APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS 1, 267-283 (1994)

Wavelet Bases Adapted to Pseudodifferential Operators

STEPHAN DAHLKE AND ILONA WEINREICH

Lehrstuhl fiir Mathematik und Institut fiir Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52062 Aachen, Germany

Communicated by Ingrid Daubechies

Received by the editor May 4, 1992; revised December 29, 1993

This paper is concerned with the numerical treatment of pseu-
dodifferential equations in R?, employing wavelet Galerkin meth-
ods. We construct wavelet bases adapted to a given pseudodiffer-
ential operator in the sense that functions on different refinement
levels are orthogonal with respect 1o a certain bilinear form in-
duced by the operator. © 1994 Academic Press, Inc.

1. INTRODUCTION

Lately, newly developed wavelet decompositions were
employed for the numerical treatment of partial differential
equations; see, e.g., [3, 4, 16-18, 23]. In general, a sys-
tem of functions {¢'},=;, n is called a family of (mother)
wavelets if the scaled and integer translated versions of
{¢}i=1..~ form an (orthonormal) basis of L*(R"). These
functions can be utilized as basis functions for a Galerkin
approach. Since the structure of the resulting stiffness ma-
trix depends on the wavelets and the differential operator,
it seems natural to try to construct wavelets adapted to a
given differential operator in an appropriate way.

A classical finite element approach using a nodal ba-
sis gives rise to sparse stiffness matrices, which condition
numbers typically exhibit a polynomial growth rate. To
avoid this problem one can, for example, use the hierarchi-
cal basis preconditioner from Yserentant [32] or the
Bramble-Pasciak—Xu preconditioner [5]. Then the condi-
tion numbers only grow logarithmically or they are uni-
formly bounded, respectively; see Yserentant [32] or Dah-
men and Kunoth [11].

Both concepts are closely related to wavelet expansions,
since, in both cases, one defines suitable projectors Q; onto
the approximation spaces V; and tries to find a basis in a
complement space W; of V; in V. defined by the range
of 0je1 — Q.

The preconditioning methods mentioned above have the
disadvantage that the stiffness matrices become less sparse.
Therefore, one could try to find a wavelet basis such that,
for a given problem, the stiffness matrices are sparse, sim-

267

ply structured and, moreover, have bounded condition num-
bers. The optimal shape would be a diagonal matrix. Un-
fortunately, this is difficult to realize by using wavelet ex-
pansions since; e.g., it is not possible to construct a genera-
tor for the approximation spaces V; whose integer translates
are orthogonal with respect to the bilinear form induced by
the differential operator; see Dahlke and Weinreich [10].
Quite recently, it was shown by Amaratunga and Williams
[1] that for special kinds of one-dimensional differential op-
erators the adapted biorthogonal wavelet basis constructed
in [10] gives rise to almost perfectly diagonal stiffness ma-
trices.

Motivated by these problems we have tried to answer
the following question. How can the potential advantages
and the generality of refinable shift-invariant spaces be ex-
ploited in principle for the treatment of higher dimensional
partial differential equations?

This paper illuminates one special aspect of this problem.
We show that it is possible to adapt wavelets to a given dif-
ferential operator in the sense that functions on different
refinement levels are orthogonal with respect to the bilin-
ear form induced by the differential operator. Then the
stiffness matrix splits into blocks, implying that for the so-
lution of the corresponding linear system there is a variety
of efficient numerical algorithms which, in particular, are
suitable for the implementation on parallel computers; see
Ortega and Voigt [27]. In special cases, we can achieve
uniformly bounded condition numbers as in [11]. Similar
results were also obtained by Jaffard [18] for elliptic prob-
lems on open domains and by Meyer [26] for the case of
vaguelettes.

Apart from the applications we have in mind, the prob-
lems studied here seem to be interesting from a theoretical
point of view. According to this, we have formulated our
results for the more general case of pseudodifferential op-
erators.

When dealing with wavelet Galerkin methods, the treat-
ment of the boundary conditions is a nontrivial problem
which apparently has not yet been solved in a satisfactory
way. We will not give a detailed exploration of this prob-
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lem here and confine our discussion to global problems
concerning shift-invariant spaces. Especially, we will re-
strict ourselves to pseudodifferential operators of the sub-
class STy of Hérmander’s class defined by formula (3.8)
below whose symbols are independent of x. We think that
this restriction is justified by the flexibility and generality
of the techniques used here. However, the difficulties men-
tioned above become less serious in the case of periodic
boundary conditions on rectangles £ = [0, M]%.

The main objective of this paper can be described as fol-
lows. Given a bilinear form a(u, v) induced by a differen-
tial operator or a pseudodifferential operator and given a
multiresolution analysis with generator ¢, we construct a
wavelet basis {.}.cr\(0} such that

a{dp(-—k),g.(-=10) =0 VkI€ZecE\{0},

where E denotes the set of all vertices in the unit cube
[0, 1]>. We present two approaches. The first one yields
compactly supported wavelets for special operators, e.g., for
differential operators, provided the generator is compactly
supported, but it is based on some restrictive assumptions
on the symbol; see (3.10) and (3.11). The second approach
makes use of the concept of biorthogonal wavelets and is
more general. However, it does not guarantee compact sup-
port in all cases.

This paper is organized as follows: in Section 2 we briefly
recall the construction of (orthogonal and biorthogonal)
wavelet bases. In particular, we state an existence theorem
on biorthogonal wavelets appropriate to the investigations
in the following sections. In Section 3 we present our first
approach and in Section 4 the biorthogonal approach.

For the special case of the Laplace operator, similar
things have been done before by Battle [2], (the so-called
“massless Sobolev ondelettes”,) by applying a quite differ-
ent method. Instead of using a multiresolution analysis and
biorthogonal wavelet bases, he constructs his wavelets by
solving a suitable minimization problem.

2. WAVELETS

Wavelet bases are discrete families of functions obtained
by dilations and integer translations of a finite number of
mother functions (“mother wavelets”). The best known are
dyadic orthonormal bases of L2(R"), i.e.,

Yjenl) i= 272, (270 . —k),

jeZ ke Z" ec EN{0} (2.1)
where as stated above E denotes the set of vertices in the
unit cube [0, 1]* in R". (In the following, we will use the ab-
breviation E* := E\ {0}). A possible alternative which was
quite recently developed is to replace the diagonal scaling
by powers of two by some expanding integer scaling ma-
trix; see Cohen and Daubechies [8]. The most important
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tool for the construction of such a basis is the multiresolu-
tion approximation of functions introduced by Mallat [24];
see also Meyer [25]. It is defined as follows.

DEFINITION 2.1. A multiresolution analysis of L*(R") is
a sequence {V;} ez of closed subspaces of L2(R") such that

VjelZ, Vj C Vj+1, (2.2)
Uvi=2®), ) v,={0}, (2.3)
j=—o0 j=—o©
f() € Vj = f(2) (S Vj+1, 2.4)
fOeEVy= f(-~-kyeVy, keZ" 2.5)

There exists a function ¢ whose integer translates form a
Riesz basis of Vy, (2.6)
this means that V is the closed linear span of ¢(- — k), k €
Z", and there exist constants c;, c; € R* such that

< c2 [Nl ,
2

D oM (—k)

keZ"

aliMl, =

Vel 27

The function ¢ is called the generator of the multireso-
lution analysis. Let Wy denote the orthogonal complement
of Vo in V;y,

Vi=Voe W, WylV,. (2.8)
Then a natural way to construct an orthonormal family of
wavelets in L2(R") is to find 2" — 1 functions {y.}.ce*
whose translates are orthonormal with respect to the usual
L?-inner product (-, -),

(We (- — k), e (- — k)) = 8,264k (2.9)
and span Wy, i.e.,
Wo = ®.cexWo,,
Wo, = span {¢. (- — k), k € Z"}. (2.10)
Hence, defining
Wi :={feL*R)|f (277:) € Wo.}, (2.11)

one has

LX(R") = ®cz ®cce* Wi,

Vieir =V, @.epx W,
(2.12)

and the functions
Wk =272y, (27 —k)

form a complete orthonormal system in L2(R").

(2.13)
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This concept can be generalized a little bit further. In
many applications, it is convenient to work with so-called
prewavelets. In this case, the orthogonality condition (2.9)
is replaced by requiring l,-stability, i.e.,

PO DR A 51| BER-N Y U

ecE* keZ” 2 e€E *

(2.14)

This means, one only demands orthogonality of different
refinement levels. This concept has the following advan-
tage. If one starts with a compactly supported generator,
then the prewavelets can be chosen that they are also com-
pactly supported. This is in general not true for strictly
orthonormal wavelets. To save the compact support in this
case, one has to start with a compactly supported generator
¢ that satisfies (¢(-), d(- — k)) = gk To find such a (suffi-
ciently smooth) ¢ is a nontrivial problem which was solved
by Daubechies [15] in the univariate case. Her construction
can be carried over to the multivariate case only by using
tensor products or by employing a more complicated scal-
ing matrix; see Cohen and Daubechies [8]. When dealing
with prewavelets, one does not have this restriction. For
the general theory of multivariate prewavelets, multiresolu-
tion analysis and stability the reader is referred to Jia and
Micchelli [19], Lemarié [20-22], and Meyer [25]. In the
following, we will not distinguish between wavelets and
prewavelets.

In this paper, we go again one step further. We construct
wavelets such that the space Wy is indeed a complement,
but not necessarily the orthogonal complement of V in V5.
The “angle” between V and Wy in our case is determined
by the bilinear form induced by certain pseudodifferential
operators. We still require stability in the sense of (2.14)
and completeness in the sense of (2.12).

Another generalization of orthonormal wavelets are
biorthogonal wavelet bases introduced by Cohen et al. [9].
In this case, one starts with rwo hierarchical sequences of
approximation spaces

- CV,,CV,CVoCV,CV,--
"'CV-QCV_] CV()CV] CV2--~,

and the orthogonality condition (2.8) is replaced by the con-
dition

VoLWo, VoJ.Wo, Vi=Vyo W, ‘71 = Vo <] Wo. (2.15)
Then one looks for functions {¢,.}ccg*,{¥z}sce+ Whose

translates span Wo, Wy, respectively, and are biorthogonal
in the following sense:

(d’j,e,kv l[;j’,5j> = 5j,]6¢,56k,i- (2 16)
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According to Definition 2.1, ¢ and & have to satisfy the
two-scale-equations

d0) =D ardp(x—k),

k€z"
¢ =D bdx—k). 2.17)
kez”
Applying Fourier transform yields
A _ a(z) - £ ~ _ _l_)izle. é
b -52(%). 30-=2235(%).
z:=e W2 (218)

where the symbols a(z), b(z) are defined by

a@ =Y at, b@ =Y bt, 7= (219
keZ® kez"

Therefore, assuming that (2.17) has solutions ¢ and ¢, we
can conclude from (2.18) that their Fourier transforms can
be computed as

oo —i(¢/2)
é(¢) =11 deTl,
i=1
X o b (e-i€/2)
¢ (&) =11 ~————(e T ) (2.20)

=1

~.

Conversely, if we define ¢ and ¢ by (2.20) and assume
that the infinite products converge in L2, then we obtain
solutions of (2.17).

For the applications we have in mind, we need the follow-
ing (two-dimensional) result concerning biorthogonal
wavelet bases.

THEOREM 2.2. Let {ak}kez2,{bk}kez2 S l|(ZZ), and let
a(z), b(z) satisfy the biorthogonality condition

D a1 2b(-1)F7) = 2%, (2.21)
eE€E
Let ¢ and & be defined by
o g (e-i€/2)
é(e) =11 M
=1 4
N o b e—i(f/2j)
é(&) =1] ( ) 2.22)

4

where we assume that the infinite products converge point-
wise. Furthermore, let ¢ € L*(R?) := {f € L*(R?)| f[(,'l)z
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(i | f(x — k)|)?dx < oo}, and suppose that ¢ has l,-stable
integer translates in the sense of (2.14). Suppose that ¢ and
& form a dual pair, i.e.,

(), (- k) = 6o, (2.23)
and satisfy the estimates
|(€)| <eca(1+ 07"
8(6)| <ca(1+1l)7'™, for some &> 0. (224)

Moreover, assume that there exist symbols c¢(z),d*(z),e €
E* {cthrerr, {ditker € 11(ZP) related by the condition

a(z) a((-1)"2) a((-1)%2)
¢ (2) . (-1 2)
& @) S (—1) 2)
B—(z_)e d® (7) dae (z)e
b«f:l)'a d"’((—:l)‘z) g
e (-2
(2.25)

Then the functions {.}ecg* ,{¥z}sce* defined by

& (Z) & (g) . (2.26)

Ge© = <24(5). b9 =

are biorthogonal in the sense that

<*/l e s &]&k) = 6;76¢0kk- (2.27)
Furthermore, the series
Z Z <f N j,z,k> Uiek (2.28)

JEZ e€E* keZ?

converges strongly in L? and the system {{sj o x }eck * jez sc2?
forms a global Riesz basis, i.e., there exist cs > 0,c6 < 00
such that

cs Z Il <

eEE *

D2 D N2 k)

JEZ ecE* keZ?

<cs »_ Iy,

ecE *

2
(2.29)

Proof. This theorem can be proved by following the
lines of the investigations of Dahmen and Micchelli in [12].
The only problem is that Dahmen and Micchelli consider
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compactly supported functions ¢,¢ and finite sequences
{ax}kez2, {bi}rezz. For our applications, it is not convenient
to make these restrictions. Therefore, all arguments using
compact support have to be revised by employing the decay
estimates (2.24) and applying estimation techniques devel-
oped by Cohen ez al. [9]. Let us sketch the most important
steps.

First, using Theorem 2.2 in [19], it follows that ¢ is
the generator of a multiresolution approximation in L2(R?).
Condition (2.25) implies that one has full reconstruction,
ie.,

Vl = VO Docp* WO,e,
Woe = span {y, (- — k) .k € Z*}.

(2.30)

(This is a consequence of Theorem 3.4 stated below.) (2.27)
can be proved directly. Let us attack (2.28). As shown by
Dahmen and Micchelli [12, Thm. 5.1], it is sufficient to
check

(2.31)
(2.32)

leirll < erlisly
1im_flo,f1[ =0

where Q; denotes the projector

(0,f) ) =3 (£.d4) diat0), forjez. 233

kez?

Employing the decay estimates (2.24), and following the
lines of Cohen et al. [9, Thm. 3.2], one can show that

> {S o) 1> < csllf] :

24
kez?
Z | {f. dox) |2 < cg “f”i, (2.34)
kez?
S (o) <o [ 17©17 16 @01

keZ?

Zpl(f,&,-.ol <o [ 1F @I 1&3 (27¢)| " ae, @35)

where 6 € (0, 1) is sufficiently small, and

Z > | fitbjek l <C10“f“2’

JEZ ecE* [eZ?

DI l<f ek , <Cm”f||z

JEL e€E* e?

(2.36)
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Therefore, by the /,-stability of ¢, we get

2

”QOin =11>_ (f. dox) dox
kEZz 2
= Z | {f. o) lz < cgeyy ||f||§
keZ?

proving (2.31). Statement (2.32) can be shown analogously,

. 2
jllfnx llQ;fll;

> <f’d~’j.k> ¢k

keZ?

2

= lim
j—m—

2

< tim e 3 [ (£.8u)]
J== kez?
$C9C|I/, | £ (&) |2 lim [3(2"'6) ‘26(15 =0,
R j=o

where we used (2.35), the dominated convergence theorem,
and (2.24).

It remains to show (2.29). It is easy to see that (2.28) and
(2.36) imply that {¢.s}jczece* kez2 constitute a frame,
this means that there exist constants ¢y; > 0, cj3 < oo such
that

callfIf <3 3 3 [(Fses) |

JEZ eeE* ke72?

< e lifll;-

The upper bound is exactly (2.36). The lower bound can be
obtained as follows:

Ifll, = sup [(f.g}]

(2.37)

gll,=1
= sup <fz S° 3 (o diex) .//,;,_,‘k>
lell,=1 JEZ e€E* ez?

Gl
x (z >y l<g,«zj.u>lz)

JEZ e€E* ke7?
1/2
2
<f , !/lj,e,k> { ,

where we used the Cauchy-Schwarz inequality and (2.36).
But (2.27) implies that the system {¢; ..} is linearly inde-
pendent. By this it can be shown that (2.37) implies (2.29);
see Young [31] for details. W

“m (S5 F

llg]l,=1 \J€Z ecE* iez?

sc:f(z Sy

JEZ ecE* peZ?
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When we have found a(z), b(z) such that (2.21) is sat-
isfied, we have to check that the infinite products (2.22)
converge and that the conditions (2.23) and (2.24) are ful-
filled. (Using the refinement equations (2.17) one can check
that (2.21) is necessary for (2.23), but it is not sufficient.
Furthermore, in contrary to the orthonormal case, there
are no direct arguments that guarantee (2.24)). Concern-
ing the problems mentioned above, one has the following
three lemmata. They can be proved by following the lines
of Daubechies [15, Lemma 3.1, Lemma 3.2] and Cohen
et al. [9, Prop. 4.9], respectively.

LEMMA 2.3.  Suppose that, for some ¢ > 0

D lal k< oo and Y bl Ikl < co. (2.38)

kez? kez?

Then (2.22) converges pointwise, for all ¢ € R?. The con-
vergence is uniform on compact sets.

LemMma 24, If

1+ e €@D\Y (1 4 g—ic/\"
a(z)=4( Q(z1,22),

2 2

where Q(z1,22) = 2", qi2* satisfies

> gl Ikli* < oo for some € >0,

kez?
(LD =1, (239
and
fluzli' 0(z1,22)Q (Zf,zg) - Q (Z%m‘l,z%m_l) ' =: B,
z=¢e2 (2.40)

then there exists c14 > 0 such that, for all ¢ € R?

a (e—«s/zf)

~N+((log B, log2
< cua (1+ gl 7o s imioe2)

(2.41)

LEMMA 2.5. Assume that a(z) and b(z) satisfying (2.21)
can be factored as

1+ e /2\Y (1 4 i\ ¥
a(z)=4( > o 01 22),

1+ e t€/2\Y (1 4 e-ie/2\¥ _

b(z)=4(
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and suppose that (2.39) holds for Q and Q. Furthermore,
suppose that, for some m,m > 0,

B, <2™N-1V ond  Bs < 2AF-D (2.42)

where B, B; are defined by (2.40).
Then ¢, ¢ € L*(R?) and [g d(x)d(x — n)dx = 6on.

3. THE DIRECT APPROACH

After the preliminaries in the preceeding section we are
now ready to construct wavelets adapted to a given pseu-
dodifferential operator in two dimensions. Let us first
briefly recall the definition of pseudodifferential operators.
To do this consider the Fourier inversion formula

ulx) =Q2r)™" /;; ] e*a(¢)de, ueCy R, (3.1)

Differentiating this expression and employing the notation
Dj = (1/1)(6/8x1) inldS

Du(x) = 2m)™" /R ! £ e™th (£) de. (3.2)

Let P = p(x, D) = 3_ |4 <k a«(x)D™ be a differential operator
defined on a domain §2 C R”. Then

Pow =00 [ pread 63

Instead of the polynomial p(x,&) one can take a function
o(x, £) belonging to a more general class of functions. Then

the operator L defined by

W= [ oxoealeds G

is called a pseudodifferential operator with symbol o(x,§).
(For details we refer to the standard literature concerning
pseudodifferential operators, e.g., Taylor [30].) Since we
are dealing with shift-invariant spaces we will henceforth
assume that the symbol ¢ is independent of x.
We are interested in the numerical solution of pseudo-
differential equations of the type
Lu=f (3.5
on a sufficiently smooth domain Q C R2. We treat this equa-
tion by means of a Galerkin approach. For this we employ
the spaces V; of a multiresolution analysis as approxima-
tion spaces. Therefore the weak formulation of (3.5) is to
find u € V; such that

(Lu, vk) = (f, Vk> s (36)
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where {vi}rez? is a basis of V. (In practice, one only deals
with a finite collection of functions according to the domain
Q! on which (3.5) is defined.)

The structure of the resulting stiffness matrix clearly de-
pends on the pseudodifferential operator L and the basis of
V. If we choose the basis in a way that the basis functions
corresponding to different refinement levels are orthogonal
with respect to the bilinear form induced by L, the matrix
has block diagonal form. To obtain such a basis, we have
to construct wavelets {,}.cg* such that

Lp(-—k), Y. (-~1)=0 VkI€Z?ecE* (3.7
holds, where ¢ is the generator of the multiresolution anal-
ysis. Theorem 3.1 below states the conditions for the exis-
tence of such a wavelet basis.

Contrary to classical elliptic boundary value problems, it
is not clear that a Galerkin approach converges for our more
general setting. Quite recently, Dahmen et al. [13, 14] stud-
ied this problem for the general case of Petrov—Galerkin
schemes arising from pseudodifferential equations on the
torus 7". They present necessary and sufficient conditions
for convergence and stability for pseudodifferential opera-
tors of the class STg which is the subclass of Hérmander’s
class with the property that

m—|a|

DEDZo (x,6) | < cap(1 + lil) (3.8)

holds for all multi-indices «, 8. Their conditions are formu-
lated with respect to the numerical symbol 7 defined by

W)=Y ow+kdw+kilw+k), (3.9)

keZ"

where 7 is a fixed distribution according to the Petrov—
Galerkin scheme. Following Dahmen et al. we will hence-
forth assume that o satisfies (3.8).

For the construction of our wavelet-basis, it is further-
more necessary to claim the validity of the following esti-
mation that relates the symbol o with the generator ¢. Sup-
pose there exist constants c1,c; € R,0 < ¢] < ¢; < o0,
with

] =

2
é (§+;7rm)( o (&+4mm) <c;. (3.10)

2

mez?

Furthermore, we will assume that the series in the expres-
sion above converges absolutely to a function in L' ([0, 47)?)
and that the Fourier coefficients of the limit are in /,(Z?),

ie.,

L (E+4 2 .
Z ¢ (ﬁ__z_f_”}) o (&€ +4mm) ~ Z dme ™™,
mEZZ mez?

{dn}merr € h (Z%). (3.11)
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THEOREM 3.1. Let L be a pseudodifferential operator
with real symbol o such that (3.10) and (3.11) hold. Fur-
thermore, let ¢ € LHR?),I5-stable, and skew-symmetric
about some point ¢y € R%, i.e

¢ (cy+x) =¢(cs—x), xR (3.12)
Suppose that ¢ is refinable,
o) = amd -k, {aker €h(Z?). (3.13)
keZ?

Then ¢ generates a multiresolution analysis and there exist
wavelets {i,}ece+ such that

) Vi =Voe W,
Wo = span {. (- — k) [k € Z%, e € E*},
(ii) (L (-~ k). (- — D) = 0 Vk,1 € 22, ¢ € EX
(iii) The system {¢.} cg« is l2-stable.

Proof From the conditions stated above it follows im-
mediately that ¢ generates a multiresolution approximation
of L%(R?):; see Jia and Micchelli [19, Theorem 2.2].
start the proof of the remaining parts by showing (ii). We
do this by specifying an equivalent condition (see (3.16) be-
low) for the validity of (ii). To solve equation (3.16) we ap-
ply a result of Riemenschneider and Shen presented in {29]
(see Lemma 3.3 below). Second, we prove the /,-stability
of the system {i.}.ce . For that we also employ a result
from [29]. Third, to complete the proof, we have to show
(i), for this purpose we use a theorem of Jia and Micchelli
[19] (see Theorem 3.4 below).

For simplification we use the following notation

2
G(&) =) 43(“24’”") o (€+4mm). (3.14)
meZ?
Let ¢, be defined by
be©) = S24(5), (dheren @) 019

First of all, we show that the system {i.}.cg* satisfies (ii)
if and only if

S a((=1Pz) e ((-12)G (¢ + 2n2) =0,
éck

e € Ex,¢ € R:. (3.16)

A direct computation employing the definition of L and the
functional equations (3.13), (3.15) yields

(Lo = k), e (-~ D)
N </;;z e*éo (€) & — k) (€) d&, e (- - 1)>
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= / f e*¢a () e (£) dée (x — Ddx
R? JR?

=/ o (€) e *¢4 (E)/ e *8y, (x — 1) dxd¢
|R2 R2

= /R L0 (&) e (¢) e (- — D (€)ae

_ /R (&) e NG (¢) g, (e)de

163 Jupra 5 ©
xa(2) (5) ¢ é (g)dg

1 . )
- —i(k—1)¢ +2 —i((€+27m)/2)
16 Jio20y e ";2 o(&+2mm)a (e )
2
% ¢ (e—i«e+2m)/2)) . ’q; (Q;L’") de.

Splitting up the sum into summations over the coarser lat-
tices & + 2Z%,¢ € E, leads us to

L (-~ k), e (- = 1)

> >TY(Rt ey carrm)

[0,2m)? éek

XZ (§+27re+2m))

meZ? 2
X o (£+2n(é +2m)) d¢

116 e kDN "g ((—l)éz)

[0,27)2 ek

x ¢ ((-1)°2)G (¢ + 27é) de.
It follows that

>a((-1z) e ((-1)°2)G (¢ + 2m¢) = 0

écE

is a necessary and sufficient condition for (ii) to hold. {One
can check that all the operations performed above are jus-
tified by our decay and integrability conditions.)

Therefore, to construct the wavelet basis, we have to
solve the equation (3.16). Then, for the obtained solutions
we have to check that the corresponding wavelets satisfy
the conditions (i) and (iii).

To solve (3.16) let us introduce a function n : £ — E,
which is required to satisfy the conditions

n(0) =0 and

(n(e)) + nlex) (e1 + e2) is odd, when e; = e,. (3.17)
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Remark 3.2. 1n [28], Riemenschneider and Shen give an
example of a function n that satisfies (3.17)

n(0,0) = (0,0),
n(1,0) = (1,1),

n(0,1) = (0,1),
n(1,1) =(1,0).

Using such a function, we can apply the following result,
proved by Riemenschneider and Shen [29, Lemma 2.12].
Similar things were also developed by Chui ef al. {7].

LEMMA 3.3. Suppose K is a 2n-periodic function that
satisfies

K (&) = é*5K (¢)  for some ¢ € 7%/2. (3.18)
Then for 1 defined by (3.17) the functions
MK (- + me), if 2c- e is even,
K.(¢) =9 (3.19)
MK (- + me), if 2c- e is odd,
where e € E, satisfy
Y K, (+ 7K, (+78) =0, e,es€E  (3.20)

éEE

Now, let us return to the proof of Theorem 3.1, i.e., to
the solution of (3.16). The equalities (3.16) are equivalent
to

Yo a((=1e€) et (-1 7€) G (2 (¢ +7E)) =0,
éeE
e € E*. (3.21)

To solve (3.21) we want to apply Lemma 3.3 with

K(&):=a(e®)G(2¢) and c = cy. (3.22)
The function a(e=%)G(2¢) is obviously 2w-periodic. Fur-
thermore, condition (3.12) implies

a (e %) = &%t (7). (3.23)
Therefore, since G is real, the conditions of Lemma 3.3 are
satisfied and we get the following solutions

(@)
if 2¢4 - e is even,

{ MM/ Dg ((~1) 2) G (€ + 2me)

emME/Da (1) 2)G (€ + 2me)  if 2c4 - € is odd.

(3.24)

Now we have to check that {¢.}.cg * is an [,-stable system.

DAHLKE AND WEINREICH

According to Riemenschneider and Shen [29, Prop. 3.6] we
have to show that the matrix

)

ecE * écE

has full rank. It follows from (3.20) that %% is a diagonal
matrix with diagonal entries

(22™) =" 1K+ )
écE
=S la(=1¥e )| |G (26 +278) | .

écE

Using (3.10), all we have to show is

> Ja(-17e) |2 > 0.

é€E

(3.25)

This is an easy consequence of the fact that ¢ is [,-stable;
see [29] for details.

To complete the proof of Theorem 3.1 it remains to show
(i). It will be convenient to define the semidiscrete convo-
lution product ¢ *' a by

$*'ai=) ad(-—k

ke’

for a given function ¢ € £*(R°) and a sequence a € l.
We will employ the following theorem, proved by Jia and
Micchelli [19, Thm. 4.3].

THEOREM 3.4. Suppose that ¢i,...,d, € LHUR®) have
stable integer translates. Let 1, ..., ¢, be functions given
by

gi=3 d*ap, j=1...n, ap€l. (3.26)
k=1

Then the following conditions are equivalent:

(i) ¢1,...,4¥, have stable integer translates.
(ii) The matrix A(z) := (aj(2)) is nonsingular for every
z€T.
(i) span{e:(- — ki),...,s( — knh ki € Z°}
= span {(/11 (- k]),...,([l,, (-— k,,),k,’ € Z‘}

Remark 3.5. “Stable integer translates” in the sense of
Jia and Micchelli means that either (2.14) or the inequality

n n
w2 X I,
j=1 1 j=1

., W, are I|- or [,-stable. Jia and Micchelli

holds, i.e., i, ..
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have shown that these two conditions are equivalent for
functions in .£2; see [19, Thm. 4.2]. This fact can be used
to say something more about our wavelet system {{.}.cg * .
Since we assume that {c{ }xcz2 € [;(Z?),e € E*, itis easy to
check that . € 2, e € E*. (See [19, Thm. 2.1].) There-
fore the l,-stability of {i.}.ce* implies that {.}.ce+ is
also /,-stable.

We apply Theorem 3.4 to the functions

e =(0,0).

b.()=¢p(2-—¢), e€cE 3.27)
and to the sequences
{C§+2k}kez2 , eEE*
ez = (3.28)

{aé+2k }kezz s

Since V| = span{¢.(- —k),e € E,k € Z%}, it follows from
the equivalence of the statements (i) and (iii) in Theorem
3.4 that we have to show:

The system (¢, {. } g« ) has l,-stable integer translates.
(3.29)

To prove (3.29) it is sufficient to show that there exist con-
stants c3, ¢4 such that

(3.30)

asllflls < (Lf.f) < eallfll

for functions f € V, that can be represented in the form

f=> b -k, {bher €l (2?).

keZ?

Assuming for the moment that (3.30) holds, the statement
(3.29) can be proved as follows. Exploiting the /,-stability
of ¢ and {¢.}.ce+ as well as the condition (3.30), part (ii)
and the fact that assuming o(£) to be real implies that L is
self-adjoint, we obtain for finite sequences {\¢}.ck

2

> INIIE + e

ecE *

ST T M~ k)

eCE¥ ke7?

D M-k

keZ?

2
Dol <

ecE

2

D N -k

kez?

2 2

+ C5

2 2
- max {cs, c¢} {<L( Z v, *’V), Z v, *l)\e>
oK) e€E * ecE *

max {cs, cg}
C3

+{L(¢*'\%) ., *' 1% }s
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X<L( Z P *' N+ ¢ *’)\0>, z Yo ' N+ p ' )\0>
e€E * eEE *

2
_ Mmax{cs,ce}ca

=

Z ¢e*lxe+¢*l)\0

ecE *

¢
3 2

and (3.29) is proved.

It remains to prove (3.30). First we show the upper
bound. Assume that f € V; can be represented in the
form

f@) = bdx~k), {biher €1 (2%).

kez?

Applying Fourier transform yields

7 = e~ i€/,

N 1 o
= Zb(Z)¢(E/2),
A similar calculation as in the proof of (3.16) shows that

(Lf.f)
1 (N ~
= E/sz(z)b(z)a (€) |4 (€/2) |* de

1

=16 2 /[04,2 L 1B@Fo () |6 (6/2) |” de
mez? W4n) +dmm

_ 1 2
= 16 @I

[0,4m)* meZ?

o (&€ + 4nm)

§+47rm) 2d§

i

1 2
= — d
16 [0,4m)? lb(Z)l ¢ (6)

With (3.10) and (3.14) we obtain

b (e—ii/z) ‘2”’5-

e
(LS < T2

[0.47)2

A change of variables followed by Parseval’s equality yields

/O ,2m)2

Z by |* =

kEZ

Z bke gk

keZ2

(Lf.f) =

2
llbllzz-

Finally, using the stability of ¢, we get the upper bound in
(3.30),

3 b —k) = &l|f113.

kez?

(Lf.f) =< llbllz2 <¢

2
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The lower bound in (3.30) can be proved analogously by
employing the lower estimate in (3.10). &

Theorem 3.1 enables us to construct the whole adapted
wavelet basis. This construction illuminates a new aspect
appearing in our setting. In contrary to wavelets orthonor-
mal with respect to the usual L2-inner product one can not
work with a fixed wavelet basis. To get full orthogonality,
one has to solve a new equation on each refinement level.
This implies that the conditions (3.10) and (3.11) have to
be also satisfied for scaled versions of the symbol.

COROLLARY 3.6. Suppose that (3.10) and (3.11) hold for
all symbols

jo (&) = o (2¢) (3.31)

Let {j.}ece + be the wavelet basis constructed by Theorem
3.1 with respect to ;o. Then the system

Jj € Np.

{¢ =k, jWe (2j ’ _l) }jENo,k.lelzeeE* ’ (3.32)

provides a whole adapted wavelet basis in the sense that
Sunctions on different scales are orthogonal with respect to
the bilinear form induced by the pseudodifferential opera-
tor L.

Corollary 3.6 follows immediately from Theorem 3.1 by
a change of variables. Since we do not claim to obtain a
global Riesz basis in the sense of (2.29), the constants ¢,
and ¢; may depend on j.

The result presented above can, for example, be applied
to the Helmholtz-equation

u=—-Au+u=f, r>0, (3.33)
for then L possesses the symbol
o (€) =& +&+N>0, (3.34)

and the I,-stability of ¢ implies that 3", |(£/2 + 2mm)|?
cannot vanish; see Jia and Micchelli [19, Thm. 3.3]. How-
ever, the above construction cannot be used to treat the
Poisson-equation

—Au=f. (3.35)

This can be seen as follows. If ¢ € L! is refinable, then

$Q2rm) =0, meZ:,m=0. (3.36)
This result was proved by Cavaretta e al. [6, Thm. 8.4], see
also Jia and Micchelli [19, Thm. 2.4]. But since a(0) = 0
for the Laplace operator, we see that (3.36) has the conse-

quence

DAHLKE AND WEINREICH

> gm0 (4xm) = (3.37)

meZ?

G(0) =

Therefore, to construct a wavelet basis adapted to the
Laplace operator, we have to discard the singularity at 0. A
quite natural way to do this is using a biorthogonal wavelet
approach, which will be described in Section 4.

Remark 3.7. The results presented above can be gener-
alized to problems in three dimensions. (Although every-
thing becomes more complicated from the technical point
of view.) However, our approach cannot be extended to
more than three dimensions. The crucial point is the func-
tion 7. As remarked by Riemenschneider and Shen [28],
such a function only exists for dimension 1, 2 and 3.

ExaMpLE 3.8. As stated above, our results can be ap-
plied to the Helmholtz-equation (3.33). (Using partial inte-
gration, we study this problem in the form [g Vu- Vvdx +
A gz uvdx = fg fvdx. This leads us to the same formulas
for the symbols ¢*(z), but we can work with a generator of
lower smoothness.) Let us take the Courant finite element
as the generator, i.e., the box spline M(u|X,), X, = oo,
which is a piecewise linear function whose graph looks like
a hexagonal pyramid. To simplify the computations, we use
the centralized version of M(u|X,), i.e.,

M(u|X,) :=M(u+(}) |xy).

Then M(u|X ) is skew-symmetric about the origin, so (3.12)
holds with ¢, = 0. First of all, we have to compute

(3.38)

R drk\ |2
6©) =3 |4(55)| o e+ anb)
kez? 2
=2 (§+4ﬂk) ((€1+47Tk1)2
ker?
+ (G +amk)?) +0 D (£+4ﬂk)
kezZ?
=:H (&) + AL (€). (3.39)
With
8 sin (£1/2) sin (£2/2) sin ((&, + &2) /2)
= , (3.40
£1&2 (&1 + &) G40
the function H(¢) can easily be computed as
H (€) = 16sin? (51) + 16sin (52). (3.41)
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The function L(£) is given by Riemenschneider and Shen in
(28],

L=

+ é (cos (%) + cos (%) + cos (6—1;-—52)) (3.42)

Furthermore, (3.40) provides

a(z) = 4cos (%)cos(a)cos(&:&), (3.43)

so that we finally obtain

a(Z)G(§)=4COS(£4)cos( )os( +§2)
)\
2

FIG. 2. W = 1.
X (16sm (61) + 16 sin? (642) 6 (cos(i‘) avelet yio.1) for A = 1
& &1+ & ( )
+c0s(2 +cos | =—=* . (3.44) 003—1 C_°]3
According to (3.24), the symbols of our wavelets can be Cg‘l))_l Cgog
computed from (3.44). (In this case, the symbols c*(z) are ’ . L
Laurent polynomials, so the resulting wavelets are in fact % -5+t szt ﬁ 0 0
compactly supported.) For example, one gets: %1_ %A _1 41 _SE_; _1 % _33_; % _ ?2 1 0
- A A
=l 7s%t22 gt 2t7T 3t “Tstu
0 I_x 1o 1 _os o1 x
a7 TRTR 4T R 3m
0 0 -5+t ~s3+tn u

The symbols of the remaining wavelets have almost the
same form. In Figs. 1-6, we plotted the wavelets for some
special values of \. One sees that, for fixed A, all three
wavelets can be obtained from one function by rotation and
translation. This is simply a consequence of (3.24).

4. THE BIORTHOGONAL APPROACH

The applicability of the construction in the last chapter
is restricted by the condition (3.10). To overcome this dif-
ficulty, we want to employ a biorthogonal approach. In the
biorthogonal setting, Wy is a complement of V; in V1, but
(in general) not an orthogonal complement. Therefore, we
try to find a biorthogonal wavelet basis such that the “an-
gle” between Wy and V is determined by the bilinear form
induced by a pseudodifferential operator.

Using a biorthogonal approach, we do not have to worry
about exact reconstruction, since this is always true on ac-
FIG. 1. Wavelet (¢ for A = 1. count of Theorem 2.2; see also Dahmen and Micchelli [12]
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FIG. 5. Wavelet yq,) for A = 30.
FIG. 3. Wavelet Y1) for A = 1.

. 7 . —— = 2
for details. In contrast to the wavelets constructed in Sec- (o ):4’( k) = éu, ke€Z? 4.1)
tion 3, our biorthogonal wavelet basis in general will not and suppose that ¢ is refinable with symbol b(z2), {bi }rez? €
have compact support, even if the operator is of simple !1(Z%), and skew-symmetric about the same point cg. Fur-

structure. Let us start with the following lemma. thermore, suppose that  and é satisfy the estimates
LEMMA 4.1. Let ¢ € F*R?),1,-stable, refinable with 14 (¢) | <c (1+ |I£”)—1—s

symbol a(z), {ar ez € 1 1(Z?) and skew-symmetric about a . s

point cy € Z*/2. Let ¢ be a biorthogonal generator, i.e., |¢ (€) l <cp (1 +[ill) , for some e >0. (4.2)

FIG. 4. Wavelet 1,0 for A = 30, FIG. 6. Wavelet 1) for A = 30.
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Then the system {W.}.cg* defined by

e (€)

Lamap((=1)°2) b (5). if 2c4 - € iseven,
_ 4 (2) 4 43)

%z”(")b((—l)e )¢ (%) ., if 2c4-€isodd,

a(z) a((-1)*z)
c® (2) ct (—-1)?2)

det : . =
 (2) ¢ (~1)° 2)

It follows from Lemma 3.3 that the matrix

QY = ((—l)é‘"(e) Z,,(e)b ((_1)e+e'z))

ecE* écE

has full rank since %7 is a diagonal matrix with diagonal
entries

(47"),= % [o ()

According to the biorthogonality condition (2.21), which is
necessary for (4.1), the sum on the right-hand side cannot
vanish. This means that it remains to show that

(@@@),...,al(=1)"z)) & span{(c"' (2),...,
(=D, (2 @,....c2 (-1 2))}.

Suppose the opposite is true. Then Lemma 3.3 would imply

> al(-12b((-1)2) =0,

eEE

which is a contradiction to the biorthogonality condi-
tion (2.21).
Therefore, we can define d“(z) by the equation

a(z) a((-1)%2)
1 (2) (-1 2)
b() d® (7) 24 0
x| ¢ : = -
b{(—1)2) 5 (-1 2) 0 24

Then this definition makes sense by Lemma 3.3 and the
fact that the first matrix is nonsingular. Moreover, it is

a(z)
7% (1) 2)

zﬂ(e;) b ((._ 1)e3 2)
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gives rise to a biorthogonal wavelet basis in the sense of
Theorem 2.2.

Proof. We have to check that there exist (d(z)),ck *,

{d}xez2 € 11(Z?), such that (2.25) holds with

if 2c4 - e is even,

ey 29 ((-1)2),
<= { if 2c5-cisodd. Y

Z"b (1) 2),

To do this, we have to convince ourselves that

a((-1)"2)
(— e e ((—1)77 € 2)

(=1)7) e (o)

a consequence of Wiener’s lemma that the coefficients of
{d*(2)}ecp* arein [(Z?). B

Using Lemma 4.1, we can now prove the following the-
orem.

THEOREM 4.2. Let ¢ and ¢ satisfy the conditions of
Lemma 4.1. Furthermore, let L be a pseudodifferential op-
erator with real symbol o(£) that satisfies condition (3.11).
Then {Y.}.ce+ according to (4.3) satisfies

(Lp(- =D, (- k) =0, Lk€EZ’ecE* (4.5
if and only if a(z) and b(z) are related by
4
b(z) = 2alG (§) (4.6)

Seer lal(=1¥ 21> G (£ + 2me)”

where G(£) is defined by (3.14).
Proof. Let {, be defined by

e (8) = c‘:Z)dA’ (%) , {ckher €h (z%). (4.7)

In the proof of Theorem 3.1 we have already shown that
(4.5) is equivalent with

Sa(-17z) ¢ ((-12)G (€ +278) =0.  (48)

écE

We want to construct {¢.}.cg* in such a way that (4.5} is
satisfied. To this end, we have to insert our expression (4.3)
into (4.8). To simplify the computations, let us first assume
that 2¢, - ¢ is even for all ¢ € E*. Then we have
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Za ((_l)éz) (=1)5™ gnp ((_1)E+e z)

éck

X G(&+2m&) =0, ecE* (4.9

a((—1)"2) a((—1)?2)
211255 ()
23 ' T({(-1)2)
(-1 2)

a(z)
—z7' (= 1) 2)
-5 T (-1)772)
—27' 1 (-1)"2)

251 (2)
—z " (=1)"2)

Denoting the matrix on the left-hand side of (4.11) by A(z)
we obtain the formula

— _ 2% (adjA (),

b@=2(A"'@), = AD) (4.12)

where adjA(z) is the adjoint matrix of A(z).
Because of the symmetry of the matrix A(z), the above
expression can be evaluated directly,

detA(z) = z1z;° Y _a((-1)2)

eckE

><1((—1)“z)[212 ((—1)52)] (4.13)

écE

and

(adiA @)y = 2172 °1 () (Z r ((—1)%)) . (414

éckE
This yields

_ 241 (2)

T Sz a(=1) D=1 2)

_ 2%a(2)G (£)

T Yz @(—1° VG (€ + 2me)

b(2)

4.15)

The general case can be studied in almost the same way.
Employing the relation

1(z) = €1 (z), (4.16)

we see that some entries in the matrix A(z) change sign,
but the symmetry of A(z) remains essentially the same. A
direct check shows that

_ 2%a(2)G (¢)
Teee e a1 DI (-1 D)’

b(2)

4.17)

2'ZU-1D") —'BT(-1)22)
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From (4.9) we see that we have to solve a linear system to

determine the symbol b(z). In fact, using the abbreviation

1(z):=a@)G (¢), (4.10)

it follows from (4.9) that we have to find a solution of

a((=1)"2) ) 94
. _fo
' T((—1)"2) i 170 (4.11)
') b((-1)"2) 0
Therefore, we obtain
2%a(2)G (¢)

b(z) =

Soc e e a (=11 2) G (€ + 27e)

24e%a(2) G (£)
ZeGE e—i27rC¢-eeiC¢'(f+21re) |a ((_ l)e Z)|2 G ({ + 27T€)

2%a(2)G (¢)
Teer lal(=1° 21> G (€ + 2ne)

(4.18)

The assumption that ¢ is real and the fact that ¢ is skew-
symmetric imply that G(£) is real. This finishes the proof
of Theorem 4.2. &8

For a given generator ¢ and a given pseudodifferential
operator L, one therefore has to compute the function G(£),
and to check that the infinite product [T;2,(b(e~"¢/2)/4)
converges to the Fourier transform of a function ¢ such that
(4.1) and (4.2) are satisfied. To this end, one can, for exam-
ple, apply Lemma 2.4. and Lemma 2.5., see the B-spline
example below. However, even if (4.1) and (4.2) do not
hold, the wavelets constructed by the procedure presented
above can be used as basis functions, since one always has
full reconstruction in the biorthogonal setting. But then
the projectors Q; according to (2.33) are no longer well-
defined and one does not have the expedient expressions
(2.28), (2.29). This has, among other disadvantages, the
consequence that the facts mentioned in Remark 4.5 below
are no longer true.

As stated in Corollary 3.6 the whole adapted wavelet ba-
sis is given by the system

{6C -0, e (@ -1) }jeNo.eeE*,k, le 7%

where ;is, denotes the wavelet basis constructed by Theo-
rem 4.2 with respect to the symbol

4.19)

jo (&) =0 (2¢), (4.20)

provided that (3.11) holds for all symbols ;o.
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In [10], we performed a similar calculation for the simple
one-dimensional model problem

—um = f.
We got the solution
4a(z) g (£)
b(z) = , 4.21
T 1a@Pg (9 + la(-d%g (¢ + 2n) )
where g(£) was defined by
2
g&)=>_ (e+ 4mn)®™ | ( % + 27m) (4.22)

neZ

According to these formulas, Theorem 4.2 can be inter-
preted as a natural generalization of the result presented in
[10]. In special cases, the one-dimensional construction in
[10] gives rise to compactly supported wavelets. In general,
they have at least exponential decay. This is not neces-
sarily true for the two-dimensional construction presented
here, since in higher dimensions the symbols do not split
into linear factors with respect to their roots. The decay of
the wavelets depends on the decay of the symbol b(z) and
therefore on the smoothness of the expression in (4.6).

Remark 4.3. If o is homogeneous of degree n in &, i.e.,

o (re) =r'o (€), (4.23)

then formula (4.6) reduces to

2"a(2) G (¢)

424
G (20) “.24)

b(z) =

This can be seen as follows:
G (2¢)
= 3" 1é (g +2mk) |* o (26 + 4nk)

keZ?

_ Z 24 1“ (e—i((f/2)+1rk)) {2

kez?
é (% + 7rk)

= gn—4 Z Z ,a (e—i((€/2)+e1r+27rk)) l2

ecE ycz?

2

X 20 (€ + 27k)

2

X ‘d;(% +e7r+27rk) o (& + 2me + 47k)

=243 al(-1 P Y

e€E kez®
X o (€ + 2me + 4nk)

=23 " 1a((-1) 2I° G (€ + 27e) .

ecE

2

d;(g +e7r+27rk)
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ExaMPLE 4.4. 'We have applied Theorem 4.2 to the Pois-
son equation

—Au = f. 4.25)
In this case, one has
o (¢) =& + 6. (4.26)
According to Remark 4.3 we obtain the formula
4a(2)G (&)
b(d) = ———". 4.27)
G (%)

We have calculated b(z) for tensor-product cardinal
B-splines
Nn®Np(x,y) = N ()N, (y), meven.

(~We always work with the centralized versions, i.c.,
Nu(x) = Nplx + m/2), yielding a real symbol a(z).) From

TR sin™ (£1/2) sin™ (£,/2)
Npn®N, s = m m s .
oNa (608) = = @™ 4
one easily deduces that
< dcos” (&) cosm (&2
a(z) = 4cos ( 4 ) cos ( A ) . (4.29)

As an example, we have studied the case m = 8. A long-
winded but standard computation shows that

G(£1,6) =H (&)L (&) +H (&)L (&), (4.30)

where the functions H and L are defined by

H(2y) := (6081075 cos'?(y) sin®(y)

+22297275 cos'%(y) sin*(y) + 31621590 cos®(y) sin®(y)

+ 21531510 cos®(y) sin®(y) + 7012005 cos*(y) sin'%(y)

+ 907725 cos?(y) sin'%(y) + 21844 sin'* (y))/16, (4.31)

L(2y) := (638512875 cos'*(y)

+ 2766889125 cos'?(y) sin’(y)

+ 4838508675 cos'%(y) sin*(y)

+ 4339860525 cos?(y) sin®(y)

+ 2087700615 cos®(y) sin®(y)

+ 507350025 cos*(y) sin'(y)
+ 50307087 cos?(y) sin'? (y) + 929569 sin'4(y))/32. (4.32)

We used Lemma 2.4 and Lemma 2.5 to convince ourselves
that (4.1) and (4.2) are satisfied. For that purpose, we
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checked numerically that (2.42) holds with N = 2,/ = 8.
This means that setting
_4a@G(E) (&) . (&
b(z)———G ) = 4cos ( )cos )
6 (61 .6(82) G(&)
X <4cos (4)cos (4)6( <)
2

2
o 1F /DN (1 4 o6/
B 2 2

x (481'(51/2)61'(52/2) cos® (%l) cos® (%) G (¢) )

and defining

0 (21, 22) = 4€€/D /) g0 (5})

x o5 (2) G (6) (6 26) ",

one has

sup |Q(z1,22) ...+ O (zf7,z§7) ' =: By < 28,

21,22

This yields

Remark 4.5. The results presented above can obviously
be applied to more general elliptic differential operators.
There one studies problems of the form

PD)=f on§l, Bu=g ondQ, (4.33)
where P is a polynomial of degree 2k, C R? sufficiently
smooth, and B expresses the boundary conditions. Denoting
by || - ||£ the energy norm induced by the problem (4.33),
one requires that there exist constants X, K, such that

K ”f”k,z(Q) <|lfllg < K2 ”fHk.z o,

fewk2(Q), (4.34)
where || - |[r2 denotes the Sobolev norm for the space
W*2(Q). Let us suppose that the symbol of the differen-
tial operator is of the form (4.23). This case has the ad-
vantage that we do not have to change the symbol when
going to a higher refinement level (see (4.19)), so that we
can work with a “fixed” biorthogonal wavelet basis. Under
the above assumptions, it turns out that the condition num-

DAHLKE AND WEINREICH

bers of the corresponding stiffness matrices are uniformly
bounded. In special cases, this can be proved directly by
using the orthogonality (for example, by following the lines
of the calculations in [10, Sect. 7]). We also can apply the
more general results concerning multilevel preconditioning
presented by Dahmen and Kunoth [11]. A special case of
their investigations is the following.

Let ¢ € C§ be refinable and l-stable, V;
= span{¢(2/ - —k),k € Z"}. Furthermore, let {Q;};en, be a
sequence of projectors onto V; which is uniformly bounded,
ie.,

lgjll=C VjeN. (4.35)

Then there exist constants K, K> such that
ki3 2|0 - 01) 1
j

<k Y2 (g- o) Alf,. @30
J

2 2
< IR

If we use the projectors

(0iF) @ =3 (f.d1x) b1

keZ?

4.37)

and recall the proof of Theorem 2.2, we see that this se-
quence is uniformly bounded. From (2.28), it is obvious
that every f € L*(R?) has a unique representation

F=S M —0+3 3 SN (0. (438)

kez? j=0 e€E* kecz?

Combining (4.36), (4.37), and (4.38) and using the fact that
the global stability condition (2.29) implies stability on each
refinement level, we obtain the following relation:

Kies Y22 [NO|[f, < || £l
j

< Kace Y22 ||| . (439)
J

Denoting by A; the stiffness matrix relative to level j, it is
easy to see that (4.39) implies that the condition number
of L™'A,L”, where L is essentially a diagonal matrix, is
uniformly bounded; see, e.g., Dahmen and Kunoth [11].
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