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Abstract

We provide an ‘optimal’ finite element approximation error estimates for a
one-dimensional non-linear parabolic model problem with non-regular
initial value data based on the solution concept in [BrK1]. By this we
improve a ‘not-optimal’ finite element approximation error estimates for
the one-dimensional Stefan problem with non-regular initial value data
[NiJ].

For the space dimension n=3 ‘not-optimal’ finite element approximation
error estimates for the non-stationary, non-linear Navier-Stokes equations
have been derived in [Hel]. As our approach is not depending from the
space dimension it can be also applied also to this area.



§ 1 Introduction, the non-linear parabolic Stefan problem

The free boundary Stefan problem with its solution U (Y, 7) can be transformed into the non-
linear parabolic equation looking for a solution u(x,t) = U (y,7) fulfilling

u(y,z)—u"(x,t) +xu’'(,t)u’ =0 in Q= {(x,t)\x €(0,1),0<t ST}

u’(0,t)=u@,t)=0 fort>0
u(x,0)= f(x) for xe(0,) .
Let

H, = {(ww e H, (0,1),> 0,w(0) = 0} = {(ww’ € L, (0,1), > 0, w(0) = 0}

Then v:=u, belongs to H, and for any v e H, the function defined by
1
u(x,t) = —I v(z,t)dz

satisfies the boundary condition above. Multiplying the differential equation above with
w, (wWe Hl) and integration gives the variation equation

1 1
juxxwx +U,wdx = ux(l,t)j Xu,w,dx -
0 0

This leads to a variation representation in the form

Problem P,:find v such that v(-t) € H, and

(v, W) + (v, W) = v(L)(xv, W) for weH, and t>0
(v(-0),w) = (f',w) for weH, and t=0.

This is the weak formulation of
Vi (Y, 7) =V, (6 )+ V(L (), =0 in Q
v(0,t)=0
V(L1 =V (1)
v=f' fort=0.

Obviously the compatibility condition v'(1) =v?(1) is required in order to ensure the (too high)
regularity requirements to the auxiliary function v as indicated by the setting v:=u,_ e H, for
ueH,.

For higher regularity assumptions further compatibility assumptions are required in the form
f7() = f'2(1). In [NiJ1] for sufficiently high regularity assumptions for the solution v ‘optimal’

FEM error estimates are derived. The prize to be paid for this imbalanced regularity
relationship between the solutions u and v are at least quadratic splines instead of expected
linear splines for the FE approximation space.



§ 2 The ‘not-regular’ Stefan problem case, ‘not-optimal’ FEM error estimates

In case of reduced regularity assumption of the initial value function g:= f’e L,and not
fulfilled compatibility conditions the problem is called “non-regular”. If only g e L, is assumed

then even |v| and hence |y is not necessarily bounded for t — 0 ([NiJ2]). In [NiJ] for this

case ‘not-optimal’ FE error estimate of order h“ with 0 < & <1has been derived. The proof of
those estimates needs to govern the singularity for t — 0 of the energy norm|y’| and hence

for the term v(1).
The following a priori estimates are derived and applied
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building on the Young inequality and the Gronwall lemma to tackle inequalities of the
following types

t t
A=) <o +c[ A@dr v A= a) Sk +k, [V E P (2)de
0 0

with A(t) = HZHZ From those estimates the specific a priori estimate for the supremum norm of

v andy, can be derived,, i.e.

~1/4
v .

v,|<ct

The key estimate is building on the duality argument according to —w"=®, w(0) =w’'(0) =0
and the related Ritz approximation ¢:= R, w enabling the following inequality

d i 1 d ’ r ’ ’ ’ -
o)+t +5 Sl <fate, e x, p)]+ 0 @], oot + 2o

Corresponding a priori estimates and similar proof techniques are applied to prove similar
“not-optimal’ FEM error estimates for the non-stationary, non-linear NSE ([HeJ)]).

The inadequate high regularity requirements for the auxiliary function v e H, is the root cause

of the singularity behavior in the form ~t™*. Assuming that this singularity behavior still
remains when transforming the Stefan problem into a modified variation representation with
respecttoa H ,,, —framework alternative to current H, =L, —framework the corresponding

duality argument would be applied by the equation —w"=t**®, w(0)=w'(0)=0 . In
combination with the related Ritz approximation ¢:= R, w this then leads to the following
modified inequalities (e:=v-v, = ¢—®)

%%(IUZH(DHZ)+'[”2‘<D' 2 Sctllzhg/ 2 _,'_tfl/zHgHZ]
1d ) / -
S @l sl st e, el |

From this the ‘optimal’ error estimation are derived, i.e.
Ju=unly = Je],,, < ch™*t™*[e], <cht™?.
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Building on the solution concept as proposed in [BrK1] for the 3D-NSE problem we propose
an alternative auxiliary function v:= Au’=Hu resp. u=-Hv, whereby A and H denotes the
one-dimensional Symm resp. Hilbert transform singular integral operator ([BrK], [NiJ6]). The
properties of the Hilbert transform operator H ensure same regularity assumption for
u,veH,,, of the corresponding weak variation representation. From

1 <c@2), <clel, 1., <l

<l

Pl VP

it follows that the term v(1) is bounded if ve H,,,. Based on this the technique from the
regular case can be applied also for the ‘non-regular’ case [NiJ1]. At the same time the
required finite element approximation spaces can be linear splines instead of quadratic
splines ([NiJ7]).



§ 3 A non-linear parabolic model problem, ‘optimal’ FEM/BEM error estimates

In order to enable the full power of approximation theory in a Hilbert scale framework we
consider the 27— periodic continuation of the solution of the Stefan problem. It enables the
definition of the problem adequate Hilbert spaces defined per appropriate self-adjoint linear
operators with corresponding domains:

Let H=L,() with T':=S'(R?), i.e. T'is the boundary of the unit sphere. Let u(s) being a

2z —periodic function and f denotes the integral from O to 2 in the Cauchy-sense. Then

for ueH =L,(I") with I':=S'(R?) and for real # the Fourier coefficients

A . . 1 i .
i(v)=u, ':Ef u(x)e"dx = §u(x)«,/n (x)dx

enable the definitions of the norms (see e.g. [BrK], [Lil] Remark 11.1.5)
ol = 2o .

defining corresponding Hilbert spaces H;. Then H is the space of L, —periodic function in

R. The definition of negative scaled Hilbert scales is enabled by appropriate self-adjoint
singular integral operators ([KrR], [Lil]). We build our analysis on the Symm operator A [BrK]
and the Hilbert transform (conformal mapping) operator H defined by

. X—
sm—y

5 u(y)dy

Au(x) = -3§ log 2
T

Hu(x) = iﬁot(%)u(y)dy :

Both are related in the form Au’(x) = -Hu(x) . Some essential properties of the Hilbert transform
operator are summaries in

Lemma: The Hilbert transform (conformal mapping) operator H fulfills the following
properties:

i) (Hv,w) =—(v, Hw) , ,

ii) if ve H then Hve H, and (Hv,v)=0

i) [XH - Hx}v =9(0) , i.e. for odd functions V it holds [xH - Hxy=0.

Hv =[v

Sobolev, L, - and Holder/Lipschitz space based Galerkin approximation analysis are given

in the appendix. The approximation error for finite element approximation spaces S,‘]"t of the

Symm operator equation is ‘optimal’ with respect to the complete possible Hilbert scale
range, i.e. it holds

le <cn™

U . -t+D<e<-12 o<t



The corresponding operators of the one-dimensional Hilbert transform operator H are the
Riesz operators R; (i =1,..n) which also play a key role in NSE theory and an alternative

definition of the pressure p.

In order to avoid technical difficulties we omit the term x from the Stefan problem. This is
without loss of generality as it is always estimates with a constant. With respect to non-
parabolic problems for space dimensions n >1 this term potential can even support to gain
additional regularity (and therefore corresponding convergence orders) in the context of
commutator properties which can be interpreted as compact disturbance (appendix and e.g.
[BrK]) and finite element super-approximation properties ([NiJ4], [NiJ5], [NiJ6]).

We consider the non-linear parabolic equation
u—u"=-u'Qu’.

Applying the auxiliary function concept of [NiJ1] in the form v= Au’'=-Hu resp. u=Hyv leads
to

Al —Au"=-Au’'()Au’ resp. AHV—-Vv' =-v(Dv .
Multiplying with Hwe L} leads to the following variation problem:

P, : find ve H,,, with
V, W), +(V', W), =v(@)(Hv,w), for weH,, and t>0

V(.00 W)_yy, = (F,W) 4y, = (F,W)g forweH,, and t=0.
The corresponding Galerkin approximation is given by
P, :find v, €S, < H,, (v,())=v, (Lt)) with

Vi ) 2 + Vis Do =V Q(HY,, 1), for x €S, < |_'|1/2 and t>0
(Vi (0) )12 = (F, 20 for X €S, CI—.|1/2 and t=0.

For later usage we define the related trilinear form

_1 / 1 , 1 1

b(&.7.¢) -=§§(1)(f7,é“ ) 112 +§f7(1)(§,§ ) 112 =§§(1)(77,§)o +§77(1)(§,§)o-

Analog to [NiJ1] the corresponding bilinear form for fixed ve H,,, defined by

a,(&n)=(&m)y, —2b(v,&,n)

is bounded and coercive in H,,,, i.e. it holds

) Em=Mfel, -l
i) a,(¢,8)= mHngz/z - AHgHi/z'



The above coerciveness property ii) is a Garding type inequality which enables the so-called
“‘weak inf-sup condition” (appendix). This results into a positive bilinear form in case the
domain is restricted to the approximation spaces S, c H,,,. Therefore the Galerkin

approximation R, v

a,(v—R,v, 7)=0 for yeS, cH,,
is ‘optimal’, i.e. it holds

Jv-RV <ch™|v

|-+ <k<-1/2 Tt

For our analysis we will apply the analog Galerkin approximation v, =R, vfor the linear
parabolic case, i.e.

(V_vh’Z)—1/2 +a,(v-V,,x)=0 for yeS, Cl_]1/2

which is ,optimal‘ with respect to Hilbert space and L —norms ([JNi5]), i.e. for g:=v-v, it
holds e.g.

el ., Seh™ M, o -@rn<e<-12 o<t
"‘9 L, ((0.1),L, (0,27)) Sc'iﬂsfh V=X L(OtL,(027)

This approximation behavior will be used to apply the Schauder fix point theorem in order to
govern the critical quadratic non-linear term b(e,e, ) =e(@)(e, ) below.

The defining error variation equation for €:=Vv -V, is given by

(& 1)1/ + (& 1), —2b(v,e, ) =—b(e,e, x) for yeS, c |_.|1/2
resp.

(é1Z)—1/2 +av(evl)=—b(e,e’)() for ;{ESh - |_.|1/2

Whereby b(evevl)ze(l)(e! I)O )
Putting e:=(v—V,) - (V, —v,) =& —dwith now ® S, c H,,, this leads to

(d)al)_l/z +a,(®, y)=e@)(E x)o-

In order to show the existence of a finite element solution in the neighborhood of v the
quadratic term e(1) =e(L,t) is replaced by E(1) for some functionE =T (e). Then

(d)al)—llz +a, (D, )+ EQ(D, 1), =ED(e, 1),

is a linear problem. Therefore, for any E(1)=E(1t) there exists a solution ® with ®(0)=0 .
Therefore the same is true for e=¢—®, but now e depends on E.

Following the same arguments as in ([NiJ1] applying the Schauder fix point theorem
(appendix) then it follows that there is a E with E =T (e) =e. We summaries the above in



Theorem: The problem P, has an unique bounded solution v € H,,,and an unique (linear

spline) finite element approximation v, of problem th in the neighborhood of v with optimal
order of convergence

Iv-v,

L, <O(h).

L, (Ot);L,

Due to the properties of the Hilbert transform operator the same estimate is true for the
original solution ueH,,, , i.e. it holds

"u — Uy ||Lw(0,t);Lx) <O(h).

An approximation u, €S, c H,,, for the solution ueH,,, is given by u, =Hy, i.e. the spline
order of u, is the same as the spline order of v, .
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Appendix

Related topics
The Ritz-Galerkin Approximation Theory

A well-defined Ritz-Galerkin approximation method in a Hilbert space H_and corresponding
approximation u, :=Ru of the linear operator equation Bu = f requires certain properties to
the linear operator, as well as adequate properties of the operator domain D(A) embedded
into a Hilbert space H_and appropriate related properties of the finite dimensional
approximation spaces S, — H_ . In the one-dimensional case the parameter h corresponds
to space dimension in the form h~n™.

In order to apply the generalized Lax-Milgram lemma the H , —coerciveness can be
weakened to the Garding type inequality which is given by one of the following forms

(Bu,v)ZClHuHi—cszH; or (Bu,v)xcfu| -V —(Ku,v)

whereby H , is compactly embedded inH ;resp. K describes a corresponding compact

operator. This enables the so-called “weak inf-sup condition” (JAzA], [BrK], [NiJ7], [NiJ8])
which we summaries in the following

Lemma: Given three Hilbert spaces H,H,, H, with H, = H compactly embedded and the
bilinear form b(u,v) :=(Bu,v): H, xH, - R with

) |b(u,v)<c-u
i) ForueH, with b(u,v) forall veH, itfollows u=0

i) Forall neN the approximation spaces fulfill S, <H,, T, cH, and dimS, =dimT,
iv) T,cT,,and UT, isdensein H,

neN

V) VpeS dyeT, : ‘b((p, z//)‘ > (ClH(pHH1 - CZHWHH ) - HV/HHZ (the weak inf-sup condition).

\

forallueH,,veH,

Hy H,

Then there is a N >0 and a constant c, >0 that for all n> N it holds

VpeS,y eT, with |b(e,y)| 2 C3H¢HH1 -HV/HHZ :

The required properties the approximation spaces are e.g. given by finite elements. The
standard notation of finite element spaces is given by S*' < H, with K <t which is about

(k —1) —time continuously differentiable functions y € Srf't with the property that the

restriction of y to any triangle A of the triangulation A eI’} is a polynomial of degree less
than t.
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The corresponding approximation properties are usual described in the following way:

) sicH,

D iyl s, for ve H,
Z€Sh

i) 2], <ch [, for €S, .

The Holder resp. Lipschitz spaces are the adequate ones to derive approximation estimates
for non-linear problems. A proof of the boundedness of the Ritz operator in Hlder resp.
Lipschitz spaces is a consequence of the below Al-condition and lemma (by the choice
X, =C* and X, =C**) in combination with the boundedness of the Ritz operator inin L, -

norm ([JNi4]).

based on the boundedness of the Ritz operator in in the C° Banach space as the Holder
spaces C** are compactly embedded into C°. The boundedness of the Ritz operator as
mapping of C° into itself is a consequence of the boundedness with respect to the L_ —
norm

The so-called approximation (A) and inverse (I)-condition for the collection of approximation
spaces {S,[0<h <1} are given by

Al-condition: let {sh\o <h sl} a collection of subspaces of X, with approximation and
inverse-quantities o, and 7, according to

) vyeX,AneS, |y-nl <oulyl, ; |ll, <cy|, with c, independently of h .

i) VneS, aBernstein type inequality holds ||z, <z, z|,-

The collection {s,|0<h <1} fulfills the Al condition if K :=supo 7, <.

Lemma: let {Ph\x1 - Sh} be a collection of linear projection operators of X, onto S, which is
uniformly bounded as mappings of X, into itself, i.e.

[Pl

I < p, With p, independently of h.
Yla

[Pyl =sup

If {S,} fufills the Al-condition then {P,} as mapping of X, into itself is uniformly bounded
with

2 < P, :Z(C1+3K)p1 )

, =

I,

The boundedness of the Ritz operator in in L, — norm can be proven by the weighted norm

technique of J. A. Nitsche ([INi4], next section). In [BrK] interior ‘optimal’ error estimates of
the Ritz method for Pseudo-differential operators are derived.
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L, — Boundedness of the Ritz Operator
for Singular Integral Equation Problems

The (Hilbert transform) singular integral equation problem is given by

Hu=f
with
1 s—t
Hu(s) = — ¢ cot ——u(st)dt =T (s) -
(8) = —feot=——u(st)dt =f (s)

In [JNi6] the L_— boundedness of the Ritz-Galerkin approximation operator R, onto finite
element subspaces S, is defined by

(;(, Hu)= (;(, H (Rhu))z: ()(, ng) for yeS§,.
As a consequence the boundedness holds true also in the norm of C%*.

Analogue to the analysis in case of boundary value problems the proof deals with weighted
norms in the form

u=p®+sin’(s—s,) ,with s, €[0,2) appropriately chosen.

For a e R the weighted scalar products resp. norms are defined by

((v,w)), :=§,u‘“v-wds M, =),
The estimates require for space dimension case n=1 a value e.g. a =1>n/2, for the space
dimension case n=2 avalue e.g. « =2>n/2. The connection of weighted norms and the
L, — norm is given by the inequality (for a =1)

HMHa <ch*?|j|  forveC®

and

I, <ch"? supl| 2. Jso efo,27)] for yes,.
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An analogue proof shows the - boundedness of the Ritz-Galerkin approximation
operator R, of the singular integral equation problem Au = f with

. X—
SIHJ

1
Au(x)=-—¢log 2
(%)=~ {1og 2sin —

u(y)dy

The BEM is given by

(7, Au)=(x, A(R,u)) for yesS,.

For the error e:=u—R,u we use the split e=u-Ru=U-7)—-(RU-7n)=ec-®, n,®eS,.
Then the error is defined by
(;(,Ag)z(;(,ACD) for yeS,.

The central estimates of this proof follow same concept as [JNi6]. We recall those by the
following inequalities.
The starting equation is based on weighted norm with respectto ® eSS,

o] = (@, 17 ®)=(®, 117D — AL)+ (@), ~ 6,17 D — A2).
The objective is to derive a final estimate in the form ||’ <c|e|” which then gives
lell, <cle.

from which the boundedness follows (by appropriately chosen 7 € S, ) according to the
relationship of weighted and Loo —norm of finite elements. With the definition

2=R(z2) : (uwAy)=(Ay)foryes,.
it follows from the above (for n=1,2)
<c,fel +o|u o -na|
)

V" (y“Aﬂ,)Hi .

<c,|e]’ +8-cinf
a weSy

£05||5||i +6-c-h™"

In the following we consider only estimate relevant estimates for the case n=1=« . Then the
second term gives

V(uAR) < p?|V(AR)| +

. ,5—5
sin? —=¢
2

|AA|+ 1|V (AX)|

and therefore (because of sin®((s—s,)/2)/ u <1)

[V an)| < o' VAR +[(AD] + V(A7

2

[V AR < p?A" +|(An) +

sin %V(Az)
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The following estimates enable to the proof:

2

S—S, -

sin

VAy

. S-S5
VsmT"A;(

2
+o|Adl;
0

0

. S—5§
Vsin 0
2

2
Ax| <|V(sA-As) x| +[VAGsY)|:

0

A
o2l <[z~ v + Wl <en?zl; + sup 22

2 SCHAZH(Z) +sup (sx, AS) — (sy —y, AS)
&eSy, HA?HO e

= Acl;

(57, A) = (1, (A= AS)E) + (7, A(SS))
(. (A= A9)E) <], sA - As)e], <Azl [e], <[Azl-[As]

(2. A etz |ac<cl., Azl <clazl-Jad
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L, — Boundedness of the Ritz-Galerkin Operator
for Linear and Non-linear Elliptic and Parabolic Problems

In [INIi5] L - boundedness of the finite element method Ritz-Galerkin operator for parabolic
problems and related optimal FEM approximation estimates are derived. In In [NiJ3]) L_-
error estimates are derived for a nonlinear boundary value problem. L_- boundedness in

Holder resp. Lipschitz norms of the Ritz-Galerkin operator for the Laplace equation are
analyzed in [JNi4].

Holder/Litschitz spaces are the adequate ones in treating nonlinear elliptic and parabolic
problems. The boundedness of the Ritz operator in the corresponding norms at least

simplifies the analysis of finite element procedures in some cases it is essential.
The two central elements of [JNi5] are

i) an ‘optimal’ “parabolic type” shift theorem for the solution of the heat equation in the
form

[

e Sl W g
i) Nitsche’s weighted norms

D4V dx

W= 3

|¢[=k

WIth  pu(x,t) i=|x= x|  +[t = t,

, and x t chosen that Jull, ) = U0 t) -

The proof of the shift theorem is based on appropriate estimates of the generalized
Fourier coefficients w; (t) of the heat equation

u-Au=f , u@©)=u,, ul,,=0
with w,(t) = e MU, + j'e‘il 1 (r)dz -
0
The “trick” to go there is about changing the order of integration in the following form:
]'wf (t)dt < j[j e 409 r}[i{ e 40 £2(7)d z}dt :
o o0 o

T T T
< fiz(r){ fe ("T)dti|dr <[ 12 (z)de -
0 0

T
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Approximation Theory for Non-linear Problems
Lecture Notes

J. A. Nitsche

In [NiJ3]) L, - error estimates are derived for the nonlinear boundary value problem
div(a(e,u)Vu) = f
As for ueC*

ou ou
——¢€
OX; OX;

oa ou
Tu(x) =a(x,u)Au + — ) 4 c2!
09:=a0uwau+ 2032

the Schauder fix point theorem can be applied (M :=C**)to prove the existence of a solution
u.

Schauder fix point theorem

Let X be a Banach space and M < X closed, bounded, convexand T:M — M
compact. Then there exists a X e M with X=TX.

In the following we give a FEM ‘optimal’ error estimate in L — norm for non-linear problems.

Let the problem be given by
F(x,u)=0

with the (roughly) regularity assumptions:
i) there is a unigue solution

ii) F,F, are Lipschitz continuous.

The approximation problem is given by:

find peS, (F(.p),x)=0 foryes, .

Theorem: The FEM admits the error estimate

lu=el,, <cinflu-z_ -

16



Error analysis

Put
f(x)=F,(x,u(x)) and ¢@=u-e

then
(fe,. ) =R, x)

with a remainder term
R=R(e)=F(,u-e)+ fe
resp.
(fe, ) = (fu—=R(e), 7)-

Let P, denote the L, — projection related to (f-) = (R, ), then

1
=P U-2RE)
resp.
e=(1-Ru+ Ph%R(e)) =T(e) -
Therefore the difference e =u—e is a fix point of T .

Let
5. = bl <) and 7= influ= 7],

The application of the Schauder fix point theorem is enabled by the following properties of T :

Lemma:
i) There is a k¥ > 0 such that for ¢ sufficiently small, then T maps the ball B . into
itself.
i) for £ sufficiently small, T is a contradiction in B, .

Proof: i) Because of P, and f ' are being bounded it holds

=Rl < nflu-z. ==
w Z€Sy
and

RERE) <clRE

L.

Itis
IF(u—e)+ feHLw < c3HeHiw =78’

17



with ¢, being the Lipschitz constant of F, and therefore
[T(e)], <cé+cene .

Now fixing x > ¢, and choosing g, accordingto x =c, + C.C,k°E, gives i)

") it holds M) -Tel, =[P (Re)-Re))]  <clRe)-Re,
and
R(el) - R(ez) = F(, u _el) - F(! u _e2) = (Fu ('1 '9) - Fu (u)(el _ez) '
With
F.(9)=F(u-%-(1-9g)
one gets

IF.¢.9) - F,(u)] < i, -

Choosing £ < Min(s,, (c,c.x) ™) then proves ii).

Consequence:  The operator T has a unique fix point in the ball B _ .

From this it follows the theorem above.
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