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Abstract 

Based on the Hilbert scale 𝐻(𝛼), 𝛼 ∈ 𝑅 , defined by the orthogonal set of 
eigenpairs of the Stokes operator we present a global unique weak solution 
of the generalized 3D Navier-Stokes initial value problem 
 
            (�̇�, 𝑣)−1/2 + (𝐴𝑢, 𝑣)−1/2 + (𝐵𝑢, 𝑣)−1/2 = 0                for all 𝑣 ∈ 𝐻−1/2 

                                                                                              
                                                      (𝑢(0), 𝑣)0 = (𝑢0, 𝑣)0      for all 𝑣 ∈ 𝐻0                                          
. 
The global boundedness is a consequence of the Sobolevskii -estimate of 
the non-linear term ([SoP]) enabling the generalized energy inequality 
  

1

2

𝑑

𝑑𝑡
‖𝑢‖−1/2

2 + ‖𝑢‖1/2
2 ≤ |(𝐵𝑢, 𝑢)−1/2| ≤ 𝑐 ⋅ ‖𝑢‖−1/2‖𝑢‖1

2. 

 

Putting 𝑦(𝑡): = ‖𝑢‖−1/2
2  one gets 

 

𝑦 ′(𝑡) ≤ 𝑐 ⋅ ‖𝑢‖1
2 ⋅ 𝑦1/2(𝑡) 

 
resulting into the a priori estimate 
 

‖𝑢(𝑡)‖−1/2 ≤ ‖𝑢0‖−1/2 + ∫ ‖𝑢‖1
2(𝑠)𝑑𝑠

𝑡

0
≤ 𝑐{‖𝑢0‖−1/2 + ‖𝑢0‖0

2}. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 



§1 Introduction 
 

 
This section is a summary from [CaM], [GaG], [GiY], [ShM] , [SoH], [TeR]. 
 
The Navier-Stokes Equations (NSE) describes a flow of incompressible, viscous fluid. The three key 
foundational questions of every PDE is existence, and uniqueness of solutions, as well as whether 
solutions corresponding to smooth initial data can develop singularities in finite time, and what these 
might mean. For the NSE satisfactory answers to those questions are available in two dimensions, i.e. 
2D-NSE with smooth initial data possesses unique solutions which stay smooth forever. In three 
dimensions, those questions are still open. Only local existence and uniqueness results are known. 
Global existence of strong solutions has been proven only, when initial and external forces data are 
sufficiently smooth. Uniqueness and regularity of non-local Leray-Hopf solutions are still open 
problems.  
 
Basically the existence of 3D solutions is proven only for “large” Banach spaces. The uniqueness is 
proven only in “small” Banach spaces. The question of global existence of smooth solutions vs. finite 
time blow up is one of the Clay Institute millennium problems.   
 
The existence of weak solutions can be provided, essentially by the energy inequality. If solutions 
would be classical ones, it is possible to prove their uniqueness. On the other side for existing weak 
solutions it is not clear that the derivatives appearing in the inequalities have any meaning. 
Basically all existence proofs of weak solutions of the Navier-Stokes equations are given as limit (in 
the corresponding weak topology) of existing approximation solutions built on finite dimensional 
approximation spaces. The approximations are basically built by the Galerkin-Ritz method, whereby 
the approximation spaces are e.g. built on eigenfunctions of the Stokes operator or generalized 
Fourier series approximations.  
  
It has been questioned whether the NSE really describes general flows: The difficulty with ideal fluids, 
and the source of the d'Alembert paradox, is that in such fluids there are no frictional forces. Two 
neighboring portions of an ideal fluid can move at different velocities without rubbing on each other, 
provided they are separated by a streamline. It is clear that such a phenomenon can never occur in a 
real fluid, and the question is how frictional forces can be introduced into a model of a fluid. 
 
The question intimately related to the uniqueness problem is the regularity of the solution. Do the 
solutions to the NSE blow-up in finite time? The solution is initially regular and unique, but at the 
instant T when it ceases to be unique (if such an instant exists), the regularity could also be lost. 
Given a smooth datum at time zero, will the solution of the NSE continue to be smooth and unique 
for all time?  
  
There is no uniqueness proof for weak solutions except for over small time intervals. The simplest 
possible model example how a singularity can appear, is the ODE 
 

𝑦′(𝑡) = 𝑦2(𝑡), 𝑦(0) = 𝑦0 
 

with the solution  
 

𝑦(𝑡) =
𝑦0

1 − 𝑡 ⋅ 𝑦0

 

 
which becomes infinite in finite time.   
 
 



Let 𝑃 denote the orthogonal projection onto the kernel of the divergence operator and 𝐴 the 
selfadjoint Stokes operator. If 𝑢 is divergence free then 
 

(𝐵𝑣, 𝑣): = ((𝑢, ∇)𝑣, 𝑣)0: = ∬ (𝑢, ∇)𝑣 ⋅ 𝑣𝑑𝑥 = 0
Ω

. 

 
Therefore there is no contribution of the essential non-linear NSE term 𝐵𝑢 to the a priori (energy) 
estimate 
 

‖𝑢(𝑡)‖0
2 + 2 ∫ ‖𝑢‖1

2(𝜏)𝑑𝜏
𝑡

0
= ‖𝑢0‖0

2 . 

 
Especially there is no evidence that the energy norm ‖𝑢(𝑡)‖1is bounded in case of space dimension 
𝑛 = 3. This is due to the fact that the right hand side of the corresponding a priori estimate 
 

1

2

𝑑

𝑑𝑡
‖𝑢‖2𝜎

2 + ‖𝑢‖2𝜎+1
2

1
≤ |(𝐴𝜎−1/2𝐵𝑢, 𝐴𝜎+1/2𝑢)|  ,  0 < 𝜎 ≤ 1/2 

 
depends on the space dimension. It holds 
 

(𝑣 ⋅ ∇𝑣, 𝑃Δ𝑣) ≤ 𝐶‖𝑣‖𝑞
2𝑞/(𝑞−𝑛)|𝑣|1.2

2 +
𝜈

2
‖𝑃Δ𝑣‖2

2    for all   𝑞 ∈ (𝑛,∞)  . 

 

The Gronwall inequality implies global boundedness in case of 𝑛 = 2.  
 
For  𝑛 ≥ 3 there is up to now no global boundedness result. 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



§2 Stokes operator, Hilbert scales and a priori estimates 
 

 
The content of this section is basically taken from [GiY]. With c  we denote numeric constants which 
may have different values at different places. 
 
Let 𝑃 be the orthogonal projection operator of (𝐿2(Ω))𝑛 onto the divergence free vector field Η𝜔 
consisting of all solenoidal vector functions u , i.e. the operator is an orthogonal projection onto the 
kernel of the divergence operator. It  is a Pseudo-Differential operator (PDO) of degree zero [(EsG]). 
The Stokes operator 𝐴 is a selfadjoint operator in 

 , being the Friedrichs extension of the non-

negative symmetric operator −𝑃Δ in Η𝜔 defined for all 𝑢 ∈ 𝐶2 with 𝑑𝑖𝑣𝑢 = 0 and 𝑢𝑛|∂Ω = 0. The 

Stokes operator enables the definition of a related Hilbert scale (𝛼 ∈ 𝑅) with corresponding norm 
([NiJ]) 
 

‖𝑢‖𝛼: = ‖𝐴𝛼/2𝑢‖  . 

 
Throughout this paper, if not explicitly mentioned, we assume 𝑝 = 2 and 𝑛 = 3 for (𝐿𝑝(Ω))𝑛. 

 
Using the Stokes operator and its related Hilbert scale framework the Navier-Stokes equations can be 
represented as an evolution equation in 

0H . Since 𝑃(𝑔𝑟𝑎𝑑𝑝) = 0 one gets  

 
𝐴𝑢 = 𝑃𝑓  in 𝐻0 . 

 
Putting 𝐵(𝑢): = 𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢) and assuming 𝑃𝑢0 = 𝑢0 the NSE initial-boundary equation is given by 
 

                          (*)                     
𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 + 𝐵𝑢 = 𝑃𝑓 , 𝑢(0) = 𝑢0. 

 
As 𝑢 is divergence free and 𝑢 ⋅ 𝑣 identically vanishes on ∂Ω one gets 
 

𝑏(𝑢, 𝑣, 𝑤): = ((𝑢, 𝑔𝑟𝑎𝑑)𝑣, 𝑤) = ∬ (𝑢, 𝑔𝑟𝑎𝑑)𝑣 ⋅ 𝑤𝑑𝑥 = −𝑏(𝑢, 𝑤, 𝑣)
Ω

 

 
and especially 𝑏(𝑢, 𝑣, 𝑣) = 0. 
 
The linear homogeneous part of (*) enables the definition of a semigroup generated by the Stokes 
operator which leads to the representations 
 

𝑢(𝑡) = 𝑒−𝑡𝑢0 + ∫ 𝑒−(𝑡−𝑠)𝐴𝑃𝑓(𝑠)𝑑𝑠 +
𝑡

0 ∫ 𝑒−(𝑡−𝑠)𝐴𝐵𝑢(𝑠)𝑑𝑠
𝑡

0
. 

 
Multiply u  to both sides of the homogeneous equation of (*) and integrate over Ω one gets  
 

(�̇�, 𝑢) + (𝐴𝑢, 𝑢) + (𝐵𝑢, 𝑢) = 0 , 𝑢(𝑥, 0) = 𝑢0. 
 

This yields 
 

𝑑

𝑑𝑡
‖𝑢‖2 + 2‖𝐴1/2𝑢‖

2
= 0   

 
respectively integrating over [0, 𝑡] 
 

 ‖𝑢(𝑡)‖0
2 + 2 ∫ ‖𝑢‖1

2(𝜏)𝑑𝜏
𝑡

0
= ‖𝑢0‖0

2 . 



A priori estimates for higher space derivatives of 𝑢 are derived by multiplying the homogeneous 
equation (*) with 𝐴2𝜎𝑢 leading to 
 

(
𝑑𝑢

𝑑𝑡
, 𝐴2𝜎𝑢) + (𝐴𝑢, 𝐴2𝜎𝑢) + (𝐵𝑢, 𝐴2𝜎𝑢) = 0 

 
resp. 
 

1

2

𝑑

𝑑𝑡
‖𝐴𝜎𝑢‖2 + ‖𝐴𝜎+1/2𝑢‖ + (𝐴𝜎−1/2𝐵𝑢, 𝐴𝜎+1/2𝑢) = 0 . 

 

Estimates of 𝐴𝜎−1/2𝐵𝑢 depend on the space dimension 𝑛, which is the root cause for the “still open 
NSE questions” for the space dimension 𝑛 = 3. The essential a priori estimates are e.g. given in [GiY] 
(see also appendix) 
 

  (**)         
1

2

𝑑

𝑑𝑡
‖𝑢‖1

2 + ‖𝑢‖2
2 ≅

1

2

𝑑

𝑑𝑡
‖𝐴1/2𝑢‖

2
+ ‖𝐴𝑢‖2 ≤ 𝑐 {

‖𝑢‖2‖𝐴1/2𝑢‖
4

‖𝐴1/2𝑢‖
6

≅
≅

‖𝑢‖0
2‖𝑢‖1

4

‖𝑢‖1
6

𝑛 = 2
𝑛 = 3

   . 

 

Putting  
 

𝑦(𝑡): = {
‖𝑢‖2𝜎

2

‖𝑢‖1
2

𝑛 = 2
𝑛 = 3

0 < 𝜎 < 1/2
 

 
one gets 
 

𝑦 ′(𝑡) ≤ 𝑐 ⋅ {
‖𝑢‖1

2 ⋅ 𝑦(𝑡)

‖𝑢‖1
6 ⋅ 𝑦3(𝑡)

𝑛 = 2
𝑛 = 3

 

 

For 𝑛 = 2 this leads to a global boundedness estimate in the form 
 

𝑧 ′(𝑡) ≤ 𝑐 ⋅ ‖𝑢‖1
2 ⋅ 𝑧(𝑡)    resp.    𝑧(𝑡) ≤ 𝑧(0) ⋅ 𝑒𝑐 ∫ ‖𝑢‖1

2(𝑠)𝑑𝑠
𝑡

0 . 

 

 
The special case 𝜎 = 1/2 lead also to a global estimate, based on an argument to be found e.g. in 
([TeR] 3.1). 
 

For 𝑛 = 3 every positive solution of 𝑦 ′(𝑡) = 𝑐𝑦3(𝑡) blows up, i.e. there is no global estimate by this 
method.  

 

 

 

 

 

 

 

 



§3 A global unique weak solution of the NS initial value problem 
 

 
Generalized functions on Hilbert spaces in combination with singular integral equations are 
successfully applied to problems of aerodynamics and electrodynamics ([LiL]). The corresponding 
framework is about Hilbert scales 𝐻(−𝛼) with negative scale factor−𝛼 < 0 with corresponding Ritz-
Galerkin approximation theory for Pseudo-Differential equations. In case of finite element 
approximation spaces this correlates to FEM resp. the BEM. The corresponding energy inner product 
with its related energy norm ‖𝑢‖1/2 corresponds to the extended Green formulas, based on J. 

Plemelj’s concept of an alternative normal derivative [PlJ]. Global and interior error estimates for the 
Ritz-Galerkin methods of Pseudo-Differential equations in the corresponding Hilbert space 
framework are e.g. provided in [BrK]. 
 
Hölder resp. Lipschitz spaces are the adequate ones in treating nonlinear elliptic problems. First a 
priori estimates and boundedness of the Ritz-Galerkin operator in Hölder resp. Lipschitz spaces for 
approximation spaces fulfilling the (AI) condition are given in [NiJ1].  
 
The singular integral operators defined by the single-layer logarithmic and the normal derivative of 
the double layer logarithmic potential are bounded and selfadjoint with respect to the Hilbert spaces 
𝐻(∓1/2) resp. bounded with respect to the corresponding Hölder spaces 𝐶0.𝛼,𝐶1.𝛼 , which are 
dense in those Hilbert spaces ([KrR]). In this sense there is a relationship between the spaces 
𝐻(−1/2) ≈ 𝐶0.𝛼and 𝐻(1/2) ≈ 𝐶1.𝛼. The regulatory results of single layer and double layer 
potentials with uniformly Hölder continuous densities can be extended to the three-dimensional case 
([CoD].  
 
In [ChF] a Nitsche-based domain decomposition method for the normal derivative of the double layer 
(hypersingular integral) operator equation has been analyzed. Due to the low regularity of the 
underlying energy space there is still the problem of non-existence of a well-posed continuous 
counterpart for the discrete BEM formulation. The approach below is closing this kind of “regularity 
gap” problem. 
 
The approach below (Hilbert scale framework defined by appropriate self-adjoint operator, Plemelj 
regularity electric & magnetic boundary data assumptions) can also be applied to the Maxwell initial-
boundary equations ([WeP], [WeP1]). In ([CoM] the corresponding BEM has been analyzed. 
 
The Stefan problem can be transformed to nonlinear initial-boundary problem for the heat equation 
in a fixed domain. In case the initial data fulfill certain compatibility conditions the solution is 
“regular” resulting in corresponding optimal FEM convergence. In case of non-regular initial value 
function the approach below can also be applied to improve the non-optimal finite element 
approximation convergence factor 𝛽 < 1 to the optimal factor 𝛽 = 1 ([NiJ2]). 
 
With respect to the Navier-Stokes vorticity equation we note that the Biot-Savart singular integral 

operator is a Pseudo-Differential operator of order 1−  (as 𝐴−1/2, see below). In [SaT] the spectral 
method is applied to analyze the related 1D -Constantin-Lax-Majda (CLM) equation with respect to 
the 𝐿2 = 𝐻0 −Hilbert space. A corresponding analysis with respect to any 𝐻(𝛼) Hilbert space is 
straight forward. 
 
As (𝐵𝑢, 𝑢) = 0, the nonlinear term of the NSE makes no contribution to the energy equality. Since 
the solution of the associated linearized equation is already as smooth as the data allow a solution of 
the nonlinear NSE cannot be expected to be smoother than the corresponding linearized equations. 
Based on this we shift the Hilbert scale framework of the weak NSE representation appropriately 
from 𝛼 = 0 to the left: 
 



multiplying the homogeneous equation (*) with 𝐴−1/2𝑢 leads to 
 

(�̇�, 𝑢)−1/2 + (𝐴𝑢, 𝑢)−1/2 + (𝐵𝑢, 𝑢)−1/2 = 0 . 

 

The corresponding generalized “energy” inequality is given by 
 

1

2

𝑑

𝑑𝑡
‖𝑢‖−1/2

2 + ‖𝑢‖1/2
2 ≤ |(𝐵𝑢, 𝑢)−1/2| ≤ ‖𝑢‖−1/2‖𝐵𝑢‖−1/2 ≅ ‖𝑢‖−1/2‖𝐴−1/4𝐵𝑢‖

0
. 

 
Applying lemma 3.2 of [GiY] (see also appendix and the original proof in [SoP]) with 𝑝 = 2 , 𝛿 = 1/4 
,𝜃: = 𝜌: = 1/2 fulfilling 
 

𝜃 + 𝜌 ≥
1

4
(𝑛 + 1) = 1 

 
it follows 
 

‖𝐴−𝛿𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢‖ ≤ 𝑐‖𝐴𝜃𝑢‖ ⋅ ‖𝐴𝜌𝑢‖ = 𝑐‖𝑢‖2𝜃 ⋅ ‖𝑢‖2𝜌 = 𝑐‖𝑢‖1
2  , 

 
resp.  

1

2

𝑑

𝑑𝑡
‖𝑢‖−1/2

2 + ‖𝑢‖1/2
2 ≤ |(𝐵𝑢, 𝑢)−1/2| ≤ 𝑐 ⋅ ‖𝑢‖−1/2‖𝑢‖1

2 

 
 

Putting  𝑦(𝑡): = ‖𝑢‖−1/2
2  one gets 

 

𝑦 ′(𝑡) ≤ 𝑐 ⋅ ‖𝑢‖1
2 ⋅ 𝑦1/2(𝑡)  

 

resulting into the a priori estimate 
 

‖𝑢(𝑡)‖−1/2 ≤ ‖𝑢(0)‖−1/2 + ∫ ‖𝑢‖1
2(𝑠)𝑑𝑠

𝑡

0
≤ 𝑐{‖𝑢0‖−1/2 + ‖𝑢0‖0

2}  

, 

which ensures global boundedness by the a priori energy estimate provided that 𝑢0 ∈ 𝐻0.   
 
By standard arguments the above estimate can be extended to the inhomogeneous case (*) based on 
corresponding shift theorems for the non-stationary Stokes operator (appendix) 
 

�̄�𝑤(𝑡): = �̇�(𝑡) + 𝐴𝑤(𝑡) 
 

     𝑤(0) = 0 
 

in the form 
 

|‖𝑡𝛽/2𝑤(𝑡)‖|
𝛼+2

2
≤ 𝑐|‖𝑡𝛽/2�̄�𝑤(𝑡)‖|

𝛼

2
    ,   𝛽 > −1 

 
whereby 
 

|‖𝑣(𝑡)‖|𝛼
2 : = ∫ ‖𝑣(𝑠)‖𝛼

2 𝑑𝑠
𝑡

0
  ,    𝛼 ∈ 𝑅. 

 
 
 
 
 



§4 NSE circulation modelling enabled by the Prandtl and a modified Stokes operators 

 

The solution concept for the proof in the previous section is built on the weak 𝐻(−1/2) −  

representation in the form 

(�̇�, 𝑢)−1/2 + (𝐴𝑢, 𝑢)−1/2 + (𝐵𝑢, 𝑢)−1/2 = 0 . 

 

From an application point of view there is still the boundary layer circulation modelling challenge 

which is due to the model restriction allowing only potential flows. The lift of an airfoil in inviscid flow 

requires circulation in the flow around the airfoil, but a single potential function that is continuous 

throughout the domain around the airfoil cannot represent a flow with non-zero circulation. 

Therefore potential flow theory requires special treatment and an additional assumption which was 

formulated first by L. Prandtl. 

For space dimension 𝑛 = 2 the concept of potential flows goes along with the concept of the 
Cauchy-Riemann differential equations. Those equations enable the definition of a complex function, 
by which the flow of an incompressible, vortex-free fluid can be modelled. In vector terminology this 
can be represented in the form 
 

∇ ⋅ �⃗� = 0, ∇ × �⃗� = 0. 
 

At the same time the Stokes (Leray-Hopf) operator is applied which is a projector from  

𝐿2 → 𝐿𝜎
2 : = {𝑣|𝑣 ∈ 𝐿2 ∧ 𝑑𝑖𝑣(𝑣) = 0} . 

 
enabling the related Hilbert scale theory analysis.  
 
In [RuC] a generalization of the Cauchy-Riemann differential equations for space dimension 𝑛 = 3 is 
proposed in the form 
 

∇ ⋅ �⃗� = 0   ,   (∇ × �⃗�) × �⃗� = (�⃗� ⋅ ∇)�⃗� − ∇(
�⃗⃗�⋅�⃗⃗�

2
) = 0 

 

which allows also vortex flows with certain vortex line conditions. Those are related to the NSE by 
the formula 

 

𝑢 ⋅ ∇𝑢 = (∇ × 𝑢) × 𝑢 + ∇(
𝑢⋅𝑢

2
) . 

 
Runge’s generalized 3D-Cauchy-Riemann differential equations are identical to the Cauchy-
Riemann’s differential equation for space dimension 𝑛 = 2, .e. when no vortex flow is required to be 
modelled.  
 
In [StE] a generalization of the Cauchy-Riemann equation for space dimensions 𝑛 ≥ 3 is given built 
on representations arising from the spherical harmonics in the context of representations of the 
rotation group. It adds mathematical complexity w/o new conceptual solution elements regarding 
the boundary layer “zero” velocity vs. the airfoil uplift modelling problem. Nevertheless is the 
rotation group aspect an important one. We note in this context with respect to our proposal that 
also the Riesz operators are rotation invariant. 
 



The term (�⃗� ⋅ ∇)�⃗� is concerned with how the divergence affects the velocity (when a river converges, 
the narrowing acts like a funnel, and the overall velocity of the flow increases. Conversely, of the 
river diverges, the particles spread out, and the overall speed of the flow decreases). The term ∇𝑝 
is concerned with the gradient of the pressure of the medium (the shear stress forces) which is an 
acceleration term. It therefore relates to the initial and boundary wall values of the velocity.  
 
Our first proposal alternatively to today’s NSE weak analysis approach is concerned with the range of 
the Stokes operator: we propose a smaller range for the 3D Stokes operator in the form 
 

Λ: 𝐿2 → 𝐿𝜎
2 : = {𝑣|𝑣 ∈ 𝐿2 ∧ 𝑑𝑖𝑣(𝑣) = 0 ∧ (∇ × 𝑣) × 𝑣 = 0}. 

 
Our second proposal alternatively to today’s NSE weak modelling and analysis  is concerned with the 
construction of the weak 𝐻(−1/2) −  representation above (multiplying the homogeneous equation 

(*) with uA 2/1− ) we propose the following second modification. In order take the boundary behavior 

of vortex flow into account we suggest an alternative multiplication with ∏ : 𝐻−1/2 → 𝐻1/2
−1 , 

whereby   denotes the Prandtl operator. It is defined by the Neumann problem in the following 
way: 
 
For a closed connected surface 𝑆 ⊂ 𝑅3 one considers the harmonic function (i.e. Δ𝑢 = Δ(∏(𝑣)) = 0) 
 

(*)   𝑢(𝑥): = ∏(𝑣)(𝑥): =
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥−𝑦|2𝑆
𝑑𝑆𝑦    ,     

 

whereby 𝜙𝑥𝑦 is the angle between the vector |𝑥 − 𝑦| and the normal 𝑛𝑦 to the surface  at the point 

𝑦and 𝑣(𝑦) is the density of the double layer potential. One can seek the solution of the Neumann 
boundary value problem  
 

                                                                        Δ𝑢 = 0  in𝑅3 − 𝑆 

  
∂𝑢

∂𝑛
= 𝑓  on𝑆 

 
as the double layer potential in the form 𝑢 = ∏(𝑣), whereby the unknown function 𝑣(𝑦) is obtained 
by the equation 
 

∏(𝑣) = 𝑓. 
 
 
From [LiI] (and subsequently from [BrK2]) we recall the 
 
Theorem: The Prandtl operator ∏: 𝐻1/2 → 𝐻−1/2 is bounded and coercive, the range 𝑅(∏) =

𝐻1(𝑅3 − 𝑆) (e.g. the velocity space of the airplane) and the exterior Neumann problem admit one 
and only on generalized solution. 
 
 

 

 

 

 



The usage of the Prandtl operator goes along with the current challenges of the representation of the 

NSE pressure 𝑝 as a solution of the Neumann problem. In the following we give some further details 

on the above. 

The initial boundary value problem of the three dimensional Navier-Stokes equations is given by 
 

                                                      ∂𝑡𝑢 − Δ𝑢 + (𝑢 ⋅ ∇)𝑢 = −∇𝑝 + 𝑓   in  Ω × (0, 𝑇) 
                    𝑑𝑖𝑣(𝑢) = 0                in  Ω × (0, 𝑇) 
                    𝑢(𝑥, 0) = 𝑢0(𝑥) ,     𝑥 ∈ Ω 
                    𝑢(𝑥, 𝑡) = 𝑢1(𝑥, 𝑡) ,  (𝑥, 𝑡) ∈ ∂Ω × (0, 𝑇). 
 

With respect to the proposed weak 𝐻(−1/2) − representation of this paper we note that 
 

−(Δ𝑢, 𝑣)−1/2 + (∇𝑝, 𝑣)−1/2 ≅ (∇𝑢, ∇𝑣)−1/2 + (∇𝑝, 𝑣)−1/2 ≅ (𝑢, 𝑣)1/2 + (𝑝, 𝑣)0. 

 
The pressure 𝑝 can be expressed in terms of the velocity by the formula 
 

          𝑝 = − ∑ 𝑅𝑗𝑅𝑘(𝑢𝑗𝑢𝑘)3
𝑗,𝑘=1  

 

where (𝑅1, 𝑅2, 𝑅3) is the Riesz transform. The Leray-Hopf projector is the matrix valued Fourier 
multiplier given by 
 

𝑃(𝜉) = 𝐼𝑑 −
𝜉⊗𝜉

|𝜉|2 = (𝛿𝑗𝑘 −
𝜉𝑗𝜉𝑘

|𝜉|2 )1≤𝑗,𝑘≤𝑛    ,  𝑃 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑄 

 

whereby Q  is an orthogonal projector, i.e. it holds 𝑄: = 𝑅 ⊗ 𝑅 = (𝑅𝑗𝑅𝑘)1≤𝑗,𝑘≤1 = 𝑄2 . 
 

As a result the Leray-Hopf operator 
 

𝑃 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑄 = 𝐼𝑑 −
𝐷 ⊗ 𝐷

𝐷2
𝐼𝑑 − Δ−1(∇ × ∇) 

 

is also an orthogonal projection . We note that under rotation in nR , the Riesz operators transform 
in the same manner as the components of a vector ([SteE1] III, 1.2). 
 

The initial boundary value problem determines the initial pressure )(0 xp  by the Neumann problem  

 
Δ𝑝0 = (𝑓0 − 𝑢0 ⋅ ∇𝑢0                        in  Ω 

 
∂𝑝0

∂𝑛
= [Δ𝑢0 − 𝑢0 ⋅ ∇)𝑢0 + 𝑓0] ⋅ 𝑛   at ∂Ω 

 
with𝑓0: = 𝑙𝑖𝑚

𝑡→0
𝑓(⋅, 𝑡). Applying formally the div-operator to the classical NSE the pressure field must 

satisfy the following Neumann problem ([GaG]) 

 
Δ𝑝 = (𝑢 ⋅ ∇)𝑢 − 𝑓                     in  Ω 
 
∂𝑝

∂𝑛
= [Δ𝑢 − (𝑢 ⋅ ∇)𝑢 + 𝑓] ⋅ 𝑛   at  ∂Ω 

 

where 𝑛 denotes the outward unit normal to ∂Ω. As it holds that 
 

                      [Δ𝑢 − (𝑢 ⋅ ∇)𝑢 + 𝑓] ⋅ 𝑛|∂Ω   →   [Δ𝑢0 − (𝑢⋅0∇)𝑢0 + 𝑓0] ⋅ 𝑛|∂Ω  in 𝐻−1/2(∂Ω) 

and 
                                    ∇ ⋅ [𝑓 − 𝑢 ⋅ ∇)𝑢]|∂Ω  →    ∇ ⋅ [𝑓0 − 𝑢0 ⋅ ∇)𝑢0]|∂Ω       in 𝐻−1/2(∂Ω) 

 



the pressure 𝑝 tends to𝑝0in the sense that 
 

‖∇(𝑝(⋅, 𝑡) − 𝑝0‖ → 0 as 𝑡 → 0. 
 

From this it follows that in this framework the prescription of the pressure at the boundary walls or 
at the initial time independently of u , could be incompatible with and, therefore, could retender the 
problem ill-posed. 
 
From [HeJ] we recall the counter example that there exists 𝑢0 ∈ {𝑣 ∈ 𝐿2|𝑑𝑖𝑣(𝑣) = 0} with 
 

𝑙𝑖𝑚𝑠𝑢𝑝
𝑡→0

‖𝑝(𝑡)‖𝐿2(Ω)/𝑅 = ∞. 

 

As a consequence of the alternative 𝐻(1/2) − (energy) Hilbert space there is a reduced requirement 
to the limit 𝑝(⋅, 𝑡) → 𝑝0 as 𝑡 → 0 in the form 
 

‖∇(𝑝(⋅, 𝑡) − 𝑝0)‖−1/2 ≅ ‖𝑝(⋅, 𝑡) − 𝑝0‖1/2 → 0 as 𝑡 → 0. 
 

Multiplying  

∂𝑡𝑢 − Δ𝑢 +
1

2
Λ(∇(𝑢 ⋅ 𝑢)) = −∇𝑝 + 𝑓 

 

by Δ−1/2𝑢 (or by Π−1𝑢) leads to  
 

∂𝑡‖𝑢‖−1/2
2 + 2‖𝑢‖1/2

2 + (Λ(∇(𝑢 ⋅ 𝑢), 𝑢))−1/2 

 
whereby the later term defines a term in the form 
 

(Λ(∇(𝑢 ⋅ 𝑢), 𝑢))−1/2 ≈ (Λ((𝑢 ⋅ 𝑢), 𝑢))0. 

 
As a consequence the weak representation can be handled as a quasi-linear partial differential 
equation applying monotone operator theory. With respect to the pressure term multiplying by  

Π−1𝑢 ∈ 𝐻1/2 gives 
 

(∇𝑝, Π−1𝑢)0 ≅ (𝑝, 𝑢)0 
 

whereby the term is governed by  
 

(𝑝, 𝑢)0 ≤ ‖𝑝‖−1/2 ⋅ ‖𝑢‖1/2. 

 
The answer for the motion of a fluid in an infinite space (𝑥 ∈ 𝑅3) such that it vanishes at infinity is 
given by the Helmholtz-Hodge decomposition. It is determined when one knows the values 𝑑𝑖𝑣(𝑣) =
∇ ⋅ 𝑣 and 𝑐𝑢𝑟𝑙(𝑣) = ∇ × 𝑣. If the motion of a fluid is limited to a simple connected region Ω ⊂ 𝑅3 
with boundary ∂Ω , it is determined if 𝑑𝑖𝑣(𝑣), 𝑐𝑢𝑟𝑙(𝑣) and therefore the value of the flow normal to 
the boundary ∂𝑣/ ∂𝑛 for 𝑥 ∈ ∂Ω are known.  
 
There is a related inverse Helmholtz-Hodge decomposition statement that a given vector field can be 
decomposed into its divergence-free (incompressible) and curl-free (irrotational) components, i.e. a 
vector field 𝑣: 𝑅3 → 𝑅3  can be expressed as a sum of the gradient of a scalar potential and the curl 
of a vector potential in the form curlBAv += with 
 

𝐴(𝑥) = −
1

4𝜋
∫

𝑑𝑖𝑣(𝑣)(𝑦)

|𝑥−𝑦|
𝑑𝑦    ,  𝐵(𝑥) =

1

4𝜋
∫

𝑐𝑢𝑟𝑙(𝑣)(𝑦)

|𝑥−𝑦|
𝑑𝑦 

 
whereby  𝑐𝑢𝑟𝑙(𝑔𝑟𝑎𝑑)(𝐴)) = 𝑑𝑖𝑣(𝑐𝑢𝑟𝑙(𝐵)) = 0. 



§5 A simple one-dimensional turbulent flow model  
based on the revisited CLM vorticity equation with viscosity term 

 
 
[FaM1] “The definition of the appropriate “object” that composes a turbulent field is still missing. It 
would enable the study how turbulent dynamics transports these space-scale “atoms”, distorts them, 
and exchanges their energy during the flow evolution. If the appropriate “object” has been defined 
that composes a turbulent field it would enable the study how turbulent dynamics transports these 
space-scale “atoms”, distorts them, and exchanges their energy during the flow evolution. …  
 
…The notion of “local spectrum” is antinomic and paradoxical when we consider the spectrum as 
decomposition in terms of wave numbers for as they cannot be defined locally. Therefore a “local 
Fourier spectrum” is nonsensical because, either it is non-Fourier, or it is nonlocal. There is no paradox 
if instead we think in terms of scales rather than wave numbers. Using wavelet transform then there 
can be a space-scale energy be defined with a correspondingly defined scale decomposition in the 
vicinity of location x and a correspondingly defined local wavelet energy spectrum.  By integration this 
defines a local energy density and a global wavelet energy spectrum. The global wavelet spectrum 
can be expressed in terms of Fourier energy spectrum. It shows that the global wavelet energy 
spectrum corresponds to the Fourier spectrum smoothed by the wavelet spectrum at each scale. … 
  
… The concept enables the definition of a space-scale Reynolds number, where the average velocity is 
being replaced by the characteristics root mean square velocity ),Re( xl at scale l and location x. At 

large scale (i.e. Ll  ) )Re(L coincides with the usual large-scale Reynolds number, where  )Re(L  is 

defined as  
 

𝑅𝑒( 𝐿) = ∬ 𝑅𝑒( 𝐿, 𝑥)𝑑𝑥
𝑅𝑛 .  “ 

 
Based on the re-revisited generalized CLM equation ([MaA] 5.2) with viscosity term we propose a 
turbulent flow model which allows non-stationary random functions with finite variance and related 
spectrum ([FrU] (4.54)) with respect to the −2/1H energy norm. The modification of current 

“revisited CLM proposals” is identical to the alternatively proposed auxiliary function definition of 
𝑣 = 𝐻[𝑢] = 𝐴[𝑢𝑥]in §6 “Stefan problem”. The model allows an wavelet synthesis according to 
[FaM], [FaM1] in a 𝐻−1/2 −wavelet framework. 

   
In [SaT1] for periodic boundary conditions the Fourier (spectral) representation of the non-linear 
term 𝜔𝐻[𝜔] = 𝜔𝐴[𝜔𝑥], whereby   denotes the vorticity and 𝐻 the Hilbert transform operator.  
  
If the solution of the Euler equation is smooth then the solution to the slightly viscous NSE with same 
initial data is also smooth. Adding diffusion to the CLM model it makes the solution less regular 
[MuA]. As a consequence of this the CLM model lost most of the interest in the context of NSE 
analysis. In [MuA] a nonlocal diffusion term is proposed removing this drawback. The modification 
goes along with a reduced regularity of the “dissipation” term resulting in a reduced “energy” Hilbert 
scale of Hilbert scale factor −1/2. As this modification did not modify in same manner the non-linear 
term this leads to an unbalanced energy equation. As the non-linear term governs the dissipative 
term in case of turbulence, this is an argument to reject current revisited CLM model with viscosity 
term [DeS], [MuA], [OkH], [SaT], [SaT1]. At the same time those suggested modifications being 
applied in same manner  to the linear term would fit to the Stieltjes integral based Kolmogorov 
theory [ShA], as well as to the conceptual idea of this paper (i.e. an 𝐻1/2 − energy inner product 

enabling an energy inequality which does not exclude any information from the non-linear term). 
Combining both conceptual ideas provides a functional analytical common framework ([BrK], [BrK3]) 
for a statistical fluid mechanics theory [MoA],  statistics of gases and highly turbulent fluid flows 
[HoE].  



 

The building concept of the revisited generalized CLM model is therefore as follows: we consider 
periodic boundary condition and assume that the initial condition of   is symmetric with respect to 
the origin ([SaT1]). We propose a weak  𝐻−1/2 − variation representation of the extended Schochet-

CLM model ([ScS]) in the form  
 

(�̇�, 𝑣)−1/2 − 𝜀(𝜔𝑥𝑥 , 𝑣)−1/2 = (𝜔𝐻[𝜔], 𝑣)−1/2 , ∀𝑣 ∈ 𝐻−1/2. 
 

With the notation of [BrK] this representation is equivalent to 
 

(𝐴�̇�, 𝑣)0 + 𝜀(𝐻[𝜔], 𝑣)1/2 = (𝐴[𝜔𝐻[𝜔]], 𝑣)0 , ∀𝑣 = 𝐻[𝑤] ∈ 𝐻−1/2. 
 

Taken into account that the Hilbert transform is an isometry on all Hilbert scales and that 𝐻2[𝑣] =
−𝑣 and putting 𝜔𝐻: = 𝐻[𝜔] this can be reformulation in the form 
 

(�̇�𝐻 , 𝑤)−1/2 + 𝜀(𝜔, 𝑤)1/2 = (𝐻[𝜔𝐻[𝜔]], 𝑤)−1/2 , ∀𝑤 ∈ 𝐻−1/2. 
 

From [MaA] we recall the identity 
 

2𝐻[𝜔𝐻[𝜔]] = 𝜔𝐻
2 − 𝜔2 

 
leading to  
 

(�̇�𝐻 − 𝜀𝜔′, 𝑤)−1/2 =
1

2
(𝜔𝐻

2 − 𝜔2, 𝑤)−1/2 , ∀𝑤 ∈ 𝐻−1/2. 

 

The left hand side of the variation representations above is reflecting to current revisited proposals 
of the CLM model, while now the right hand side of the variation equation shows a modified non-
linear CLM model operator (as the domain has changed). 
 

The spectral method analysis of the equation follows the same way as in ([SaT1]) leading to: 
 

�̇�𝑛 ≈ 𝑛(𝜀𝜔𝑛 + ∑ 𝜔𝑘𝜔𝑛−𝑘
𝑛−1
𝑘=1 )    ,   𝜔𝑛(0) =

𝐴𝑛

2
 

 

whereby 
 

𝜔(𝑥, 0) = ∑ 𝐴𝑛 𝑠𝑖𝑛( 𝑛𝑥)∞
1 . 

 

The spectral analysis above is also linked to the solution framework of [BrK3]. The Hilbert transform 
of the Gaussian is the Dawson function, which is norm equivalent to the Gaussian due to the related 
property of the Hilbert transform. Therefore a Dawson basis function based Hilbert space framework 
enables an alternative statistical hydromechanics. 
 

[FaM]: “The turbulent regime develops when the non-linear term of the NSE strongly dominates the 
linear term. Superposition principle holds no more for non-linear phenomena. Therefore turbulent 
flows cannot be decomposed as a sum of independent subsystems that can be separately studied. A 
wavelet representation allows analyzing the dynamics in both space and scale, retaining those 
degrees of freedom which are essential to compute the flow evolution”. 
 

[MeM] “Methods based on wavelet (Galerkin) expansions in L(2) framework face the issue that in 
Galerkin methods the degrees of freedom are the expansion coefficients of a set of basis functions 
and these expansion coefficients are not in physical space (means in wavelet space). First map 
wavelet space to physical space, compute non-linear term in physical space and then back to wavelet 
space, is not very practical”. 
 



The )cot(  (with its distributional Fourier series representation) and the first derivative of the 

Dawson function are proposed candidates for a wavelet as element of 𝐻−1/2 − 𝐻0. The Hilbert 

transform is an isomorphism on any Hilbert scale𝐻𝛽. Therefore the Hilbert transformed 𝑐𝑜𝑡( ∘) is a 

wavelet, as well ([WeJ]). 
 

Following the concept of [FaM] the turbulent 𝐻−1/2-signal can be split into two contributions: 

coherent bursts, corresponding to that part of the signal which can be compressed in a 𝐻0-wavelet 
basis, plus incoherent noise, corresponding to that part of the signal which cannot be compressed in 
a  𝐻0-wavelet basis, but in the 𝐻−1/2-wavelet basis. For the 𝑛 = 1 periodic case the later one 

corresponds to the alternative zero-state energy model of the harmonic quantum oscillator.  
 

We note from [ShA] that a homogenous random field is a stationary process 𝑋(𝑠) with the 
correlation function 𝑅(𝑡) = 𝐸𝑋(𝑠 + 𝑡)𝑋(𝑠) of the process 𝑋. Ist spectral (Stieltjes integral) 
representation based on a finite spectral measure F  (spectral distribution function) with "spectral 
density" 𝑑𝐹 , where 𝑑𝐹(𝑘) is the contribution to the "energy" of the harmonics whose frequencies 
are within the interval (𝑘, 𝑘 + 𝑑𝑘). 𝐹(𝑘) is characterized by the properties "symmetry" (𝑑𝐹(−𝑘) =
𝑑𝐹(𝑘), "monotonicity" (𝐹(𝑘) ≤ 𝐹(𝑙) for 𝑘 ≤ 𝑙), 𝑅(0) "boundedness"). If 𝑋 is a real-valued process, 
then the spectral "function" is symmetric with respect to the point 𝑘 = 0. As a consequence for 
𝐺(𝑘) = 𝐹(𝑘) − 𝐹(−𝑘) the correlation function 𝑅(𝑡) is given by  
 

𝑅(𝑡) = ∫ 𝑐𝑜𝑠( 𝜆𝑡)𝐺(𝑑𝜆)
∞

0
. 

 

This corresponds to a purely cos-Fourier series representation which is given by the Hilbert 
transformed 𝑐𝑜𝑡( ∘). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



§6 Optimal finite element approximation estimates for 
non-linear parabolic problems with  

not regular initial value data 
 
 

In [BrK1] optimal finite element approximation estimates for non-linear parabolic problems with not 

regular initial value data are prove. The proof is based on same 𝐻(1/2) − energy Hilbert space 

concept as above in the following way: 

The free boundary Stefan problem with its solution 𝑈(𝑦, 𝜏) can be transformed into the non-linear 
parabolic equation ([NiJ1]) looking for a solution 𝑢(𝑥, 𝑡) = 𝑈(𝑦, 𝜏) fulfilling   
 

                     �̇�(𝑦, 𝜏) − 𝑢″(𝑥, 𝑡) + 𝑥𝑢′(1, 𝑡)𝑢′ = 0     in 𝑄 = {(𝑥, 𝑡)|𝑥 ∈ (0,1),0 < 𝑡 ≤ 𝑇} 
 

                                                       𝑢′(0, 𝑡) = 𝑢(1, 𝑡) = 0        for 𝑡 > 0 
 

                                                                𝑢(𝑥, 0) = 𝑓(𝑥)  for 𝑥 ∈ (0,1) . 
 
The proposed variation problem is given in the form 
 

𝑃𝑣 : find 𝑣 ∈ �̇�1/2 with 

(�̇�, 𝑤)−1/2 + (𝑣 ′, 𝑤 ′)−1/2 = 𝑣(1)(𝐻𝑣, 𝑤)0  for 𝑤 ∈ �̇�1/2  and  𝑡 > 0    

 

                                   (𝑣(⋅ ,0), 𝑤)−1/2 = (𝑓 ′, 𝑤)−1/2 = (𝑓, 𝑤)0                   for 𝑤 ∈ �̇�1/2  and  𝑡 = 0. 

 
The corresponding Galerkin approximation is given by 
 

𝑃𝑣ℎ
: find 𝑣ℎ ∈ 𝑆ℎ ⊂ �̇�1/2 (𝑣ℎ(1): = 𝑣ℎ(1, 𝑡))  with 

 

(�̇�ℎ , 𝜒)−1/2 + (𝑣ℎ , 𝜒)1/2 = 𝑣ℎ(1)(𝐻𝑣ℎ , 𝜒)0   for 𝜒 ∈ 𝑆ℎ ⊂ �̇�1/2  and  𝑡 > 0  

 

               (𝑣ℎ(⋅ ,0), 𝜒)−1/2 = (𝑓, 𝜒)0                  for 𝜒 ∈ 𝑆ℎ ⊂ �̇�1/2  and  𝑡 = 0. 

 

The reduced Hilbert scale “regularity” requirements enable optimal finite element 

approximation estimates for not regular initial value data in the form: 

Theorem: The problem 𝑃𝑣 has an unique bounded solution 𝑣 ∈ 𝐻1/2and an unique (linear splines) 

finite element approximation 𝑣ℎ of problem 𝑃𝑣ℎ
 in the neighborhood of 𝑣 with optimal order of 

convergence 
 

‖𝑢 − 𝑢ℎ‖𝐿∞(0,𝑡);𝐿∞) ≤ 𝑂(ℎ). 

 

 

 

 

 



Appendix 

 

From [GaG] we recall the Navier-Stokes initial-boundary representation in the form 
 

 (**)   
𝑑𝑣

𝑑𝑡
− Δ𝑣 + (𝑣, 𝑔𝑟𝑎𝑑)𝑣) + 𝑔𝑟𝑎𝑑𝑝 = 𝑓  

 
𝑑𝑖𝑣𝑣 = 0,   0=


v  , 𝑣|𝑡=0 = 𝑣0. 

 
We note that for 𝑑𝑖𝑣𝑣 = ∇ ⋅ 𝑣 = 0 it holds (𝑣, 𝑔𝑟𝑎𝑑)𝑣) = (𝑣 ⋅ ∇)𝑣 = ∇ ⋅ (𝑣 ⊗ 𝑣).  
 
By formally dot-multiply through both sides of  (**) above with 𝑓 ≡ 0 by 𝑣, integrate by parts over Ω 
and take into account Green formula one obtains 
 

1

2

𝑑

𝑑𝑡
‖𝑣(𝑡)‖2

2 + 𝜈|𝑣(𝑡)|1.2
2 = 0 

 
Integrating this from 𝑠 ≥ 0, 𝑡 ≥ 𝑠 one obtains the so-called energy equation 
 

‖𝑣(𝑡)‖2
2 + 2𝜈 ∫ |𝑣(𝜌)|1.2

2 𝑑𝜌
𝑡

𝑠
= ‖𝑣(𝑠)‖2

2  ,  0 ≤ 𝑠 ≤ 𝑡 

 
As it holds (𝑣 ⋅ ∇𝑣, 𝑣) = 0 the non-linear term 𝑣 ⋅ ∇𝑣 does not give any contribution to the energy 
equation. From the equations 
 

(
∂𝑣

∂𝑡
, 𝑃Δ𝑣) = (

∂𝑣

∂𝑡
, Δ𝑣) = −

1

2

𝑑

𝑑𝑡
|𝑣|1.2

2  

 

(
∂𝑣

∂𝑡
, 𝑃Δ𝑣) = 0 

 
it follows 

1

2

𝑑

𝑑𝑡
|𝑣|1.2

2 + 𝜈‖𝑃Δ𝑣‖2
2 = (𝑣 ⋅ ∇𝑣, 𝑃Δ𝑣) ≠ 0 

 
There is a loss of regularity if two (scalar) functions 𝑓 and 𝑔 are in 𝐻1 , their product 𝑓 ⋅ 𝑔 only 
belongs to 𝐻1/2 and their derivative ∂(𝑓𝑔)  is even less regular as it belongs to 𝐻−1/2. This is the root 

cause of some (positive) regularization effects by the heat semi-group 𝑆(𝑡) and the loss of regularity 
that comes from the differential (grad-) operator ∇and from the pointwise multiplication𝑣 ⊗ 𝑢of the 
non-linear bilinear operator 
 

𝐵(𝑣, 𝑢)(𝑡): = − ∫ 𝑒−(𝑠−𝑡)Δ𝑃∇ ⋅ (𝑣 ⊗ 𝑢)(𝑠)𝑑𝑠
𝑡

0
 . 

 
The estimate of the non-linear term is highly depending from the space dimension. It holds ([GaG]) 
 

(𝑣 ⋅ ∇𝑣, 𝑃Δ𝑣) ≤ 𝐶‖𝑣‖𝑞
2𝑞/(𝑞−𝑛)|𝑣|1.2

2 +
𝜈

2
‖𝑃Δ𝑣‖2

2    for all   𝑞 ∈ (𝑛,∞)  . 

 
From the Sobolev embedding theorems and properties of the projection operator 𝑃 ([GaG]) one gets 
the a priori estimates 
 

1

2

𝑑

𝑑𝑡
|𝑣(𝑡)|1.2

2 +
𝜈

2
‖𝑃Δ𝑣‖2

2 ≤ {
𝑐3‖𝑣‖2

2|𝑣|1.2
4

𝑐4|𝑣|1.2
6

,
,

𝑛 = 2
𝑛 = 3

  . 



From [GiY] we recall the corresponding fundamental 
  
Lemma 3.2 ([GiY]):  let 0 ≤ 𝛿 < 1/2 + 𝑛 ⋅ (1 − 1/𝑝)/2. We have 
 

|𝐴−𝛿𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑣|
𝑝

≤ 𝑀 ⋅ |𝐴𝜃𝑢|
𝑝

⋅ |𝐴𝜌𝑢|𝑝 

 
with a constant 𝑀: = 𝑀(𝛿, 𝜃, 𝜌, 𝑝) if 𝛿 + 𝜃 + 𝜌 ≥ 𝑛/2𝑝 + +1/2, 𝜃, 𝜌 > 0, 𝜃 + 𝜌 > 1/2. 
 
 
Example ([GiY]): when 𝑝 = 𝑛 = 2, one gets 
 

|𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑣| ≤ 𝐶 ⋅ |𝑢|1/2 ⋅ |𝐴1/2𝑢|
1/2

⋅ |𝐴1/2𝑣|
1/2

⋅ |𝐴𝑣|1/2 . 

 
 
 
Stokes operator ([SoH]), IV15:   Let Ω ⊆ 𝑅𝑛 (𝑛 ≥ 2) denote an arbitrary domain and  
 

𝐴 = ∫ 𝜆𝑑𝐸𝜆

∞

0

 

 
the Stokes operator of Ω. Then the fractional powers  
 

𝐴𝛼 = ∫ 𝜆𝛼𝑑𝐸𝜆
∞

0
  , −1 ≤ 𝛼 ≤ 1 

 
are positive selfadjoint operators, and each operator 𝑆(𝑡) of the Stokes semigroup family  
 

{𝑆(𝑡): = 𝑒−𝑡𝐴: = ∫ 𝑒−𝑡𝜆𝑑𝐸𝜆

∞

0

|𝜆 ≥ 0, 𝑡 ≥ 0} 

 
 is bounded everywhere defined and positive selfadjoint in the Hilbert space 𝐿𝜎

2 (Ω).  
 
For the orthogonal set {𝑤𝑖, 𝜆𝑖} of eigenpairs of the non-stationary Stokes operator  
 

�̄�: = �̇� + 𝐴𝑤 = 𝑓 ,  𝑤(0) = 0 ,  𝜏 ∈ [0, 𝑡] 
 

one gets 
 

𝑤𝑖(𝜏) = ∫ 𝑒−𝜆𝑖(𝜏−𝑠)𝜏

0
𝑓𝑖(𝑠)𝑑𝑠 . 

 
By changing the order of integration it follows for 𝛽 > −1 
 

∫ 𝜏𝛽𝑤𝑖
2(𝜏)𝑑𝜏

𝑡

0

≤ ∫ [∫ 𝑒−𝜆𝑖(𝜏−𝑠)
𝜏

0

𝑑𝑠] [∫ 𝑠𝛽𝑒−𝜆𝑖(𝜏−𝑠)
𝜏

0

𝑓𝑖
2(𝑠)𝑑𝑠] 𝑑𝜏

𝑡

0

 

 

≤ 𝜆𝑖
−1 ∫ 𝑠𝛽𝑓𝑖

2(𝑠) [∫ 𝑒−𝜆𝑖(𝜏−𝑠)𝑡

𝜏
𝑑𝜏] 𝑑𝑠 ≤

𝑡

0
𝜆𝑖

−2 ∫ 𝑠𝛽𝑓𝑖
2(𝑠)𝑑𝑠

𝑡

0
 . 

 

From this one gets 
 

|‖𝑡𝛽/2𝑤(𝑡)‖|
𝛼+2

2
≤ 𝑐|‖𝑡𝛽/2�̄�𝑤(𝑡)‖|

𝛼

2
 . 

 



 

For 𝑢0 ∈ 𝐿𝜎
2 (Ω) the function 𝑢: [0, ∞) → 𝐿𝜎

2 (Ω) defined by 𝑢(𝑡): = 𝑆(𝑡)𝑢0 has the following 
properties: 
 

i) 𝑢(𝑡) is strongly continuous for 𝑡 ≥ 0,  𝑢(0) = 𝑢0 
 

ii) 𝑢′(𝑡) = 𝑠 − 𝑙𝑖𝑚
𝛿→0

1

𝛿
(𝑢(𝑡 + 𝛿) − 𝑢(𝑡)) for 𝑡 > 0 

 

iii) 𝑢(𝑡) ∈ 𝐷(𝐴) and 𝑢′(𝑡) + 𝐴𝑢(𝑡) = 0 
 

iv) If 𝑢0 ∈ 𝐷(𝐴) then 𝑢′(0) = 𝑠 − 𝑙𝑖𝑚
𝛿→0

1

𝛿
(𝑢(𝛿) − 𝑢(0)) exists and 𝑢′(0) + 𝐴𝑢(0) = 0 

 

v) For all 𝑡 ≥ 0 it holds ‖𝑢(𝑡)‖2 ≤ ‖𝑢0‖2  and 𝑠 − 𝑙𝑖𝑚
𝛿→0

𝑢(𝑡) = 0. 

 
 
From [PlJ] I, §5, §8, we quote:  
 

“Bisher war es üblich für das Potential 𝑉(𝑝) die Form 
 

− ∫ 𝑙𝑜𝑔( 𝑟𝑝𝑠)𝜇′(𝑠)𝑑𝑠 

 

vorauszusetzen, wobei dann 𝜇′(𝑠) die Massendichtigkeit der Belegung genannt wurde. Eine solche 
Annahme erweist sich aber als eine derart folgenschwere Einschränkung, daß dadurch dem Potentiale 
𝑉(𝑝) der größte Teil seiner Leistungsfähigkeit genommen wird. Für tiefergehende Untersuchungen 
erweist sich das Potential  𝑉 nur in der (Stieltjes integral-) Form 
 

𝑉(𝑝) = − ∫ 𝑙𝑜𝑔( 𝑟𝑝𝑠)𝑑𝜇𝑠 

 

verwendbar. Die infinitesimale Größe 𝑑𝜇𝑠 kann man dann das Massenelement nennen, von 
Massendichtigkeit wird man aber nur dann sprechen können, wenn der Differentialquotient    
 

𝑑𝜇𝑠

𝑑𝑠
= 𝜇′(𝑠) 

 

besteht.“   
 
The concept leads to generalized Green formula, based on a generalized normal derivative definition, 
which is basically about reduced regularity assumptions, i.e. there is no existence necessary of 
certain limits of the normal derivatives into the normal direction at the boundary. 
 
“Es handelt sich um eine Verallgemeinerung, wie es die Erweiterung differentiierbarer Funktionen auf 
die stetigen ist.“ 
 
 
 
 
 
 
 
 
 
 



References 

[BrK] Braun K., Interior Error Estimates of the Ritz Method for Pseudo-Differential Equations, Japan J. 

Appl. Math., 3 (1986), 59-72 

[BrK1] Braun K., Optimal finite element approximation estimates for non-linear parabolic problems 

with not regular initial value data, http://www.navier-stokes-equations.com 

[BrK2] Braun K.,The Prandtl (hyper singular integral) operator with double layer potential, 

http://www.navier-stokes-equations.com 

[BrK3] Braun K., A Kummer function based Zeta function theory to prove the Riemann Hypothesis, 

http://www.riemann-hypothesis.de 

[CaM] Cannone M., Harmonic Analysis Tools for Solving the Incompressible Navier-Stokes Equations, 

Handbook of Mathematical Fluid Dynamics, vol 3, eds. S. Friedlander and D. Serre, Elsevier, 2003 

[ChF] Chouly F., Heuer N., A Nitsche-based domain decomposition method for hypersingular integral 

equations,  Numer. Math.  121 (2012) 705-729 

[CoD] Colton D, Kress R., Integral equation methods in scattering theory, Wiley, New York, 1983, 

Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, 1989 

[CoM] Costabel M., A Coercive Bilinear Form for Maxwell’s Equations, J. Math. Anal. Appl. 157, 2 

(1991) 527-541 

[DeS] De Gregorio S., On a One-Dimensional Model for the Three-Dimensional Vorticity Equation, J. 

Stat. Phys., 59, 1251-1263, 1990 

[EsG] Eskin G., Boundary Value Problems for Elliptic Pseudodifferential Operators, Amer. Math. Soc., 

Providence, Rhode Island, translation of mathematical monographs, vol. 52, 1973 

[FaM] Farge M., Schneider K., Wavelets: application to turbulence, University Warnick, lectures, 2005 
 
[FaM1] Farge M., Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech. 
24, 395-457, 1992 
 
[FeC]  Fefferman Ch. L., Existence & Smoothness of the Navier-Stokes Equations, Princeton 
University, Department of Mathematics, Princeton, New Jersey, May 1, 2000 

[FrU] Frisch U., Turbulence, Cambridge University Press, 1995 
 
[GaG] Galdi G. P., The Navier-Stokes Equations: A Mathematical analysis, Birkhäuser Verlag, 

Monographs in Mathematics, ISBN 978-3-0348-0484-4  

[GiY] Giga Y., Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Kyoto 

Univ. 19 (1983) 887-910 

[HeJ] Heywood J. G., Walsh O. D., A counter-example concerning the pressure in the Navier-Stokes 

equations, as +→ 0t , Pacific J. Math., 164 (1994), 351-359 

http://www.navier-stokes-equations.com/
http://www.riemann-hypothesis.de/


[HoE] Hopf E., Statistical hydromechanics and functional calculus, J. Rat. Mech. Anal. 1, 1, 87-123, 

1952 

[KrR] Kress R., Linear Integral Equations, Springer Verlag, Berlin, Heidelberg, New York, London, Paris, 

Tokyo, Hong Kong, 1989 

[LiI] Lifanov I. K., Poltavskii L. N., Vainikko G. M., Hypersingular Integral Equations and their 
Applications, Chapman & Hall/CRC, Boca Rato, London, New York, Washington, D. C., 2004 
 
[MaA] Majda A. J., Bertozzi A. L., Vorticity and Incompressible Flow, Cambridge University Press, 

Cambridge, 2002 

[MoA] Monin A. S., Yaglom A. M., Statistical Fluid Mechanics, The MIT Press, Cambridge, 
Massachusetts, 1970 
 
[MuA] Murthy A. S. V., The Constatin-Lax-Majda model for the vorticity equation revisited, J. Indian 
Inst. Sci, 78, 107-117, 1998 
 
[NiJ] Nitsche, J.A., Lectures notes, Hilbert scales and Ritz-Galerkin approximation theory, Freiburg, 
1983 
 
[NiJ1] Nitsche, J.A., Schauder estimates for finite element approximations on second order elliptic 

boundary value problems, Proc. Of the Special Year in Numerical analysis, Lectures Notes no. 20, 

Univ. of Maryland, Babuska, Lin, Osborn eds., 290-343, 1981 

[NiJ2] Nitsche, J.A., Approximation des eindimensionalen Stefan-Problems durch finite Elemente, 

Proceedings of the International Congress of Mathematics, Helsinki, 1978 

[OkH] Okamoto H., Sakajo T., Wunsch M., On a generalization of the Constantin-Lax-Wajda equation, 
Nonlinearity, 21, 1-15, 2008 
 
[PlJ] Plemelj J., Potentialtheoretische Untersuchungen, B.G. Teubner, Leipzig, 1911 

[RuC] Runge C., Über eine Analogie der Cauchy-Riemannschen Differentialgleichungen in drei 
Dimensionen, Nachrichten von der Königl. Gesellschaft der Wissenschaften, Mathematisch-
Physikalische Klasse, Bd. 1922 (1922) 129-136 
 
[SaT] Sakajo T., Blow-up solutions of the Constatin-Lax-Majda equation with a generalized viscosity 

term, J. Math. Sci. Univ. Tokyo, (2003) 187-207 

[SaT1] Sakajo T., On global solutions for the Constatin-Lax-Majda equation with generalized viscosity 
term, Nonlinearity, 16, 1319-1328, 2004 
 
[ScS] Schochet S., Explicit solutions of the viscous model vorticity equation, Comm. Pure Appl. Math., 
39, 531-537, 1986 
 
[ShA] Shiryaev A. N., Kolmogorov and the Turbulence, May 20, 1999 
 
[ShM] Shinbrot M., Lectures on Fluid Mechanics, Dover Publications, Inc., Mineola, New York, 2012 

[SoP] Sobolevskii P. E., On non-stationary equations of hydrodynamics for viscous fluid. Dokl. Akad. 

Nauk SSSR 128 (1959) 45-48 (in Russian) 



[SoH] Sohr H., The Navier-Stokes Equations, An Elementary Functional Analytical Approach, 

Birkhäuser Verlag, Basel, Boston, Berlin, 2001  

[StE] Stein E. M., Weiss G., Generalizations of the Cauchy-Riemann Equations and Representations of 

the Rotation Group, Amer. Journal of Math., Vol. 90, No 1 (1968) 163-196  

[StE1] Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University 

Press, Princeton, new Jersey, 1970  

[TeR]  Teman R., Navier-Stokes Equations and Nonlinear Functional analysis, Society for Industrial 
and Applied Mathematics (SIAM), Philadelphia, 1983 

[WeJ] Weiss J., The Hilbert Transform of Wavelets are Wavelets 

[WeP]  Werner P., Self-Adjoint Extensions of the Laplace Operator with Respect to Electric and 

Magnetic Boundary Conditions, J. Math. Anal.  70 (1979) 131-160 

[WeP1]  Werner P., Spectral Properties of the Laplace Operator with respect to Electric and Magnetic 

Boundary Conditions, J. Math. Anal.  92 (1983) 1-65 

[WuM] Wunsch M., The generalized Constantin-Lax-Wajda equation revisted, Commun. Math. Sci., 9, 

No3, 929-936, 2011 

 

 


