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Hilbert-Pólya idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814

6 Sonine spaces of de Branges, novel spaces HPl, vectors Z
l
r;k, Krein string of the zeta

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821

7 Speculations on the zeta function, the renormalization group, duality . . . . . . . . . . . . . . . . . 836

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838

1 Introduction

1.1 A framework for this paper

The zeta function zðsÞ assumes in Riemann’s paper quite a number of distinct iden-
tities: it appears there as a Dirichlet series, as an Euler product, as an integral trans-
form, as an Hadamard product (rather, Riemann explains how log zðsÞ may be writ-
ten as an infinite sum involving the zeros). . . We retain three such identities and use
them as symbolic vertices for a triangle:
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These formulae stand for various aspects of the zeta function which, for the purposes
of this manuscript, we may tentatively name as follows:

summations

zeros primes

Even a casual reading of Riemann’s paper will reveal how much Fourier analysis lies
at its heart, on a par with the theory of functions of the complex variable. Let us
enhance appropriately the triangle:
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Indeed, each of the three edges is an arena of interaction between the Fourier
Transform, in various incarnations, and the Zeta function (and Dirichlet L-series, or
even more general number theoretical zeta functions.) We thus specialize to a triangle
which will be the framework of this manuscript:
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The big question mark serves as a reminder that we are missing the 2-cell (or 2-cells)
which would presumably be there if the nature of the Riemann zeta function was
really understood.
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1.2 The contents of this paper

The paper contains in particular motivation, proofs, and developments related to a
‘‘fairly simple’’ (hence especially interesting) formula1:ð

R

P
n00

gðt=nÞ
jnj �

Ð
R

gð1=xÞ
jxj dx

 !
e2piut dt ¼

P
m00

gðm=uÞ
juj �

ð
R
gðyÞ dy

We call this the co-Poisson intertwining formula. The summations are over the non-
zero relative integers. The formula applies, for example, to a function gðtÞ of class
Cy which is compactly supported on a closed set not containing the origin. Then the
right-hand side is a function in the Schwartz class of smooth, rapidly decreasing func-
tions, and the formula exhibits it as the Fourier Transform of another Schwartz func-
tion. These Schwartz functions have the peculiar property of being constant, together

with their Fourier transform, in a neighborhood of the origin. A most interesting sit-
uation arises when the formula constructs square-integrable functions of this type
and from our discussion of this it will be apparent that, although fairly simple, the
co-Poisson Formula is related to a framework which is very far from being formal.

Once found, the formula is immediately proven, and in many di¤erent ways. Fur-
thermore it is one among infinitely many such co-Poisson formulae (it is planned to
discuss this further in [23]). This prototype is directly equivalent to the functional
equation of the Riemann zeta function. It has implications concerning the problems
of zeros.

We start with a discussion of our previous work [12] [13] [16] on the ‘‘Explicit For-
mulae’’ and the conductor operators logjxjn þ logjyjn. We also include a description of
our work on adeles, ideles, scattering and causality [14] [15], which is a first attempt
to follow from local to global the idea of multiplicatively analysing the additive
Fourier transform. This is necessary to explain the motivation which has led to a
reexamination of the Poisson-Tate summation formula on adeles and to the discov-
ery of the related but subtly distinct co-Poisson intertwining.

Both the conductor operators and the co-Poisson intertwining originated from an e¤ort
to move Tate’s Thesis [43] towards the zeros and the so-called Hilbert-Pólya idea. It
is notable that the zeros do not show up at all in Tate’s Thesis: the conductor oper-
ator results in part from a continuation of the local aspects of Tate’s Thesis; the
co-Poisson formula results from a reexamination of the global aspects of Tate’s
Thesis. This reexamination, initially undergone during the fall of 1998, shortly after
the discovery of the conductor operator, was also in part motivated by the preprint
version of the work of Connes [25] (extending his earlier Note [24]) which had just
appeared and where a very strong emphasis is put on the so-called Hilbert-Pólya idea.

1 Note added in proofs (March 2003): The formula has in fact been discovered earlier by
Du‰n and Weinberger (Proc. Nat. Acad. Sci. 88 (1991), no. 16, 7348–7350; J. Fourier Anal.
Appl. 3 (1997), 487–497) and should have been referred to here as the Du‰n-Weinberger
dualized Poisson formula. Our whole analysis, which relates it to the study of the Riemann zeta
function and generalizations, is a novel contribution.
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As we felt that the symmetries of the local conductor operators should have some
bearing on global constructions we were very much interested by the constructions
of Connes, and especially by the attempt to realize a cut-o¤ simultaneously in posi-
tion and momentum. This provides an indirect connection with our work, as reported
upon here. But our cut-o¤ is (or, perhaps better, appears to be) infrared, not ultravio-
let. On our first encounter (on the adeles) with the formula we call here co-Poisson,
we realized that we were constructing distributions for which it was easy to compute
the Fourier Transform, and that these distributions were formally perpendicular to
the zeros, but it was not immediately apparent to us that something beyond the usual
use of the Poisson Formula was at work, as we did not at first understand that there
was a temperature parameter, and that the Riemann zeta function is associated with
a phase transition as we vary the temperature below a certain point. So, we left this
aside for a while.

A key additional component to our e¤ort came from the Theorem of Báez-Duarte,
Balazard, Landreau and Saias [3] which is related to the Nyman-Beurling criterion
[37, 6] for the validity of the Riemann Hypothesis. The link we have established
([18]) between the so-called Hilbert-Pólya idea and this important Theorem of Báez-
Duarte, Balazard, Landreau and Saias leads under a further examination, which is
reported upon here, to the consideration of certain functions which are meromorphic
in the entire complex plane.

This then connects to the mechanism provided by the co-Poisson intertwining for
the construction of Hilbert Spaces HPl and Hilbert vectors Z l

r;k associated with the
non-trivial zeros of the Riemann zeta function. The method applies to Dirichlet L-
series as well, and the last theorem of this paper is devoted to this. Some importance
is ascribed by the author to this concluding result, not in itself of course (as many
infinitely more subtle results than this one have been established on the zeta and
L-functions since Riemann’s paper), but rather as a clue which could provide inspi-
ration for further endeavours. The light is extremely dim, but it has the merit of
existence.

The discussion leading to this final result makes use in particular of an important
theorem of Krein (on entire functions of finite exponential type [33]), and we relate
the matter with the theory of Krein type spaces as exposed in the book [29] by Dym
and McKean. An intriguing question arises on the properties of the Krein string

which is thus associated with the Riemann zeta function. It seems that this Krein
string is considered here for the first time, but we add immediately that we do not
provide anything beyond mentioning it! Rather our technical e¤orts, which are not
completely obvious, and not even fairly simple, lead to a realization of the Krein type
spaces of this very special Krein string as subspaces of certain spaces Kl ð0 < l < yÞ
which are involved in a kind of multiplicative spectral (scattering) analysis of the
Fourier cosine transform. The quotient spaces HPl ð0 < l < 1Þ are the spaces we
propose as an approximation (getting better as l ! 0) to an hypothetical so-called
Hilbert-Pólya space.

The ambient spaces Kl have a realization as Hilbert Spaces of entire functions in the
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sense of de Branges [8]. The co-Poisson formula and the discussion ot the Nyman-
Beurling criterion both suggest that it is useful to go beyond the framework of entire
functions and consider more generally certain Hilbert spaces of meromorphic func-
tions, but no general development has been attempted here.

The spaces Kl are among the Sonine spaces originally studied in the sixties by de
Branges [7], V. Rovnyak [39] and J. Rovnyak and V. Rovnyak [40, 41] (the termi-
nology ‘‘Sonine spaces of entire functions’’ was introduced in [41]). They are a special
instance of the theory of Hilbert spaces of entire functions [8]. But it is only for the
Sonine spaces associated to the Hankel transform of integer orders that the de Branges
structure could be explicited in these papers. The theory of the Sonine spaces for the
cosine and sine transforms is far less advanced. Recently though, the author has made
some initial progress on this topic ([22]).

As de Branges has considered the use of the general Hankel-Sonine spaces in papers
[10, 11] (and also in electronically available unpublished manuscripts) where the mat-
ter of the Riemann Hypothesis is mentioned, it is important to clarify that neither the
co-Poisson formula, nor the spaces HPl ð0 < l < 1Þ,Wl andW 0

l , nor the vectors Z
l
r;k

for kb 1, have arisen in any of de Branges’s investigations known to this author (this
is said after having spent some time to investigate the demands of the situation cre-
ated by these papers).

The circumstances of the genesis of this paper have led us to devote a special final
section, which is very brief, to some speculations on the nature of the zeta function,
the GUE hypothesis, and the Riemann hypothesis.

1.3 Acknowledgements

The initial version of the manuscript, containing all essentials, was completed in
December 2001, on the occasion of the author’s ‘‘habilitation’’, which took place at
the University of Nice. The author thanks Michel Balazard, Enrico Bombieri, Ber-
nard Candelpergher, Jean-Pierre Kahane, Philippe Maisonobe, Michel Miniconi, and
Joseph Oesterlé for their contribution and/or participation. The author thanks Luis
Báez-Duarte for permission to incorporate a joint-proof of co-Poisson, and Ber-
nard Candelpergher for permission to incorporate another, related, joint-proof of
co-Poisson. The author thanks Jean-Pierre Kahane for communicating his method of
construction of Sonine functions. The author thanks Michel Balazard and Éric Saias
for general discussion on the zeta function and Sonine functions. The author thanks
Michael McQuillan for support related to matters of publication.

2 Explicit Formulae, log|x|B log|y|, adeles, ideles, scattering, causality

Riemann discovered the zeros and originated the idea of counting the primes and
prime powers (suitably weighted) using them. Indeed this was the main focus of his
famous paper. Later a particularly elegant formula was rigorously proven by von
Mangoldt:
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LðXÞ ¼ X �
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X r
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Here X > 1 (not necessarily an integer) and LðYÞ ¼ logðpÞ if Y > 1 is a positive
power of the prime number p, and is 0 for all other values of Y . The r’s are the
Riemann Zeros (in the critical strip), the sum over them is not absolutely convergent,
even after pairing r with 1� r. It is defined as limT!y

P
jImðrÞj<T X r=r.

In the early fifties Weil published a paper [46] on the Riemann-von Mangoldt
Explicit Formula, and then another one [47] in the early seventies which considered
non-abelian Artin (and Artin-Weil) L-functions. While elucidating already in his first
paper new algebraic structure, he did this maintaining a level of generality encom-
passing in its scope the von Mangoldt formula (although it requires some steps to
deduce this formula from the Weil explicit formula.) The analytical di‰culties arising
are an expression of the usual di‰culties with Fourier inversion. The ‘‘test-function
flavor’’ of the ‘‘Riemann-Weil explicit formula’’ had been anticipated by Guinand
[31].

So in our opinion a more radical innovation was Weil’s discovery that the local terms
of the Explicit Formulae acquire a natural expression on the n-adics, and that this
enables to put the real and complex places on a par with the finite places (clearly Weil
was motivated by analogies with function fields, we do not discuss that here.) Quite a
lot of algebraic number theory [48] is necessary in Weil’s second paper to establish
this for Artin-Weil L-functions.

We stay here at the simpler level of Weil’s first paper and show how to put all places
of the number field at the same level. It had first appeared in Haran’s work [32] that
it was possible to formulate the Weil’s local terms in a more unified manner than had
originally been done by Weil. We show that an operator theoretical approach allows,
not only to formulate, but also to deduce the local terms in a unified manner. The
starting point is Tate’s Thesis [43]. Let K be a number field and Kn one of its com-
pletions. Let wn : K

�
n ! S1 be a (unitary) multiplicative character. For 0 < ReðsÞ < 1

both wnðxÞjxj
s�1 and wnðxÞ

�1jxj�s are tempered distributions on the additive group Kn

and the Tate’s functional equations are the identities of distributions:

FnðwnðxÞjxj
s�1Þ ¼ Gðwn; sÞwnðxÞ

�1jxj�s

for certain functions Gðwn; sÞ analytic in 0 < ReðsÞ < 1, and meromorphic in the com-
plex plane. This is the local half of Tate’s Thesis, from the point of view of distribu-
tions. See also [30]. Implicit in this equation is a certain normalized choice of additive
Haar measure on Kn, and Fn is the corresponding additive Fourier transform.

Let us view this from a Hilbert space perspective. The quasi-characters wnðxÞ
�1jxj�s

are never square-integrable, but for ReðsÞ ¼ 1=2 they are the generalized eigenvec-
tors arising in the spectral analysis of the unitary group of dilations (and contrac-
tions): fðxÞ 7! fðx=tÞ=

ffiffiffiffiffiffi
jtjn

p
, x A Kn, t A K�

n . Let In be the unitary operator fðxÞ 7!
fð1=xÞ=jxjn, and let Gn ¼ Fn � In. Then:

GnðwnðxÞ
�1jxj�sÞ ¼ Gðwn; sÞwnðxÞ

�1jxj�s
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and this says that the wnðxÞ
�1jxj�s

n , for ReðsÞ ¼ 1=2, are the generalized eigenvectors
arising in the spectral analysis of the unitary scale invariant operator Gn ¼ Fn � In.
The question [12] which leads from Tate’s Thesis (where the zeros do not occur at all)
to the topic of the Explicit Formulae is: what happens if we take the derivative with

respect to s in Tate’s functional equations? Proceeding formally we obtain:

�GnðlogjxjnwnðxÞ
�1jxj�s

n Þ ¼ G 0ðwn; sÞ � wnðxÞ
�1jxj�s

n

� Gðwn; sÞ logjxjn � wnðxÞ
�1jxj�s

n

logðjxjnÞ � wnðxÞ
�1jxj�s

n � Gn logjxjn
wnðxÞ

�1jxj�s
n

Gðwn; sÞ

 !

¼ d

ds
logGðwn; sÞ

� �
� wnðxÞ

�1jxj�s
n

ðlogjxjn � Gn � logjxjn � G�1
n Þ � ðwnðxÞ

�1jxj�s
n Þ ¼ d

ds
logGðwn; sÞ

� �
� wnðxÞ

�1jxj�s
n

Let Hn be the scale invariant operator logjxjn � Gn � logjxjn � G�1
n ¼ logjxjn þFn �

logjxjn �F�1
n , which we also write symbolically as:

Hn ¼ logjxjn þ logjyjn
Then we see that the conclusion is:

2.1 Theorem ([12] [13]). The generalized eigenvalues of the conductor operator Hn are

the logarithmic derivatives of the Tate Gamma functions:

HnðwnðxÞ
�1jxj�s

n Þ ¼ d

ds
logGðwn; sÞ

� �
� wnðxÞ

�1jxj�s
n

Let gðuÞ be a smooth function with compact support in R�
þ. Let ĝgðsÞ ¼

Ð
gðuÞus�1 du

be its Mellin transform. Let w be a unitary character on the idele class group of the
number field K , with local components wn. Let Zðg; wÞ be the sum of the values of ĝgðsÞ
at the zeros of the (completed) Hecke L-function Lðw; sÞ of w, minus the contribution
of the poles when w is a principal character ðt 7! jtj�itÞ. Using the calculus of residues
we obtain Zðg; wÞ as the integral of ĝgðsÞðd=dsÞ logLðw; sÞ around the contour of the
infinite rectangle �1aReðsÞa 2. It turns out that the compatibility between Tate’s
Thesis (local half ) and Tate’s Thesis (global half ) allows to use the functional equa-
tion without having ever to write down explicitely all its details (such as the discrim-
inant of the number field and the conductor of the character), and leads to:

2.2 Theorem ([12]). The explicit formula is given by the logarithmic derivatives of the

Tate Gamma functions:
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Zðg; wÞ ¼
P
n

ð
ReðsÞ¼1=2

d

ds
logGðwn; sÞ

� �
ĝgðsÞ jdsj

2p

At an archimedean place the values ĝgðsÞ on the critical line give the multiplicative
spectral decomposition of the function gw; n :¼ x 7! wnðxÞ

�1
gðjxjnÞ on (the additive

group) Kn, and, after checking normalization details, one finds that the local term has
exact value Hnðgw; nÞð1Þ. At a non-archimedean place, one replaces the integral on the
full critical line with an integral on an interval of periodicity of the Tate Gamma
function, and applying Poisson summation (in the vertical direction) to ĝgðsÞ to make
it periodical as well it is seen to transmute into the multiplicative spectral decompo-
sition of the function gw; n :¼ x 7! wnðxÞ

�1
gðjxjnÞ on Kn! So we jump directly from the

critical line to the completions of the number field K , and end up with the following
version of the explicit formula:

2.3 Theorem ([12] [13]). Let at each place n of the number field K:

gw; n ¼ x 7! wnðxÞ
�1
gðjxjnÞ

on Kn ðgw; nð0Þ ¼ 0Þ. Then

Zðg; wÞ ¼
P
n

Hnðgw; nÞð1Þ

where Hn is the scale invariant operator logjxjn þ logjyjn acting on L2ðKn; dxnÞ.

As we evaluate at 1, the ‘‘logjxjn’’ half of Hn could be dropped, and we could sum
up the situation as follows: Weil’s local term is the (additive) Fourier transform of the

logarithm! This is what Haran had proved ([32], for the Riemann zeta function),
except that he formulated this in terms of Riesz potentials jyj�s

n , and did a separate
check for finite places and the infinite place that the Weil local terms may indeed be
written in this way. The explicit formula as stated above with the help of the oper-
ator logjxjn þ logjyjn incorporates in a more visible manner the compatibility with
the functional equations. Indeed we have

2.4 Theorem ([12] [13]). The conductor operator Hn commutes with the operator In:

Hn � In ¼ In �Hn

or equivalently as In � logjxjn � In ¼ �logjxjn:

In � logjyjn � In ¼ 2 logjxjn þ logjyjn
To see abstractly why this has to be true, one way is to observe that Hn and Gn are
simultaneously diagonalized by the multiplicative characters, hence they commute.
But obviouslyHn commutes withFn so it has to commute with In. Later, when dealing
with what we call ‘‘co-Poisson intertwining’’, we will see a similar argument in another
context.

Let us suppose wn to be ramified (which means not trivial when restricted to the n-adic
units) and let f ðwnÞ be its conductor exponent, en the number field di¤erental exponent
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at n, and qn the cardinality of the residue field. In Tate’s Thesis [43], one finds for a
ramified character

Gðwn; sÞ ¼ wðwnÞqð f ðwnÞþenÞðs�1=2Þ
n

where wðwnÞ is a certain non-vanishing complex number, quite important in Alge-
braic Number Theory, but not here. Indeed we take the logarithmic derivative and
find:

d

ds
logGðwn; sÞ ¼ ð f ðwnÞ þ enÞ log qn

So that:

Hnðw�1
n ðxÞ1jxjn¼1ðxÞÞ ¼ ð f ðwnÞ þ enÞ logðqnÞw�1

n ðxÞ1jxjn¼1ðxÞ

which says that ramified characters are eigenvectors of Hn with eigenvalues
ð f ðwnÞ þ enÞ log qn. Hence the name ‘‘conductor operator’’ for Hn. We note that this
contribution of the di¤erental exponent is there also for a non-ramified character
and explains why in our version of the Explicit Formula there is no explicit presence
of the discriminant of the number field. If we now go through the computation of
the distribution theoretic additive Fourier transform of logjxjn and compare with the
above we end up with a proof [12] of the well-known Weil integral formula [46] [47]
[48] (Weil writes d�t for logðqnÞ d �t):

f ðwnÞ log qn ¼
ð
K�

n

1jtjn¼1ðtÞ
1� wnðtÞ
j1� tjn

d�t

In Weil’s paper [46] we see that this formula’s rôle has been somewhat understated.
Clearly it was very important to Weil as it confirmed that it was possible to express
similarly all contributions to the Explicit Formula: from the infinite places, from
finite unramified places, and from finite ramified places. Weil leaves establishing the
formula to the attentive reader. In his second paper [47] he goes on to extend the
scope to Artin L-function, and this is far from an obvious thing.

Let us now consider the zeta and L-functions from the point of view of Adeles and
Ideles. Again a major input is Tate’s Thesis. There the functional equations of the
abelian L-functions are established in a unified manner, but the zeros do not appear
at all. It is only recently that progress on this arose, in the work of Connes [25]. We
have examined this question anew [14] [15], from the point of view of the study of the
interaction between the additive and multiplicative Fourier Transforms [12] [14],
which as we saw is a mechanism underlying the operator theoretic approach to the
explicit formula. This led us to the scattering theory of Lax and Phillips [35] and to a
formulation of the Riemann Hypothesis, simultaneous for all L-functions, as a prop-
erty of causality [15]

A key theorem from the global half of Tate’s Thesis is the following:
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P
q AK

FðjÞðqvÞ ¼ 1

jvj
P
q AK

j
q

v

� �
This was called the ‘‘Riemann-Roch Theorem’’ by Tate, but we prefer to call it
the Poisson-Tate formula (which sounds less definitive, and more to the point). Let us
explain the notations: K is a number field, jðxÞ is a function on the adeles A of K
(satisfying suitable conditions), q A K is diagonally considered as an adele, v A A� is
an idele and jvj is its module. Finally F is the adelic additive Fourier Transform (we
refer to [43] for the details of the normalizations1). We note that it does not matter
if we exchange the j on the right with the FðjÞ on the left as FðFðjÞÞðxÞ ¼ jð�xÞ
and �1 A K�. A suitable class of functions stable under F for which this works is
given by the Bruhat-Schwartz functions: finite linear combinations of infinite product
of local factors, almost all of them being the indicator function of the local ring of
integers, in the Schwartz class for the infinite places, locally constant with compact
support at each finite place. To each such function and unitary character w on the
idele class group Tate associates an L-function Lðw; jÞðsÞ ¼

Ð
ideles jðvÞwðvÞjvj

s
d �v,

and shows how to choose j so that this coincides exactly with the complete Hecke L-
function with grossencharakter w.

Let us write E0 (very soon we will switch to a related E) for the map which to the
function jðxÞ on the adeles associates the function

P
q AK jðqvÞ

ffiffiffiffiffi
jvj

p
on the ideles or

even on the idele class group CK (ideles quotiented by K�). This map E0 plays an
important rôle in the papers of Connes [24] [25] (where it is used under the additional
assumption jð0Þ ¼ 0 ¼ FðjÞð0Þ, and then coincides with the E we introduce next.)
The Poisson-Tate formula tells us that E0 intertwines the additive Fourier transform
with the operator I : gðvÞ 7! gð1=vÞ.

ðE0 �FÞðjÞ ¼ ðI � E0ÞðjÞ

If we ([15]) manipulate a little bit the Poisson-Tate formula into:

ffiffiffiffiffi
jvj

p P
q AK�

FðjÞðqvÞ � 1ffiffiffiffiffi
jvj

p jð0Þ ¼ 1ffiffiffiffiffi
jvj

p P
q AK�

j
q

v

� �
�

ffiffiffiffiffi
jvj

p ð
adeles

jðxÞ dx

we still have the intertwining property

ðE �FÞðjÞ ¼ ðI � EÞðjÞ

where we have written E for the map which to jðxÞ associates

u 7!
ffiffiffiffiffi
jvj

p P
q AK�

jðqvÞ �
Ð
adeles jðxÞ dxffiffiffiffiffiffi

juj
p

on the idele class group (v in the class u).

1 e.g., on R the Fourier transform is ~jjðyÞ ¼
Ð
Re2piyxjðxÞ dx
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2.5 Note. Let fðxÞ be an even Schwartz function on R. Let F ðxÞ ¼
P

nb1 fðnxÞ. We
have limx!0jxjF ðxÞ ¼

Ðy
0 fðxÞ dx. For ReðsÞ > 1 we may intervert the integral with

the summation and this gives
Ðy
0 F ðxÞxs�1 dx ¼ zðsÞ

Ðy
0 fðxÞxs�1 dx. The analytic

continuation of this formula to the critical strip ð0 < ReðsÞ < 1Þ requires a modifi-
cation which is due to Müntz (as stated in Titchmarsh’s book [45, II.11])ðy

0

FðxÞ �
Ðy
0 fðyÞ dy

x

 !
xs�1 dx ¼ zðsÞ

ðy
0

fðxÞxs�1 dx

So it is in truth not the original Poisson summation but the Müntz-modified Poisson
(where one takes out fð0Þ and replaces it with �ð

Ð
R fðyÞ dyÞ=jxjÞ) which corresponds

to zðsÞ as multiplier. The Müntz modification was used by the author in [15] unknow-
ingly of its previous appearance in the literature. The author thanks Luis Báez-Duarte
for pointing out the reference to the section of the book of Titchmarsh where the
Müntz formula is discussed.

2.6 Theorem ([15]). For j a Bruhat-Schwartz function EðjÞ is square-integrable on the

idele class group CK (for the multiplicative Haar measure d �u), and its unitary multi-

plicative Fourier transform, as a function of the unitary characters, coincides up to an

overall constant with the Tate L-function on the critical line ReðsÞ ¼ 1=2. The func-

tions EðjÞ are dense in L2ðCK ; d
�uÞ and EðFðjÞÞ ¼ IðEðjÞÞ.

Connes [24] [25] had already considered the functions
ffiffiffiffiffi
jvj

p P
q AK� jðqvÞ with jð0Þ ¼

0 ¼ FðjÞð0Þ and he had shown that they are dense in L2ðCK ; d
�uÞ. Let S1 be the set

of Bruhat-Schwartz functions jðxÞ which are supported in a parallelepiped PðvÞ ¼
fEnjxjn a jvjng with jvja 1. Let Dþ ¼ EðS1Þ? and let D� ¼ EðFðS1ÞÞ?. The fol-
lowing holds:

2.7 Theorem ([15]). The subspaces Dþ and D� of the Hilbert space of square-integrable

functions on the idele class group are outgoing and incoming subspaces for a Lax-

Phillips scattering system, where the idele class group plays the rôle of time. The Rie-

mann Hypothesis for all abelian L-functions of K holds if and only if the causality

axiom Dþ ? D� is satisfied.

3 Poisson-Tate and a novel relative: co-Poisson

We have already mentioned the Tate L-functions (the integral is absolutely conver-
gent for ReðsÞ > 1):

Lðw; jÞðsÞ ¼
ð
ideles

jðvÞwðvÞjvjs d �v

Using the Poisson-Tate summation formula, Tate established the analytic continua-
tion and the functional equations:

Lðw;FðjÞÞðsÞ ¼ Lðw�1; jÞð1� sÞ
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This follows from an integral representation

Lðw; jÞðsÞ ¼ Cdw
FðjÞð0Þ
s� 1� it

� jð0Þ
s� it

� �

þ
ð
jvjb1

ðjðvÞwðvÞjvjs þFðjÞðvÞwðvÞ�1jvj1�sÞ d �v

where C is a certain constant associated to the number field K (and relating the Haar
measures d �v on A� and d �u on CK ), and the Kronecker symbol dw is 1 or 0 accord-
ing to whether wðvÞ ¼ jvj�it for a certain t A R (principal unitary character) or not
(ramified unitary character). The integral over the ideles (this is not an integral over
the idele classes) with jvjb 1 is absolutely convergent for all s A C.

We recall that we associated to the Bruhat-Schwartz function jðxÞ on the adeles the
square-integrable function EðjÞðuÞ on the idele class group CK (with u A CK the class
of v A A�):

EðjÞðuÞ ¼
ffiffiffiffiffiffi
juj

p P
q AK�

jðqvÞ �
Ð
adeles jðxÞ dxffiffiffiffiffiffi

juj
p

The precise relation [15] to the Tate L-functions is:

Lðw; jÞðsÞ ¼ C

ð
CK

EðjÞðuÞwðuÞjujs�1=2
d �u

This integral representation is absolutely convergent for 0 < ReðsÞ < 1 and we
read the functional equations directly from it and from the intertwining property
E �F ¼ I � E.
Let DðuÞ be the function of u with values in the distributions on the adeles:

DðuÞðjÞ ¼ C �
ffiffiffiffiffiffi
juj

p P
q AK�

jðqvÞ �
Ð
adeles jðxÞ dxffiffiffiffiffiffi

juj
p !

¼ C � EðjÞðuÞ

We will show that it is relevant to look at DðuÞ not as a function in u (which it is from
the formula above) but as a distribution in u (so that D is a distribution with values
in distributions . . .) It takes time to explain why this is not a tautological change of
perspective. Basically we shift the emphasis from the Poisson-Tate summation [43]
[25] [15] which goes from adeles to ideles, to the co-Poisson summation which goes
from ideles to adeles. The Poisson-Tate summation is a function with values in dis-
tributions, whereas the co-Poisson-Tate summation is a distribution whose values we
try to represent as L2-functions.

Let gðvÞ be a compact Bruhat-Schwartz function on the idele group A�. This is a
finite linear combination of infinite products v 7!

Q
n gnðvnÞ, where almost each com-

ponent is the indicator function of the n-adic units, the component gnðvnÞ at an infi-
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nite place is a smooth compactly supported function on K�
n , and the components at

finite places are locally constant compactly supported.

3.1 Definition. The co-Poisson summation is the map E 0 which assigns to each com-
pact Bruhat-Schwartz function gðvÞ the distribution on the adeles given by:

E 0ðgÞðjÞ ¼
ð
A�

jðvÞ
P

q AK�
gðqvÞ

ffiffiffiffiffi
jvj

p
d �v�

ð
A�

gðvÞjvj�1=2
d �v

ð
A
jðxÞ dx

3.2 Note. Clearly E 0ðgÞ depends on gðvÞ only through the function RðgÞ on CK given
by RðgÞðuÞ ¼

P
q AK� gðqvÞ, with u A CK the class of v A A�. However, for various

reasons (among them avoiding the annoying constant C in all our formulae), it is
better to keep the flexibility provided by g. The function RðgÞ has compact sup-
port. To illustrate this with an example, and explain why the integral above makes
sense, we take K ¼ Q, gðvÞ ¼

Q
p 1jvpjp¼1ðvpÞ � gyðvyÞ. Then

P
q AQ� gðqvÞ ¼ gyðjvjÞ þ

gyð�jvjÞ. We may bound this from above by a multiple of jvj (as gy has compact
support in R�), and the integral

Ð
A� jðvÞjvj3=2 d �v converges absolutely as 1 < 3=2

(we may take jðxÞ itself to be an infinite product here.)

3.3 Theorem. The co-Poisson summation intertwines the operator I : gðvÞ 7! gð1=vÞ
with the additive adelic Fourier Transform F:

FðE 0ðgÞÞ ¼ E 0ðIðgÞÞ

Furthermore it intertwines between the multiplicative translations gðvÞ 7! gðv=wÞ on

ideles and the multiplicative translations on adelic distributions DðxÞ 7! Dðx=wÞ=
ffiffiffiffiffiffi
jwj

p
.

And the distribution E 0ðgÞ is invariant under the action of the multiplicative group K�

on the adeles.

Proof. We have:

E 0ðgÞðjÞ

¼ C

ð
CK

P
q AK�

jðqvÞRðgÞðuÞ
ffiffiffiffiffiffi
juj

p
d �u�

ð
A�

gðvÞjvj�1=2
d �v

ð
A
jðxÞ dx

¼ C

ð
CK

EðjÞðuÞffiffiffiffiffiffi
juj

p þ
Ð
jðxÞ dx
juj

 !
RðgÞðuÞ

ffiffiffiffiffiffi
juj

p
d �u�

ð
A�

gðvÞffiffiffiffiffi
jvj

p d �v

ð
A
jðxÞ dx

¼ C

ð
CK

EðjÞðuÞRðgÞðuÞ d �uþ C
Ð
CK

RðgÞðuÞffiffiffiffiffiffi
juj

p d �u�
Ð
A�

gðvÞffiffiffiffiffi
jvj

p d �v

 !ð
jðxÞ dx

¼ C

ð
CK

EðjÞðuÞRðgÞðuÞ d �u

Using the intertwinings E �F ¼ I � E and RðIðgÞÞðuÞ ¼ RðgÞð1=uÞ we get:
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E 0ðgÞðFðjÞÞ ¼ C

ð
CK

EðjÞðuÞRðgÞ 1

u

� �
d �u ¼ E 0ðIðgÞÞðjÞ

which completes the proof of FðE 0ðgÞÞ ¼ E 0ðIðgÞÞ. The compatibility with multi-
plicative translations is easy, and the invariance under the multiplication x 7! qx

follows. r

3.4 Note. The way the ideles have to act on the distributions on adeles for the inter-
twining suggests some Hilbert space properties of the distribution E 0ðgÞ (more on this
later).

3.5 Note. The invariance under K� suggests that it could perhaps be profitable to
discuss E 0ðgÞ from the point of view of the Connes space A=K� [24] [25].

3.6 Theorem. The following Riemann-Tate formula holds:

E 0ðgÞðjÞ ¼
ð
jvjb1

FðjÞðvÞ
P

q AK�
gðq=vÞ

ffiffiffiffiffi
jvj

p
d �vþ

ð
jvjb1

jðvÞ
P

q AK�
gðqvÞ

ffiffiffiffiffi
jvj

p
d �v

� jð0Þ
ð
jvjb1

gð1=vÞjvj�1=2
d �v�

ð
A
jðxÞ dx �

ð
jvjb1

gðvÞjvj�1=2
d �v

Proof. From E 0ðgÞðjÞ ¼ C
Ð
CK

EðjÞðuÞRðgÞðuÞ d �u we get

E 0ðgÞðjÞ

¼ C

ð
juja1

EðjÞðuÞRðgÞðuÞ d �uþ C

ð
jujb1

EðjÞðuÞRðgÞðuÞ d �u

¼ C

ð
jujb1

EðFðjÞÞðuÞRðgÞð1=uÞ d �uþ C

ð
jujb1

EðjÞðuÞRðgÞðuÞ d �u

¼ C

ð
jujb1

EðFðjÞÞðuÞ þ jð0Þffiffiffiffiffiffi
juj

p !
RðgÞð1=uÞ d �u� jð0Þ

ð
jvjb1

gð1=vÞjvj�1=2
d �v

þ C

ð
jujb1

EðjÞðuÞ þ
Ð
A jðxÞ dxffiffiffiffiffiffi

juj
p !

RðgÞðuÞ d �u� ð
Ð
jÞ
ð
jvjb1

gðvÞjvj�1=2
d �v

¼
ð
jvjb1

FðjÞðvÞ
P

q AK�
gðq=vÞ

ffiffiffiffiffi
jvj

p
d �vþ

ð
jvjb1

jðvÞ
P

q AK�
gðqvÞ

ffiffiffiffiffi
jvj

p
d �v

� jð0Þ
ð
jvjb1

gð1=vÞjvj�1=2
d �v�

Ð
A
jðxÞ dx

� �ð
jvjb1

gðvÞjvj�1=2
d �v

which completes the proof. r
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We note that if we replace formally
P

q AK� gðqvÞ
ffiffiffiffiffi
jvj

p
with wðvÞjvjs we obtain exactly

the Tate formula for Lðw; jÞðsÞ. But some new flexibility arises with a ‘‘compact’’ gðvÞ:

3.7 Theorem. The following formula holds:

E 0ðgÞðjÞ ¼
ð
jvja1

FðjÞðvÞ
P

q AK�
gðq=vÞ

ffiffiffiffiffi
jvj

p
d �vþ

ð
jvja1

jðvÞ
P

q AK�
gðqvÞ

ffiffiffiffiffi
jvj

p
d �v

� jð0Þ
ð
jvja1

gð1=vÞjvj�1=2
d �v�

ð
A
jðxÞ dx �

ð
jvja1

gðvÞjvj�1=2
d �v

Proof. Exactly the same as above exchanging everywhere jujb 1 with juja 1 (we
recall that RðgÞ has compact support and also that as we are dealing with a number
field jvj ¼ 1 has zero measure). This is not possible with a quasicharacter in the place
of RðgÞðuÞ. Alternatively one adds to the previous formula and checks that one
obtains 2E 0ðgÞðjÞ (using E 0ðIðgÞÞðFðjÞÞ ¼ E 0ðgÞðjÞ). r

To illustrate some Hilbert Space properties of the co-Poisson summation, we will
assume K ¼ Q. The components ðanÞ of an adele a are written ap at finite places and
ar at the real place. We have an embedding of the Schwartz space of test-functions on
R into the Bruhat-Schwartz space on A which sends cðxÞ to jðaÞ ¼

Q
p 1japjpa1ðapÞ �

cðarÞ, and we write E 0
RðgÞ for the distribution on R thus obtained from E 0ðgÞ on A.

3.8 Theorem. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The
co-Poisson summation E 0

RðgÞ is a square-integrable function (with respect to the Leb-

esgue measure). The L2ðRÞ function E 0
RðgÞ is equal to the constant �

Ð
A� gðvÞjvj�1=2

d �v
in a neighborhood of the origin.

Proof. We may first, without changing anything to E 0
RðgÞ, replace g with its average

under the action of the finite unit ideles, so that it may be assumed invariant. Any
such compact invariant g is a finite linear combination of suitable multiplicative
translates of functions of the type gðvÞ ¼

Q
p 1jvpjp¼1ðvpÞ � f ðvrÞ with f ðtÞ a smooth

compactly supported function on R�, so that we may assume that g has this form.
We claim that:ð

A�
jjðvÞj

P
q AQ�

jgðqvÞj
ffiffiffiffiffi
jvj

p
d �v < y

Indeed
P

q AQ�jgðqvÞj ¼ j f ðjvjÞj þ j f ð�jvjÞj is bounded above by a multiple of jvj.
And

Ð
A�jjðvÞj jvj3=2 d �v < y for each Bruhat-Schwartz function on the adeles (basi-

cally, from
Q

pð1� p�3=2Þ�1 < y). So

E 0ðgÞðjÞ ¼
P

q AQ�

ð
A�

jðvÞgðqvÞ
ffiffiffiffiffi
jvj

p
d �v�

ð
A�

gðvÞffiffiffiffiffi
jvj

p d �v

ð
A
jðxÞ dx

E 0ðgÞðjÞ ¼
P

q AQ�

ð
A�

jðv=qÞgðvÞ
ffiffiffiffiffi
jvj

p
d �v�

ð
A�

gðvÞffiffiffiffiffi
jvj

p d �v

ð
A
jðxÞ dx
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Let us now specialize to jðaÞ ¼
Q

p 1japjpa1ðapÞ � cðarÞ. Each integral can be evaluated

as an infinite product. The finite places contribute 0 or 1 according to whether q A Q�

satisfies jqjp < 1 or not. So only the inverse integers q ¼ 1=n, n A Z, contribute:

E 0
RðgÞðcÞ ¼

P
n AZ�

ð
R�

cðntÞ f ðtÞ
ffiffiffiffiffi
jtj

p dt

2jtj �
ð
R�

f ðtÞffiffiffiffiffi
jtj

p dt

2jtj

ð
R
cðxÞ dx

We can now revert the steps, but this time on R� and we get:

E 0
RðgÞðcÞ ¼

ð
R�

cðtÞ
P

n AZ�

f ðt=nÞffiffiffiffiffiffi
jnj

p dt

2
ffiffiffiffiffi
jtj

p �
ð
R�

f ðtÞffiffiffiffiffi
jtj

p dt

2jtj

ð
R
cðxÞ dx

Let us express this in terms of aðyÞ ¼ ð f ðyÞ þ f ð�yÞÞ=2
ffiffiffiffiffiffi
jyj

p
:

E 0
RðgÞðcÞ ¼

ð
R
cðyÞ

P
nb1

aðy=nÞ
n

dy�
ðy
0

aðyÞ
y

dy

ð
R
cðxÞ dx

So the distribution E 0
RðgÞ is in fact the even smooth function

E 0
RðgÞðyÞ ¼

P
nb1

aðy=nÞ
n

�
ðy
0

aðyÞ
y

dy

As aðyÞ has compact support in Rnf0g, the summation over nb 1 contains only
vanishing terms for jyj small enough. So E 0

RðgÞ is equal to the constant �
Ðy
0

að yÞ
y

dy ¼
�
Ð
R�

f ðyÞffiffiffiffi
jyj

p dy

2jyj ¼ �
Ð
A� gðtÞ=

ffiffiffiffiffi
jtj

p
d �t in a neighborhood of 0. To prove that it is L2, let

bðyÞ be the smooth compactly supported function að1=yÞ=2jyj of y A R ðbð0Þ ¼ 0Þ.
Then ðy0 0Þ:

E 0
RðgÞðyÞ ¼

P
n AZ

1

jyj b
n

y

� �
�
ð
R
bðyÞ dy

From the usual Poisson summation formula, this is also:

P
n AZ

gðnyÞ �
ð
R
bðyÞ dy ¼

P
n00

gðnyÞ

where gðyÞ ¼
Ð
R expði2pywÞbðwÞ dw is a Schwartz rapidly decreasing function. From

this formula we deduce easily that E 0
RðgÞðyÞ is itself in the Schwartz class of rapidly

decreasing functions, and in particular it is square-integrable. r

It is useful to recapitulate some of the results arising in this proof:

3.9 Theorem. Let g be a compact Bruhat-Schwartz function on the ideles of Q. The
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co-Poisson summation E 0
RðgÞ is an even function on R in the Schwartz class of rapidly

decreasing functions. It is constant, as well as its Fourier Transform, in a neighborhood

of the origin. It may be written as

E 0
RðgÞðyÞ ¼

P
nb1

aðy=nÞ
n

�
ðy
0

aðyÞ
y

dy

with a function aðyÞ smooth with compact support away from the origin, and conversely

each such formula corresponds to the co-Poisson summation E 0
RðgÞ of a compact Bruhat-

Schwartz function on the ideles ofQ. The Fourier transform
Ð
R E 0

RðgÞðyÞ expði2pwyÞ dy
corresponds in the formula above to the replacement aðyÞ 7! að1=yÞ=jyj.

Everything has been obtained previously.

4 More proofs and perspectives on co-Poisson

The intertwining property was proven as a result on the adeles and ideles, but
obviously the proof can be written directly on R. It will look like this, with jðyÞ an
even Schwartz function (and aðyÞ as above):

Proof. From
Ð
R
P

nb1jjðnyÞj jaðyÞj dy < y:ð
R

P
nb1

jðnyÞaðyÞ dy ¼
P
nb1

ð
R
jðnyÞaðyÞ dy

¼
P
nb1

ð
R
jðyÞ aðy=nÞ

n
dy ¼

ð
R
jðyÞ

P
nb1

aðy=nÞ
n

dy

On the other hand applying the usual Poisson summation formula:ð
R

P
nb1

jðnyÞaðyÞ dy

¼
ð
R

P
nb1

FðjÞðn=yÞ
jyj � jð0Þ

2
þFðjÞð0Þ

2jyj

 !
aðyÞ dy

¼
ð
R

P
nb1

FðjÞðnyÞ
 !

að1=yÞ
jyj dy� jð0Þ

ðy
0

aðyÞ dyþFðjÞð0Þ
ðy
0

aðyÞ
jyj dy

¼
ð
R
FðjÞðyÞ

P
nb1

aðn=yÞ
jyj dy� jð0Þ

ðy
0

aðyÞ dyþFðjÞð0Þ
ðy
0

aðyÞ
jyj dy

The conclusion being:
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ð
R
jðyÞ

P
nb1

aðy=nÞ
n

dy�FðjÞð0Þ
ðy
0

að1=yÞ
y

dy

¼
ð
R
FðjÞðyÞ

P
nb1

aðn=yÞ
jyj dy� jð0Þ

ðy
0

aðyÞ dy

which, after exchanging j with FðjÞ, is a distribution theoretic formulation of the
intertwining property:

F
P
nb1

aðy=nÞ
n

�
Ðy
0

aðyÞ
y

dy

 !
¼
P
nb1

aðn=yÞ
jyj �

ðy
0

aðyÞ dy r

It is useful to have a version of co-Poisson intertwining without compactness nor
smoothness conditions:

4.1 Lemma. Let gðuÞ be an even measurable function withðy
0

jgðuÞj
u

du < y

The sum
P

nb1
gðt=nÞ

n
is Lebesgue almost-everywhere absolutely convergent. It is a

locally integrable function of t. It is a tempered distribution.

Proof. Let jðtÞ be an arbitrary even measurable function. One has:ðy
0

P
nb1

jjðntÞj jgðtÞj dt ¼
ðy
0

jjðtÞj
P
nb1

gðt=nÞ
n

���� ���� dt
If we take jðtÞ to be 1 for jtjaL, 0 for jtj > L, we have

P
nb1jjðntÞj ¼ ½L=jtj�a

L=jtj. From this:ðL
0

P
nb1

gðt=nÞ
n

���� ���� dt ¼ OðLÞ

and this implies that AðtÞ ¼
P

nb1
gðt=nÞ

n
is almost everywhere absolutely convergent,

that it is locally integrable and also that
Ð u
0 AðtÞ dt is OðuÞ. So the continuous functionÐ u

0 AðtÞ dt is a tempered distribution. Hence its distributional derivative AðuÞ is again
a tempered distribution. r

4.2 Theorem. Let gðtÞ be an even measurable function withðy
0

jgðtÞj
t

dtþ
ðy
0

jgðtÞj dt < y
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Then the co-Poisson intertwining

F
P
nb1

gðt=nÞ
n

�
Ðy
0

gðuÞ
u

du

 !
¼
P
nb1

gðn=tÞ
t

�
ðy
0

gðuÞ du

holds as an identity of tempered distributions.

Proof. The proof 3.9 given above applies identically. To get it started one only has to
state trivially for jðyÞ a Schwartz function that

P
nb1jjðnyÞj is Oð1=jyjÞ. r

So the conclusion is that as soon as the two integrals are absolutely convergent the
full co-Poisson intertwining makes sense and holds true. If one manages to get more
information, the meaning of the F will be accordingly improved. For example if one
side is in L2 then the other side has to be too and the equality holds with F being the
Fourier-Plancherel (cosine) transform.

4.3 Note. In this familiar R setting our first modification of the Poisson formula was
very cosmetic: the Poisson formula told us the equality of two functions and we
exchanged a term on the left with a term on the right. This was to stay in a Hilbert
space, but it remained a statement about the equality of two functions (and in the
adelic setting, the equality of two functions with values in the distributions on the
adeles). With the co-Poisson if we were to similarly exchange the integral on the left
with the integral on the right, we would have to use Dirac distributions, and the
nature of the identity would change. So the co-Poisson is more demanding than the
(modified) Poisson. Going from Poisson to co-Poisson can be done in many ways:
conjugation with I , or conjugation with F, or Hilbert adjoint, or more striking still
and at the same time imposed upon us from adeles and ideles, the switch from view-
ing a certain quantity as a function (Poisson) to viewing it as a distribution (co-
Poisson). The co-Poisson is a distribution whose values we try to understand as
L2-functions, whereas the (modified) Poisson is a function with values in distributions
(bad for Hilbert space).

We state again the important intertwining property as a theorem, with an alternative
proof:

4.4 Theorem. Let aðyÞ be a smooth even function on R with compact support away

from the origin. Let P 0ðaÞ be its co-Poisson summation:

P 0ðaÞðyÞ ¼
P
nb1

aðy=nÞ
n

�
ðy
0

aðyÞ
y

dy

Then the additive Fourier Transform of P 0ðaÞ is P 0ðIðaÞÞ with IðaÞðyÞ ¼ að1=yÞ=jyj.

Proof. Let P be the (modified) Poisson summation on even functions:
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PðaÞðyÞ ¼
P
nb1

aðnyÞ �
Ðy
0 aðyÞ dy

jyj

Obviously P 0 ¼ I � P � I . And we want to prove FP 0 ¼ P 0I . Let us give a formal
operator proof:

FP 0 ¼ FIPI ¼ PFII ¼ PF ¼ IP ¼ P 0I

Apart from the usual Poisson summation formula PF ¼ IP the crucial step was the
commutativity of FI and P. This follows from the fact that both operators com-
mute with the multiplicative action of R�, so they are simultaneously diagonalized by
multiplicative characters, hence they have to commute.

To elucidate this in a simple manner we extend our operators I , F, P and P 0 to a
larger class of functions, a class stable under all four operators. It is not di‰cult [15]
to show that for each Schwartz function b (in particular for b ¼ IðaÞ) the Mellin
Transform of PðbÞðyÞ is:ðy

0

PðbÞðyÞys�1 dy ¼ zðsÞ
ðy
0

bðyÞys�1 dy

initially at least for 0 < ReðsÞ < 1. Let us consider the class of functions kð1=2þ itÞ
on the critical line which decrease faster than any inverse power of t when jtj ! y.
On this class of functions we define I as kðsÞ 7! kð1� sÞ, P as kðsÞ 7! zðsÞkðsÞ, P 0 as
kðsÞ 7! zð1� sÞkðsÞ, and FI as kðsÞ 7! gþðsÞkðsÞ with gþðsÞ ¼ p�ðs�1=2ÞGðs=2Þ=
Gðð1� sÞ=2Þ. The very crude bound (on ReðsÞ ¼ 1=2) jzðsÞj ¼ OðjsjÞ (for example,
from zðsÞ=s ¼ 1=ðs� 1Þ �

Ð 1
0 f1=tgts�1 dt) shows that it is a multiplier of this class

(it is also a multiplier of the Schwartz class from the similar crude bounds on its
derivatives one obtains from the just given formula). And jgþðsÞj ¼ 1, so this works
for it too (and also for the Schwartz class, see [12]). The above formal operator proof
is now not formal anymore (using, obviously, that the Mellin transform is one-to-one
on our a’s). The intertwining property for P 0 is equivalent to the intertwining prop-
erty for P, because both are equivalent, but in di¤erent ways, to the functional equa-
tion for the zeta function. r

As was stated in the previous proof a function space which is stable under all four
operators I , F, P and P 0 is the space of inverse Mellin transforms of Schwartz func-
tions on the critical line: these are exactly the even functions on R with the form
kðlogjyjÞ=

ffiffiffiffiffiffi
jyj

p
where kðaÞ is a Schwartz function of a A R. We pointed out the sta-

bility under Fourier Transform in [12]. We note that although P and P 0 make sense
when applied to kðlogjyjÞ=

ffiffiffiffiffiffi
jyj

p
and that they give a new function of this type, this

can not always be expressed as in their original definitions, for example because the
integrals involved have no reason to be convergent (morally they correspond to eval-
uations away from the critical line at 0 and at 1.)

We may also study I , F, P and P 0 as operators on L2, but some minimal care has to
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be taken because P and its adjoint P 0 are not bounded. Nevertheless they are closed
operators and they commute with the Abelian von Neumann algebra of bounded
operators commuting with R� (see [16]). This gives one more method to establish
the co-Poisson intertwining as a corollary to the Poisson intertwining, as we may go
from PF ¼ IP (modified Poisson) to FP 0 ¼ P 0I (co-Poisson) simply by taking Hil-
bert adjoints: P 0 ¼ P� (and here F is the cosine transform, so F� ¼ F):

PF ¼ IP ) ðPFÞ� ¼ ðIPÞ� ) FP 0 ¼ P 0I

It is important to be aware that for this to be correct it is crucial that we are using P

to denote, not the original Poisson sums, but the Müntz-modified Poisson sums.

Another perspective on co-Poisson comes from a re-examination of the use of the
multiplicative version (now called Mellin) of the Fourier Transform in Riemann’s
paper. To establish the functional equation, Riemann uses the left Mellin transformÐy
0 f ðuÞus�1 du, but when he relates the zeros to the primes with an explicit formula
he uses the right Mellin transform

Ðy
0 f ðuÞu�s du. After all the zeta-function itself is

most simply expressed as the right Mellin transform of the sum of the Dirac at the
positive integers. We said earlier that the Müntz-modified sums corresponded under
Mellin Transform to the zeta function zðsÞ, but this is using the left convention. If,
rather, we use the right convention we are bound to associate to zðsÞ the co-Poisson

sums! If we now ask what the functional equation tells us, then the answer is: in par-
ticular the co-Poisson intertwining . . . It should be clear from this discussion that the
co-Poisson intertwining is a formula of the nineteenth century which was discovered
at the close of the twentieth century.

Immediately after being communicated the co-Poisson formula, Luis Báez-Duarte
replied that an application of Euler-McLaurin summation establishes the co-Poisson
intertwining in a more elementary manner, inasmuch as his method uses neither dis-
tributions nor Mellin transforms, and does not appeal directly to either the Poisson
summation formula, nor to the functional equation of the Riemann zeta function.
Here is the proof emerging from this discussion:

4.5 Theorem (proven jointly with Luis Báez-Duarte). Let gðtÞ be an (even) function

of class C 2 which has compact support away from the origin. Then both
P

nb1
gðt=nÞ

n
�Ðy

0
gðuÞ
u
du and

P
nb1

gðn=tÞ
t

�
Ðy
0 gðuÞ du are continuous L1-functions and the co-Poisson

intertwining formula

F
P
nb1

gðt=nÞ
n

�
Ðy
0

gðuÞ
u

du

 !
¼
P
nb1

gðn=tÞ
t

�
ðy
0

gðuÞ du

holds as a pointwise equality and may be established as a corollary to the Euler-

McLaurin summation formulae.

Proof. Let BðuÞ be the periodic funtion which on ½0; 1Þ has values u2

2 � u
2 þ 1

12 . It is a
continuous even function, which as is well-known is also expressed as:
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BðuÞ ¼
P
nb1

cosð2pnuÞ
2p2n2

Let f ðtÞ be a C 2 function with compact support away from 0. We have:

P
nb1

f ðnÞ �
ðy
0

f ðuÞ du ¼ �
ðy
0

BðuÞ d

du

� �2
f ðuÞ du

If we apply this to the function u ! f ðu=wÞ=w for w > 0, we obtain:

P
nb1

f ðn=wÞ
w

�
ðy
0

f ðuÞ du ¼ �
ðy
0

BðuÞ d

du

� �2
f ðu=wÞ

w
du

¼ � 1

w2

ðy
0

BðwvÞ d

dv

� �2
f ðvÞ dv

The left-hand side is locally a finite sum, hence of class C2 (and when jwj is su‰-
ciently small it reduces to the constant �

Ðy
0 f ðuÞ du) and the formula above shows that

it is Oð1=w2Þ when w ! y. If we only assume f ðuÞ to be bounded but still with com-
pact support away from the origin then obviously

P
nb1

f ðn=wÞ
w

is at any rate bounded
(the number of non-vanishing terms being OðwÞ). We now apply the above formula
to gðtÞ ¼ f ð1=tÞ=t:

P
nb1

gðt=nÞ
n

�
ðy
0

gð1=uÞ
u

du ¼ �
ðy
0

BðuÞ d

du

� �2
gðt=uÞ

u
du

¼ �
P
nb1

ðy
0

cosð2pnuÞ
2p2n2

d

du

� �2
gðt=uÞ

u
du ¼ �

P
nb1

ðy
0

cosð2ptwÞ
2p2t2

d

dw

� �2
gðn=wÞ

w
dw

At this stage we expand the second derivative and using that
P

nb1
kðn=wÞ

w
is bounded

with kðtÞ ¼ jgðtÞj; jtg 0ðtÞj; jt2g 00ðtÞj we see that dominated convergence applies. So:

¼ �
ðy
0

cosð2ptwÞ
2p2t2

d

dw

� �2 P
nb1

gðn=wÞ
w

 !
dw

¼ �
ðy
0

cosð2ptwÞ
2p2t2

d

dw

� �2 P
nb1

gðn=wÞ
w

�
Ðy
0

gðaÞ da
 !

dw

¼ þ
ðy
0

2 cosð2ptwÞ
P
nb1

gðn=wÞ
w

�
Ðy
0

gðaÞ da
 !

dw

The first integration by parts at the end is justified by limw!y
d
dw

P
nb1

gðn=wÞ
w

¼ 0,
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using that
P

nb1
kðn=wÞ

w
is bounded with kðtÞ ¼ jgðtÞj; jtg 0ðtÞj. So far we have t0 0, but

the integral being dominated we may let t ¼ 0 in the final formula. If we now replace
gðtÞ with gð1=tÞ=t we get the co-Poisson intertwining as a pointwise equality. r

The most direct attack when first confronted with the co-Poisson formula is presum-
ably this: Fð

P
gðt=nÞ=nÞ ¼

P
FðgÞðnxÞ ¼

P
gðm=xÞ=jxj, where we first intervert

and then apply Poisson. This has a number of pitfalls (for whose unraveling the lan-
guage of distributions is very useful), but it is possible to make it work to prove
something correct. This proof is a joint-work with Bernard Candelpergher, and as in
the previous approach it uses only elementary tools and especially the (simplest cases
of ) Euler-McLaurin summation.

4.6 Theorem (proven jointly with Bernard Candelpergher). Let gðtÞ be an even function

of class C2 which has compact support away from the origin. Then both
P

nb1
gðt=nÞ

n
�Ðy

0
gðuÞ
u
du and

P
nb1

gðn=tÞ
t

�
Ðy
0 gðuÞ du are continuous L1-functions and the co-Poisson

intertwining formula

F
P
nb1

gðt=nÞ
n

�
Ðy
0

gðuÞ
u

du

 !
¼
P
nb1

gðn=tÞ
t

�
ðy
0

gðuÞ du

holds as a pointwise equality and may be established as a corollary to the Euler-

McLaurin summation formulae.

Proof. We work on ð0;yÞ. We have ðt > 0Þ:

P
nb1

gðt=nÞ
n

�
ðy
0

gð1=uÞ
u

du ¼
P
nb1

AnðtÞ

with:

AnðtÞ ¼
1

2

gðt=nÞ
n

þ gðt=ðn� 1ÞÞ
n� 1

� �
�
ð n
n�1

gðt=uÞ
u

du

where the term with n� 1 is dropped for n ¼ 1. With kðtÞ ¼ gð1=tÞ=t one has:

AnðtÞ ¼
1

2

kðn=tÞ
t

þ kððn� 1Þ=tÞ
t

� �
�
ð n
n�1

kðu=tÞ
t

du

¼ �
ð n
n�1

C2ðuÞ
d 2

du2
kðu=tÞ

t
du

where C2ðuÞ ¼ ðfug2 � fugÞ=2. From this:

P
nb1

jAnðtÞja
1

t2

ðy
0

jC2ðuÞj jk 00ðu=tÞj du
t
¼ Oð1=t2Þ
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On the other hand for t small enough one has AnðtÞ1 0 for nb 2. So the sumP
nb1 AnðtÞ is absolutely convergent to an L1-function and also we can compute its

Fourier transform termwise. This gives, with ~gg ¼ FðgÞ:

Fð
P
nb1

AnðtÞÞðxÞ ¼
�~ggð0Þ

2
þ
P
nb1

~ggðnxÞ þ ~ggððn� 1ÞxÞ
2

�
Ðn

n�1

~ggðuxÞ du
 !

The appearance of �~ggð0Þ=2 is from the fact that this time the n� 1 term with n ¼ 1 is
to be counted in the sum, so we have to compensate for this. The formula holds for
all x ðxb 0Þ, in particular for x ¼ 0 it reads:ð

R

P
nb1

gðt=nÞ
n

�
Ðy
0

gð1=uÞ
u

du

 !
dt ¼ �

ðy
0

gðvÞ dv

For x > 0 we are one step away from co-Poisson, it only remains to apply Poisson to
our sum (note that

Ðy
0

~ggðuxÞ du ¼ 0). But we can also base this on Euler-McLaurin.
Indeed with B1ðvÞ ¼ fvg � 1

2 :

~ggðnxÞ þ ~ggððn� 1ÞxÞ
2

�
ð n
n�1

~ggðuxÞ du ¼
ð n
n�1

B1ðvÞ
d

dv
~ggðvxÞ dv

Hence

Fð
P
nb1

AnðtÞÞðxÞ ¼ �
ðy
0

gðvÞ dvþ
ðy
0

B1ðvÞ
d

dv
~ggðvxÞ dv

Now, from the fact that g is C2 with compact support, its Fourier transform and all
derivatives of it are Oð1=jxj2Þ. We may thus use the boundedly convergent expres-
sion:

B1ðvÞ ¼
P
mb1

�sinð2pmvÞ
mp

and thenðy
0

B1ðvÞ
d

dv
~ggðvxÞ dv ¼ lim

M!y

P
1amaM

ðy
0

�sinð2pmvÞ
mp

d

dv
~ggðvxÞ dv

¼ lim
M!y

P
1amaM

2

ðy
0

cosð2pmvÞ~ggðvxÞ dv ¼ lim
M!y

P
1amaM

gðm=xÞ
x

where Fourier inversion was used ðx > 0Þ. This completes the proof of co-Poisson. It
is also interesting to prove in another manner the special formula ðx ¼ 0Þ:
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ðy
0

P
nb1

gðt=nÞ
n

�
Ðy
0

gð1=uÞ
u

du

 !
dt ¼ � 1

2

ðy
0

gðvÞ dv

This may be done as follows: first,ðL
0

P
nb1

gðt=nÞ
n

dt ¼
P
nb1

ðL=n

0

gðtÞ dt ¼
ðy
0

L

t

� �
gðtÞ dt

so we are looking at

lim
L!y

�
ðy
0

L

t

	 

gðtÞ dt ¼ � lim

L!y

ðy
0

fLvghðvÞ dv

with the L1-function hðvÞ ¼ gð1=vÞ=v2. It is obvious that

0aAaB implies lim
L!y

ðy
0

fLvg1AavaBðvÞ dv ¼
B� A

2

so using the density argument from the usual proof of the Riemann-Lebesgue lemma
one deduces that

lim
L!y

ðy
0

fLvghðvÞ dv ¼ 1

2

ðy
0

hðvÞ dv

for all L1-functions. One last remark is that at the level of (left) Mellin, co-Poisson
is like multiplication by zð1� sÞ, so the special formula is just another instance of
zð0Þ ¼ � 1

2 . r

Here is one last approach to co-Poisson (extracted from a manuscript in preparation
[23]). The Poisson summation identity isP

n AZ
Fð f ÞðnÞ ¼

P
m AZ

f ðmÞ

It applies in particular to Schwartz functions, and may be written as:

F
P
n AZ

dnðxÞ
� �

¼
P
m AZ

dmðyÞ

We take this identity of tempered distributions seriously, on its own, and do not
completely identify it with the Poisson summation identity. Let t0 0 and let us
replace x by tx. One has dnðtxÞ ¼ dn=tðxÞ=jtj. So

F
P
n AZ

dn=tðxÞ
jtj

� �
¼ 1

jtj
P
m AZ

dm
y

t

� �
¼
P
m AZ

dtmðyÞ
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We average these tempered distributions with an integrable weight gðtÞ (which is
compactly supported away from the origin) to obtain an identity of tempered dis-
tributions:

F
P
n AZ

Ð
gðtÞ

dn=tðxÞ
jtj dt

� �
¼
P
m AZ

ð
gðtÞdtmðyÞ dt

But for n0 0 (resp. m0 0) and as distributions in x (resp. y):ð
gðtÞ

dn=tðxÞ
jtj dt ¼

ð
gðn=aÞdaðxÞ

da

jaj ¼
g n

x

� �
jxjð

gðtÞdtmðyÞ dt ¼
ð
gðb=mÞdbðyÞ

db

jmj ¼
g y

m

� �
jmj

whereas
Ð
gðtÞ d0ðxÞjtj dt ¼

Ð
gðtÞ dt

jtj

� �
d0ðxÞ and

Ð
gðtÞd0ðyÞ dt ¼ ð

Ð
gðtÞ dtÞd0ðyÞ. If we

exchange sides for the contributions of n ¼ 0 and m ¼ 0 we end up with the co-
Poisson intertwining as an identity of tempered distributions. This method of mul-
tiplicative convolution applies to situations where the discreteness of the support of
the original distributions applies only at the origin. A general discussion is planned in
[23].

There is reason to believe that the problem of understanding the spaces of L2-
functions which are vanishing together with their Fourier Transform in a neighbor-
hood of the origin, is important simultaneously for Analysis and Arithmetic. It is
a remarkable ancient discovery of de Branges [7] [8] that these spaces have the rich
structure which he developed generally in his theory of Hilbert Spaces of entire func-
tions: they are among the ‘‘Sonine spaces’’. The co-Poisson summations have the
(extended) property of being constant together with their Fourier transform, in some
neighborhood of the origin, and we will show later (see also [21]) that the zeros of
the Riemann zeta function are the obstructions for (the square-integrable among) the
co-Poisson sums to fill up the full spaces of such square-integrable functions.

5 Impact of the Báez-Duarte, Balazard, Landreau and Saias theorem on the
so-called Hilbert-Pólya idea

How could it be important to replace zðsÞ with zð1� sÞ? Clearly only if we leave the
critical line and start paying attention to the di¤erence between the right half-plane
ReðsÞ > 1=2 and the left half-plane ReðsÞ < 1=2. Equivalently if we switch from the
full group of contractions-dilations Cl, 0 < l < y, which acts as fðxÞ 7! fðx=lÞ=

ffiffiffiffiffiffi
jlj

p
on even functions on R, or as ZðsÞ 7! ls�1=2ZðsÞ on their Mellin Transforms, to its
sub-semi-group of contractions ð0 < la 1Þ. The contractions act as isometries on
the Hardy space H2ðReðsÞ > 1=2Þ or equivalently on its inverse Mellin transform the
space L2ðð0; 1Þ; dtÞ.
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It is a theme contemporaneous to Tate’s Thesis and Weil’s first paper on the explicit
formula that it is possible to formulate the Riemann Hypothesis in such a semi-group
set-up: this is due to Nyman [37] and Beurling [6] and builds on the Beurling [5] (and
later for the half-plane) Lax [34] theory of invariant subspaces of the Hardy spaces.
The criterion of Nyman reads as follows: the linear combinations of functions t 7!
f1=tg � fa=tg=a, for 0 < a < 1, are dense in L2ðð0; 1Þ; dtÞ if and only if the Riemann
Hypothesis holds. It is easily seen that the smallest closed subspace containing these
functions is stable under contractions, so to test the closure property it is only neces-
sary to decide whether the constant function 1 on ð0; 1Þ may be approximated. The
connection with the zeta function is established through ð0 < ReðsÞ < 1Þ:ðy

0

f1=tgts�1 dt ¼ � zðsÞ
s

This gives for our functions, with 0 < a < 1 and 0 < ReðsÞ:ð1
0

f1=tg � 1

a
fa=tg

� �
ts�1 dt ¼ ðas�1 � 1Þ zðsÞ

s

The question is whether the invariant (under contractions) subspace of H2ðReðsÞ >
1=2Þ of linear combinations of these Mellin transforms is dense or not. Each zero r

of zðsÞ in ReðsÞ > 1=2 is an obvious obstruction as (the complex conjugate of ) tr�1

belongs to L2ðð0; 1Þ; dtÞ. The Beurling-Lax theory describing the structure of invariant
subspaces allows the conclusion in that case that there are no other obstructions (we
showed [17] as an addendum that the norm of the orthogonal projection of 1 to the
Nyman space is

Q
ReðrÞ>1=2 jð1� rÞ=rj, where the zeros are counted with their multi-

plicities). Recently ([2]) Luis Báez-Duarte has shown that the appeal to the Beurling-
Lax invariant subspace theory could be completely avoided, and furthermore he has
put the Nyman-Beurling criterion in the stronger form where one applies to the frac-
tional part function only integer-ratio contractions.

One could think from our description of the original proof of the Nyman-Beurling
criterion that the zeros on the critical line are out of its scope, as they don’t seem to
play any rôle. So it has been a very novel thing when Báez-Duarte, Balazard, Land-
reau and Saias asked the right question and provided a far from obvious answer [3].
First a minor variation is to replace the Nyman criterion with the question whether
the function 10<t<1 can be approximated in L2ð0;yÞ with linear combinations of the
contractions of f1=tg. Let DðlÞ be the Hilbert space distance between 10<t<1 and
linear combinations of contractions Cyðf1=tgÞ, la ya 1. The Riemann Hypothesis
holds if and only if limDðlÞ ¼ 0.

Theorem of Báez-Duarte, Balazard, Landreau and Saias [3]. One has the lower bound:

lim inf jlogðlÞjDðlÞ2 b
P
r

1

jrj2
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where the sum is over all non-trivial zeros of the zeta function, counted only once

independently of their multiplicity.

The authors of [3] conjecture that equality holds (also with lim in place of lim inf)
when one counts the zeros with their multiplicities: our next result shows that their
conjecture not only implies the Riemann Hypothesis but it also implies the simplicity
of all the zeros:

5.1 Theorem ([18]). The following lower bound holds:

lim inf jlogðlÞjDðlÞ2 b
P
r

m2
r

jrj2

Our proof relies on the link we have established between the study originated by Báez-
Duarte, Balazard, Landreau and Saias of the distance function DðlÞ and the so-called
Hilbert-Pólya idea. This idea will be taken here in the somewhat vague accepta-
tion that the zeros of L-functions may have a natural interpretation as Hilbert space
vectors, eigenvectors for a certain self-adjoint operator. If we had such vectors in
L2ðð0;yÞ; dtÞ, perpendicular to f1=tg and to its contractions Cyðf1=tgÞ, la ya 1
then we would be in position to obtain a lower bound for DðlÞ from the orthogonal
projection of 10<t<1 to the space spanned by the vectors. This lower bound would be
presumably easily expressed as a sum indexed by the zeros from the fact that eigen-
spaces of a self-adjoint operator are mutually perpendicular. The first candidates are
t 7! t�r: they satisfy formally the perpendicularity condition to f1=tg and its con-
tractions, but they do not belong to L2. Nevertheless we could be in a position to
approximately implement the idea if we used instead the square integrable vectors
t 7! t�ðr�eÞ10<t<1, e > 0, ReðrÞ ¼ 1=2. The authors of [3] followed more or less this
strategy, but as they did not benefit from exact perpendicularity, they had to provide
not so easily obtained estimates. It appears that the e > 0 does not seem to allow to
take easily into account the multiplicities of the zeros. For their technical estimates
the authors of [3] used to great advantage a certain scale invariant operator U , which
had been introduced by Báez-Duarte in an earlier paper [1] discussing the Nyman-
Beurling problem.

How is it possible that the use of this Báez-Duarte operator U (whose definition only
relies on some ideas of harmonic analysis, and some useful integral formulae, with at
first sight no arithmetic involved) allows Báez-Duarte, Balazard, Landreau and Saias
to make progress on the Nyman-Beurling criterion? We related the mechanism under-
lying the insightful Báez-Duarte construction [1] of the operator U to a construction
quite natural in scattering theory and it appeared then that it was possible to use it
(or a variant V ) to construct true Hilbert space vectors Y l

s;k indexed by s on the critical
line, and k A N, having the property of expressing the values of the Riemann zeta
function and its derivatives on the critical line as Hilbert space scalar products:

ðA;Y l
s;kÞ ¼ � d

ds

� �k
s� 1

s

zðsÞ
s
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The additional factors are such that s�1
s

zðsÞ
s

belongs to the Hardy space of the right
half-plane and AðtÞ is its inverse Mellin transform, an element of L2ðð0; 1Þ; dtÞ. What
is more, we can replace A with its contractions CyðAÞ as long as la ya 1:

la ya 1 ) ðCyðAÞ;Y l
s;kÞ ¼ � d

ds

� �k
y s�1=2 s� 1

s

zðsÞ
s

So the only ones among the Y l
s;k which are (exactly, not approximately) perpendicu-

lar to A and its contractions up to l are the Y l
r;k, zðrÞ ¼ 0, k < mr ðl < 1Þ. This

connects the Nyman-Beurling criterion with the so-called Hilbert-Pólya idea. From
the explicit integral formulae of Báez-Duarte for his operator U one can write for-
mulae for the vectors Y l

s;k from which the following asymptotic behavior emerges:

lim
l!0

jlogðlÞj�1�k�l � ðY l
s1;k

;Y l
s2; l

Þ ¼ 0 ðs1 0 s2Þ

lim
l!0

jlogðlÞj�1�k�l � ðY l
s;k;Y

l
s; lÞ ¼

1

k þ l þ 1

In particular the rescaled vectors X l
s;0 ¼ Y l

s;0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlogðlÞj

p
become orthonormal in the

limit when l ! 0. The limit can not work inside L2ðð0;yÞÞ because this is a separa-
ble space! In fact one shows without di‰culty that the vectors X l

s;k weakly converge
to 0 as l ! 0. The theorem 5.1 is easily deduced from the above estimates.

We have not explained yet what is U and how the Y l
s;k are constructed with the help

of it. The Báez-Duarte operator is the unique scale invariant operator with sends
f1=tg to its image under the time reversal J : jðtÞ 7! jð1=tÞ=t, which is here the func-
tion ftg=t. Equivalently at the level of the Mellin Transforms, U acts as a multipli-
cator with multiplier on the critical line

UðsÞ ¼ zðsÞ=s
zðsÞ=s ¼

zð1� sÞ
zðsÞ

s

1� s

So this construction is extremely general: as soon as the function A A L2ðð0;yÞ; dtÞ
has an almost everywhere non-vanishing Mellin transform ZðsÞ on the critical line
(which by a theorem of Wiener is equivalent to the fact that the multiplicative trans-
lates CyðAÞ, 0 < y < y, span L2) then we may associate to it the scale invariant
operator V with acts as ZðsÞ=ZðsÞ, and sends A to its time reversal JðAÞ. We see that
V is necessarily unitary. Let us in particular suppose that A is in L2ðð0; 1Þ; dtÞ: then
JðAÞ has support in ½1;yÞ and the images under V of the contractions CyðAÞ, la
ya 1, being contractions of JðAÞ, will be in L2ððl;yÞ; dtÞ. In the case at hand we
have:

ZðsÞ ¼ s� 1

s

zðsÞ
s

VðsÞ ¼ zð1� sÞ
zðsÞ

s

1� s

� �3
The Báez-Duarte operator U and its cousin V depend on zðsÞ only through its func-
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tional equation, which means that they are associated with the (even) Fourier trans-
form Fþ (the cosine transform). We can use (almost) the same operators for Dirichlet
L-series with an even character (with due attention paid to the conductors q > 1), and
there are other operators we would use for odd characters, associated with the sine
transform F�.

The vectors Y l
s;k are obtained as follows: we start from jlogðtÞjkt�ðs�eÞ10<t<1, apply V ,

restrict to ½l;þyÞ, take the limit which now exists in L2 as e ! 0, and apply V�1.
What happens is that Vðt�1=2�it10<t<1Þ does not belong to L2 but this is entirely due
to its singularity at 0, which, it turns out, is Vð1=2þ itÞt�1=2�it. We would not expect
it to be possible that a localized singularity would remain localized after the action
of Fþ but the point is that the operator with multiplier zð1� sÞ=zðsÞ is the composite
Fþ � I with IðfÞðxÞ ¼ fð1=xÞ=jxj. So the singularity is first sent to infinity and Fþ puts
it back at the origin.

5.2 Note. Let us denote by L the scale invariant unitary operator with spectral func-
tion LðsÞ ¼ s=ðs� 1Þ. One has L ¼ 1�M where M is the Hardy averaging fðtÞ 7!
ð
Ð t
0 fðuÞ duÞ=t. The operator V is ð�LÞ3FþI ¼ FþIð�LÞ3. One has ILI ¼ L�1 and

LL� ¼ 1. The operator L is ‘‘real’’, meaning that it commutes with the anti-unitary
complex conjugation fðtÞ 7! fðtÞ. One has IV ¼ IFþIð�LÞ3. We will write Gþ ¼
IFþI , so that IV ¼ Gþð�LÞ3 ¼ ð�LÞ�3Gþ. The operator Gþ is unitary and satisfies
G2
þ ¼ 1. The operator Gþ is real. The U operator of Báez-Duarte is FþIð�LÞ, so V ¼

UL2 ¼ L2U . The operators I , Fþ, Gþ, U and V are real.

We now proceed with a more detailed study of the vectors Y l
s;k, and of their use to

express values of Mellin transforms and their derivatives on and o¤ the critical line as
Hilbert space scalar products. We established

ðB;Y l
s;kÞ ¼ � d

ds

� �k
B̂BðsÞ

for the Hardy functions CyðAÞ, la ya 1. Their Mellin TransformsÐy
0 CyðAÞðtÞts�1 dt ¼ ys�1=2 s�1

s

zðsÞ
s

are analytic in the entire complex plane except for
a double pole at s ¼ 0. The vectors Y l

s;k are the analytic continuation to ReðsÞ ¼ 1=2

of vectors with the same definition Y l
w;k, ReðwÞ < 1=2. The above equation has thus

its right hand side analytic in s but its left-hand side seemingly anti-analytic, as our
scalar product is linear in its first factor and conjugate linear in its second factor. So
we will use rather the euclidean bilinear form ½B;C � ¼

Ðy
0 BðtÞCðtÞ dt. The spaces we

consider are stable under complex conjugation BðtÞ 7! BðtÞ, and the operators we use
are real, so statements of perpendicularity may equivalently be stated using either
½� ; �� or ð� ; �Þ. The identity can then be restated for all finite linear combinations B of
our CyðAÞ’s, la ya 1, as

½B;Y l
w;k� ¼ þ d

dw

� �kð1
0

t�wBðtÞ dt ¼ d

dw

� �k
ðB̂Bð1� wÞÞ
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for ReðwÞa 1=2. If we look at the proof of the main theorem in [18] we see that the
only thing that matters about B is that it should be supported in ½0; 1� and that VðBÞ
should be supported in ½l;yÞ, equivalently that ðIVÞðBÞðtÞ has support in ½0;L�,
L ¼ 1=l. Let us note the following:

5.3 Theorem. The real unitary operator IV satisfies ðIVÞ2 ¼ 1.

5.4 Note. In particular IV is what Báez-Duarte calls ‘‘a skew-root’’ [1].

Proof. This is clear from the spectral representation

VðsÞ ¼ zð1� sÞ
zðsÞ

s

1� s

� �3
which shows that IVI ¼ V �. r

We let L ¼ 1=l and GL ¼ IVCL ¼ ClIV . We note that ðGLÞ2 ¼ 1. We also note
VGL ¼ ClVIV ¼ ClI . Let ML ¼ H2 XGLðH2Þ, where we use the notation H2 ¼
L2ðð0; 1Þ; dtÞ. Obviously GLðMLÞ ¼ ML. The function A as well as its contractions
CyðAÞ, la ya 1 belong to ML. Indeed GLðAÞ ¼ ClðAÞ. We note that the Mellin
transform

Ð 1
0 BðtÞtw�1 dt of B A ML is analytic at least in ReðwÞ > 1=2. Let Ql be the

orthogonal projection to L2ðl;yÞ.

5.5 Theorem. The vectors Y l
w;k, originally defined for ReðwÞ < 1=2 as

V�1QlVðjlogðtÞjkt�w10<t<1Þ

have (inside L2) an analytic continuation in w to the entire complex plane C except at

w ¼ 1. The Mellin Transform of B A ML has an analytic continuation to Cnf0g, with
at most a pole of order 2 at w ¼ 0. One has for w0 1 and k A N:

½B;Y l
w;k� ¼

d

dw

� �k
ðB̂Bð1� wÞÞ

The following functional equation holds:

dGLðBÞGLðBÞðwÞ ¼ lw�1=2Vð1� wÞB̂Bð1� wÞ

One has

EB A ML B̂Bð�2Þ ¼ B̂Bð�4Þ ¼ � � � ¼ 0

Proof. We leave the details of the case k > 0 to the reader. Let first ReðwÞ > 1=2. We
have for B A ML:

B̂BðwÞ ¼
ð1
0

BðtÞtw�1 dt ¼ ½B; tw�110<t<1� ¼ ½VðBÞ;Vðtw�110<t<1Þ�
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Writing B ¼ GLðCÞ, with C A H2, we get VðBÞ ¼ ClIðCÞ. So VðBÞ has its support in
½l;yÞ and:

B̂BðwÞ ¼
ðy
l

VðBÞðuÞVðtw�110<t<1ÞðuÞ du

We will show that Vðtw�110<t<1ÞðuÞ is analytic, for fixed u, in w A Cnf0g and that it
is Oðð1þ jlogðuÞjÞ=uÞ on ½l;yÞ, uniformly when w is in a compact subset of Cnf0g
(this is one logarithm better than the estimate in [18] for Reð1� wÞ < 1). We will thus
have obtained the analytic continuation of the vectors Y l

1�w;0 from ReðwÞ > 1=2 and
at the same time the analytic continuation of B̂BðwÞ as well as the formula:

w0 0 ) ½B;Y l
1�w;0� ¼ B̂BðwÞ

So the problem is to study the analytic continuation of Vðt�z10<t<1ÞðuÞ from
ReðzÞ < 1=2. If we followed the method of [18], we would write V ¼ ð1�MÞ2U ,
compute some explicit formula for Uðt�z10<t<1ÞðuÞ and work with it. This works fine
for the continuation to ReðzÞ < 1, but for ReðzÞb 1 there is a problem with applying
M (which we must do before Ql) as the singularity at 0 is of the kind u�z and is not
integrable anymore. So we apply first L2 ¼ ð1�MÞ2 and only later U .

We compute:

Mðt�z10<t<1ÞðuÞ ¼
Ð minð1;uÞ
0 t�z dt

u
¼ u�z1ua1ðuÞ

1� z
þ 1

1� z

1u>1ðuÞ
u

M 2ðt�z10<t<1ÞðuÞ ¼
u�z1ua1ðuÞ
ð1� zÞ2

þ 1

ð1� zÞ2
1u>1ðuÞ

u
þ 1

1� z

logðuÞ1u>1ðuÞ
u

L2ðt�z10<t<1ÞðuÞ ¼
z2

ðz� 1Þ2
u�z1ua1 þ

z2

ðz� 1Þ2
� 1

 !
1u>1ðuÞ

u

þ 1

1� z

logðuÞ1u>1ðuÞ
u

We note that Uð1u>1=uÞ ¼ UIð1u<1Þ ¼ ðM � 1ÞFþð1u<1Þ ¼ ðM � 1Þðsinð2puÞ=ðpuÞÞ
is Oð1=uÞ (from the existence of the Dirichlet integral) for u > l and then
that UðlogðuÞ1u>1=uÞ ¼ UMIð1u<1Þ ¼ MUIð1u<1Þ ¼ MðM � 1Þðsinð2puÞ=ðpuÞ is
Oðð1þ jlogðuÞjÞ=uÞ. Clearly this reduces the problem of Vðt�z10<t<1ÞðuÞ to the
problem of the analytic continuation and estimation of Uðt�z10<t<1ÞðuÞ. From [3],
proof of Lemme 6, one has

Uðt�z10<t<1ÞðuÞ ¼
sinð2puÞ

pu
þ z

pu

ðy
1

tz�1 sinð2putÞ dt
t
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and (for example) from [19] we know that the integral is an entire function of z which
is Oð1=uÞ on ½l;yÞ, uniformly in z when jzj is bounded. We also see from this and
from the integral representation of B̂BðwÞ that it has at most a pole of order 2 at w ¼ 0
(which is z ¼ 1).

The functional equation holds on the critical line from the spectral representation of
GL ¼ ClIV , hence it holds on C by analytic continuation. As Vð1� wÞ has poles at
1� w ¼ �2;�4; . . . ; and the left hand side is regular at these values of w it follows
that B̂Bð1� wÞ has to vanish for 1� w ¼ �2;�4; . . . : r

5.6 Note. The distance function DðlÞ2 has two components: one corresponding to the
distance to the subspace ML in H2 and then another one corresponding to the addi-
tional distance inside this space to the translates CyðAÞ, la ya 1. The first step has
absolutely no arithmetic, it is a problem of analysis. In the second step the orthogo-
nal projections to ML of the vectors Y l

r;k, zðrÞ ¼ 0, k < mr are obstructions. When

l ! 0 ðL ! yÞ the first contribution is presumably much smaller than the second,
and the original vectors Y l

r;k will not themselves di¤er much from their orthog-

onal projections to ML. This seems to suggest as a plausible thing that the estimate
ð
P

r m
2
r=jrj

2Þ=jlogðlÞj gives the exact asymptotic decrease of DðlÞ2 (under assump-

tion of the Riemann Hypothesis).

6 Sonine spaces of de Branges, novel spaces HPl, vectors Z
l
r;k, Krein string of the

zeta function

Let K be the Hilbert space L2ðð0;yÞ; dtÞ of complex-valued square-integrable func-

tions on ð0;yÞ with Hilbertian scalar product ð f ; gÞ ¼
Ðy
0 f ðtÞgðtÞ dt. We also use the

‘‘Euclid’’ bilinear form ½ f ; g� ¼
Ðy
0 f ðtÞgðtÞ dt. A vector ZðtÞ is ‘‘Euclid-perpendicular’’

to a subspace H for the bilinear form ½ f ; g� if only and if ZðtÞ is (‘‘Hilbert’’)-
perpendicular to H for the scalar product ð f ; gÞ if and only if ZðtÞ is Hilbert-
perpendicular to the complex-conjugated space H. We also consider the functions in
K as even functions with the definition f ðtÞ ¼ f ðjtjÞ for t < 0.

The Mellin transform (which is taken in the L2-sense for ReðsÞ ¼ 1
2)

f ðtÞ 7! f̂f ðsÞ ¼
ðy
0

f ðtÞt�s dt

isometrically identifies K with the Hilbert space L2 s ¼ 1
2 þ it; dt=2p

� �
. The cosine

transform Fþ acts (in the L2 sense) on K as Fþð f ÞðtÞ ¼ 2
Ðy
0 cosð2ptuÞ f ðuÞ du. It is

a real operator. One has F2
þ ¼ 1, so K is the orthogonal sum of the subspaces of

invariant functions (‘‘self-reciprocal’’) under Fþ and the subspaces of anti-invariant
(‘‘skew-reciprocal’’) functions. The operator I is f ðtÞ 7! f ð1=tÞ=jtj. The composite

Gþ ¼ FþI is scale invariant so it is diagonalized by the Mellin transform: dGþð f ÞGþð f ÞðsÞ ¼
wþðsÞ f̂f ðsÞ. This is also written as

dFþð f ÞFþð f ÞðsÞ ¼ wþðsÞ f̂f ð1� sÞ
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The function wþðsÞ is a meromorphic function in the complex plane which is related
to the Tate Gamma function gþðsÞ through wþðsÞ ¼ gþð1� sÞ ¼ gþðsÞ

�1. One has:

wþðsÞ ¼ ps�1=2 Gðð1� sÞ=2Þ
Gðs=2Þ ¼ 2sps�1 sinðps=2ÞGð1� sÞ ¼ zðsÞ

zð1� sÞ

So an even function is self-reciprocal under the cosine transform if and only if its
right Mellin transform satisfies the zeta-functional equation. Under the left Mellin
transform f ðtÞ 7!

Ðy
0 f ðtÞts�1 dt, which is the one usually used in discussing the func-

tional equation, self-reciprocal functions under the cosine transform satisfy the func-
tional equation of zð1� sÞ. The Müntz formula [45, II.11] shows that, for suitably
regular functions f ðtÞ, the scale-invariant operator corresponding to zðsÞ when using
the left Mellin transform is given explicitely as a modified Poisson summation. So the
action of the scale invariant operator corresponding to zðsÞ under the right Mellin
transform is expressed as the co-Poisson summation (when applied to suitably regular
functions; a more detailed analysis will be given in [23]).

The intertwining property for co-Poisson summations ðt > 0Þ:

Fþ
P
nb1

aðt=nÞ
n

�
Ðy
0

að1=tÞ
t

dt

 !
¼
P
nb1

aðn=tÞ
t

�
ðy
0

aðtÞ dt

is an equivalent expression of the zeta-functional equation. It shows how to give
examples of even functions f ðtÞ which vanish identically in a neighborhood ð�l; lÞ
of the origin and such that their Fourier cosine transform has the same property. For
this we take aðtÞ, smooth with support in ½l;L� ðL ¼ 1=lÞ and such that

Ðy
0 aðtÞ dt ¼

0 ¼
Ðy
0 ðað1=tÞ=tÞ dt. A non zero function f ðtÞ may be obtained this way only for

0 < l < 1.

Nevertheless there exists for arbitrary l > 0 non-zero square integrable even func-
tions f ðtÞ vanishing in ð0; lÞ, and such that Fþð f ÞðtÞ also vanishes in ð0; lÞ. To the
best of the author’s knowledge this was first put forward as a fact of special impor-
tance in Analysis by de Branges in [7]. There, a beautiful isometric expansion of self-
and skew-reciprocal functions for the Hankel transform of zeroth order is proven.
The cosine transform is (essentially) the Hankel transform of order � 1

2 . The sine
transform is (essentially) the Hankel transform of order þ 1

2 .

6.1 Definition. We let Kl HK be the Hilbert space of square-integrable (even) func-
tions f ðtÞ vanishing in ð0; lÞ, and such that Fþð f ÞðtÞ also vanishes in ð0; lÞ.

An explicit example of a function having this property, but which is not square-
integrable, arises from an integral formula of Sonine concerning Bessel functions [42,
p. 38]. This example is in Titchmarsh’s book on Fourier integrals [44, 9.12.(8)]. The
analogous example which is associated to the sine transform is a square-integrable
(odd) function. The proof given by de Branges for existence of an even square-
integrable f ðtÞ with the Sonine property appears in [7] on top of page 449. He con-
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structs directly its Mellin transform from a trick which makes use of the already
known non-triviality of the spaces with the Sonine property for the Hankel transform
of positive order. Here is another trick: we take a non-zero square-integrable odd
function gðtÞ which works for the sine transform but with l 0 ¼ lþ 1. Let f ðtÞ ¼
gðt� 1Þ � gðtþ 1Þ. Then f ðtÞ is even, and non-trivial. It vanishes on ð�l;þlÞ and its
Fourier (cosine) transform vanishes on ð�l 0;þl 0Þ.

Actually the simplest method leading to explicit examples of Sonine functions (in the
Schwartz class), with arbitrarily large l, was communicated to the author by Profes-
sor Kahane1: the first observation is that it is enough to regularize a tempered dis-

tribution having the Sonine property to a Schwartz function: additive convolution
with a test-function supported in ð�e;þeÞ, and multiplication with its Fourier (this
replaces l with l� e). The second is that it is easy to obtain such distributions from
the Poisson distribution

P
n AZ dðx� nÞ. As an example of how to proceed one may

take

x3 Q
1ajaN

ðx2 � j2Þ2
P
n AZ

d 0ðx� nÞ

and replace x by
ffiffiffiffiffi
N

p
x. This gives an even tempered distribution with the Sonine

property for l <
ffiffiffiffiffi
N

p
. In [23] we use the multiplicative convolution to regularize such

distributions and thus obtain more general co-Poisson intertwining formulae.

An existence proof of Sonine square-integrable functions is straightforward: it suf-
fices to say that L2ð0; lÞ þFþðL2ð0; lÞÞ is a closed (obviously proper) subspace of
L2ð0;yÞ. The (thus non trivial) perpendicular complement is the space Kl. That the
space sum is closed follows readily (see [28, sect 2.9, p. 126–127]) from the fact that
the compact operator PlFþPl (where Pl is orthogonal projection to L2ð0; lÞ) has
operator bound strictly less than one (as no function can be compactly supported
and with its Fourier compactly supported). The next step is to actually write down
explicitely the associated orthogonal projection. This has led the author recently to
advances in the theory of the de Branges Sonine spaces ([22]).

De Branges proves that for each f A Kl its completed (right) Mellin Transform

Mð f ÞðsÞ :¼ p�s=2G
s

2

� �ðy
l

f ðtÞt�s dt

is an entire function. The proof (up to a change of variable) appears on page 447 of
[7]. We gave in [19] another, more elementary, proof. The space of entire functions
thus associated to Kl is among the ‘‘Sonine spaces’’ from [8], also studied in [39, 40,
41]. The Sonine spaces are Hilbert spaces of entire functions satisfying the axioms of
[8]. We will also call Kl HL2ð0;yÞ a Sonine space.

1 Letter to the author, March 22, 2002
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6.2 Note. In [8] as well as in other cited references it is the horizontal axis which is
the axis of symmetry. Comparison with our conventions requires a change of variable
(such as s ¼ 1

2 � 2iz), as it is the critical line which we use as the axis of symmetry for
the Hilbert spaces of entire functions.

So Kl ¼ L2ððl;yÞ; dtÞXFþðL2ððl;yÞ; dtÞÞ. The convention in force in this chapter
will be to use the right Mellin transform:

f̂f ðsÞ ¼
ðy
0

f ðtÞt�s dt

6.3 Theorem. The spaces Kl are all non-reduced to f0g. The Mellin transforms of ele-

ments f ðtÞ from Kl are entire functions with trivial zeros at s ¼ �2n, n A N. The entire
functions

Mð f ÞðsÞ ¼ p�s=2G
s

2

� �
f̂f ðsÞ

satisfy the functional equations

MðFþð f ÞÞðsÞ ¼ Mð f Þð1� sÞ

For each w A C, each k A N, the linear forms f 7! Mð f ÞðkÞðwÞ are continuous and cor-

respond to (unique) vectors Z l
w;k A Kl: Ef A Kl ½ f ;Zl

w;k� ¼ Mð f ÞðkÞðwÞ.

Proof. As we said, most of this is, up to a change of variable, from [7]. The L2-
boundedness of the evaluations of the derivatives ðkb 1Þ follow by the Banach-
Steinhaus theorem from the case k ¼ 0. We provide elementary proofs of all state-
ments in [19]. r

6.4 Note. Evaluators such as Z l
w;k for kb 1, which are associated to derivatives, do

not seem to have been put to use so far either in the general theory [8], or in the special
theory of Sonine spaces [7, 10, 11].

6.5 Note. We have changed our conventions from [19] where we were studying the
functions in L2ð0;LÞX IFþIðL2ð0;LÞÞ ¼ IðKlÞ using left Mellin transforms. Here
we study the functions from Kl using the right Mellin transforms. So we deal with
exactly the same entire functions in the complex plane.

6.6 Proposition.One has Kl ¼
T

m<l Km and Kl ¼
S

m>l Km. Furthermore L2ðð0;yÞ; dtÞ
¼
S

l>0 Kl.

Proof. Directly from the definition, the Kl’s form a decreasing chain as l ! y and
the first statement holds. Let f be perpendicular to each Km for m > l. Then f A
L2ð0; mÞ þFþL

2ð0; mÞ and the decomposition as f m þ gm is unique. The entire func-
tion gm must then not depend on m > l, as the di¤erence between two such will be
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compactly supported, hence zero. Then f m does not depend on m either and is in
L2ð0; lÞ and gm A FþL

2ð0; lÞ. So Kl ¼
S

m>l Km. The same proof shows the last state-
ment. r

6.7 Proposition. One has FþðZ l
w;kÞ ¼ ð�1ÞkZ l

1�w;k.

Proof. Using the Euclid bilinear form: ½FþðZ l
w;kÞ; f � ¼ ½Z l

w;k;Fþð f Þ� ¼
MðFþð f ÞÞðkÞðwÞ ¼ ð�1ÞkMð f ÞðkÞð1� wÞ from MðFþð f ÞÞðwÞ ¼ Mð f Þð1� wÞ. r

We use the bilinear form ½ f ;Z l
w;k� so that the vectors Z l

w;k depend analytically on
w. Evaluators ðk ¼ 0Þ associed to points o¤ the symmetry axis are always non-zero
vectors in de Branges spaces. Using our elementary techniques we proved a stronger
statement in the case at hand:

6.8 Theorem ([19]). Any finite collection of vectors Z l
w;k is a linearly independent sys-

tem. In particular the vectors Zl
w;k are all non-vanishing.

6.9 Note. If we take an arbitrary sequence of distinct complex numbers having an
accumulation point the corresponding evaluators Z l

w;0 will span Kl. Remarkable
orthogonal bases consisting of evaluators Z l

w;0 exist as a general fact from [8]. Some
other non-trivial examples of infinite and minimal collection of evaluators are also
known [21].

It is useful to have at our disposal ‘‘augmented Sonine’’ spaces Ll IKl, whose ele-
ments’ (Gamma-completed) Mellin Transforms may have poles at 0 and 1. Let N be
the unitary invariant operator which, under the right Mellin transform, has spectral
function s=ðs� 1Þ. Explicitely:

Nð f ÞðtÞ ¼ f ðtÞ �
ðy
t

f ðuÞ
u

du

Let Ll ¼ N � L2ððl;yÞ; dtÞXFþ �N � L2ððl;yÞ; dtÞ.

6.10 Theorem. Let l > 0. Let f A Ll. The Mellin transform f̂f ðsÞ ¼
Ðy
0 f ðtÞt�s dt is an

analytic function in Cnf1g with at most a pole of order 1 at s ¼ 1. It has trivial zeros at
s ¼ �2n, nb 1. The function Mð f ÞðsÞ ¼ p�s=2Gðs=2Þ f̂f ðsÞ, analytic in Cnf0; 1g, sat-
isfies the functional equation

MðFþð f ÞÞðsÞ ¼ Mð f Þð1� sÞ

For each w A Cnf0; 1g, each k A N, the linear forms f 7! Mð f ÞðkÞðwÞ are continuous.

Proof. As an intersection Ll is a closed subspace of L2ðð0;yÞ; dtÞ hence a Hilbert
space. The square integrable function f ðtÞ is a constant að f Þ for 0 < t < l (which is a
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continuous linear form in f ). So
Ðy
0 f ðtÞt�s dt is absolutely convergent and analytic at

least for 1=2 < ReðsÞ < 1. In this strip we may write it as:ðy
0

f ðtÞt�s dt ¼ að f Þl1�s

1� s
þ
ðy
l

f ðtÞt�s dt

which gives its analytic continuation to the right half-plane ReðsÞ > 1=2 with at most
a pole at s ¼ 1. Let us also note that the evaluation at these points are clearly con-
tinuous for the Hilbert structure. We have:ðy

l

f ðtÞt�s dt ¼
ðy
0

Fþð f ÞðuÞFþð1t>lt
�sÞðuÞ du

We known from [19, Lemme 1.3] that the function Fþð1t>lt
�sÞðuÞ is an entire func-

tion of s, which is (uniformly for jsj bounded) Oð1=uÞ on ðl;yÞ, and also that it is
wþðsÞus�1 þOð1Þ on ð0; lÞ (uniformly for ReðsÞa 1� e < 1). Moreover Fþð f ÞðuÞ is
a constant in the interval ð0; lÞ (from f A Ll). Combining these informations we get
that the above displayed equation has an analytic continuation to the critical strip
0 < ReðsÞ < 1. In this critical strip we have the functional equation:

f̂f ðsÞ ¼ wþðsÞ dFþð f ÞFþð f Þð1� sÞ

as it holds on the critical line. From this we get the analytic continuation of f̂f ðsÞ to
ReðsÞ < 1. We note that wþðsÞ vanishes at s ¼ 0 and that this counterbalances the
(possible) pole of dFþð f ÞFþð f Þð1� sÞ. Also this functional equation shows that f̂f ðsÞ van-
ishes at s ¼ �2n, nb 1. The evaluations at points strictly to the right of the critical line
are continuous, hence also at points to the left, hence everywhere (except of course at
s ¼ 0, s ¼ 1, where instead one may consider the residues) from the Banach-Steinhaus
theorem. r

There are (for w0 0; 1) evaluators W l
w;k A Ll which project orthogonally to the eval-

uators Z l
w;k A Kl. The augmented Sonine spaces Ll IKl are natural for discussing

properties of the zeta-function along the lines involving the co-Poisson formula. Here
we will stay in the realm of the spaces Kl, using the spaces Ll as an auxiliary help.

Let 0 < l < 1 and let L ¼ 1=l. Let aðtÞ be a smooth function with support in ½l;L�
and let f ðtÞ be the co-Poisson summation

P
nb1 aðt=nÞ=n�

Ð L
l
aðtÞ dt=t. The function

f ðtÞ is a Schwartz function, hence square-integrable. From the co-Poisson formula
it belongs to Ll. If we impose the conditions that âað0Þ ¼ 0 ¼ âað1Þ then f ðtÞ belongs
to the Sonine space Kl. At the level of Mellin transform, we have f̂f ðsÞ ¼ zðsÞâaðsÞ. So
f ðtÞ is (Euclid)-perpendicular to the evaluators Zl

r;k, k < mr associated with the non-
trivial zeros of the Riemann zeta function and with their (eventual) multiplicities.
And conversely it follows ([19]) from f̂f ðsÞ ¼ zðsÞâaðsÞ that an evaluator Z l

w;k is (Euclid
or Hilbert) perpendicular to all functions

P
nb1 aðt=nÞ=n with a smooth function with

support in ½l;L� and âað0Þ ¼ 0 ¼ âað1Þ if and only if w is a non-trivial zero of the zeta
function with multiplicity strictly bigger than k.
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6.11 Definition. Let 0 < l < 1 and L ¼ 1=l. We let Wl be the closure in K of the
functions

P
nb1 aðt=nÞ=n, with aðtÞ smooth with support in ½l;L�, and such that

âað0Þ ¼ 0 ¼ âað1Þ.

6.12 Definition. Let 0 < l < 1 and L ¼ 1=l. We let W 0
l be the sub-vector space of

K comprising the square-integrable functions f ðtÞ which may be written asP
nb1 aðt=nÞ=n, where aðtÞ A L1ðl;LÞ and âað0Þ ¼ 0 ¼ âað1Þ.

6.13 Definition. Let 0 < l < y. We let Zl be the closed subspace of Kl HK spanned
by the evaluators Z l

r;k, 0a k < mr associated with the non-trivial zeros of the Rie-
mann zeta function and with their (eventual) multiplicities.

The main theorem (whose proof takes up the next pages) is:

6.14 Theorem. 1. Let 0 < l < 1. One has Wl HW 0
l HKl. The subspace W 0

l is closed

and equals
T

0<m<l Wm ¼
T

0<m<l W
0
m .One has Wl ¼

S
l<m<1 Wm ¼

S
l<m<1 W

0
m .One has

Kl ¼ W 0
l ? Zl.

2. The set of l’s for which Wl HW 0
l is a strict inclusion is at most countable.

3. Let 1a l < y. One has Kl ¼ Zl.

6.15 Definition. Let 0 < l < 1. We let HPl be the perpendicular complement in Kl

of Wl.

We thus have HPl IZl and the question whether this may be strict is interesting
(equivalently whether Wl HW 0

l may be a strict inclusion). This question is related
to the properties of the Krein spaces of entire functions of finite exponential type
which are associated with the measure z 1

2 þ it
� ��� ��2 dt=2p on the critical line. From

W 0
l ¼

T
m<l Wm a strict inclusion may happen only for a countable set of l’s.

As usual our axis of symmetry is the critical line, not the real axis, and we use the
Mellin transform to define Paley-Wiener functions, not the additive Fourier trans-
form. Let m be a measure on the critical line, and let H ¼ L2 s ¼ 1

2 þ it; dm
� �

. We sup-
pose 1=s A H and dm 1

2 þ it
� �

¼ dm 1
2 � it
� �

. Let Lb 1 and let I L be the subspace of H
of (m-equivalence classes of ) functions FðsÞ which are also entire functions of expo-
nential type at most logðLÞ. Let JL be the subspace of H of functions FðsÞ which are
also entire functions of exponential type strictly less than logðLÞ (for L ¼ 1 this
means J 1 ¼ f0g). It is proven in [29] that I L, if it does not span H, is a closed sub-
space. It will then contain the closure of JL, and the question whether it may be
strictly larger is subtle. An isometric representation exists, the Krein string, where, if
the description of the string is complete enough, one may read the answer to the
question. We do not go into more details and refer the reader to the book [29] which
is devoted to the theory of the Krein string, and which also contains an introduction
to the de Branges theory. The following theorem is due to Krein and is also funda-
mental in the general de Branges theory.
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6.16 Theorem (Krein, [33]). Let FðzÞ be an entire function which is in the Nevanlinna

class separately in the half-plane ImðzÞ > 0 and in the half-plane ImðzÞ < 0. Then F ðzÞ
has finite exponential type which is given by the formula

max lim sup
s!þy

logjFðisÞj
s

; lim sup
s!þy

logjFð�isÞj
s

� �
We recall that one possible definition of the Nevanlinna class of a half-plane is as
the space of quotients of bounded analytic functions. For example it is known that
any function in the Hardy space of a half-plane is a Nevanlinna function. Krein’s
theorem is more complete but we only need the result given here. Of course we will be
using this theorem with the critical line replacing the horizontal axis.

For the following steps we let 0 < la 1, L ¼ 1=l, and the notations H, I L, JL are
relative to the measure dmðsÞ ¼ jzðsÞj2 dt=2p on the critical line s ¼ 1

2 þ it
� �

.

H ¼ L2 ReðsÞ ¼ 1

2
; jzðsÞj2 dt

2p

� �
Unfortunately we are unable to describe the associated Krein string. Rather we
will explain how to isometrically identify the co-Poisson spaces Wl (resp. W 0

l ) (here
0 < l < 1) with subspaces of codimension 2 of JL (resp. I L). This will be used in the
proof of the main theorem 6.14.

6.17 Lemma. A function G A H is perpendicular to JL if and only if it is perpendicular

to all functions ðus � 1Þ=s for la uaL. Hence the closure JL is also the closure of

the finite linear combinations ðus � 1Þ=s for la uaL.

Proof. One direction is obvious. Let us now assume that G ? ðus � 1Þ=s for la ua

L. Let F A JL and let e > 0 be such that the type of F is <logðLÞ � e. We considerð
FðsÞ e

es � 1

s
GðsÞjzðsÞj2 dt

If we take FðsÞ ¼ us with eela ua e�eL this integral vanishes. Using the Pollard-de
Branges-Pitt ‘‘lemma’’ (sic) from [29, 4.8., p. 108], we deduce that the integral with the
original F ðsÞ vanishes too. Then from jðe es � 1Þ=esja 2ðee=2 � 1Þ=e and dominated
convergence we get the desired conclusion. r

6.18 Lemma. Let FðsÞ A I L. One has F ðsÞzðsÞ A N �LsH2 and also Fð1� sÞzðsÞ A
N �LsH2 (we write H2 for the Hardy space of the right half-plane and we recall that

N is the operator of multiplication with s=ðs� 1Þ.)

Proof. The product FðsÞzðsÞ belongs to L2ðReðsÞ ¼ 1=2; dt=2pÞ. As I L H JL expðeÞ for
e > 0, FðsÞzðsÞ is in the closure of finite sums of functions ðus � 1ÞzðsÞ=s for e�ela
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ua eþeL. It belongs to the closed space N � ðeeLÞsH2 as zðsÞ=s itself belongs to
N �H2. We note that this space is the image under N of the Mellin transform of
L2ððe�el;yÞ; dtÞ so after letting e ! 0 we obtain that FðsÞzðsÞ belongs to N �LsH2.
We note that F ðsÞ ! F ð1� sÞ is an isometry of I L and the conclusion then follows.

r

6.19 Theorem. An entire function F ðsÞ belongs to I L (i.e. it is in H and of exponential

type at most logðLÞ) if and only if F ðsÞzðsÞ is the Mellin transform of an element in Ll.
The space I L is a closed subspace of H and is isometric through FðsÞ ! zðsÞF ðsÞ to the

subspace of Ll of functions whose Mellin transform vanish at the zeros of the zeta func-

tion with at least the same multiplicities. For each complex number w the evaluations

F 7! F ðwÞ are continuous linear forms on I L.

Proof. From the lemma zðsÞF ðsÞ is the Mellin transform of an element of
N � L2ððl;yÞ; dtÞ whose image under Fþ also belongs to N � L2ððl;yÞ; dtÞ (as this
corresponds to the replacement FðsÞ 7! Fð1� sÞ). So the map FðsÞ ! zðsÞF ðsÞ is an
isometric embedding into cLl. If an element GðsÞ from cLl vanishes at the non-trivial
zeros of the zeta function (taking into account the multiplicities) then it factorizes as
GðsÞ ¼ F ðsÞzðsÞ with an entire function FðsÞ (as GðsÞ also vanishes at the trivial zeros
and has at most a pole of order 1 at s ¼ 1). From this, FðsÞ is in the right half-plane
in the Nevanlinna class (of quotients of bounded analytic functions) because both
F ðsÞzðsÞ and zðsÞ are meromorphic functions in this class. And the same holds in the
left half-plane, as FþðGÞðsÞ ¼ Fð1� sÞzðsÞ. We now use the theorem of Krein 6.16
which tells us that the entire function F ðsÞ has finite exponential type given by

max lim sup
s!þy

logjFðsÞj
s

; lim sup
s!þy

logjF ð1� sÞj
s

� �
From this formula, and from FðsÞzðsÞ A N �LsH2, F ð1� sÞzðsÞ A N �LsH2, and from
the fact that elements of H2 are bounded in ReðsÞb 1=2þ e > 1=2, we deduce that
the exponential type of F ðsÞ is at most logðLÞ. So I L is isometrically identified with

the functions in cLl vanishing at least as zðsÞ does. This space is closed because the
evaluators are continuous linear forms on Ll. From this we see that the evaluators
F 7! F ðsÞ are continuous linear forms except possibly at the zeros and poles of zðsÞ,
and the final statement then follows from this and the Banach-Steinhaus theorem (as
I L is a Hilbert space from the preceding). r

6.20 Theorem. Let 0 < l < y.

1. The vectors Z l
r;k, k < mr, span Kl if and only if lb 1.

2. A function aðsÞ on ReðsÞ ¼ 1=2 is the Mellin transform of an element of Kl perpen-

dicular to Zl if and only if:

a. It is square integrable on the critical line for dt=2p.

b. One has aðsÞ ¼ zðsÞsðs� 1ÞbðsÞ with bðsÞ an entire function of finite exponential

type at most logð1=lÞ.
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Proof. From the existence of Wl the vectors Z l
r;k, k < mr, do not span Kl if l < 1.

Let f A ðZlÞ? XKl. By definition its Mellin transform vanishes at the non-trivial
zeros of z. It also vanishes at the trivial zeros and at 0 so it may be written

f̂f ðsÞ ¼ sðs� 1ÞzðsÞyðsÞ

with an entire function yðsÞ. In the right half-plane yðsÞ is in the Nevanlinna class
(of quotients of bounded analytic functions) because both f̂f ðsÞ and sðs� 1ÞzðsÞ are
meromorphic in this class. From the functional equation one has

dFþð f ÞFþð f ÞðsÞ ¼ sðs� 1ÞzðsÞyð1� sÞ

So yðsÞ is in the Nevanlinna class of the left half-plane. We now use the theorem of
Krein 6.16 and conclude that the entire function yðsÞ has finite exponential type which
is given as

max lim sup
s!þy

logjyðsÞj
s

; lim sup
s!þy

logjyð1� sÞj
s

� �
This formula (elements of H2 are bounded in ReðsÞb 1) shows that the exponen-
tial type of yðsÞ is at most logð1=lÞ. This shows Zl ¼ Kl for l > 1. Let us prove this
also for l ¼ 1: on the line ReðsÞ ¼ þ2 one has f̂f ðsÞ ¼ Oð1Þ (as it belongs to
H2ðReðsÞ > 1=2Þ) hence yðsÞ is Oð1=sðs� 1ÞÞ. So it is square integrable on this line
and by the Paley-Wiener theorem it vanishes identically as it is of minimal exponen-
tial type.

Conversely, let FðsÞ ¼ sðs� 1ÞbðsÞ be an entire function of finite exponential type at
most logð1=lÞ which is such that aðsÞ ¼ zðsÞF ðsÞ is square-integrable on the critical
line. From the previous theorem FðsÞ is in the closed subspace I L of H and aðsÞ is the
Mellin transform of an element f ðtÞ of Ll. As aðsÞ is analytic at s ¼ 1 and vanishes at
s ¼ 0 one has in fact f A Kl. And aðsÞ vanishes at the zeros of zeta with at least the
same multiplicities, in other words f is perpendicular to Zl. r

6.21 Lemma. Any function F in I L is Oð1Þ in the closed strip �1aReðsÞa 2, in par-

ticular on the critical line.

Proof. From the fact that FðsÞzðsÞ s�1
s
L�s is bounded on the line ReðsÞ ¼ 2 (as it

belongs to the Hardy space H2 ReðsÞ > 1
2

� �
) one deduces that F ðsÞ is bounded on

ReðsÞ ¼ 2 , hence also on ReðsÞ ¼ �1 (as Fð1� sÞ also belongs to I L.) As it has finite
exponential type we may apply the Phragmen-Lindelöf theorem to deduce that F ðsÞ
is Oð1Þ on this closed vertical strip. r

6.22 Lemma. Let L > 1. Let KL be the closure of JL in H. Let KL
0 be the subspace of

functions in KL vanishing at 0 and at 1, and similarly let JL
0 be the subspace of JL of

functions vanishing at 0 and at 1. Then KL
0 is the closure of JL

0 .
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Proof. Let for 1 < m < L:

AmðsÞ ¼
ðm s=2 � 1Þðms=2 � m1=2Þ
logðmÞð1� m1=2Þ=2

1

s

This is an entire function of exponential type logðmÞ, in H and with Amð0Þ ¼ 1,
Amð1Þ ¼ 0. Let also BmðsÞ ¼ Amð1� sÞ. Let F A KL

0 and let us write F ¼ limFm with
Fm A J m, m < L. One has Fmð0Þ ! F ð0Þ ¼ 0 and Fmð1Þ ! F ð1Þ ¼ 0, because evalua-
tions are continuous linear forms on I L. So F ¼ limðFm � Fmð0ÞAm � Fmð1ÞBmÞ (clearly
the norms of Am and Bm are bounded as m ! L). r

6.23 Theorem. Let 0 < l < 1. A function aðsÞ on ReðsÞ ¼ 1=2 is the Mellin transform

of an element of Wl if and only if:

1. It is square integrable on the critical line for dt=2p.

2. It is in the closure of the square integrable functions aðsÞ ¼ zðsÞsðs� 1ÞbðsÞ with

bðsÞ an entire function of finite exponential type strictly less than logð1=lÞ.

Proof. Let 0 < l < 1. We have to show cWl ¼ KL
0 � zðsÞ. First let us prove the inclu-

sion cWl HKL
0 � zðsÞ: let fðuÞ be a smooth function with support in ½l;L� with f̂fð1Þ ¼

0 ¼ f̂fð0Þ. It is elementary that there exists cðuÞ smooth with support in ½l;L� and
with f̂fðsÞ ¼ sðs� 1ÞĉcðsÞ. If we now consider for a ! 1� the smooth functions faðuÞ
with support in ½la;La� such that bfafaðsÞ ¼ sðs� 1ÞĉcðasÞ then bfafaðsÞzðsÞ belongs to
KL

0 � zðsÞ and converge to f̂fðsÞzðsÞ in L2 norm on the critical line as a ! 1�.

For the converse inclusion K L
0 � zðsÞH cWl let F A KL

0 . We may approximate F

with an element of JL
0 , so we may assume F itself to be of positive exponential type

logðmÞ < logðLÞ. Let y be a smooth function with support in ½1=e; e�, with ŷyð1=2Þ ¼ 1.

Let byeyeðsÞ ¼ ŷyðeðs� 1=2Þ þ 1=2Þ. Let Fe ¼ byeyeF . In H the functions Fe converge to F .
From 6.21 we know that F is Oð1Þ on the critical line so the functions Fe are Oðjsj�NÞ
for any N A N. From the Paley-Wiener theorem they are the Mellin transforms of L2

functions feðtÞ with support in ½e�em�1; eem�. For e small enough this will be included
in ½l;L�. From the decrease on the critical line the functions feðtÞ are smooth. Asbfefeð0Þ ¼ 0 ¼ bfefeð1Þ this tells us that FeðsÞzðsÞ is the Mellin transform of a co-Poisson
summation of a smooth function, and this implies that FðsÞzðsÞ belongs to the (Mellin
transform of ) Wl, as Wl is defined as the closure of the co-Poisson summations of
smooth functions whose Mellin transforms vanish at 0 and at 1. r

6.24 Theorem. Let F ðsÞ be an entire function of finite exponential type. Thenð
ReðsÞ¼1=2

jFðsÞj2jzðsÞj2jdsj < y )
ð
ReðsÞ¼1=2

jFðsÞj2jdsj < y

Proof. We want to prove that any function FðsÞ in I L is square-integrable for the
Lebesgue measure on the critical line. We know from 6.21 that it is Oð1Þ in the
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closed strip �1aReðsÞa 2. From this, if for s in this open strip we express FðsÞ as a
Cauchy integral with contributions from the two vertical sides and two horizontal
segments, the contribution of the horizontal segments will vanish when they go to
infinity. So:

FðsÞ ¼
ð
ReðsÞ¼2

F ðzÞ
z� s

jdzj
2p

�
ð
ReðsÞ¼�1

F ðzÞ
z� s

jdzj
2p

On ReðsÞ ¼ 2, FðsÞ is square integrable because F ðsÞzðsÞ s�1
s
L�s is, as it belongs to

H2 ReðsÞ > 1
2

� �
. It is an important fact that Cauchy integrals of L2 functions on ver-

tical line realize the orthogonal projection to the Hardy space of the corresponding
half-plane. Hence the first integral above defines a function square-integrable on each
vertical line ReðsÞ < 2. And the second integral similarly for ReðsÞ > �1 (F ð1� sÞ
satisfies the same hypotheses as F ðsÞ). So FðsÞ is square-integrable on the critical line
(and in fact on each vertical line in the complex plane.) r

The next theorem establishes Kl ¼ W 0
l ? Zl:

6.25 Theorem. Let l < 1. The functions AðuÞ in Z?
l XKl are exactly the square-

integrable functions which may be written
P

nb1 gðu=nÞ=n, with an integrable function

gðuÞ supported in ½l;L� and such that
Ðy
0 gðuÞ du ¼ ĝgð0Þ ¼ 0. The function gðuÞ is nec-

essarily square-integrable and necessarily satisfies ĝgð1Þ ¼
Ðy
0

gðuÞ
u
du ¼ 0.

6.26 Note. By a variant on theMœbius inversion formula fromAðuÞ ¼
P

nb1 gðu=nÞ=n
one has gðuÞ ¼

P
nb1 mðmÞAðu=mÞ=m (and this is a finite sum for each u > 0) in case

A (hence g and conversely) has support in ðl;yÞ. It involves then in a neighborhood
of each u > 0 only finitely many terms. If gðuÞ has support in ½l;L� we can express it
on this interval as a finite combination of Aðu=mÞ=m’s. So if A is L2 then g had to be
L2 to start with. Also we will see that if A is L2 then

Ðy
0

gðuÞ
u
du necessarily vanishes.

Proof. Let A A Z?
l XKl and aðsÞ ¼ ÂAðsÞ. We know that aðsÞ ¼ zðsÞFðsÞ with FðsÞ an

entire function vanishing at 0 and 1 and of exponential type at most logðLÞ. From
6.24 we know that FðsÞ is square-integrable on the critical line for the Lebesgue
measure. So the Paley-Wiener theorem implies FðsÞ ¼ ĝgðsÞ with gðuÞ A L2ð½l;L�Þ. We
have our function gðuÞ in L2ðl;LÞ and we want to show that AðuÞ is equal to BðuÞ ¼P

nb1 gðu=nÞ=n. From Fubini
Ðy
l
BðuÞu�s du ¼ zðsÞĝgðsÞ ¼ ÂAðsÞ ¼

Ðy
l
AðuÞu�s du for

ReðsÞ > 1 and so BðuÞ ¼ AðuÞ (almost everywhere from the unicity theorem for
Fourier transforms of L1-functions). We have shown that each A A Z?

l XKl may be
written (uniquely) as

P
nb1 gðu=nÞ=n with g A L2ððl;LÞ; duÞ, ĝgð0Þ ¼ ĝgð1Þ ¼ 0. So it

belongs to W 0
l .

For the converse let g A L2ððl;LÞ; duÞ be such that AðuÞ ¼
P

nb1 gðu=nÞ=n is square-
integrable. Its distribution theoretic Fourier transform is (from 4.2):

F
P
nb1

gðu=nÞ=n
 !

¼
P
nb1

gðn=uÞ=u� ĝgð0Þ þ ĝgð1Þd0
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This distribution must coincide with the function which is the L2-Fourier transform
of AðuÞ and so the square-integrability of AðuÞ implies the vanishing of ĝgð1Þ.

If we impose ĝgð0Þ ¼ 0 the Fourier transform of AðuÞ is the function
P

nb1 gðn=uÞ=u
which again vanishes on ð0; lÞ. So A belongs to Kl. Its Mellin transform is an entire
function which by Fubini for ReðsÞ > 1 equals zðsÞĝgðsÞ hence also everywhere. The
vector AðuÞ is thus perpendicular to the vectors Z l

r;k, which means that A A Z?
l . This

completes the proof of Kl ¼ W 0
l ? Zl. r

We also take note of:

6.27 Proposition. The map ‘‘ �
zðsÞ’’ from W 0

l to L2ðl;LÞ is bounded.

Proof. Each gðuÞ is expressed (on ðl;LÞ) as a finite Mœbius sum in terms of the
Aðu=mÞ=m’s, with a number of summands independent of A. r

The main theorem sums up almost everything that preceded:

6.28 Theorem (6.14). 1. Let 0 < l < 1. One has Wl HW 0
l HKl. The subspace W 0

l is

closed and equals
T

0<m<l Wm ¼
T

0<m<l W
0
m . One has Wl ¼

S
l<m<1 Wm ¼

S
l<m<1 W

0
m .

One has Kl ¼ W 0
l ? Zl.

2. The set of l’s for which Wl HW 0
l is a strict inclusion is at most countable.

3. Let 1a l < y. One has Kl ¼ Zl.

Proof. The basic inclusions Wl HW 0
l HKl are a corollary to the co-Poisson inter-

twining formula. One has Kl ¼ Zl for lb 1 from Theorem 6.20. Let 0 < l < 1.
From Theorem 6.25 we have identified W 0

l as the perpendicular component in Kl

of Zl. From Theorem 6.20 W 0
l is isometrically identified with the closed subspace of

L2
�
ReðsÞ ¼ 1

2 ; jzðsÞj
2
dt=2p

�
of (restrictions) of entire functions F ðsÞ of exponential

type at most logð1=lÞ and vanishing at 0 and at 1. Hence W 0
l ¼

T
0<m<l W

0
m . From

Theorem 6.23 Wl is isometrically identified with the closure in L2
�
ReðsÞ ¼ 1

2 ;
jzðsÞj2 dt=2p

�
of entire functions F ðsÞ of exponential type strictly less than logð1=lÞ

and vanishing at 0 and at 1. Hence Wl ¼
S

l<m<1 Wm. Also l < m < 1 ) Wl IW 0
m I

Wm (the last inclusion as W 0
m is known to be closed). Hence Wl ¼

S
l<m<1 W

0
m . Also

W 0
l H

T
0<m<l Wm. We know Kl ¼

T
0<m<l Km, hence an element f ðtÞ in

T
0<m<l Wm

belongs to Kl and has its Mellin transform vanishing at least as the zeta function does.
From Kl ¼ W 0

l ? Zl it belongs to W 0
l . Hence W 0

l ¼
T

0<m<l Wm. A non-countable set
of exceptional l’s contradicts the separability of K . r

We briefly explain how some of the considerations extend to Dirichlet L-series. For
an odd character the cosine transform Fþ is replaced with the sine transform F�, so
we will stick with an even (primitive) Dirichlet character: wð�1Þ ¼ 1. Let us recall the
functional equation of Lðs; wÞ ¼

P
nb1 wðnÞn�s:

Lðs; wÞ ¼ wwq
�sþ1=2wþðsÞLð1� s; wÞ
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where ww is a certain complex number of modulus 1 and q is the conductor (¼period)
of the primitive character w. One has ww ¼ ww. Tate’s Thesis [43] gives a unified
manner of deriving all these functional equations as a corollary to the one-and-only
Poisson-Tate intertwining formula on adeles and ideles (and additional local com-
putations). A reference for the more classical approach is, for example, [27] (for easier
comparison with the classical formula, we have switched from Lðw; sÞ to Lðs; wÞ). The
Poisson-Tate formula specializes to twisted Poisson summation formulae on R, or
rather on the even functions on R as we are dealing only with even characters.

Let fðtÞ be an even Schwartz function, and let:

PwðfÞðtÞ ¼
P
nb1

wðnÞfðntÞ

We suppose here that w is not the principal character so there is no term
�ð
Ðy
0 fðuÞ duÞ=jtj (which was engineered to counterbalance the pole of the Riemann

zeta function at s ¼ 1). At the level of (right) Mellin transforms Pw corresponds to
multiplication by Lð1� s; wÞ.

So the composite PwFþ ¼ PwFþII acts on right Mellin transforms as:

f̂fðsÞ 7! Lð1� s; wÞwþðsÞf̂fð1� sÞ ¼ wwq
s�1=2Lðs; wÞf̂fð1� sÞ

and this gives the w-Poisson intertwining:

PwFþ ¼ wwDqIPw

where Dq is the contraction of ratio q which acts through multiplication by qs�1=2

on Mellin transforms and as f ðtÞ 7! ffiffiffi
q

p
f ðqtÞ on L2ð0;yÞ. Let us define the w-co-

Poisson P 0
w on smooth even functions compactly supported away from 0 as:

P 0
wðfÞðtÞ ¼

P
nb1

wðnÞ fðt=nÞ
n

We have P 0
w ¼ IPwI , and P 0

w is the scale invariant operator with multiplier (under the

right Mellin transform) Lðs; wÞ. From the commutativity of Pw with Gþ ¼ FþI and
the w-Poisson intertwining we get the w-co-Poisson intertwining:

FþP
0
w ¼ FþIPwI ¼ PwFþ ¼ wwDqIPw ¼ wwDqP

0
wI

The placement of the operator Dq on the right-side of the Intertwining equation is
very important! If the even function aðtÞ is supported in ð0;yÞ on ½l1; l2� then its w-
co-Poisson summation f ðtÞ will be supported in ½l1;yÞ and the Fourier cosine trans-
form of f ðtÞ will be supported in ½1=ðql2Þ;yÞ. The product of the lower ends of these
two intervals is strictly less than 1=q (if a is not identically zero). So this means that
we obtain (non-zero) functions which together with their cosine transform are sup-
ported in ½l;y½ only for l < 1=

ffiffiffi
q

p
.
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We let W w
l HKl be the closure of such w-twisted co-Poisson summations. The Mel-

lin transforms of the functions in W
w
l are the functions Lðs; wÞâaðsÞ where aðtÞ is a

smooth function compactly supported in ½l;L=q� ðL ¼ 1=l;L >
ffiffiffi
q

p Þ. A vector Z l
r;k

is (Hilbert-)perpendicular to W
w
l if and only if Z l

r;k is Euclid-perpendicular to W
w
l if

and only if r is a (non-trivial) zero of Lðs; wÞ of multiplicity strictly greater than k, if
and only r is a (non-trivial) zero of Lðs; wÞ of multiplicity strictly greater than k. So:

6.29 Theorem. Let l < 1=
ffiffiffi
q

p
. A vector Z l

w;k A Kl is perpendicular to W
w
l if and only

if w is a non-trivial zero r of the Dirichlet L-function Lðs; wÞ of multiplicity mr > k.

We conclude with a statement whose analog we have already stated and proven for
the Riemann zeta function. The proof is only slightly more involved, but as the state-
ment is so important we retrace the steps here.

6.30 Theorem. The vectors Z l
r;k A Kl, Lðr; wÞ ¼ 0, 0a k < mr, associated with the

non-trivial zeros of the Dirichlet L-function (and with their multiplicities) span Kl if

and only if lb 1=
ffiffiffi
q

p
.

Proof. They can not span if l < 1=
ffiffiffi
q

p
from the existence of W

w
l . Let us suppose

lb 1=
ffiffiffi
q

p
. Let f̂f ðsÞ be the Mellin Transform of an element of Kl which is (Hilbert)-

perpendicular to all Z l
r;k, Lðr; wÞ ¼ 0 (non-trivial), 0a k < mr. This says that f ðsÞ

vanishes at the r’s. We know already that f ðsÞ vanishes at the trivial zeros. So one
has:

f̂f ðsÞ ¼ Lðs; wÞy1ðsÞ

with an entire function y1ðsÞ. The image of f under the unitary Fþ will be Hilbert-
perpendicular to FþðZ l

r;kÞ ¼ ð�1ÞkZl
1�r;k and so Fþð f Þ is Euclid-perpendicular to

the vectors associated to the 1� r, which are the zeros of Lðs; wÞ, hence:

dFþð f ÞFþð f ÞðsÞ ¼ Lðs; wÞy2ðsÞ

with an entire function y2ðsÞ. From the functional equation:

dFþð f ÞFþð f ÞðsÞ ¼ wþðsÞ f̂f ð1� sÞ

we get

wþðsÞLð1� s; wÞy1ð1� sÞ ¼ Lðs; wÞy2ðsÞ

and combining with

Lðs; wÞ ¼ wwq
�sþ1=2wþðsÞLð1� s; wÞ

this gives:

y1ð1� sÞ ¼ wwq
�sþ1=2y2ðsÞ
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Using Krein’s theorem [33] we deduce that FðsÞ ¼ q�ðs�1=2Þ=2y1ðsÞ has finite expo-
nential type which is equal to

max lim sup
s!þy

logjFðsÞj
s

; lim sup
s!þy

logjF ð1� sÞj
s

� �
and from Lðs; wÞ !s!þy 1 we see that the exponential type of FðsÞ is at most

maxðlogðLÞ � logð ffiffiffi
q

p Þ; logðLÞ � logð ffiffiffi
q

p ÞÞ ¼ logðLÞ � logð ffiffiffi
q

p Þ

This concludes the proof when l > 1=
ffiffiffi
q

p
. When l ¼ 1=

ffiffiffi
q

p
, we see that q�ðs�1=2Þ=2y1ðsÞ

has minimal exponential type. But from f̂f ðsÞ ¼ Lðs; wÞy1ðsÞ we deduce that y1ðsÞ is
square-integrable on the line ReðsÞ ¼ 2. By the Paley-Wiener theorem it thus vanishes
identically. r

7 Speculations on the zeta function, the renormalization group, duality

We turn now to some speculative ideas concerning the zeta function, the GUE
hypothesis and the Riemann hypothesis. When we wrote our (unpublished) manu-
script ‘‘The Explicit formula and a propagator’’ we had already spent some time
trying to think about the nature of the zeta function. Our conclusion, which had
found some kind of support with the conductor operator logjxj þ logjyj, stands today.
The spaces HPl and especially Theorem 6.30 have given us for the first time a quite
specific signal that it may hold some value. What is more Theorem 6.30 has encour-
aged us into trying to encompass in our speculations the GUE hypothesis1, and more
daring and distant yet, the Riemann Hypothesis Herself.

We are mainly inspired by the large body of ideas associated with the Renormaliza-
tion Group, the Wilson idea of the statistical continuum limit, and the unification it
has allowed of the physics of second-order phase transitions with the concepts of
quantum field theory. Our general philosophical outlook had been originally deeply
framed through the Niels Bohr idea of complementarity, but this is a topic more
distant yet from our immediate goals, so we will leave this aside here.

We believe that the zeta function is analogous to a multiplicative wave-field renorm-
alization. We expect that there exists some kind of a system, in some manner rather
alike the Ising models of statistical physics, but much richer in its phase diagram, as
each of the L-function will be associated to a certain universality domain. That is
we do not at all attempt at realizing the zeta function as a partition function. No the
zeta function rather corresponds to some kind of symmetry pattern2 appearing at low

1 i.e. the ‘‘Montgomery-Dyson proposal’’ [36] or ‘‘Montgomery-Odlyzko law’’ [38].
2 Of course in statistical physics, symmetry is restored at high temperature and broken at low
temperature. But this is from a point of view where a continuum is considered more symmetric
than a lattice as it has a larger symmetry group. So here we are using the word ‘‘symmetry’’
under a more colloquial acceptation.
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temperature. But the other L-functions too may themselves be the symmetry where
the system gets frozen at low temperature.

Renormalization group trajectories flow through the entire space encompassing all
universality domains, and perhaps because there are literally fixed points, or another
more subtle mechanism, this gives rise to sets of critical exponents associated with
each domain: the (non-trivial) zeros of the L-functions. So there could be some under-
lying quantum dynamics, but the zeros arise at a more classical level3, at the level of
the renormalization group flow.

The Fourier transform as has been used constantly in this manuscript will correspond
to a simple symmetry, like exchanging all spins up with all spins down. The func-
tional equations reflect this simple-minded symmetry and do not have a decisive sig-
nificance in the phase picture.

But we do believe that some sort of a much more hidden thing exist, a Kramers-
Wannier like duality exchanging the low temperature phase with a single hot temper-
ature phase, not number-theoretical. If this were really the case, some universal prop-
erties would hold across all phases, reflecting the universality examplified by the GUE
hypothesis. Of course the hot phase is then expected to be somehow related with
quantities arising in the study of random matrices. In the picture from Theorem 6.30,
l seems to play the rôle of a temperature (inverse of coupling constant).

We expect that if such a duality did reign on our space it would interact in such a
manner with the renormalization group flow that this would give birth to scattering
processes. Indeed the duality could be used to compare incoming to outgoing (clas-
sical) states. Perhaps the constraints related with this interaction would result in a
property of causality equivalent to the Riemann Hypothesis.

Concerning the duality at this time we can only picture it to be somehow connected
with the Artin reciprocity law, the ideas of class field theory and generalizations
thereof. So here our attempt at being a revolutionary ends in utmost conservatism.

B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Mon-
atsber. Akadem. Berlin, 671–680, (1859).

N. Bohr, The Philosophical Writings of Niels Bohr, Ox Bow Press, Woodbridge,
Connecticut.

Volume I: Atomic Theory and the Description of Nature (1934)
Volume II: Essays 1932–1957 on Atomic Physics and Human Knowledge (1958)
Volume III: Essays 1958–1962 on Atomic Physics and Human Knowledge (1963)
Volume IV: Causality and Complementarity, Supplementary papers edited by Jan
Faye and Henry J. Folse, (1999).

3 ‘‘classical’’ in its kinematics: understanding the flow of coupling constants of a quantum
theory with infinitely many degrees of freedom has become almost synonymous with under-
standing its ‘‘quantum physics’’.
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K. G. Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55
(1983), 583–600.
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