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The Kummer conjecture 

 
 
The Kummer conjecture is about the distribution of the cubic exponential sums  
 

𝑆𝑝 = ∑ 𝑒(
𝑛3

𝑝
)

𝑝
𝑛=1 , 𝑒(𝑥) ≔ 𝑒2𝜋𝑖𝑥 

 

with 𝑝 = 1𝑚𝑜𝑑3 prime, (DuA). The well known bound |𝑆𝑝| ≤ 2√𝑝 can be written in the form 
 

𝑆𝑝

2√𝑝
= cos⁡(2𝜋𝜃𝑝), 𝜃𝑝 ∈ [0,1]. 

 

It is the real part of an explicit root of unity with range (−1,1). Kummer‘s observed that cos⁡(2𝜋𝜃𝑝)  

tended to lay more frequently in the interval 𝐼1 ≔ (
1

2
, 1)  than in 𝐼2 ≔ (−

1

2
,
1

2
) or 𝐼3 ≔ (−1,−

1

2
), 

distributed with the ratio was 3: 2: 1. („In jeder der drei Klassen gibt es unendlich viele Primzahlen und 

die drei Klassen (Primzahlzerlegungstypen) haben die Dichten 
1

2
;
1

3
;
1

6
“, (HaH) p. 457). 

 
From Kummer’s paper (KuE6) we „quote“ (translation by the author): 
 

„If  𝑝 is a prime in the form 𝑝 = 3𝑛 + 1 and 𝑔 a primitive root of it, then the series 1, 𝑔1, 𝑔2, 𝑔3, … 𝑔𝑛−2 can be ordered 

into the three different series 1, 𝑔3, 𝑔6, … 𝑔𝑝−4, 𝑔4, 𝑔7, …𝑔𝑝−3, 𝑔2, 𝑔5, 𝑔8…𝑔𝑝−2. The remainders of the first series for 
the module 𝑝 are the cubics remainders, from which we note an arbitrary one with 𝛼; the remainders of the second 
and third series, which we denote with 𝛽 and 𝛾, are the cubic non-remainders. The related Gaussian series 
 

𝑧1 = ∑ 𝑐𝑜𝑠⁡(
2𝛼𝑘3𝜋

𝑝
)

𝑝−1
0  , 𝑧2 = ∑ 𝑐𝑜𝑠⁡(

2𝛽𝑘3𝜋

𝑝
)

𝑝−1
0 , 𝑧3 = ∑ 𝑐𝑜𝑠⁡(

2𝛾𝑘3𝜋

𝑝
)

𝑝−1
0 . 

  
are the three roots of the following cubic equation 𝑧3 = 2𝑝𝑧 + 𝑝𝑡, where 𝑡 is uniquely determined by the whole 
integer solution of the equation 4𝑝 = 𝑡2 + 27𝑢2 and 𝑡 being positive resp. negative if it is in the form 3ℎ + 1 resp. 
3ℎ − 1. … The three series are not uniquely determined by the cubic equation as it is not decided, which of the 
three roots correspond to the which of the three series. …. I have solved this vagueness in a certain sense, but this 
solution is insufficient, as it requires the knowledge of the sum of all cubic remainders (and also the sums of both 

cubic non-remainders) smaller than 
1

2
𝑝.  …. From those calculated sums I have determined the values of 𝑧1, 𝑧2, 𝑧3 

for all primes of the form 3𝑛 + 1 less than 400 and I am publishing those, that another person can find a common 

law by induction, which was hidden from me. First I notice, that because 𝑡 lies in the interval −2√𝑝 and 2√𝑝, the 

three roots of the cubic equation have to lie in the following three intervals 𝐼1 ≔ (−2√𝑝,−√𝑝), 𝐼2 ≔ (−√𝑝,√𝑝), 𝐼3 ≔

(√𝑝, 2√𝑝). I further note, that if one of the three series is known the other two can be rationally expressed out by it; 

therefore I determine only the series 𝑧1 = ∑ 𝑐𝑜𝑠⁡(
2𝛼𝑘3𝜋

𝑝
)

𝑝−1
0  where one can choose 𝛼:= 1. This series lies in the 

intervals 
 

 

𝐼1 : for the primes    97, 139, 151, 199, 211, 331 
 

𝐼2 : for the primes    13, 19, 37, 61, 109, 157, 193, 241, 283, 367, 373, 379, 397 
 

𝐼3 : for the primes    7, 31, 43, 67, 73, 79, 103, 127, 163, 181, 223, 229, 271, 277, 307, 313, 337, 349. 
 

It would now be a matter of searching which peculiarity each of those three have, where no primes is part of the 
other two series. The linear form of the primes seem to have no meaning, but the quadratic form 4𝑝 = 𝑡2 + 27𝑢2; 
perhaps also the form 𝑝 = 𝑟2 + 3𝑠2. Because I can’t discover any law from this, I tried numbers, which are 

congruent to 𝛽
𝑝−1

3  and 𝛾
𝑝−1

3 ; but also with little success; also, the case if the numbers 2 and 3 are either cubic 
remainders or not, gave me no hint. In any case the law seems to be built on deeper reasons being worth 
researching. 

 
(HaH) p. 453: „… Die Bearbeitung der Kummerschen Vermutung für kubische Charaktere nach dem 
Primzahlmodus 𝑝 = 1⁡𝑚𝑜𝑑⁡3 wäre für die Zahlentheorie vielleicht fruchtbarer als die Bemühungen so 
vieler Fachleute und Laien um die große Fermatsche Vermutung“. 
 
 
Remarks: By appealing to a heuristic form of the circle method Patterson‘s heuristic fell short of a proof of his conjecture explaining the bias 
observed by Kummer (DuA). This was due to insufficent bounds for the minor arcs. There is also a refinement from the Patterson conjecture that 
features an error term capturing square root cancellation. In (DuA) the Patterson conjecture is confirmed conditionally on the assumption of the 
Generalized Riemann Hypothesis, i.e. all non-trivial zeros of all Dirichlet 𝐿 −functions have real part equal to 1/2. 
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Gaussian numbers 
 
 
The prime elements of 𝑍[𝑖] are also known as Gaussian primes. An associate of a Gaussian prime is 

also a Gaussian prime. The conjugate of a Gaussian prime is also a Gaussian prime; this implies that 

Gaussian primes are symmetric about the real and imaginary axes. 

The Gaussian integers form a principal ideal domain, i.e., they form also a unique factorization 
domain. This implies that a Gaussian integer is irreducible (that is, it is not the product of two non-
units) if and only if it is prime (that is, it generates a prime ideal). 
 
The norm of a Gaussian integer is a sum of two squares. A whole number with norm equal one is 
called an unit. The norm of a prime ideal is a prime number, (HuA).  
 
The norm of a Gaussian integer is the basis of the Euler factorization method. The sum of two squares 
can be factorized into Gaussian integers. The Gaussian integers can be factorizied further, (ToH). 
 
The four-square theorem of Lagrange states that every positive integer is the sum of four squares. Its 
proof is based on the theorem that any prime is the sum of four squares, (HaG) 20.5. For further 
theorems about integral and prime quaternions we refer to (HaG1) 20.6 ff. 
 
A positive integer is a Gaussian prime if and only if it is a prime number 𝑝 that is congruent to 3⁡𝑚𝑜𝑑⁡4 

(that is, it may be written 4𝑛 + 3, with 𝑛 a nonnegative integer). The other prime numbers are not 

Gaussian primes, but each is the product of two conjugate Gaussian primes. 

A Gaussian integer 𝑎 + 𝑖𝑏 is a Gaussian prime if and only if either its norm is a prime number, or it is 
the product of a unit {±1,±𝑖} and a prime number of the form 4𝑛 + 3. 
 
It follows that there are three cases for the factorization of a prime number 𝑝 in the Gaussian integers: 

1. If the prime number 𝑝 is congruent to 3⁡𝑚𝑜𝑑⁡4, then it is a Gaussian prime 

2. If 𝑝 is congruent to 1⁡𝑚𝑜𝑑⁡4, then 𝑝 is a decomposed prime in the Gaussian integers (i.e., it is 

the product of a Gaussian prime by its conjugate, both of which are non-associated Gaussian 

primes (neither is the product of the other by a unit)  

3. If 𝑝 = 2, we have 2 = (1 + 𝑖)(1 − 𝑖) = 𝑖(1 − 𝑖)2; that is, 2 is the product of the square of a 

Gaussian prime by a unit; it is the unique ramified prime in the Gaussian integers. 

 
In summary:  
 
Every odd prime in the form 𝑝 = 4𝑘 + 1 and 𝑝 = 2 can be represented as the sum of two squares of two 
whole (positive or negative integer) numbers 𝑎 and 𝑏. This is never the case for primes in the form 𝑞 =
4𝑘 + 3, or more generally, the sum of two squares of two whole numbers 𝑎 and 𝑏 is only divisible by a 
prime number 𝑞, if a and b are divisible by 𝑞.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/Prime_element
https://en.wikipedia.org/wiki/Principal_ideal_domain
https://en.wikipedia.org/wiki/Unique_factorization_domain
https://en.wikipedia.org/wiki/Unique_factorization_domain
https://en.wikipedia.org/wiki/Irreducible_element
https://en.wikipedia.org/wiki/Unit_(ring_theory)
https://en.wikipedia.org/wiki/Unit_(ring_theory)
https://en.wikipedia.org/wiki/Prime_element
https://en.wikipedia.org/wiki/Prime_ideal
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Congruence_class
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Congruence_class
https://en.wikipedia.org/wiki/Congruence_class
https://en.wikipedia.org/wiki/Decomposed_prime
https://en.wikipedia.org/wiki/Ramification_(mathematics)#In_algebraic_number_theory
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Gaussian numbers and the 𝜻(𝒔) function 
 
 

Let 𝑟(𝑛) denote the "number of representations" function as a sum of two squares 
 

𝑟(𝑛) ≔ #{(𝑎, 𝑏) ∈ 𝑅2|𝑎2 + 𝑏2 = 𝑛}. 
 

The Hurwitz Zeta function is the Dirichlet series defined by, (IvA) 1.8, 
 

𝐿(𝑠, 𝜒):= ∑
𝜒(𝑛)

𝑛𝑠
∞
𝑛=1 = ∏ (1 − 𝜒(𝑝)𝑝−𝑠)−1𝑝  for  𝑅𝑒( 𝑠) > 1 

 

Then for the character function defined by, (ZaD) §2, (HaG) 17.9, 
 

𝜒(𝑠) ≔ {

⁡⁡⁡⁡⁡1⁡𝑓𝑜𝑟⁡𝑛 = ⁡1⁡𝑚𝑜𝑑⁡4
−1⁡𝑓𝑜𝑟⁡𝑛 = −1⁡𝑚𝑜𝑑⁡4

⁡⁡⁡⁡0⁡𝑓𝑜𝑟⁡𝑛 = ⁡⁡⁡0⁡𝑚𝑜𝑑⁡2
 

 

the corresponding Dirichlet series results into 
 

1

4
∑

𝑟(𝑛)

𝑛𝑠
∞
𝑛=1 = 𝜁(𝑠)𝐿(𝑠). 

 

For 𝐿(𝑠) the following representations are valid, (ZaD) S. 31, 
 

𝐿(𝑠) = 1 −
1

3𝑠
+

1

5𝑠
−⋯ =

1

𝛤(s)
∫

𝑡𝑠−1

𝑒𝑡+𝑒−𝑡
𝑑𝑡

∞

0
  

 

with the following relationship to the Euler number 
 

𝐿(−𝑛) =
1

2
𝐸𝑛, 𝐿(2𝑛 + 1) =

(−1)𝑛𝐸2𝑛

22𝑛+2(2𝑛)!
𝜋2𝑛+1, 𝑛 = 0,1,2, … . 

 
 

Hurwitz quaternions 
 

 

The set of Hurwitz quaternion integers provides an Euclidian ring domain (as the Gaussian integers), 
(HuA). The number of representations of an whole positive number 𝑛 as a sum of of four quadrats is, 

depending if this number is odd or even, the 8-times resp. the 24-times of the sum of the odd divisors 

of the number 𝑛, (HuA). The unit elements of 𝑄24 form the lattice of the regular, self-dual 24-cell, which 
does not have a regular analogue in any other dimension. We note that the 3-dimensional unit sphere 

𝑆3 contains the not abelian 𝑄24 unit group of the Hurwitz quaternions. 
 

From (HaG) 20.7, we recall: 
 

„If 𝛼 is an integral quaternion, then one at least of its associates has integral coordinates; 

and if 𝛼 is odd, then one at least of its associates has non-integral coordinates.“ 
 

In (CoB) a “unique factorization of Hurwitz quaternions” is proposed, where any non-unit Hurwitz 
quaternion can be factored uniquely, up to a series of unit-migrations, meta-commutations, and re-
combinations. 
 
 

The quaternion rotation operator 
 
 

The perhaps primary application of quaternions is the quaternion rotation operator. This is a special 
quaternion triple-product (unit quaternions and rotating imaginary vector) competing with the 
conventional (Euler) matrix rotation operator. The quaternion rotation operator can be interpreted as a 
frame or a point-set rotation, (KuJ). Its outstanding advantages compared to the Euler geometry are 
 

- the axes of rotation and angles of rotation are independent from the underlying coordinate 
system and directly readable 

- there is no need to to take care about the sequencing of the rotary axes. 
 
In the context of the proposed UFT, (BrK), but also in the context to prove the Courant conjecture the 
quaternion rotation operator is proposed alternatively to the Euclidian rotation, (appendix). 
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The two-semicircle method to prove the Kummer conjecture 
 
 
The Kummer conjecture deals with cubic characters in the form 𝑝 = 3𝑘 + 1. This set can be 
decomposed into 
 

- all odd squares of 3𝑘 + 1 
- all even squares of 3𝑘 + 1 
- all remaining odd numbers 
- all remaining even numbers. 

 
The link to the related {4𝑛 − 3,4𝑛 − 1,2𝑛} decomposition of the set of integers is given by the fact, that 
the „distance“ between the consecutive odd squares of 𝑛 = 3𝑘 + 1 is {4𝑙 − 1}, and that the „distance“ 
between the consecutive even squares of of 𝑛 = 3𝑘 + 1 is {2𝑙}. This property provides the conceptual 
data for an appropriate framework set-up of the proposed two-semicircle method with the following key 
differentation tot he Hardy-Littlewood circle method, (BrK): 
 
 

 
Hardy-Littlewood circle method 

 

 
Two-semicircle method 

 
winding number n 

 

 

A pair of semicircle numbers (n −
1

2
, 𝑛) 

 
a single distribution function 

 

 
two distinct distribution functions (**) 

 
zeros of the orthonormal system 

 {𝑒2𝜋𝑖𝑛𝑧} of 𝐿2(𝑆
1) 

 
complex-valued zeros {𝑧𝑛}𝑛∈𝑁 of the Kummer 

function 𝐹1 1 (
1

2
,
3

2
; 𝑧) and absolute values of  

their imaginary parts  |𝐼𝑚(𝑧𝑛)| = 2𝜋𝜔𝑛 with 
 𝑛 −

1

2
< 𝜔𝑛 < 𝑛  and related retarded/condensed 

sequences 𝜔𝑛
∗, (*), (BrK) 

 
 

{𝑛} 

 

 
{2𝑛 − 1,2𝑛} = {4𝑛 − 3,4𝑛 − 1,2𝑛} (**) 

 
Gaussian numbers, (HaG) 

 

 
Hurwitz numbers, (HuA) 

 
norm: sum of two squares, (Moc) 

 

 
norm: sum of four squares, (MoC) 

 

 
Euclidian rotations with fixed winding axis 

governed by the winding number 𝑛 
 

 
quaternion rotation with dynamic winding axes 

governed by the odd and even squares of 
integers resp. their corresponding indices of the 
retarded/condensed sequence 𝜔𝑛

∗  enjoying the 
Kadec condition 

 

 
Reference 

 
(BrK) Braun K., A toolbox to solve the RH and to build a non-harmonic Fourier series based two-

semicircle method, www.riemann-hypothesis.de 
 
 

(*) In the context of non-harmonic Fourier series governed by Kadec’s theorem and Avdonin’s (generalized) theorem of ¼-in the 
mean we note that the "retarded" sequences of (2𝑘 − 1) resp. ((4𝑘 − 3), (4𝑘 − 1)) resp. ((8𝑘 − 7), (8𝑘 − 5), (8𝑘 − 3), (8𝑘 − 1)) 
are condensed by the factor ¼. „It is interesting to note that Euclid’s procedure to prove that the sequences of primes is infinite 

also works starting with 𝑛 = 0 , i.e., without any knowledge about primes“, (HaH) S. 4. 
 

(**) and related distribution functions built according to (PoG1). We note that the set of even integers is an ideal in the ring of Z. In 
case the Goldbach conjecture is valid this means that each even integer 2𝑛 = 𝑝 + 𝑞 is the norm of a quaternion if 𝑝, 𝑞 = 1𝑚𝑜𝑑4.  

http://www.riemann-hypothesis.de/
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Appendix 
 
 

Hurwitz quaternions and symmetry groups 
 
 

For each quaternion of 𝑆3 there is a quaternion represention as a sum of two product terms in the form 

𝑒 ∙ 𝑐𝑜𝑠 (
𝜔

2
) + 𝑞 ∙ 𝑠𝑖𝑛 (

𝜔

2
), where 𝑒 denotes the „real“ quaternion unit, 𝑞 denotes a purely imaginary 

quaternion with norm equal one, and 𝜔 denotes an angle between zero and 2𝜋, (EbH) 7.3. We also 

note that 𝑆1 and 𝑆3 are the only spheres with a "continuous" group structure, (EbH) 7.2. From the 
fundamental theorem of algebra for quaternions it follows that there are exactly 𝑛 roots of any 
quaternion with not vanishing imaginary part, (EbH) 7.1.8.  
 

The 1-dimensional 𝑆1 unit sphere is isomorphic to 𝑈(1); the 3-dimensional 𝑆3 unit sphere is 
isomorphic to 𝑆𝑈(2).  
 

The groups 𝑆1 and 𝑆3 have parameter representations, (EbH) 3.5.4(2'), 7.3.2(3). There are 

epimorphisms between 𝑆3 and 𝑆𝑂(3), resp. between 𝑆3 × 𝑆3 and 𝑆𝑂(4). The group 𝑆𝑂(4) contains 

isomorphic normal subgroups to the group 𝑆3, i.e. it is a not „simple“ Lie group. The groups 𝑆𝑂(𝑛), 𝑛 >
4, are all „simple“, i.e. they have not trivial coherent normal subgroups. The groups 𝑆𝑂(2𝑛 + 1) have 

no normal subgroup unequal (e). The groups 𝑆𝑂(4) have exactly the not trivial normal subgroup 
{𝑒, −𝑒}, (EbH) 7.3.4. 
 
With respect to the proposed united field theory (UFT) we note that the 1-dimensional unit sphere in 

𝑅2 corresponds to the Lie group 𝑈(1). The related number grid is built by the Eisenstein numbers. 

Regarding the characteristics of 𝑆1 and 𝑆3 in the context of Hurwitz quaternions and the proposed 
united field theory (UFT) we note a possible conceptual link to the Courant conjecture, (CoR) p. 763: 
 
Families of spherical waves for arbitrary time-like lines exist only in the case of two or four variables, 
and then only if the differential equation is equivalent to the wave equation. 
 
In the context of the Teichmueller theory with respect to the Riemann & Hyperbolic surfaces we 
mention that the compactification of the field of complex numbers 𝐶, the Riemann sphere, is 

homeomorphic to 𝑆2. In the context of the proposed Hilbert space framework we note the relationship 
oft he Teichmüller space with the fractional Hilbert space 𝐻1/2. 

 
In (AdS), (FiD) quaternionic Hilbert spaces (in particular, Krein spaces) for various applications to 
quantum mechanics are provided. 
  
In (AlD) quaternionic inner product spaces including ortho-complemented subspaces are studied. The 
main result is that a closed uniformly positive subspace in a quaternionic Krein space is ortho-
complemented. 
Employing quaternionic Newton’s law, in (ArI) it is shown that the energy conservation equation is the 
analog of Lorenz gauge in electromagnetism. 
 
Regarding the crucial difference between the algebra based gauge theory and the analysis based 
GRT we quote from (BlC): 
 
„The correspondence between symmetries and conserved quantities is one of the most important 
principles of physics. The crucial difference between gauge theories and the GRT is that the 
symmetries of the GRT act on the space-time itself and not only on the degree of freedoms of the 
„internal“ fields.  
 
The vacuum Einstein equations state that the Ricci curvature Ric(g) of a lorentzian metric g is 
identically zero. Recast as hamiltonian evolution equations, they become a hamiltonian system on the 
cotangent bundle of the manifold MΣ of smooth riemannian metrics on a manifold Σ which represents 
the typical Cauchy hypersurface.  
 
As in every lagrangian field theory with symmetries, the initial data must satisfy constraints. But, unlike 
those of gauge theories, the constraints of general relativity do not arise as momenta of any 
hamiltonian group action. In this paper, (BlC), we show that the bracket relations among the 
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constraints of general relativity are identical to the bracket relations in the Lie algebroid of a groupoid 
consisting of diffeomorphisms between space-like hypersurfaces in spacetimes. A direct connection is 
still missing between the constraints themselves, whose definition is closely related to the Einstein 
equations, and our groupoid, in which the Einstein equations play no role at all. We discuss some of 
the difficulties involved in making such a connection. 
 
In contrast to classical mechanics and gauge field theories, the conserved quantities of the GRT do 
not span a symmetry algebra in the conventional sense. Instead, a so-called Hamiltonian Lie algebroid 
can be obtained from a naturally constructed symmetry groupoid.“ 

 
 
 

Kummer’s regular and irregular primes 
 

 
Kummer introduced the concept of regular and irregular primes based on an underlying „ideal complex 
number“ concept. There are infinitely many irregular primes congruent to 3⁡𝑚𝑜𝑑⁡4, ((JeK).  
 
(Kummer) Theorem 1.1.2 (CoJ):  
 

The prime 𝑝 is irregular if and only if 𝑝 divides the numerator of at least one of 𝜁(−1), 
𝜁(−3), … 𝜁(4 − 𝑝). 

 
Let 𝐵𝑚 denotes a Bernoulli number in the even-suffix notation. Then the Kummer theorem states that 

𝑝 is regular if and only if it does not divide the numerator of any of the Bernoulli numbers 𝐵2, 𝐵4, … 

𝐵𝑝−3, (KuE4). 

 
As part of his proof Kummer showed the following congruences 
 
Theorem 1.1.3 (CoJ):  
 

Let 𝑛 and 𝑚 be odd positive integers such that 𝑛 = 𝑚 ≠ −1𝑚𝑜𝑑(𝑝 − 1). Then the rational 

numbers 𝜁(−𝑛) and 𝜁(−𝑚) are 𝑝 -integral, and  𝜁(−𝑛) = 𝜁(−𝑚)𝑚𝑜𝑑⁡𝑝. 
 
 
For the rational Bernoulli numbers it holds 𝐵2𝑘+1 = 0; for the Euler integer numbers it holds 𝐸2𝑘−1 = 0.  
 
Carlitz called an odd prime prime 𝑝 to be irregular with respect to the Euler numbers if it divides one of 

the numbers 𝐸2, 𝐸4, … 𝐸𝑝−3, He proved that the number of such primes is infinite, (CaL).   

 
For any irregular prime 𝑝 the pair (𝑝, 2𝑘) is called a irregular pair, if 𝑝 is irregular and 2 ≤ 2𝑘 ≤ 𝑝 − 3. 

 
 
 

From the Hensel lemma it follows the 
 
Lemma:  
 

Let 𝑝 denote an odd prime number and 𝑎 ∈ 𝑍2 where 𝑝 is not a divisor of 𝑎. Then 𝑎 is a 

square in 𝑍2 iff 𝑎 is a quadratic rest 𝑚𝑜𝑑⁡𝑝. 
 
If 𝑎 ∈ 𝑍2 is odd, then 𝑎 is a square in 𝑍2 iff 𝑎 = 1𝑚𝑜𝑑8. 

 

 
 
 
 
 
 
 
 


