, ω)| ≤ C(I), ω ∈ S2, 0 < t < 2.

The set of EH functions of degree k is denoted by EHk. We also denote by

EHk :=
⋃

j≤k
EHj .
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An example of EH functions is given by the functions xa/r, which are of degree

zero.

Definition 12.2 (Homogeneous functions in the interior domain). A smooth function

u defined in the region {r < t} ∩ {t > 1} is called homogeneous of degree k in the

interior domain (IH of degree k for short) if u satisfies the following two properties:

u(λt, λx) = λku(t, x), λ > 0,

|∂Iu(2, 2x)| ≤ C(I), |x| < 1.

The set of IH functions of degree k is denoted by IHk and one also write

IHk :=
⋃

j≤k
IHj.

An example of IH functions is the functions xa/t, which are of degree zero. Then

we discuss the relation between homogeneous functions and vector fields.

Lemma 12.3. One has

f ∈ EHk, A ∈ L ∪ R, Af ∈ EHk,

and

f ∈ IHk, A ∈ L ∪ R, Af ∈ IHk.

Furthermore, one has

f ∈ EHk, A ∈ T ∪ T x ∪ T̃x, Af ∈ EHk−1,

and

f ∈ IHk, A ∈ T ∪ T x ∪ T̃x, Af ∈ IHk−1,

Lemma 12.4. Let u be EH of degree k. Then there exists a positive constant C,

determined by I, J,K and u such that the following estimate holds in {r > t/2}∩ {t >
1}:

|∂IΩKLJu| ≤ Cr−|I|. (12.4)

Furthermore, ∂IΩKLJu is EH of degree k − |I|.
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Proof. Differentiate the following identity

u(λt, λx) = λku(t, x),

we obtain

∂αu(λt, λx) = λk−1u(t, x) (12.5)

that is, ∂αu is EH of degree k − 1. This fact leads to

Lau(λt, λx) = λkLau(t, x), Ωabu(λt, λx) = λkΩu(t, x). (12.6)

That is, Lau and Ωu are EH of degree k. Thus it is direct by recurrence that ∂IΩKLJu

is EH of degree k − |I|.
Now for a EH function u of degree k, we observe that for r > t/2 > 0,

u(t, x) = rku(t/r, xa/r)

and 0 < t/r < 2, (xa/r)a=1,2,3 ∈ S2, thus bounded. So (12.4) is established.

12.2 Decompositions of commutators. I

Definition 12.5. Let D be a region of R4. Suppose that A = {Aα}α∈I and B =

{Bβ}β∈J be two families of vector field (with I, J finite sets for index) defined on D:

Aα ∈ A , Bβ ∈ B, [Aα, Bβ] = ΓγαβAγ,

in which the coefficients Γγαβ ∈ are constant, then one says that B ≺ A .

It is clear that in D = R4, R ≺ L , R ≺ Tx, R ≺ T and L ≺ T . Then we have

the following result.

Lemma 12.6. Let Aα ∈ A , BJ be a J−th order derivative composed with operators

in B. Suppose that B ≺ A , then

[Aα, B
J ] =

∑

β∈I

|J′|<|J|

ΓJβαJ ′AβB
J ′

,

where the coefficients ΓJβαJ ′ are constants.
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Proof. This result is proven by induction as follows on |J |. Observe that for |J | = 1 it

is guaranteed by the definition (12.9). Now we consider

[Aα, BβB
J ] = [Aα, Bβ]B

J +Bβ

(
[Aα, B

J ]
)

= ΓγαβAγB
J +

∑

γ∈I

|J′|<|J|

Bβ

(
ΓJγαJ ′AγB

J ′
)

= ΓγαβAγB
J +

∑

γ∈I

|J′|<|J|

ΓJγαJ ′ · BβAγB
J ′

= ΓγαβAγB
J +

∑

γ∈I

|J′|<|J|

ΓJγαJ ′ · AγBβB
J ′

+
∑

γ∈I

|J′|<|J|

ΓJγαJ ′ · [Bβ, Aγ]B
J ′

,

so

[Aα, BβB
J ] = ΓγαβAγB

J +
∑

γ∈I

|J′|<|J|

ΓJγαJ ′ · AγBβB
J ′ −

∑

γ,δ∈I

|J′|<|J|

ΓJγαJ ′Γ
δ
γβAδB

J ′

.

This concludes our proof by induction.

Lemma 12.7. Let AI , BJ be I−th and J−th order derivatives composed with operators

in A and B respectively. Suppose that B ≺ A . Then

[AI , BJ ] =
∑

|I′|=|I|

|J′|<|J|

ΓIJI′J ′AI
′

BJ ′

, (12.7)

where the coefficients ΓIJI′J ′ are constants.

Proof. This result is proven by induction as follows on I. The case |I| = 1 is guaranteed

by lemma 12.6. Then we consider the following calculation:

[AIAα, B
J ] = AI [Aα, B

J ] + [AI , BJ ]Aα =
∑

β∈I

|J′|<|J|

ΓβJαJ ′A
IAβB

J ′

+
∑

|I′|=|I|

|J′|<|J|

ΓIJI′J ′AI
′

BJ ′

Aα.

For the second term, we find

AI
′

BJ ′

Aα = AI
′

AαB
J ′ −

∑

β∈I

|J′′|<|J′|

ΓJ
′β
αJ ′′A

I′AβB
J ′′

.

Thus the desired result is established.
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Now we recall the relation (12.1) and see that in D = R4, R ≺ L , R ≺ Tx,

R ≺ T and L ≺ T . Then we establish the following relation:

[∂I , LJ ] =
∑

|I′|=|I|

|J′|<|J|

ΓIJ12,I′J ′∂I
′

LJ
′

,

[∂I ,ΩK ] =
∑

|I′|=|I|

|K′|<|K|

ΓIK13,I′K ′∂I
′

ΩK
′

,

[LJ ,ΩK ] =
∑

|J′|=|J|

|K′|<|K|

ΓJK23,J ′K ′LJ
′

ΩK
′

.

(12.8)

Proposition 12.8. For all multi-indices I, I ′, J, J ′ and K,K ′ and all sufficiently reg-

ular functions u defined on R4, one has

∂I
′

LJ
′

ΩK
′

∂ILJΩKu =
∑

|I′′|=|I′|+|I|,|J′′|=|J′|+|J|

|K′′|≤|K′|+|K|

ΓI
′J ′K ′IJK
I′′J ′′K ′′ ∂I

′′

LJ
′′

ΩK
′′

u, (12.9)

where the coefficients ΓI
′J ′K ′IJK
I′′J ′′K ′′ are constants.

Proof. This is established by induction from the previous identity.

12.3 Decomposition of commutators. II

Definition 12.9. Let D be a region of R4. suppose that A = {Aα}α∈I and B =

{Bβ}β∈J be two families of vector field (with I, J finite sets for index) defined on D. Let

Hom be a class of smooth functions defined on D. If f ∈ Hom, Bβ ∈ B, Bβf ∈ Hom

and

Aα ∈ A , Bβ ∈ B, [Aα, Bβ] = ΓγαβAγ .

with Γγαβ ∈ Hom, then we say B ≺Hom A .

Then we derive a general decomposition formula for the commutators.

Lemma 12.10. Let Aα ∈ A , BJ be a J−th order derivative composed with operators

in B. Suppose that B ≺Hom A , then one has

[Aα, B
J ] =

∑

β∈I

|J′|<|J|

ΓJβαJ ′AβB
J ′

, (12.10)

where ΓJβαJ ′ ∈ Hom.
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Proof. This result is proven by induction as follows on |J |. Observe that for |J | = 1 it

is guaranteed by the definition (12.9). Now we consider

[Aα, BβB
J ] = [Aα, Bβ]B

J +Bβ

(
[Aα, B

J ]
)

= ΓγαβAγB
J +

∑

γ∈I

|J′|<|J|

Bβ

(
ΓJγαJ ′AγB

J ′
)

= ΓγαβAγB
J +

∑

γ∈I

|J′|<|J|

BβΓ
Jγ
αJ ′ AγB

J ′

+
∑

γ∈I

|J′|<|J|

ΓJγαJ ′ BβAγB
J ′

= ΓγαβAγB
J +

∑

γ∈I

|J′|<|J|

BβΓ
Jγ
αJ ′ AγB

J ′

+
∑

γ∈I

|J′|<|J|

ΓJγαJ ′ AγBβB
J ′

+
∑

γ∈I

|J′|<|J|

ΓJγαJ ′ [Bβ, Aγ]B
J ′

,

so
[Aα, BβB

J ] = = ΓγαβAγB
J +

∑

γ∈I

|J′|<|J|

BβΓ
Jγ
αJ ′ AγB

J ′

+
∑

γ∈I

|J′|<|J|

ΓJγαJ ′ AγBβB
J ′

−
∑

γ,δ∈I

|J′|<|J|

ΓJγαJ ′Γ
δ
γβAδB

J ′

.

Recall that in the above expression, BβΓ
Jγ
αJ ′ ∈ Hom, and the proof by induction is

completed.

Proposition 12.11. Let Aα ∈ A . Suppose that BJ CK are |J |−th and |K|−th order

derivatives composed with operators in B and C respectively. Suppose that B,C ≺Hom

A , then

[Aα, B
JCK ] =

∑

|J′|≤|J|,|K′|≤|K|

|J′|+|K′|<|J|+|K|,β∈I

ΓJβαJ ′AβB
J ′

CK ′

,

where ΓJβαJ ′ ∈ Hom.

Proof. For convenience, we denote by (cf. Lemma 12.10)

[Aα, B
J ] =

∑

β∈I

|J′|<|J|

ΓJβαJ ′AβB
J ′

, [Aα, C
K ] =

∑

β∈I

|K′|<|K|

∆Kβ
αK ′AβB

C′
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with

ΓJβαJ ′ , ∆
Kβ
αK ′ ∈ Hom.

Then we see that

[Aα, B
JCK ] = [Aα, B

J ]CK +BJ [Aα, C
K ]

=
∑

γ∈I

|J′|<|J|

ΓJγαJ ′AγB
J ′

CK +
∑

δ∈I

|K′|<|K|

BJ
(
∆Kδ
αK ′AδC

K ′
)

=
∑

γ∈I

|J′|<|J|

ΓJγαJ ′AγB
J ′

CK +
∑

δ∈I,J1+J2=J

|K′|<|K|

BJ1∆Kδ
αK ′ · BJ2AδC

K ′

.

We observe that

BJ2AδC
K ′

= AδB
J2CK ′ − [Aδ, B

J2 ]CK ′

= AδB
J2CK ′ −

∑

β∈I,|J ′
2|<|J2|

ΓJ2βδJ ′
2
AβB

J2CK ′

,

and recall that BJ1∆Kδ
αK ′ ∈ Hom. This establishes the desired result.

We take Hom = IH0,and observe that f ∈ Hom, Laf,Ωabf ∈ Hom. Thus we

see that R,L ≺Hom T x. Then apply Proposition 12.11 and obtain the following

decomposition: [
∂a, L

JΩK
]
= ΓJKbaJ ′K ′∂bL

J ′

ΩK
′

, (12.11)

where ΓJKbaJ ′K ′∂bL
J ′

are IH functions of degree zero.

We take Hom = EH0, and observe that f ∈ Hom, Laf,Ωabf ∈ Hom. Thus we

see that R,L ≺Hom T̃ . Then apply Proposition 12.11 and obtain the following key

decompositions:

[
∂̃a, L

JΩK
]
=

∑

|J′|≤|J|,|K′|≤|K|

|J′|+|K′|<|J|+|K|

Γ̃JK0
aJ ′K ′

r − t

r
∂t∂

J ′

ΩK
′

+
∑

b,|J′|≤|J|,|K′|≤|K|

|J′|+|K′|<|J|+|K|

Γ̃JKbaJ ′K ′ ∂̃bL
J ′

ΩK
′

,

[r − t

r
∂t, L

JΩK
]
=

∑

|J′|≤|J|,|K′|≤|K|

|J′|+|K′|<|J|+|K|

Γ̃JK0
0J ′K ′

r − t

r
∂t∂

J ′

ΩK
′

+
∑

b,|J′|≤|J|,|K′|≤|K|

|J′|+|K′|<|J|+|K|

Γ̃JKb0J ′K ′∂̃bL
J ′

ΩK
′

(12.12)

the coefficients Γ̃JKbαJ ′K ′∂bL
J ′

begin EH functions of degree zero.
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12.4 Decomposition of commutators. III

We first establish the following properties.

Lemma 12.12. For all multi-indices I, J one has

∂ILJ(s/t) =





ΓJ(s/t), |I| = |K| = 0,
∑

I1+I2···Ik=I
(s/t)1−2kΓIk,

(12.13)

where ΓJ ∈ IH0 and ΓIk ∈ IH−|I|.

Lemma 12.13. For all multi-indices I,K one has

∂IΩK
r − t

r
=





0, |K| ≥ 1,

Γ̃I , |I| ≥ 1, |K| = 0,

r − t

r
, |I| = |K| = 0,

(12.14)

where Γ̃I ∈ EH−|I|.

Lemma 12.14. For all multi-indices I, L,K one has

∂IxΩ
K(1 + ωγ) =

{
0, |K| ≥ 1,

Γ̃Iω,γ(1 + q)γ−|I|,
(12.15)

where Γ̃Iω,γ are smooth functions defined on {r ≥ t/2} ∩ {t ≥ 1}, with all their deriva-

tives bounded.

12.5 Decomposition of commutators. IV

We now focus on the tangent derivatives ∂a on the regionMs. We recall the parametriza-

tion of M[2,+∞) by coordinates (x0, xa). We see that

[∂a, ∂b] = 0 (12.16)

and

[∂a,Ωbc] = δab∂c − δac∂b. (12.17)
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We denote by T x = {∂a}a=1,2,3. The above calculation shows that R ≺ T x. Then by

(12.6), in the region M[s0,s1]:

[∂a,Ω
K ] =

∑

b,|K ′|<|K|
Γ
Kb

aK ′∂bΩ
K ′

, (12.18)

where the coefficients Γ
Kb

aK ′ are constants. We thus see that for a function u defined in

M[s0,s1], sufficiently regular,

∂
I

xΩ
K ′

∂a∂
ILJΩKu = ∂

I

x∂aΩ
K ′

∂ILJΩKu−
∑

b,|K ′′|<|K ′|
Γ
K ′b

aK ′′∂b∂
I

xΩ
K ′′

∂ILJΩKu.

Now recall Proposition 12.8, we see that both terms in right-hand-side of the above

identity are linear combinations of the following terms with constant coefficients:

∂b∂
I

x∂
I′′LJ

′′

ΩK
′′

u, |I ′′| = |I|, |J ′′| = |J |, |K ′′| ≤ |K|+ 2.

Finally, we establish the following estimate.

Proposition 12.15. For all multi-index I with |I| ≤ 2, the following estimate holds

in M[s0,s1]

|∂a∂
I

xu| ≤ C
∑

b
|I′|≤2

|∂b∂I
′

u|. (12.19)
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Part V

Field equations for self-gravitating

matter

13 Nonlinear structure of the field equations in con-

formal wave gauge

13.1 The wave Klein-Gordon formulation in symbolic nota-

tion

Wave-Klein-Gordon system. We will need to establish energy and sup-norm es-

timates for the Einstein system and its f(R)-generalization. For the latter, we seek

for estimates that should be uniform and encompass the whole range κ ∈ (0, 1]. Later,

we will distinguish between bounds satisfied by the metric, the scalar curvature, and

the matter fields and between various orders of differentiation. In order to express

such bounds, it is essential to suitably rescale the scalar curvature variable and this

motivates us to introduce the notation:

ψ♯ := (ρ♯, φ), ρ♯ := κρ,

ψ♭ := (ρ♭, φ), ρ♭ := κ1/2ρ,
(13.1)

Observe that no rescaling is required on φ. Moreover, in view of κρ2 = ρ♭2 and from

(1.15) and (4.9), we can write

Vκ(ρ) = O(ρ♭2), Wκ(ρ) = O(ρ♭2),

U(φ) = O(φ2),
(13.2)

together with analogous statements for the derivatives of these functions.
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We can motivate our choice of scaling above by observing that the energy for the

curvature field will take the schematic form

(∂ρ♯)2 + (ρ♭)2, (13.3)

that is, does not explicitly involve the parameter κ. Hence, both ρ♯ and ρ♭ will be

uniformly controlled, although at different order of differentiability. However, the

function ρ which formally approaches the scalar curvature R as κ → 0 will not be

controlled at a first stage of our analysis (e.g. in the bootstrap argument presented

below) and a specific investigation will be necessary to establish that ρ converges

(again with an unavoidable loss of derivatives).

We therefore consider the wave-Klein-Gordon formulation of the f(R)-gravity sys-

tem in conformal wave coordinates, which was derived in Proposition 4.1. With our

notation (13.1), this system reads

�̂†g†αβ = Fαβ(g
†, ∂g†) + Aαβ +Bαβ,

3 �̂†ρ♯ − κ−1/2ρ♭ = −σ +Wκ(ρ) ≃ −σ + O(ρ♭2),

�̂†φ− U ′(φ) = 2 g†
αβ
∂αρ

♯∂βφ.

(13.4)

We recall the notation �̂† = g†
µν
∂µ∂ν for the modified wave operator, while the Ricci

nonlinearity Fαβ = Pαβ + Qαβ will be computed explicitly in Proposition 13.1 below.

Since constant coefficients within the nonlinearities are irrelevant for the purpose of

establishing global existence, it is convenient to use a symbolic notation and, with

obvious convention, in view of (4.8) we express the nonlinearities Aαβ, Bαβ , σ arising

in (13.4) in the form

Aαβ ≃ ∂αρ
♯∂βρ

♯ + Vκ(ρ)g
†αβ ≃ ∂αρ

♯∂βρ
♯ + O(ρ♭2)g†αβ ,

Bαβ ≃ e−ρ
♯

∂αφ∂βφ+ U(φ)e−2ρ♯ g†αβ ≃ e−ρ
♯

∂αφ∂βφ+ O(φ)2e−2ρ♯ g†αβ,

σ ≃ e−ρ
♯

g†
αβ
∂αφ∂βφ+ e−2ρ♯U(φ) ≃ e−ρ

♯

g†
αβ
∂αφ∂βφ+ e−2ρ♯

O(φ2).

(13.5)

Expression of the Ricci curvature. Before we can proceed with the analysis of

the system (13.4)-(13.5), we need to compute the expression of the Ricci curvature

nonlinearity Fαβ arising in the metric equation in (13.4). In general coordinates, the
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contracted Christoffel symbols read

Γ†γ = g†
αβ
Γ†γ

αβ =
1

2
g†
αβ
g†
γδ(
∂αg

†
βδ + ∂βg

†
αδ − ∂δg

†
αβ

)

= g†
γδ
g†
αβ
∂αg

†
βδ −

1

2
g†
αβ
g†
γδ
∂δg

†
αβ

(13.6)

and, therefore,

Γ†
λ = g†λγΓ

γ = g†
αβ
∂αg

†
βλ −

1

2
g†
αβ
∂λg

†
αβ.

The Ricci curvature in arbitrary coordinates, that is,

R†
αβ = ∂λΓ

†λ
αβ − ∂αΓ

†λ
βλ + Γ†λ

αβΓ
†δ
λδ − Γ†λ

αδΓ
†δ
βλ, (13.7)

is nox decomposed into several very different contributions. The desired structure will

be achieved by working in wave coordinates, which by definition satisfy Γ†α = 0 but

we not assume this in the following statement.

Proposition 13.1 (Expression of the curvature in coordinates). The Ricci curvature

of the metric g† admits the following decomposition1

R†
αβ = −1

2
g†
λδ
∂λ∂δg

†
αβ +

1

2

(
∂αΓ

†
β + ∂βΓ

†
α

)
+

1

2
Fαβ , (13.8)

where Fαβ = Fαβ(g
†, ∂g†) := Pαβ +Qαβ +Wαβ is a sum of null terms, that is,

Qαβ : = g†
λλ′

g†
δδ′

∂δg
†
αλ′∂δ′g

†
βλ − g†

λλ′

g†
δδ′(

∂δg
†
αλ′∂λg

†
βδ′ − ∂δg

†
βδ′∂λg

†
αλ′

)

+ g†
λλ′

g†
δδ′(

∂αg
†
λ′δ′∂δg

†
λβ − ∂αg

†
λβ∂δg

†
λ′δ′

)

+
1

2
g†
λλ′

g†
δδ′(

∂αg
†
λβ∂λ′g

†
δδ′ − ∂αg

†
δδ′∂λ′g

†
λβ

)

+ g†
λλ′

g†
δδ′(

∂βgλ′δ′∂δg
†
λα − ∂βg

†
λα∂δg

†
λ′δ′

)

+
1

2
g†
λλ′

g†
δδ′(

∂βg
†
λα∂λ′g

†
δδ′ − ∂βg

†
δδ′∂λ′g

†
λα

)
,

quasi-null term

Pαβ := −1

2
g†
λλ′

g†
δδ′

∂αg
†
δλ′∂βg

†
λδ′ +

1

4
g†
δδ′

g†
λλ′

∂βg
†
δδ′∂αg

†
λλ′

and a remainder

Wαβ := g†
δδ′

∂δg
†
αβΓ

†
δ′ − Γ†

αΓ
†
β.

1This decomposition was derived first in [94], while the terminology “quasi-null term” was proposed

in [88].
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The full derivation of this decomposition is postponed to Section 15.

13.2 Homogeneous functions and nonlinearities of the field

equations

Nonlinearities of the field equations. Recall that the notion of “homogeneous

function” was introduced in Section 12. The notion above is now applied in order to

classify the nonlinearities arising in our system (13.4)-(13.5). Recall our notation

hαβ = g†αβ − gM,αβ, (13.9)

The expressions of interest will be expressed from a limited list of nonlinear terms in

h, ρ♯, ρ♭, and φ. In the interior domain Mint, the coefficient r/t is bounded above (by

1) and t is bounded away from zero.

Definition 13.2. An expression (of derivatives of the metric, curvature, and matter

field) is said to be a bounded linear combination if it can be expressed as a sum

with homogeneous coefficients of degree ≤ 0.

We are thus able to treat simultaneously the interior and exterior domains by using

our global notation. We distinguish between the following classes of linear combinations

with homogeneous coefficients of degree ≤ 0. Except for the last type of terms in our

list, all terms are quadratic expressions in h, ρ, φ.

It is important to unify our notation and use

∂̃a :=




∂a in the interior Mint,

∂̃a in the transition and exterior Mtran ∪Mext.
(13.10)

Another useul notation is obtain by writing an arbitrary combination of Killing fields

in the form:

ZIJK := ∂ILJΩK . (13.11)

We also use the notation (for instance)

|J,K| := |J |+ |K|. (13.12)
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Quasi-linear terms.

• Metric-metric interactions1 Qhh(p, k):

ZI1J1K1hα′β′ZI2J2K2∂µ∂νhαβ , |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

hα′β′∂µ∂ν∂
ILJhαβ , |I, J,K| ≤ p, |J,K| < k.

• Metric-curvature interactions Qhρ♯(p, k):

ZI1J1K1hα′β′ZI2J2K2∂µ∂νρ
♯, |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

hα′β′∂µ∂νZ
IJKρ♯, |I, J,K| ≤ p, |J,K| < k.

• Metric-matter interactions Qhφ(p, k):

ZI1J1K1hα′β′ZI2J2K2∂µ∂νφ, |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

hα′β′∂µ∂νZ
IJKφ, |I, J,K| ≤ p, |J,K| < k.

• In view of the notation (13.1), we define Qhψ♯(p, k) := Qhρ♯(p, k) ∪Qhφ(p, k).

Good quasi-linear terms.

• Metric-metric interactions GQhh(p, k):

ZI1J1K1hα′β′ZI2J2K2∂̃a∂̃µhαβ, |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

ZI1J1K1hα′β′ZI2J2K2∂̃µ∂̃bhαβ , |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

hα′β′ZIJK ∂̃a∂̃µhαβ , hα′β′ZIJK ∂̃µ∂̃bhαβ, |I, J,K| ≤ p, |J,K| < k.

• Metric-curvature interactions GQhρ♯(p, k):

ZI1J1K1hα′β′ZI2J2K2∂̃a∂̃µρ
♯, |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

ZI1J1K1hα′β′ZI2J2K2∂̃µ∂̃bρ
♯, |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

hα′β′ZIJK ∂̃a∂̃µρ
♯, hα′β′ZIJK ∂̃µ∂̃bρ

♯, |I, J,K| ≤ p, |J,K| < k.

• Metric-matter interactions GQhφ(p, k):

ZI1J1K1hα′β′ZI2J2K2∂̃a∂̃µφ, |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

ZI1J1K1hα′β′ZI2J2K2∂̃µ∂̃bφ, |I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k, |I2, J2, K2| ≤ p− 1,

hα′β′ZIJK ∂̃a∂̃µφ, hα′β′ZIJK ∂̃µ∂̃bφ, |I, J,K| ≤ p, |J,K| < k.

• In view of (13.1), we analogously define GQhψ♯(p, k).
1p is the total number of vector fields while k is the total number of boosts and rotations.
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Semi-linear terms.

• Metric-metric interactions Shh(p, k):

ZI1J1K1∂µhαβZ
I2J2K2∂νhα′β′, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• Curvature-curvature interactions of first order Sρ♯ρ♯(p, k):

ZI1J1K1∂µρ
♯ZI2J2K2∂νρ

♯, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• Curvature-curvature interactions of zero order Sρ♭ρ♭(p, k):

ZI1J1K1ρ♭ZI2J2K2ρ♭, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• Curvature-matter interactions Sρ♯φ(p, k):

ZI1J1K1∂µρ
♯ZI2J2K2∂νφ, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• Matter-matter interactions Sφφ(p, k) (of zero or first orders):

ZI1J1K1∂µφZ
I2J2K2∂νφ, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k,

ZI1J1K1φZI2J2K2φ, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• In view of (13.1), we analogously define Sψ♯ψ♯(p, k) and Sψ♭ψ♭(p, k).

Good semi-linear terms (including null terms).

• Metric-metric interactions GShh(p, k):

ZI1J1K1∂̃ahαβZ
I2J2K2∂̃γhα′β′ , |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k,

and in the interior Mint only:

s2

t2
ZI1J1K1∂0hαβZ

I2J2K2∂0hα′β′ , |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k,

in which we recall that ∂̃0 = ∂t.
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• Curvature-curvature interactions of first order GSρ♯ρ♯(p, k):

ZI1J1K1∂̃aρ
♯ZI2J2K2∂̃γρ

♯, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k,

and in the interior Mint only:

s2

t2
∂I1LJ1∂0ρ

♯∂I1LJ1∂0ρ
♯, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• Curvature-matter interactions GSρ♯φ(p, k):

ZI1J1K1 ∂̃aρ
♯ZI2J2K2 ∂̃γφ, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k,

ZI1J1K1 ∂̃aφZ
I2J2K2∂̃γρ

♯, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k,

and in the interior Mint only:

s2

t2
ZI1J1K1∂0ρ

♯∂I1LJ1∂0φ, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• Matter-matter interactions of first order GSφφ(p, k):

ZI1J1K1 ∂̃aφZ
I2J2K2∂̃γφ, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k,

and in the interior Mint only:

s2

t2
ZI1J1K1∂0φZ

I2J2K2∂0φ, |I1, J1, K1, I2, J2, K2| ≤ p, |J1, K1, J2, K2| ≤ k.

• Moreover, in view of (13.1), we analogously define GSψ♯ψ♯(p, k).

Higher-order terms.

• Change of frame terms F(p, k), which arise when a second-order derivative is

transformed from the canonical frame to the semi-hyperboloidal frame:

1

t+ r
ZI1J1K1hµνZ

I2J2K2∂γhµ′ν′,
1

(t + r)2
ZI1J1K1hµν∂

I2LJ2hµ′ν′,

1

t+ r
ZI1J1K1∂µhαβZ

I2J2K2∂νρ
♯,

1

t + r
ZI1J1K1∂µhαβZ

I2J2K2∂νφ,

1

(t+ r)2
ZI1J1K1hµνZ

I2J2K2ρ♯,
1

(t + r)2
ZI1J1K1hµνZ

I2J2K2φ,

|I1, I2| ≤ p− k, |J1, K1, J2, K2| ≤ k,
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and
1

t+ r
Shh(p, k),

1

t+ r
Sφφ(p, k),

1

t + r
Sφρ♯(p, k).

• Cubic interactions C(p, k). Such terms enjoy better decay in time and we will

not list them in full detail. We only observe that these interaction terms include:

– cubic (or higher-order) terms in ρ♭, and

– cubic (or higher-order) terms in (hαβ, ρ
♯, φ),

– except cubic (nor higher-order) terms hαβ (which do not arise).

We have summarized our notation in Table 13.2. Furthermore, when an expression

C is decomposed into a sum of terms in the above classes, for instance, in Shh(p, k)

and F(p, k), we use the symbolic notation

C ≃ Shh(p, k) + F(p, k). (13.13)
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Quasi-linear Metric-metric Qhh(p, k) ZI1J1K1hZI2J2K2∂∂h

Metric-curvature Qhψ♯(p, k) ZI1J1K1hZI2J2K2∂∂ρ♯

Metric-matter Qhφ(p, k) ZI1J1K1hZI2J2K2∂∂φ

Good quasi-linear Metric-metric GQhh(p, k) ZI1J1K1hZI2J2K2 ∂̃a∂̃h

Metric-curvature GQhψ♯(p, k) ZI1J1K1hZI2J2K2 ∂̃a∂̃ρ
♯

Metric-matter GQhφ(p, k) ZI1J1K1hZI2J2K2∂̃a∂̃φ

Semi-linear Metric-metric Shh(p, k) ZI1J1K1∂hZI2J2K2∂h

Curvature-curvature Sρ♯ρ♯(p, k) ZI1J1K1∂ρ♯ZI2J2K2∂ρ♯

Sρ♭ρ♭(p, k) ZI1J1K1ρ♭ZI2J2K2ρ♭

Curvature-matter Sρ♯φ(p, k) ZI1J1K1∂ρ♯ZI2J2K2∂φ

Matter-matter Sφφ(p, k) ZI1J1K1∂φZI2J2K2∂φ

ZI1J1K1φ∂I2LJ2φ

Good semi-linear Metric-metric GShh(p, k) ZI1J1K1∂̃ahZ
I2J2K2∂̃h

interior only:

(s2/t2)∂I1LJ1∂̃0hZ
I2J2K2∂̃0h

Curvature-curvature GSρ♯ρ♯(p, k) ZI1J1K1∂̃aρ
♯ZI2J2K2∂̃ρ♯

interior only:

(s2/t2)∂I1LJ1∂0ρ
♯∂I2LJ2∂0ρ

♯

Curvature-matter GSρ♯φ(p, k) ∂I1LJ1 ∂̃aρ
♯ZI2J2K2∂̃φ

ZI1J1K1∂̃ρ♯ZI2J2K2 ∂̃aφ

interior only:

(s2/t2)ZI1J1K1∂ρ♯ZI2J2K2∂aφ

Matter-matter GSφφ(p, k) ZI1J1K1∂̃aφZ
I2J2K2∂̃φ

interior only:

(s2/t2)ZI1J1K1∂0φZ
I2J2K2∂0φ

Table: Quasi-linear and semi-linear terms (with the range of indices omitted)
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14 The quasi-null structure for the null-hyperbo-

loidal frame

14.1 The nonlinear wave equations for the metric components

We now analyze the metric equations in the frame of interest. Here and in the rest of

this Monograph, we rely on a symbolic notation in order to express the nonlinearities

arising in the problem and, in particular, we suppress (irrelevant) numerical constants.

As already pointed out, the general algebraic structure of the field equations in the

interior and exterior domains are the same, except for the weight functions that we

take into account in our estimates.

We use the notation h̃ to denote either h in the interior domain or h̃ in the transition

or exterior domains.

Lemma 14.1. In terms of their components in the null-semi-hyperboloidal frame, the

field equations of modified gravity take the following form1

�̂g†h̃00 ≃ P̃ 00 + O(1)
(
∂̃0ρ

♯∂̃0ρ
♯ + O(1)∂̃0φ∂̃0φ

)

+ O(1)
(
ρ♭2 + φ2

)
g̃
M,00

+GShh(0, 0) + C(0, 0),

�̂g† h̃0a ≃ P̃ 0a +
1

t+ r
∂̃ah00 + O

( r

(t+ r)3

)
h00 + O(1)

(
∂̃aρ

♯∂̃0ρ
♯ + ∂̃aφ∂̃0φ

)

+ O(1)
(
ρ♭2 + φ2

)
g̃
M,a0

+GShh(0, 0) + C(0, 0),

(14.1)

�̂g† h̃aa ≃ P̃ aa + O

( r

(t + r)2

)
∂̃ah00 + O

( 1

(t+ r)2

)
h00 +

1

t+ r
∂̃ah0a + O

( r

(t + r)3

)
h0a

+ O(1)
(
∂̃aρ

♯∂̃aρ
♯ + ∂̃aφ∂̃aφ

)
+ O(1)

(
ρ♭2 + φ2

)
g̃
M,aa

+GShh(0, 0) + C(0, 0) (a = 1, 2, 3),

(14.2)

1It is convenient to keep here the components hαβ in the right-hand sides.
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and

�̂g†h̃ab ≃ P̃ ab ++GShh(0, 0) + O(1)
(
∂̃aρ

♯∂̃bρ
♯ + ∂̃aφ∂̃bφ

)

+ O

( r

(t+ r)2

)(
∂̃ah00 + ∂̃bh00

)
+ O

( 1

t+ r

)(
∂̃ah0b + ∂̃ah0a

)

+ O

( r2

(t+ r)4

)
h00 + O

( r

(t+ r)3

)(
h0a + h0b

)

+ O(1)
(
ρ♭2 + φ2

)
g̃
M,ab

+ C(0, 0) (a 6= b).

(14.3)

A similar statement holds for any derivative ∂ILJ h̃αβ of the null-semi-hyperboloidal

components.

Proof. The general identity

�̂g†(uv) = u �̂g†v + v �̂g†u+ 2 g†
αβ
∂αu∂βv

allows us to decompose the modified wave operator �̂g† in the conformal metric, as

follows:

�̂g†hαβ = �̂g†
(
Φ̃
α′

α Φ̃
β′

β hα′β′

)

= Φ̃
α′

α Φ̃
β′

β �̂g†hα′β′ + hα′β′�̂g†
(
Φ̃
α′

α Φ̃
β′

β

)
+ 2 g†

µν
∂µ
(
Φ̃
α′

α Φ
β′

β

)
∂νhα′β′,

in which we are going to use the expressions of the transition matrices in (7.3) and

(7.8). In the interior domain, we have

Φ0
0Φ

0
0 = 1, Φ0

aΦ
0
0 = xa/t, ΦaaΦ

0
0 = 1,

Φ0
aΦ

0
b = xaxb/t

2, Φ0
aΦ

b
b = xa/t, ΦaaΦ

b
b = 1,

(14.4)

which are bounded functions in Mint and, more precisely, are coefficients of degree

zero. On the other hand, in the transition and exterior domains we have chosen the

null frame and we have

Φ̃0
0Φ̃

0
0 = 1, Φ0

aΦ̃
0
0 = xa/r, Φ̃aaΦ̃

0
0 = 1,

Φ̃0
aΦ̃

0
b = xaxb/r

2, Φ̃0
aΦ̃

b
b = xa/r, Φ̃aaΦ̃

b
b = 1,

(14.5)

which also are bounded functions in Mtran ∪Mext and, more precisely, are coefficients

of degree zero.
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Consider first the component h̃00. From the wave-Klein-Gordon system (13.4)-

(13.5) and in view of the decomposition of Fαβ given in Proposition 13.1, we find

�̂g† h̃00 = P̃ 00 + Φ̃
α′

0 Φ̃
β′

0 Qα′β′ + O(1)∂̃0ρ
♯∂̃0ρ

♯ + O(1)e−ρ
♯

∂̃0φ∂̃0φ

+
(
O(1)ρ♭2 + O(1)e−2ρ♯φ2

)
g̃†
00

= P̃ 00 +GShh(0, 0) + O(1)∂̃0ρ
♯∂̃0ρ

♯ + O(1)e−ρ
♯

∂̃0φ∂̃0φ

+
(
O(1)ρ♭2 + O(1)e−2ρ♯φ2

)
g̃
M,00

+ C(0, 0),

in which the contribution of the exponential factors can be absorbed in cubic terms.

We treat similarly, the terms

�̂g† h̃0a = P̃ 0a + Φ̃
α′

0 Φ̃
β′

a Qα′β′ + O(1)∂̃aρ
♯∂̃0ρ

♯ + O(1)e−ρ
♯

∂̃aφ∂̃0φ

+
(
O(1)ρ♭2 + O(1)e−2ρ♯φ2

)
g̃†
a0
+ O(1)

2

t+ r
∂̃ah00 − O(1)

2xa
(t + r)3

h00

≃ P̃ 0a +GShh(0, 0) + O(1)
(
∂̃aρ

♯∂̃0ρ
♯ + ∂̃aφ∂̃0φ

)

+
(
O(1)ρ♭2 + O(1)e−2ρ♯φ2

)
g̃
M,a0

+ C(0, 0) +
O(1)

t+ r
∂̃ah00 + O

( r

(t + r)3

)
h00,

where cubic terms are denoted with the symbolic notation C(0, 0). Next, for any

a = 1, 2, 3 we compute

�̂g†h̃aa ≃ P̃ aa + Φ̃
α′

a Φ̃
β′

a Qα′β′ + O(1)∂̃aρ
♯∂̃aρ

♯ + O(1)∂̃aφ∂̃aφ

+
(
O(1)ρ♭2 + O(1)e−2ρ♯φ2

)
g̃†
aa

+
4xa

(t+ r)2
∂̃ah00 +

4

T
∂̃ah0a −

4xa
(t+ r)3

h0a +
( 2

(t+ r)2
− 6|xa|2

(t+ r)4

)
h00

≃ P̃ aa +GShh(0, 0) + O(1)
(
∂̃aρ

♯∂̃aρ
♯ + ∂̃aφ∂̃aφ

)

+ O(1)
(
ρ♭2 + φ2

)
g
M,aa

+ C(0, 0)

+ O

( r

(t+ r)2

)
∂̃ah00 +

( 1

(t+ r)2
+ O

( r2

(t + r)4

))
h00

+ O

( 1

t+ r

)
∂̃ah0a + O

( r

(t + r)3

)
h0a.
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Finally, for a 6= b we write similarly

�̂gh̃ab = P̃ ab + Φ̃
α′

a Φ̃
β′

b Qα′β′ + O(1)∂̃aρ
♯∂̃bρ

♯ + O(1)∂̃aφ∂̃bφ

+ O(1)
(
ρ♭2 + φ2

)
g̃†
ab
+

2x

T 2

(
xb∂̃ah00 + xa∂̃bh00

)

+ O(1)
2

t+ r
∂̃ah0b +

2

t+ r
∂̃bh0a

− 6xaxb
(t+ r)4

h00 −
2xa

(t + r)3
h0b −

2xb
(t + r)3

h0a + C(0, 0)

≃ P ab ++GShh(0, 0) + O(1)∂̃aρ
♯∂̃bρ

♯ + O(1)∂̃aφ∂̃bφ

+ O

( r

(t+ r)2

)
∂̃ah00 + O

( r

(t + r)2

)
∂̃bh00 + O

( r2

(t + r)4

)
h00

+ O

( 1

t+ r

)
∂̃ah0b + O

( r

(t+ r)3

)
h0b + O

( 1

t+ r

)
∂̃ah0a + O

( r

(t+ r)3

)
h0a

+ O(1)
(
ρ♭2 + φ2

)
g̃
M,ab

+ C(0, 0) (a 6= b).

This completes the proof of Lemma 14.1.

14.2 Reduction of the expression of quasi-null terms

The quasi-null terms in the Euclidian–semi-hyperboloidal frame are

P̃ αβ =
1

4
g†
γγ′

g†
δδ′

∂̃αhγδ∂̃βhγ′δ′ −
1

2
g†
γγ′

g†
δδ′

∂̃αhγγ′ ∂̃βhδδ′ . (14.6)

Clearly, the components P̃ αβ (but not the component P̃ 00) are null terms since they

involve at least one derivative tangential to the hyperboloids in the interior domain

and tangential to the light cone in the transition and exterior domains. Hence, the

following statement is immediate.

Lemma 14.2. The (a, β)-components of the quasi-null terms have the property

P̃ aβ ≃ GShh(0, 0) + C(0, 0) (14.7)

and, more generally,

∂ILJΩK P̃ aβ ≃ GShh(p, k) + C(p, k),

p = |I|+ |J |+ |K|, |J |+ |K| = k.
(14.8)
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Consequently, in the equations satisfied by the components h̃aβ (but excluding

h̃00), the relevant quasi-null component P̃ aβ are null terms and, consequently, we will

be able to establish a good decay estimate for these components. On the other hand,

the component h̃00, whose evolution equation involves P̃ 00, requires special analysis

(based on the next section).

Lemma 14.3. The component P̃ 00 satisfies, up to irrelevant multiplicative coefficients

of degree ≤ 0,

P̃ 00 ≃ g̃γγ
′

M
g̃δδ

′

M
∂th̃γγ′∂th̃δδ′ + g̃γγ

′

M
g̃δδ

′

M
∂th̃γδ∂th̃γ′δ′

+GShh(0, 0) + F(0, 0) + C(0, 0).
(14.9)

Proof. By changes of frame formulas, such as

g†
γγ′

gδδ
′

∂thγδ∂thγ′δ′

= g̃†γγ
′

g̃δδ
′

∂th̃γδ∂th̃γ′δ′ + g̃†γγ
′

g̃†δδ
′

h̃γ′′δ′′∂t
(
Ψ̃
γ′′

γ Ψ̃
δ′′

δ

)
∂t
(
Ψ̃
γ′′′

γ′ Ψ̃
δ′′′

δ′

)
h̃γ′′′δ′′′

+ g̃†γγ
′

g̃†δδ
′

Ψ̃
γ′′

γ Ψ̃
δ′′

δ ∂th̃γ′′δ′′∂t
(
Ψ̃
γ′′′

γ′ Ψ̃
δ′′′

δ′

)
h̃γ′′′δ′′′

+ g̃†γγ
′

g̃†δδ
′

∂t
(
Ψ̃
γ′′

γ Ψ̃
δ′′

δ

)
h̃γ′′δ′′Ψ̃

γ′′

γ′ Ψ̃
δ′′

δ′ ∂th̃γ′′′δ′′′ ,

we can put P̃ 00 in the form

P̃ 00 =
1

4
g̃†γγ

′

g̃†δδ
′

∂th̃γδ∂th̃γ′δ′ −
1

2
g̃†γγ

′

g̃†δδ
′

∂th̃γγ′∂th̃δδ′

≃ 1

4
g̃†γγ

′

g̃†δδ
′

∂th̃γδ∂th̃γ′δ′ −
1

2
g̃†γγ

′

g̃†δδ
′

∂th̃γγ′∂th̃δδ′ + F(0, 0).

Moreover, modulo cubic terms, the curved metric can be replaced by the flat one, i.e.

1

4
g̃γγ

′

M
g̃δδ

′

M
∂th̃γδ∂th̃γ′δ′ −

1

2
g̃γγ

′

M
g̃†δδ

′

M
∂th̃γγ′∂th̃δδ′ + F(0, 0) + C(0, 0).

We again rely on the wave gauge condition and in view of the decomposition (14.9)

of P̃ 00 and thanks to Proposition 14.5, we arrive at the following conclusion, which

shows that it will remain only to control the term ∂th̃aα∂th̃bβ (and its derivatives ∂ILJ),

which is not a null term and will require an improved decay estimate on ∂h̃aα.
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Proposition 14.4 (Quasi-null interactions in the null-semi-hyperboloidal frame). The

quasi-null terms satisfy

P̃ 00 ≃ ∂th̃aα∂th̃bβ +GShh(0, 0) + C(0, 0) + F(0, 0),

P̃ aβ ≃ GShh(0, 0) + C(0, 0) + F(0, 0).
(14.10)

More generally, this statement also holds for their derivatives:

∂ILJ P̃ 00 ≃ ∂ILJ
(
∂th̃aα∂th̃bβ

)
+GShh(p, k) + C(p, k) + F(p, k),

∂ILJ P̃ aβ ≃ GShh(p, k) + C(p, k) + F(p, k),
(14.11)

with p = |I| and k = |J |, provided |∂I′LJ ′
h| + |∂I′LJ ′

∂h| is sufficiently small for all

|I ′|+ |J ′| ≤ p+ k.

Proof. Step 1. We first claim that

g̃†αα
′

g̃†ββ
′

∂tg̃
†
αα′
∂tg̃

†
ββ′

≃ g̃†0a∂0g̃
†
0a
g†0b∂0g

†
0b
+GShh(0, 0) + F(0, 0) + C(0, 0).

(14.12)

Indeed, the wave gauge condition

g†αβ∂αhβγ =
1

2
g†αβ∂γhαβ (14.13)

reads, in the null-semi-hyperboloidal frame,

g̃†αβ∂αh̃βγ + Φ̃
γ′

γ g̃
†αβ∂α

(
Ψ̃
β′

β Ψ̃
γ′′

γ′

)
h̃β′γ′′ =

1

2
g̃†αβ ∂̃γh̃αβ +

1

2
g̃†αβ ∂̃γ

(
Ψ̃
α′

α Ψ̃
β′

β

)
h̃α′β′ .

Letting1 γ = 0, we find

g̃†αβ∂th̃αβ = 2 g̃†αβ ∂̃αh0β + 2 Φ̃
γ′

0 g
αβ∂α

(
Ψ̃
β′

β Ψ̃
γ′′

γ′

)
h̃β′γ′′ − g̃†αβ∂t

(
Ψ̃
α′

α Ψ̃
β′

β

)
h̃α′β′,

which we put in the form

g̃†αβ∂thαβ = 2 g̃αβ
M
∂αh̃β0 + 2h̃

αβ
∂αh̃β0 + 2 Φ̃

γ′

0 g̃
αβ

M
∂α

(
Ψ̃
β′

β Ψ̃
γ′′

γ′

)
h̃β′γ′′

− g̃αβ
M
∂t

(
Ψ̃
α′

α Ψ̃
β′

β

)
h̃α′β′

+ 2Φγ
′

0 h
αβ∂α

(
Ψβ′

β Ψ
γ′′

γ′

)
hβ′γ′′ − h̃

αβ
∂t

(
Ψα′

α Ψ
β′

β

)
hα′β′.

1Observe that, in contrast, γ is replaced by a = 1, 2, 3 in the proof of Proposition 14.5.
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In the right-hand side, except for the first term, we have at least quadratic terms or

terms containing an extra decay factor such as ∂α

(
Ψ̃
β′

β Ψ̃
γ′′

γ

)
. So, in the expression of

interest g̃†αα
′

g̃†ββ
′

∂tg̃
†
αα′
∂tg̃

†
ββ′

, the only term to be treated is

g̃αα
′

M
g̃ββ

′

M
∂̃αh̃α′0∂̃βh̃β′0. (14.14)

We also emphasize that, provided |h̃| is sufficiently small, h̃
αβ

can be expressed as a

power series in h̃αβ (without zero-order terms), which is itself a linear combination of

hαβ (with homogeneous coefficients of degree ≤ 0). So, similarly, h̃
αβ

can be expressed

as a power series in hαβ .

We deduce that all the terms within the key product g̃†αα
′

g̃†ββ
′

∂tg̃
†
αα′
∂tg̃

†
ββ′

belong

to C(0, 0) or F(0, 0), with the possible exception of the term

g̃αα
′

M
g̃ββ

′

M
∂αh̃α′0∂βh̃β′0. (14.15)

We therefore focus on this term and write

(
g̃αα

′

M
∂̃αh̃α′0

)(
g̃ββ

′

M
∂̃βh̃β′0

)

=
(
g̃aα

′

M
∂̃ah̃α′0 + g̃00

M
∂̃0h̃00 + g̃0a

′

M
∂̃0h̃0a′

)(
g̃bβ

′

M
∂̃bh̃β′0 + g̃00

M
∂̃0h̃00 + g̃0b

M
∂̃0h̃0b

)

=
(
g̃aα

′

M
∂̃ah̃α′0 + g̃00

M
∂̃0h̃00

)(
g̃bβ

′

M
∂̃bh̃β′0 + g̃00

M
∂̃0h̃00 + g̃0b

M
∂̃0h̃0b

)

+ g̃0a
′

M
∂̃0h̃0a′

(
h̃
bβ′

∂̃bh̃β′0 + g̃00
M
∂̃0h̃00

)
+ g̃0a

′

M
∂0h̃0a′ g̃

0b

M
∂̃0h̃0b.

The last term is already listed in (14.12). The remaining terms are null quadratic

terms (recall that g00
M

= s2/T 2).

Step 2. The term g̃†γγ
′

g̃†δδ
′

∂th̃γγ′∂th̃δδ′ being treated in Step 1, it remains to discuss

the term

g̃γγ
′

M
g̃δδ

′

M
∂th̃γδ∂th̃γ′δ′ . (14.16)

• In the interior domain, we have

∣∣∂ILJg00
M

∣∣ . s2

T 2
,

∣∣gαβ
M

∣∣ . 1, g00
M

=
s2

T 2
in Mint. (14.17)
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– On one hand, by letting (γ, γ′) = (0, 0) or (δ, δ′) = (0, 0), the corresponding

term gγγ
′

M
gδδ

′

M
∂thγδ∂thγ′δ′ is a good term, since it contains the favorable factor

(s/t)2.

– On the other hand, with (γ, γ′) 6= (0, 0) and (δ, δ′) 6= (0, 0), we can introduce

the notation (γ, γ′) = (a, α) and (δ, δ′) = (b, β), and we conclude that

gγγ
′

M
gδδ

′

M
∂thγδ∂thγ′δ′ is a linear combination of ∂thaα∂thbβ with homogeneous

coefficients of degree zero.

• In the transition and exterior domain

∂ILJ g̃00M = 0
∣∣gαβ
M

∣∣ . 1 in Mext. (14.18)

– On one hand, by letting (γ, γ′) = (0, 0) or (δ, δ′) = (0, 0), the corresponding

term g̃γγ
′

M g̃δδ
′

M ∂th̃γδ∂th̃γ′δ′ vanishes.

– On the other hand, with (γ, γ′) 6= (0, 0) and (δ, δ′) 6= (0, 0), we can intro-

duce the notation (γ, γ′) = (a, α) and (δ, δ′) = (b, β), and we obtain that

g̃γγ
′

M g̃δδ
′

M ∂th̃γδ∂th̃γ′δ′ is a linear combination of ∂th̃aα∂th̃bβ with homogeneous

coefficients of degree zero.

14.3 The null-semi-hyperboloidal (0, 0)-component

Next, we rely on the notation

h̃
αβ

= hα
′β′

Ψ̃
α

α′Ψ̃
β

β′, h̃αβ = hα′β′Φ̃
α′

α Φ̃
β′

β , (14.19)

and
hαβ = g†

αβ − gαβM , hαβ = g†αβ − gM,αβ,

h̃
αβ

= g̃†αβ − g̃αβ
M
, h̃αβ = g̃†

αβ
− g̃

M,αβ
.

(14.20)

Proposition 14.5. The metric component ∂th̃
00

in the semi-hyperboloidal frame can

be decomposed as follows:

∂th̃
00 ≃ ∂̃h̃+

1

t + r
h̃+ h̃ ∂h̃ +

1

t + r
h h̃+





s2

t2
∂h̃ in Mint,

0 in Mtran ∪Mext.
(14.21)
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Proof. The wave gauge condition g†
αβ
Γ†γ
αβ = 0 is equivalent to

g†βγ∂αg
†αβ =

1

2
g†αβ∂γg

†αβ (14.22)

and therefore, in the null-semi-hyperboloidal frame, reads

g̃†
βγ
∂̃αh̃

αβ
+ g†β′γ′Φ̃

γ′

γ h̃
αβ
∂α′

(
Φ̃
α′

α Φ̃
β′

β

)
=

1

2
g̃†
αβ
∂̃γh̃

αβ
+

1

2
g̃†
αβ
h̃
α′β′

∂̃γ
(
Φ̃
α

α′Φ̃
β

β′

)

or, equivalently,

g̃
M,βγ

∂̃αh̃
αβ

=
1

2
g̃†
αβ
∂̃γh̃

αβ
+

1

2
g̃†
αβ
h̃
α′β′

∂̃γ
(
Φ̃
α

α′Φ̃
β

β′

)

− g̃†
β′γ′

Φ̃
γ′

γ h̃
αβ
∂α′

(
Φ̃
α′

α Φ̃
β′

β

)
− h̃βγ ∂̃αh̃

αβ
.

(14.23)

We replace the index γ by a Latin index c = 1, 2, 3 and obtain

g̃
M,βc

∂̃αh̃
αβ

=
1

2
g̃
M,αβ

∂̃ch̃
αβ

+
1

2
h̃αβ∂̃ch̃

αβ
+

1

2
g†αβh̃

α′β′

∂̃c
(
Φ̃
α

α′Φ̃
β

β′

)

− g̃†
β′γ′

Φ̃
γ′

c h̃
αβ
∂α′

(
Φ̃
α′

α Φ̃
β′

β

)
− h̃βc∂̃αh̃

αβ
,

(14.24)

which is of the form g̃
M,βc

∂̃αh̃
αβ

= 1
2
g̃
M,αβ

∂̃ch̃
αβ

+ l.o.t., in which l.o.t. are terms of the

form given in the right-hand side of (14.21).

The left-hand side of (14.24) admits the following decomposition:

g̃
M,βc

∂̃αh̃
αβ

= g̃
M,0c

∂0h
00 + g̃

M,bc
∂̃0h

0b + g̃
M,βc

∂̃ah̃
aβ

or, equivalently,

g̃
M,0c

∂0h̃
00

= g̃
M,βc

∂̃αh̃
αβ − g̃

M,bc
∂̃0h

0b − g̃
M,βc

∂̃ah
aβ.

After multiplication by g̃0c
M
, we obtain the identity:

g̃0c
M
g̃
M,0c

∂0h̃
00

= g̃0c
M
g̃
M,βc

∂̃αh̃
αβ − g̃0c

M
g̃
M,bc

∂̃0h̃
0b − g̃0c

M
g̃
M,βc

∂̃ah̃
aβ′

. (14.25)

• Next, within the interior domain Mint, we have

g0c
M
g
M,0c

= (r2/t2), g0c
M
g
M,bc

= −(s/t)2(xb/t) in M
int, (14.26)

and we rewrite (14.25) as

(r/t)2∂0h
00 = (s/t)2

xb
t
∂0h

0b − g0c
M
g
M,βc

∂ah
aβ + g0c

M
g
M,βc

∂αh
αβ in Mint.

(14.27)
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• Still in the interior domain, by replacing in (14.27) the term g0c
M
g
M,βc

∂αh
αβ by

its expression given by the wave condition (14.24), we arrive at

r2

t2
∂0h

00 =
s2

t2
xb
t
∂0h

0b − g0c
M
g
M,βc

∂ah
aβ′

+ g0c
M

(1
2
g†
αβ
∂ch

αβ +
1

2
g†αβh

α′β′

∂c
(
Φαα′Φ

β
β′

)

− g̃†
β′γ′

Φγ′

c h
αβ∂α′

(
Φα′

α Φ
β′

β

)
− hβc∂αh

αβ
)

in Mint.

We therefore have (in symbolic notation)

r2

t2
∂th

00 ≃ s2

t2
∂αh

βγ + ∂ah
βγ +

1

t
hαβ + hαβ∂γh

α′β′

+
1

t
hαβh

α′β′

in Mint,

and we conclude with 1 = (r/t)2 + (s/t)2 in Mint.

• On the other hand, in the transition and exterior domains, we use the relations

g̃0cM g̃M,0c = 1, g̃0cM g̃M,bc = 0. (14.28)

We now rewrite (14.25) as

∂̃0h̃
00 = −g̃0cM g̃M,βc∂̃ah̃

aβ + g̃0cM g̃M,βc∂̃αh̃
αβ in Mtran ∪Mext. (14.29)

We use the short-hand notation
∣∣h̃
∣∣,
∣∣∂h̃
∣∣,
∣∣∂̃h̃
∣∣ to denote components of the met-

ric, its derivatives, and tangential derivatives, respectively. Recall that within our

bootstrap argument, all the component of h and its derivatives are small. The “bad”

derivative of h̃
00

is now shown to be bounded by tangential derivatives or terms with

better decay —thanks to the favorable factor s2/t2 in the interior. For clarity, in

the following statement we distinguish between the interior, transition, and exterior

domains.

Corollary 14.6. The following estimate holds:

∣∣∂̃th̃
00∣∣ .





s2

t2

∣∣∂h
∣∣+
∣∣∂h
∣∣+ 1

t

∣∣h
∣∣ +
∣∣∂h
∣∣ ∣∣h
∣∣ in Mint,

∣∣∂̃h̃
∣∣+ 1

r

∣∣h̃
∣∣+
∣∣∂h̃
∣∣ ∣∣h̃
∣∣ in Mtran ∪Mext,

(14.30)
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More generally, one has
∣∣∂ILJ∂th̃

00∣∣+
∣∣∂t∂ILJ h̃

00∣∣

.
∑

|I′|+|J′|≤|I|+|J|

|J′|≤|J|

(∣∣∂I′LJ ′

∂̃h̃
∣∣+ 1

t + r

∣∣∂I′LJ ′

h̃
∣∣
)
+

∑

|I1|+|I2|≤|I|
|J1|+|J2|≤|J|

∣∣∂I1LJ1 h̃
∣∣ ∣∣∂∂I2LJ2 h̃

∣∣

+





∑
|I′|+|J′|≤|I|+|J|

|J′|≤|J|

s2

t2

∣∣∂∂I′LJ ′
h̃
∣∣, in Mint,

0, in Mtran ∪Mext.

(14.31)

Proof. By Proposition 14.5, the expression ∂th̃
00

is a linear combination of the terms

in (14.21) with homogeneous coefficients of degree ≤ 0. Hence, ∂ILJ∂th̃
00

is again a

linear combination with coefficients of degree ≤ |I| of:

∂I
′

LJ
′(
(s/t)2∂αh̃

βγ)
in the interior) only,)

∂I
′

LJ
′(
∂̃ah̃

βγ)
,

1

t+ r
∂I

′

LJ
′(
h̃
αβ)

,

∂I
′

LJ
′(
hαβ∂γ h̃

α′β′)
,

1

t+ r
∂I

′

LJ
′(
hαβh̃

α′β′)

with |I ′| ≤ |I| and |J ′| ≤ |J |. We observe that

∣∣∣∂I′LJ ′
(s2
t2
∂αh

βγ
)∣∣∣ . s2

t2

∑

|I′′|≤|I′|

|J′′|≤|J′|

|∂I′′LJ ′′(
∂αh

βγ
)
| in Mint.

These terms are bounded by the commutator estimates in Sections 11 and 12 and

we thus control ∂ILJ∂th̃
00
. The statement for ∂t∂

ILJ h̃
00

similarly follows from the

commutator estimates.

15 Ricci curvature in conformal wave coordinates

15.1 Expression of the curvature

We give here a proof of Proposition 13.1. For simplicity, we write g,Γ, . . . instead of

g†,Γ†, . . . throughout this proof. Consider the first two terms in the expression of the
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Ricci curvature Rαβ , which involve second-order derivatives of the metric. Writing

∂λΓ
λ
αβ =− 1

2
gλδ∂λ∂δgαβ +

1

2
gλδ∂λ∂αgβδ +

1

2
gλδ∂λ∂βgαδ

+
1

2
∂λg

λδ
(
∂αgβδ + ∂βgαδ − ∂δgαβ

)

and

∂αΓ
λ
βλ =

1

2
∂α∂βgλδ +

1

2
∂αg

λδ∂βgλδ,

we obtain the identity

∂λΓ
λ
αβ − ∂αΓ

λ
βλ = −1

2
gλδ∂λ∂δgαβ +

1

2
gλδ∂α∂λgδβ +

1

2
gλδ∂β∂λgδα −

1

2
gλδ∂α∂βgλδ

− 1

2
∂λg

λδ∂δgαβ +
1

2
∂λg

λδ∂αgβδ +
1

2
∂λg

λδ∂βgαδ −
1

2
∂αg

λδ∂βgλδ.

(15.1)

The first line contains second-order terms while the second line contains quadratic

products of first-order terms.

15.2 Higher-order contributions

On the other hand, let us compute the combination ∂αΓβ+ ∂βΓα which appears in our

decomposition. We obtain

Γγ = gαβΓγαβ =
1

2
gαβgγδ

(
∂αgβδ + ∂βgαδ − ∂δgαβ

)

= gγδgαβ∂αgβδ −
1

2
gαβgγδ∂δgαβ

and therefore

Γλ = gλγΓ
γ = gαβ∂αgβλ −

1

2
gαβ∂λgαβ ,

so that

∂αΓβ = ∂α
(
gδλ∂δgλβ

)
− 1

2
∂α
(
gλδ∂βgλδ

)

= gδλ∂α∂δgλβ −
1

2
gλδ∂α∂βgλδ −

1

2
∂αg

λδ∂βgλδ + ∂αg
δλ∂δgλβ.
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We have obtained the identity

∂αΓβ + ∂βΓα = gλδ∂α∂λgδβ + gλδ∂β∂λgδα − gλδ∂α∂βgλδ

+ ∂αg
λδ∂δgλβ + ∂βg

λδ∂δgλα −
1

2
∂βg

λδ∂αgλδ −
1

2
∂αg

λδ∂βgλδ.
(15.2)

Next, oobserve that the last term of (15.2) coincides with the last term of (15.1).

The second-order terms in ∂αΓβ+∂βΓα are three of the (four) second-order terms that

arise in ∂λΓ
λ
αβ − ∂αΓ

λ
βλ. Hence, we find

∂λΓ
λ
αβ − ∂αΓ

λ
βλ = −1

2
gλδ∂λ∂δgαβ +

1

2

(
∂αΓβ + ∂βΓα

)

− 1

2
∂λg

λδ∂δgαβ +
1

2
∂λg

λδ∂αgβδ +
1

2
∂λg

λδ∂βgαδ

− 1

2
∂αg

λδ∂δgλβ −
1

2
∂βg

λδ∂δgλα −
1

4
∂αg

λδ∂βgλδ +
1

4
∂βg

λδ∂αgλδ,

therefore, using also the relation

∂αg
λδ = −gλλ′gδδ′∂αgλ′δ′ ,

we have

∂λΓ
λ
αβ − ∂αΓ

λ
βλ = −1

2
∂λg

λδ∂δgαβ +
1

2

(
∂αΓβ + ∂βΓα

)

+
1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂δgαβ −
1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂αgβδ

− 1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂βgαδ +
1

4
gλλ

′

gδδ
′

∂αgλ′δ′∂βgλδ

+
1

2
gλλ

′

gδδ
′

∂αgλ′δ′∂δgλβ +
1

2
gλλ

′

gδδ
′

∂βgλ′δ′∂δgλα −
1

4
gλλ

′

gδδ
′

∂βgλ′δ′∂αgλδ.

Remarkably, the two underlined terms cancel each other, and the quadratic terms in

∂λΓ
λ
αβ − ∂αΓ

λ
βλ are the following ones:

1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂δgαβ, −1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂αgβδ, −1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂βgαδ,

1

2
gλλ

′

gδδ
′

∂αgλ′δ′∂δgλβ,
1

2
gλλ

′

gδδ
′

∂βgλ′δ′∂δgλα.
(15.3)
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15.3 Quadratic contributions

Returning now to the expression of the Ricci curvature, we can consider the two prod-

ucts

ΓλαβΓ
δ
λδ =

1

4
gλλ

′

gδδ
′(
∂λgδδ′∂αgβλ′ + ∂βgαλ′∂λgδδ′ − ∂λ′gαβ∂λgδδ′

)
,

ΓλαδΓ
δ
βλ =

1

4
gλλ

′

gδδ
′(
∂αgδλ′∂βgλδ′ + ∂αgδλ′∂λgβδ′ − ∂αgδλ′∂δ′gβλ

+ ∂δgαλ′∂βgλδ′ + ∂δgαλ′∂λgβδ′ − ∂δgαλ′∂δ′gβλ

− ∂λ′gαδ∂βgλδ′ − ∂λ′gαδ∂λgβδ′ + ∂λ′gαδ∂δ′gβλ
)

and we arrive at

ΓλαβΓ
δ
λδ − ΓλαδΓ

δ
βλ

= −1

4
gλλ

′

gδδ
′

∂λ′gαβ∂λgδδ′ +
1

4
gλλ

′

gδδ
′

∂δgαλ′∂δ′gβλ +
1

4
gλλ

′

∂λ′gαδ∂λgβδ′

− 1

4
gλλ

′

gδδ
′

∂αgδλ′∂βgλδ′

+
1

4
gλλ

′

gδδ
′

∂λgδδ′∂αgβλ′ +
1

4
gλλ

′

gδδ
′

∂λgδδ′∂βgαλ′ −
1

2
gλλ

′

gδδ
′

∂δgαλ′∂λgβδ′ .

(15.4)

The first three terms in the right-hand side are null terms, but the fourth term fails

to be a null term and is included as a quasi-null term. The two underlined terms

will cancel out with the two underlined terms in the equation (15.7), which we derive

below. Hence, only the last term still remains to be considered.

We can therefore now focus on the following six terms:

1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂δgαβ, −1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂αgβδ, −1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂βgαδ,

1

2
gλλ

′

gδδ
′

∂αgλ′δ′∂δgλβ,
1

2
gλλ

′

gδδ
′

∂βgλ′δ′∂δgλα, −1

2
gλλ

′

gδδ
′

∂δgαλ′∂λgβδ′ .
(15.5)

The identities

gαβ∂αgβδ −
1

2
gαβ∂δgαβ = Γδ, gβδ∂αg

αβ − 1

2
gαβ∂δg

αβ = Γδ, (15.6)
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allow us to decompose the first three terms in (15.5) as follows:

1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂δgαβ =
1

2
gδδ

′

∂δgαβΓδ′ +
1

4
gλλ

′

gδδ
′

∂δgαβ∂δ′gλλ′

−1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂αgβδ = −1

2
gδδ

′

∂αgβδΓδ′ −
1

4
gλλ

′

gδδ
′

∂δ′gλλ′∂αgβδ

−1

2
gλλ

′

gδδ
′

∂λgλ′δ′∂βgαδ = −1

2
gδδ

′

∂βgαδΓδ′ −
1

4
gλλ

′

gδδ
′

∂δ′gλλ′∂βgαδ.

(15.7)

In the first line,the last term is exactly one of our quasi-null terms stated. The two

underlined terms cancel out with the two underlined terms in (15.4), as we explained

earlier.

Next, we treat the fourth term in (15.5) by writing

1

2
gλλ

′

gδδ
′

∂αgλ′δ′∂δgλβ

=
1

2
gλλ

′

gδδ
′(
∂αgλ′δ′∂δgλβ − ∂αgλβ∂δgλ′δ′

)
+

1

2
gλλ

′

gδδ
′

∂αgλβ∂δgλ′δ′

=
1

2
gλλ

′

gδδ
′(
∂αgλ′δ′∂δgλβ − ∂αgλβ∂δgλ′δ′

)
+

1

2
gλλ

′

∂αgλβΓλ′ +
1

4
gλλ

′

gδδ
′

∂αgλβ∂λ′gδδ′ ,

therefore

1

2
gλλ

′

gδδ
′

∂αgλ′δ′∂δgλβ

=
1

2
gλλ

′

gδδ
′(
∂αgλ′δ′∂δgλβ − ∂αgλβ∂δgλ′δ′

)
+

1

4
gλλ

′

gδδ
′(
∂αgλβ∂λ′gδδ′ − ∂αgδδ′∂λ′gλβ

)

+
1

2
gλλ

′

∂αgλβΓλ′ +
1

4
gλλ

′

gδδ
′

∂αgδδ′∂λ′gλβ,

and so

1

2
gλλ

′

gδδ
′

∂αgλ′δ′∂δgλβ

=
1

2
gλλ

′

gδδ
′(
∂αgλ′δ′∂δgλβ − ∂αgλβ∂δgλ′δ′

)
+

1

4
gλλ

′

gδδ
′(
∂αgλβ∂λ′gδδ′ − ∂αgδδ′∂λ′gλβ

)

+
1

2
gλλ

′

∂αgλβΓλ′ +
1

4
gδδ

′

∂αgδδ′Γβ +
1

8
gδδ

′

gλλ
′

∂αgδδ′∂βgλλ′ .
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For the fifth term in the expression (15.5), we have

1

2
gλλ

′

gδδ
′

∂βgλ′δ′∂δgλα

=
1

2
gλλ

′

gδδ
′(
∂βgλ′δ′∂δgλα − ∂βgλα∂δgλ′δ′

)
+

1

4
gλλ

′

gδδ
′(
∂βgλα∂λ′gδδ′ − ∂βgδδ′∂λ′gλα

)

+
1

2
gλλ

′

∂βgλαΓλ′ +
1

4
gδδ

′

∂βgδδ′Γα +
1

8
gδδ

′

gλλ
′

∂βgδδ′∂αgλλ′ .

Finally, we deal with the last term in (15.5) by writing

− 1

2
gλλ

′

gδδ
′

∂δgαλ′∂λgβδ′

= −1

2
gλλ

′

gδδ
′(
∂δgαλ′∂λgβδ′ − ∂δgβδ′∂λgαλ′

)
− 1

2
gλλ

′

gδδ
′

∂δgβδ′∂λgαλ′

= −1

2
gλλ

′

gδδ
′(
∂δgαλ′∂λgβδ′ − ∂δgβδ′∂λgαλ′

)
− 1

2
gλλ

′

∂λgαλ′Γβ −
1

4
gλλ

′

gδδ
′

∂βgδδ′∂λgαλ′

therefore

− 1

2
gλλ

′

gδδ
′

∂δgαλ′∂λgβδ′

= −1

2
gλλ

′

gδδ
′(
∂δgαλ′∂λgβδ′ − ∂δgβδ′∂λgαλ′

)
− 1

2
gλλ

′

∂λgαλ′Γβ −
1

4
gδδ

′

∂βgδδ′Γα

− 1

8
gλλ

′

gδδ
′

∂αgλλ′∂βgδδ′ ,

and so

− 1

2
gλλ

′

gδδ
′

∂δgαλ′∂λgβδ′

= −1

2
gλλ

′

gδδ
′(
∂δgαλ′∂λgβδ′ − ∂δgβδ′∂λgαλ′

)
− 1

2
ΓαΓβ −

1

4
gδδ

′

∂αgδδ′Γβ −
1

4
gδδ

′

∂βgδδ′Γα

− 1

8
gλλ

′

gδδ
′

∂αgλλ′∂βgδδ′ .
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15.4 Concluding the calculation

In conclusion, the quadratic nonlinearities in the expression of the Ricci curvature Rαβ

are

1

2
gλλ

′

gδδ
′

∂δgαλ′∂δ′gβλ −
1

2
gλλ

′

gδδ
′(
∂δgαλ′∂λgβδ′ − ∂δgβδ′∂λgαλ′

)

+
1

2
gλλ

′

gδδ
′(
∂αgλ′δ′∂δgλβ − ∂αgλβ∂δgλ′δ′

)
+

1

4
gλλ

′

gδδ
′(
∂αgλβ∂λ′gδδ′ − ∂αgδδ′∂λ′gλβ

)

+
1

2
gλλ

′

gδδ
′(
∂βgλ′δ′∂δgλα − ∂βgλα∂δgλ′δ′

)
+

1

4
gλλ

′

gδδ
′(
∂βgλα∂λ′gδδ′ − ∂βgδδ′∂λ′gλα

)

− 1

4
gλλ

′

gδδ
′

∂αgδλ′∂βgλδ′ +
1

8
gδδ

′

gλλ
′

∂βgδδ′∂αgλλ′ +
1

2
gδδ

′

∂δgαβΓδ′ −
1

2
ΓαΓβ .

This completes the proof of Proposition 13.1.
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