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The evolution of the Universe can be compared to a display of fireworks that has just ended:

some few wisps, ashes and smoke. Standing on a well-chilled cinder, we see the slow fading

of the suns, and try to recall the vanished brilliance of the origin of the worlds.

Abbé George-Henri Lemaı̂tre, the late 1920s
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Preface to the Russian edition

We wrote this book in 2001–2002. These years saw the launch and start of operations of the

American satellite WMAP (Wilkinson Microwave Anisotropy Probe), which began a new

stage in the study of the primordial electromagnetic radiation in the Universe. This stage

brought a qualitative change to the status of modern cosmology which, using a metaphor

suggested by Malcolm Longair, entered the phase of ‘precision cosmology’ in which the level

of progress in theory and experiment was so high that the interpretation of observational data

became relatively less urgent than the problem of measuring the most important parameters

that characterize the state of gravitation and matter as they were long before the current phase

of the cosmological expansion.

Paradoxically, the entire period of explosive development of cosmology happened virtually

within the last three decades of the twentieth century; however, it brought together thousands

of years of mankind’s attempts to comprehend the basic laws governing the structure and

evolution of the Universe. Regarded formally, this period coincided – although realistically it

was genetically connected – on one hand with the penetration into the mysteries of structure

of matter at the microscopic level and on the other hand with the sending of humans into

space and with progress in space technologies that revolutionized the experimental basis of

the observational astrophysics. One of the authors of this book (Igor Novikov) was involved in

the creation of the modern physical cosmology and remembers very well the hot discussions

raging in the ‘era of the 1960s and 1970s’ about the nature of the primordial fluctuations

that gave rise to galaxies and galaxy clusters, about the possible anisotropic ‘start’ of the

expansion of the Universe and about the ‘hidden mass’ whose status was for a long time

underestimated by most cosmologists. Another aspect that attracted huge interest was the

problem of pregalactic chemical composition of matter which was most closely connected

with the ‘hot’ past of the cosmological plasma and which highlighted for the first time the

paramount role played by neutrinos and other hypothetical weakly interacting particles in

the thermal history of the Universe; in a wider sense, though, it also connected with the

problem of the birth of life in the cosmos. Finally, a brief list of ‘hot spots’ of astrophysics

and cosmology since the late 1970s cannot avoid the eternal questions: How and why did the

Universe ‘explode’? What was the ‘first push’ that triggerred the expansion of matter? What

was there (if anything) prior to this moment? And how will the expansion of the Universe

continue to unfold?

We should add that working on answers to some questions has inevitably generated new

ones – for instance, was space-time always four-dimensional? Is it possible that we actually

face here manifestations of more complex topology of the space-time continuum and, among

other things, the existence of the yet unknown remnants of the early Universe, for example

xi
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primordial black holes or other mysterious particles? And so forth. These and a whole range

of other problems were reflected in the pioneer studies by Peebles (1971), Weinberg (1972,

1977), Zeldovich and Novikov (1983), and in some later works (see, for example, Kolb and

Turner (1989), Melchiori and Melchiori (1994), Padmanabhan (1996), Partridge (1995) and

Smoot and Davidson (1993)). Some of these problems acquired new status and took their

rightful places among the so-called ‘eternal’ problems of natural sciences that will excite

subsequent generations of cosmologists and will await the arrival of new Newtons, Einsteins

and Hubbles. As could be expected, some of the hypotheses failed the test of time and sunk

into the realm of the history of science, leaving behind a sort of monument to mankind’s

thinking. But a smaller fraction of hypotheses were verified experimentally and ascended

to the sanctum of science, having changed our comprehension of the Universe and of the

properties of space-time and matter.

One spectacular example of this sort of achievement of modern cosmology is the problem of

the origin of the primordial electromagnetic radiation, better known as the cosmic microwave

background (CMB), which covers the aspects of its spectral distribution, anisotropy and

polarization. This book is mostly devoted to discussing this range of problems; it was written

immediately after the completion of a number of successful ground-based and balloon exper-

iments closely connected with the satellite project COBE, which was successfully completed

in the mid 1990s. This project was preceded by a Russian project, RELIKT, that was the

first dedicated space mission for the investigation of the CMB anisotropy. The COBE mis-

sion became part of the history of cosmology not only as the first experiment that measured

the CMB anisotropy with the maximum angular resolution achievable at the time (about 7

degrees of arc), but also as an experiment that put an end to numerous discussions on the

possible non-equilibrium of the CMB spectrum and on its deviations from Planck’s law of

the blackbody frequency distribution of quanta predicted by the theory of the ‘hot Universe’.1

Metaphorically speaking, the post-COBE cosmology entered a new phase in its devel-

opment, switching from a search for, let us say, the most probable evolutionary ‘treks’ to

a detailed clarification of the causes of why one reliably established (within a certain time

span, of course) particular mode of cosmological evolution of matter had been realized.

The relay race to create a realistic picture of the evolution of the Universe by measuring

the CMB anisotropy was continued after COBE by the next generation of experiments (CBI,

DASI, BOOMERANG, MAXIMA-1, and quite a few others), all of which provided conclu-

sive proof of the existence of the CMB anisotropy on small angular scales of about 10 minutes

of arc. At first glance, the progress of the experiment towards smaller angular scales looks

modest at best. Indeed, we still lack 1.5–2 orders of magnitude in order to gauge the typical

sizes of galaxy clusters recalculated to the moment of hydrogen recombination at which the

Universe became transparent to radiation (∼300 000 years after the onset of the expansion

of the Universe). The reality is that it was with the CMB anisotropy and polarization that

we were connecting the possibility of ‘peeking’ into the remote past of the Universe and of

‘discovering’ the signs of the future clusters on what we now refer to as maps of distribution

of the CMB temperature fluctuations on the celestial sphere. Unfortunately this problem was

1 To be precise, the COBE data limit the degree of non-equilibrium of the primordial radiation at the level of

10−4–10−5, which is practically equivalent to a complete absence of distortions. Nevertheless, even this small

but possible degree of non-equilibrium proves to be very informative in that it places constraints on energy

releases in the early Universe, especially during the period of non-equilibrium ionization of hydrogen and

helium. This aspect of the problem is analysed in more detail in several chapters of the book.
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found to lie beyond the technical possibilities of radioastronomy, not so much because today’s

receivers of primordial radiation lack sensitivity, but rather owing to the disruptive effect of

various types of noise connected with the activity primarily within our Galaxy, with hot gas in

galaxy clusters, the emission from intergalactic dust, and a number of other factors that safely

shield the CMB anisotropy from us. However, from the standpoint of CMB physics, this neg-

ative outcome is still an outstanding positive result for the adjacent fields of cosmology and

astrophysics, which achieved excellent progress in studying the manifestations of activities

of various structural forms of matter in the Universe. It was the symbiosis of the adjacent

fields of astrophysics that made it possible at the very beginning of the twenty-first century to

come very close to solving one of the key problems of cosmology: the determination of the

most important parameters that characterize the evolution of the Universe in the past, present

and future, namely the Hubble constant, H0, the current density of the baryonic fraction of

matter, the density of the invisible cold component (the so-called ‘cold hidden mass’), the

value of the cosmological constant, �, the type and characteristics of the spectrum of primor-

dial fluctuations of density, velocity and gravitational potential of matter, and other important

parameters that will be discussed in the book. As applied to CMB physics, this symbiosis

made it possible not only to outline the contours, but also to start a practical implementation

of the PLANCK satellite mission – an experiment unique in the extent of pre-launch analysis

of the anticipated effects and noise, capable of mapping the CMB anisotropy and polarization

with unique angular resolution (on the order of 6 minutes of arc) with a record low level of

internal noise of the receiving electronics, less by approximately an order of magnitude than

in all currently operational grand-based, balloon and satellite experiments.

It should be noted that the PLANCK project will launch in 2007–2008. Although the

objectives, namely the mapping of the CMB anisotropy and polarization with maximum

possible coverage of the celestial sphere, are shared by the two missions, the PLANCK

project is meant to provide the maximum possible sensitivity of the receiver electronics and

to achieve it with a unique selection of frequency ranges for the observation of the CMB

anisotropy and polarization. Furthermore, the objectives of the project include compilation

of a catalogue of radio and infrared pointlike sources that would cover the frequency range 30–

857 GHz in 19 frequency channels, mapping of galaxy clusters, plus a number of other tasks

whose solution became possible thanks to the unique theoretical and experimental studies of

the CMB anisotropy and the noise of galactic and extragalactic origin that accompanies it.

The following legitimate questions may be asked. Is it justifiable to present the CMB

physics now, before the completion of these two new space missions which may drastically

change our ideas about the evolution of the Universe and about the formation of anisotropy

and polarization of cosmic microwave background and, who knows, about the formation of

its large-scale structure? Would it be advisable to wait perhaps seven or ten years until the

situation concerning the distribution of anisotropy on the celestial sphere has been clarified

and then summarize the era of studying the CMB with certainty, being supported by the data of

literally ‘the very last experiments’? Answers to the above questions seem to us surprisingly

simple. First – and this point is perhaps the most important – we are absolutely sure that

no subsequent experiments will act as ‘foundation destroyers’ for modern cosmology. The

foundations of the theory are too solid for that, and its implications are very well developed

and carefully checked against observations. Secondly, the preparation stage for the WMAP

and PLANCK missions stimulated unprecedented progress in the theory that needs further

digeston and systematization. Suffice it to say that compared with the situation at the beginning
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of the 1990s, the CMB physics has progressed greatly, coming very close to predicting effects

with an accuracy of better than 5%, requiring for their simulation modern computer networks

and the development of new mathematical techniques for data processing. Finally, placed

third in sequence but not in significance, the future space experiments, the PLANCK mission

among them, have one obvious peculiar feature: they have been mostly prepared under

the guidance of the generation of ‘veterans’, whereas the results will mostly be used by the

generation of ‘pupils’. We think that in this relay race of generations it is extremely important

not to lose sight of the subject, not to disrupt the connection between the days of ‘Sturm und

Drang’ of the 1970s–1990s when the foundations of the CMB physics were laid and, let us

say, the ‘days of bliss’ that we all anticipate to arrive roughly by the end of the first decade of

this century when the WMAP and PLANCK projects will have been successfully completed.

This is the reason why we attempted in the book to stand back from discussing the general

aspects of cosmology and to focus mostly on specific theoretical problems of the formation

of the CMB frequency spectrum, its anisotropy and polarization and their observational

aspects; we assume the reader to have at least some general familiarity with the foundations

of the theory of the ‘hot Universe’, physical cosmology, probability theory and mathematical

statistics, the theory of random fields and atomic physics.

We have attempted to demonstrate in what way the modern apparatus of theoretical physics

can be applied to studying the properties of cosmic plasma and how the limits of our knowl-

edge of such fundamental natural phenomena as gravitation, relativity and relativism can be

expanded owing to their symbiotic relationship with astrophysics.

We are grateful to all our colleagues in the Astrocosmic Centre of the P. N. Lebedev Physics

Institute (FIAN, Moscow), Rostov State University, Copenhagen University, the Theoretical

Astrophysics Centre (Copenhagen) and Oxford University for supporting our work and for

numerous discussions.

We are especially grateful to E. V. Kotok for her enormous work preparing the manuscript

of this book, and also for her participation in a number of research papers quoted in it.



Preface to the English edition

The English translation of our book appears three years after the first Russian edition, which

was published in 2003. Cosmology, and specifically the cosmology of the cosmic microwave

background (CMB), is the most rapidly evolving branch of science in our time, so there have

been several important advances since the first edition of this book. Some extremely important

developments – the publication of new observational results (particularly the observations of

the Wilkinson Microwave Anisotropy Probe (WMAP) space mission), the discussion of these

results in numerous papers, the formulation of new ideas on the physics of the CMB, and the

creation of new mathematical and statistical methods for analysing CMB observations – have

arisen since the completion of the Russian edition, originally entitled Relic Radiation of the
Universe. The term ‘cosmic microwave background’ used in publications in the West (and

now often in Russia) is rather clumsy. ‘Relic radiation’, introduced by the Russian astronomer

I. S. Shklovskii, is an impressive name that appealed to many astrophysicists; however, since

CMB is used in the specific literature in the field, we had to call the English version of our

book The Physics of the Cosmic Microwave Background, and we continue using this term

throughout the book.

In the original Russian edition, we tried to give a complete review of all the important

topics in CMB physics. In preparing this edition, we tried hard to incorporate most of the

new developments; however, we preserve the original spirit of the book in not striving to

encompass the entire recent literature on the subject (especially as this now seems to be

impossible, even in such an inflated volume). Nevertheless, we hope that the English edition

presents the current situation in CMB physics.

This edition also includes a new eighth chapter, entitled ‘The Wilkinson Microwave

Anisotropy Probe (WMAP).’ This chapter describes in detail the primary results of the most

important CMB project of the last few years. In addition to the references recommended in

the Preface to the Russian edition, we recommend the following books devoted to the subject:

de Oliveira-Costa and Tegmark (1999), Freedman (2004), Lachiez-Rey and Gunzig (1999),

Liddle (2003), Partridge (1995), Peacock (1999) and Peebles (1993).

We also used this opportunity to correct misprints and some imperfections detected when

rereading the Russian edition. We are grateful to our translators, Nina Iskandarian and Vitaly

Kisin, for their valuable help in preparing the English edition.

And last but not least, while working on the English edition we enjoyed unfailing support

from the Niels Bohr Institute, Copenhagen, and Imperial College London. We wish to express

our sincere thanks to these institutions and the wonderful people there who helped make this

edition possible.
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1

Observational foundations of modern

cosmology

1.1 Introduction
In a way, the entire history of cosmology from Ptolemy and Aristotle to the present

day can be divided into two stages: a period before and a period after the discovery of

the cosmic microwave background (CMB). The first period was the subject of hundreds of

volumes of literature; now it is not only an integral part of science, but also marks a step in

the progress of mankind. The second stage started in 1965 when two American researchers,

A. Penzias and R. Wilson published their famous article in the Astrophysical Journal, ‘A

measurement of excess antenna temperature at 4080 Mc/s’ (Penzias and Wilson, 1965), in

which they announced the discovery of a previously unknown background radio noise in

the Universe. Another article, in the same issue of the Astrophysical Journal, preceded the

one by Penzias and Wilson; this was by R. Dicke, P. J. E. Peebles, P. Roll and D. Wilkinson

(Dicke et al., 1965) and discussed the preparation of a similar experiment at a different

wavelength, but also interpreted the Penzias–Wilson results as confirming the predictions of

the ‘hot universe’ theory. The radiation with a temperature close to 3 K discovered by Penzias

and Wilson was described as the remnant of the hot plasma that existed at the very onset of

expansion which then cooled down as a result of expansion.

Formally, the new stage in the study of the Universe was catalysed by several pages in

one volume of a journal and began in this non-dramatic and almost routine way. Note that

the ‘child’ wasn’t born all that unexpectedly for astrophysicists. In the mid 1940s George

Gamow had already published a paper (Gamow, 1946) in which he proposed a model of what

became known as the ‘hot’ starting phase of cosmological expansion; this work stimulated the

work of R. Alpher and R. Herman (Alpher and Herman, 1953), offering an explanation of the

chemical composition of pre-galactic matter (see a review and references in Novikov (2001)).

The starting point for motivating all these authors was an attempt to explain specific features

of the abundances of chemical elements and isotopes in the Universe. It was assumed that

these were all produced at the very first moments of expansion of the Universe. Tables of

the abundances of different isotopes show that isotopes with an excess of neutrons typically

dominate. It followed that free neutrons should have existed in the primordial matter for a

sufficiently long time – something that is only possible at extremely high temperatures. This

stimulated the idea of the hot initial phase of expansion of the Universe. The first publications

of the theory of the hot Universe contained a number of inconsistencies on which we will not

dwell here. The reader can find the details in Weinberg (1977) and Zeldovich and Novikov

(1983).

According to our current understanding, in the first three minutes of expansion of the

Universe only the lightest elements were ‘cooked’, whereas the heavier ones were produced

1



2 Observational foundations of modern cosmology

much later by nuclear processes in stars; the heaviest elements were born when supernovas

exploded. It is important to note that Gamow, Alpher and Herman’s main idea about the need

for high temperatures of the primordial matter proved to be correct. For details on the modern

theory of nucleosynthesis in the early Universe, see, for example, Kolb and Turner (1989) and

Zeldovich and Novikov (1983). There was, however, another altogether funnier reason why

the authors of the theory of the ‘hot Universe’ considered it necessary ‘to cook’ (literally)

all the chemical elements in the very first seconds of the cosmological expansion. Namely

that, in the 1940s, the value of the Hubble constant, H0, and, consequently, the age of the

Universe, were evaluated incorrectly. The Hubble constant was thought to be several times

larger than the value deduced from modern measurements, so that the age of the Universe was

as low as (1–4) × 109 years, as against the value of (13.5–14) × 109 years accepted now. This

duration would not be enough for the synthesis of chemical elements in stars; consequently,

Gamow and his colleagues came to the conclusion that all chemical elements must have been

‘cooked’ from the primeval matter.

We now know, owing to the available cosmochronological data, that the age of the Universe

is far greater than the age of the Earth (4 × 109 years), and that the Earth was formed from

the protoplanetary material that had been enriched by products of thermonuclear synthesis

deep inside stars. Therefore the need to find an explanation for the chemical composition of

matter, including elements heavier than iron, within the limits of the ‘hot Universe’ model

has simply gone up in smoke, but the principal idea of the founders of this theory – the idea

of high initial temperature and high density of cosmic plasma – passed the test of time.

Let us return, however, to the history of the discovery of the cosmic microwave background.

Using somewhat inconsistent estimates, Gamow and his colleagues concluded that, owing

to the hot birth of the Universe, the space that exists during this epoch must be filled with

equilibrium radiation at a temperature of several kelvin. It would seem likely to us now

that once a major prediction had been formulated, it demanded immediate testing, and that

radioastronomers would have tried to detect this radiation. This, however, failed to happen. An

outstanding American scientist, winner of a Nobel prize for physics, Steven Weinberg, wrote

in The First Three Minutes: A Modern View of the Origin of the Universe (Weinberg, 1977)

‘This detection of the cosmic microwave background in 1965 was one of the most important

scientific discoveries of the twentieth century. Why did it have to be made by accident? Or

to put it another way, why there was no systematic search for this radiation, years before

1965?’ We mentioned above that Gamow and his colleagues predicted the probable presence

of electromagnetic radiation with a temperature of several kelvin more than 15 years before

its detection. Perhaps special radiotelescopes were required, with sensitivity unattainable at

the moment? Apparently not; the necessary receivers were available. The main reason, in our

opinion, was probably of a psychological nature. There is convincing evidence to support

this view, and we will discuss this later.

In fact, numerous examples can be found in the history of science when predictions of novel

phenomena, and in particular ground-breaking discoveries, occurred long before experimental

confirmations were obtained. Weinberg (1977) provides us with an excellent example: the

prediction, made in 1930, of the existence of the antiproton. Immediately after this theoretical

prediction, physicists could not even imagine what kind of physical experiment would be

capable of confirming or, as often happens, disproving this fundamental inference of the

theory. It only became possible almost 20 years later when a suitable particle accelerator was

built in Berkeley that provided impeccable confirmation of the prediction of the theory.
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However, as we shall see below, in the case of this particular prediction the suitable

receivers necessary to start searching for the microwave background already existed. Alas,

radioastronomers simply did not know what it was they should search for. There was no

proper communication between theorists and observers, and theorists did not really trust the

not yet perfect theory of the hot Universe. Ideas on how it would be possible to detect the

electromagnetic ‘echo of the Big Bang’ started to appear only in the mid 1960s, and even

then only accidentally. Another reason why radioastronomers did not attempt to discover the

CMB, and perhaps the most important one, was formulated by Arno Penzias in his Nobel

lecture of 1979 (Penzias, 1979). The fact was that none of the work published by Gamow

and his colleagues pointed out that the microwave radiation that reaches us from the epoch of

cosmological nucleosynthesis, having cooled down to several kelvin owing to the expansion

of the Universe, could be detectable, even in principle. In fact, the general feeling was quite

the opposite; Penzias, in his Nobel lecture, formulated the widespread impression: ‘As for

detection, they appear to have considered the radiation to manifest itself primarily as an

increased energy density.1 This contribution to the total energy flux incident upon the earth

would be masked by cosmic rays and integrated starlight, both of which have comparable

energy densities. The view that the effects of three components of approximately equal

additive energies could not be separated may be found in a letter by Gamow written in 1948

to Alpher (unpublished, and kindly provided to me by R. A. Alpher from his files). “The space

temperature of about 5 K is explained by the present radiation of stars (C-cycles). The only

thing we can tell is that the residual temperature from the original heat of the Universe is not

higher than 5 K.” They do not seem to have recognized that the unique spectral characteristics

of the relict radiation would set it apart from the other effects.’

This, however, was understood by A. Doroshkevich and I. Novikov, who, in 1964, pub-

lished a paper in The Academy of Sciences of the USSR Doklady entitled ‘Mean density of

radiation in the metagalaxy and certain problems in relativistic cosmology’ (Doroshkevich

and Novikov, 1964). The basic idea formulated in this paper has not lost its relevance even

40 years later. We shall assume for the moment that we know how galaxies of different type

emit electromagnetic radiation in different wavelength bands. Choosing certain assumptions

concerning the evolution of galaxies in the past and taking into account the redshifting of

the wavelength of light from distant galaxies because of the expansion of the Universe, it

is possible to calculate the intensity of radiation from galaxies in today’s Universe for each

wavelength. What we need to consider is that stars are not the only sources of radiation:

indeed, many galaxies are powerful emitters of radio waves on the metre and decimetre

wavelengths. Gas and dust in the galaxies also radiate. The nontrivial aspect of this is that

if the Universe had been ‘hot’ at some point, the primordial radiation background has to be

added to the radiation spectrum one wishes to calculate, and this is what Doroshkevich and

Novikov (1964) accomplished. The wavelength of this radiation should be on the order of

centimetres and millimetres and should fall within that range of spectrum where the contri-

bution of galaxies is practically zero. Therefore, the cosmic microwave background in this

wavelength range should exceed the radiation of known sources of radio emission by a factor

of tens of thousands, even millions. Hence, it should be observable! Here is how Arno Penzias

formulated it in his Nobel lecture: ‘The first published recognition of the relict radiation as

a detectable microwave phenomenon appeared in a brief paper entitled “Mean density of

1 Penzias referred here to work by Alpher and Herman dated 1949.
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radiation in the metagalaxy and certain problems in relativistic cosmology”, by A. G.

Doroshkevich and I. D. Novikov (1964). Although the English translation appeared later

the same year in the widely circulated Soviet Physics–Doklady, it appears to have escaped

the notice of the other workers in this field. This remarkable paper not only points out the

spectrum of the relict radiation as a blackbody microwave phenomenon, but also explicitly

focuses upon the Bell Laboratories twenty-foot horn reflector at Crawford Hill as the best

available instrument for its detection!’

Note that the cosmic microwave background was indeed discovered in 1965 using precisely

this facility.

The paper by Doroshkevich and Novikov was not noticed by observer astronomers. Neither

Penzias and Wilson, nor Dicke and his coworkers, were aware of it before their papers were

published in 1965. We wish to mention a strange mistake involving the interpretation of

one of the conclusions in Doroshkevich and Novikov (1964). Penzias (1979) wrote: ‘Having

found the appropriate reference [Ohm, 1961], they [Doroshkevich and Novikov] misread its

result and concluded that radiation predicted by the “Gamov theory” was contradicted by the

reported measurements.’

Also, in Thaddeus (1972) one can read: ‘They [Doroshkevich and Novikov] mistakenly

concluded that studies of atmospheric radiation with this telescope (Ohm, 1961) already

ruled out isotropic background radiation of much more than 0.1 K.’ Actually, Doroshkevich

and Novikov’s paper contains no conclusion stating that the observational data exclude the

CMB with temperature predicted by the hot Universe model. In fact, it states: ‘Measurements

reported in Ohm (1961) at a frequency ν = 2.4 × 109 cycles s−1 give a temperature 2.3 ±
0.2 K, which coincides with theoretically computed atmospheric noise (2.4 K). Additional

measurements in this region (preferably on an artificial earth satellite) will assist in obtaining

a final solution of the problem of the correctness of the Gamow theory’. Thus, Doroshkevich

and Novikov encouraged observers to perform the relevant measurements! They did not

discuss in their paper the interpretation of the value 2.4 K obtained by Ohm (1961), who used

a technique developed specifically for measuring the atmospheric temperature (see discussion

in Penzias (1979)).

This is not the end, however, of the dramatic episodes in the history of the prediction and

discovery of the cosmic microwave background. It is now clear that astronomers came across

indirect manifestations of the CMB long before the 1960s. In 1941, a Canadian astronomer,

Andrew McKellar, discovered cyanide molecules (HCN) in interstellar space. He used the

following method of studying interstellar gases. If light travelling from a star to the Earth

propagates through a cloud of interstellar gas, atoms and molecules in the gas absorb this

light only at certain wavelengths. This creates the well known absorption lines that are

successfully used not only for studying the properties of interstellar gas in our Galaxy,

but also in other fields of astrophysics. The positions of absorption lines in the emission

spectrum of radiation depend on what element or what molecule causes this absorption, and

also on the state in which they were at the moment of absorption. As the object of research,

McKellar chose absorption lines caused by cyanide molecules in the spectrum of the star

‘ε’ of Ophiuchus. He concluded that these lines could only be caused by absorption of light

by rotating molecules. Relatively simple calculations allowed McKellar to conclude that

the excitation of rotational degrees of freedom of cyanide molecules required the presence

of external radiation with an effective temperature of 2.3 K. Neither McKellar himself, nor

anyone else, suspected that he had stumbled on a manifestation of the cosmic microwave
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background. Note that this happened long before the ground-breaking work of Gamow and

his colleagues! Only after the discovery of the CMB, in 1966 were the following three

papers published in one year: Field and Hitchcock (1966), Shklovsky (1966) and Thaddeus

and Clauser (1966); later, Thaddeus (1972) showed that the excitation of rotational degrees

of freedom of cyanide was caused by CMB quanta. Thus, an indication, even if indirect,

of the existence of a survivor from the ‘hot’ past of the Universe was available as early

as 1941.

Even now we are not at the end of our story. We shall return to the question of whether

the experimental radiophysics was ready to discover the microwave background long before

the results of Penzias and Wilson. Weinberg (1977) wrote that ‘It is difficult to be precise

about this but my experimental colleagues tell me the observation could have been made long

before 1965, probably in the mid 1950s and perhaps even in the mid 1940s.’ Was this indeed

possible?

In the autumn of 1983, one of authors of this volume (I. Novikov) received a call from

T. Shmaonov, a researcher with The Institute of General Physics, with whom Novikov was

not previously acquainted. Shmaonov explained that he would like to discuss some details

concerning the discovery of the cosmic microwave background. When they met, Shmaonov

described how, in the middle of the 1950s, working under the guidance of the well known

radioastronomers S. E. Khaikin and N. L. Kaidanovsky, he conducted measurements of the

intensity of radio emission from space at the wavelength of 3.2 cm using a horn antenna

similar to the one that Penzias and Wilson worked with many years later. Shmaonov very

carefully measured the inherent noise of his receiver electronics, which was certainly not as

good as the future American equipment (do not forget the time factor, which in those years was

decisive as far as the quality of receivers was concerned), and concluded that he had detected

a useful signal. Shmaonov published his results in 1957 in Pribory i Tekhnika Eksperimenta
and also included them in his Ph.D. thesis (Shmaonov, 1957). The conclusion drawn from

these measurements was as follows: ‘We find that the absolute effective temperature of the

radioemission background . . . is 4 ± 3 K.’ Moreover, measurements showed that radiation

intensity was independent of either time or direction of observations. Even though temperature

measurement errors were quite considerable, it is now clear that Shmaonov did observe the

cosmic microwave background at a wevelength of 3.2 cm; alas, neither the author nor other

radioastronomers with whom he discussed the results of his experiments have given this

effect the attention it deserved. Furthermore, even after the work of Penzias and Wilson was

published, Shmaonov failed to realize that the source of the signal was the same; in fact,

at the time, Shmaonov was working in a very different branch of physics. Only 27 years

after he published those measurements did Shmaonov make available a special report on his

discovery (see the discussion in Kaidanovsky and Parijskij (1987)).

Even this is not the last piece of the jigsaw puzzle! More recently, we have learnt that at

the very beginning of the 1950s Japanese physicists made attempts to measure the cosmic

microwave background. Unfortunately we were unable to find reliable contemporary or more

recent references to these studies.

It is obvious that the drama of ideas and ‘random walks’ of the 1940s to the 1950s in search

of manifestations of the cosmic microwave background is still waiting for its historian, while

the period from 1965 to the present day is a well planned and orchestrated attack on the

secrets of cosmic radiation, not only at radio wavelengths, but also in the optical, infrared,

ultraviolet, x-ray and gamma radiation ranges.
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Figure 1.1 Thermodynamic temperature of the CMB as a function of radiation frequency
and wavelength. Data from the FIRAS instrument are shown in the 100 to 600 GHz range.
The horizontal line corresponds to T0 = 2.736 K – the best approximation of the COBE
data. For comparison, the data from other experiments are marked by squares and triangles.
Adapted from Nordberg and Smoot (1998) and Scott (1999a).

1.2 Current status of knowledge about the spectrum of the CMB
in the Universe
Only a year after the publication of the paper by Penzias and Wilson, their colleagues,

F. Howell and J. Shakeshaft (Howell and Shakeshaft, 1966) measured the temperature of the

cosmic microwave background at a wavelength of 20.7 cm and found it to be 2.8 ± 0.6 K.

Similar values of temperature, but in the wavelength range 3.2 cm (T = 3.0 ± 0.5 K), were

reported in the same year by Roll and Wilkinson (1966) and by Field and Hitchcock (1966)

(T = 3.2 ± 0.5 K at a wavelength 0.264 cm), and by a number of other researchers in

subsequent years.

Table 1.1 gives a complete list of published measurements of the CMB temperature from

408 MHz up to 300 GHz (Nordberg and Smoot, 1998). In spite of a large number of exper-

iments (∼60) that measured the CMB temperature, not all of them are equally informative.

Quite often a high level of systematic errors led to considerable spreads of the average

values of TR. In this connection, Fig. 1.1 presents selective data for a number of experi-

ments carried out over a period from the end of the 1980s to the beginning of the 1990s

and manifesting an extremely low noise level (references to these experiments are given in

Table 1.1).



Table 1.1. Measurements of the CMB temperature

Frequency (GHz) Wavelength (cm) Temperature (K) Reference

0.408 73.5 3.7 ± 1.2 Howell and Shakeshaft (1967)

0.6 50 3.0 ± 1.2 Sironi et al. (1990)

0.610 49.1 3.7 ± 1.2 Howell and Shakeshaft (1967)

0.635 47.2 3.0 ± 0.5 Stankevich, Wielebinski and Wilson (1970)

0.820 36.6 2.7 ± 1.6 Sironi, Bonelli and Limon (1991)

1.4 21.3 2.11 ± 0.38 Levin et al. (1988)

1.42 21.2 3.2 ± 1.0 Penzias and Wilson (1967)

1.43 21 2.65+0.33
−0.30 Staggs et al. (1996a,b)

1.45 20.7 2.8 ± 0.6 Howell and Shakeshaft (1966)

1.47 20.4 2.27 ± 0.19 Bensadoun et al. (1993)

2 15 2.55 ± 0.14 Bersanelli et al. (1994)

2.5 12 2.71 ± 0.21 Sironi et al. (1991)

3.8 7.9 2.64 ± 0.06 de Amici et al. (1991)

4.08 7.35 3.5 ± 1.0 Penzias and Wilson (1965)

4.75 6.3 2.70 ± 0.07 Mandolesi et al. (1986)

7.5 4.0 2.60 ± 0.07 Kogut et al. (1990)

7.5 4.0 2.64 ± 0.06 Levin et al. (1992)

9.4 3.2 3.0 ± 0.5 Roll and Wilkinson (1966)

9.4 3.2 2.69+0.26
−0.21 Stokes, Partridge and Wilkinson (1967)

10 3.0 2.62 ± 0.06 Kogut et al. (1990)

10.7 2.8 2.730 ± 0.014 Staggs et al. (1996a,b)

19.0 1.58 2.78+0.12
−0.17 Stokes et al. (1967)

20 1.5 2.0 ± 0.4 Welch et al. (1967)

24.8 1.2 2.783 ± 0.025 Johnson and Wilkinson (1987)

31.5 0.95 2.83 ± 0.07 Kogut et al. (1996b)

32.5 0.924 3.16 ± 0.26 Ewing, Burke and Staelin (1967)

33.0 0.909 2.81 ± 0.12 De Amici et al. (1985)

35.0 0.856 2.56+0.17
−0.22 Wilkinson (1967)

53 0.57 2.71 ± 0.03 Kogut et al. (1996b)

90 0.33 2.46+0.40
−0.44 Boynton, Stokes and Wilkinson (1968)

90 0.33 2.61 ± 0.25 Millea et al. (1971)

90 0.33 2.48 ± 0.54 Boynton and Stokes (1974)

90 0.33 2.60 ± 0.09 Bersanelli et al. (1989)

90 0.33 2.72 ± 0.04 Kogut et al. (1996b)

90.3 0.332 < 2.97 Bernstein et al. (1990)

113.6 0.264 2.70 ± 0.04 Meyer and Jura (1985)

113.6 0.264 2.74 ± 0.05 Crane et al. (1986)

113.6 0.264 2.75 ± 0.04 Kaiser and Wright (1990)

113.6 0.264 2.75 ± 0.04 Kaiser and Wright (1990)

113.6 0.264 2.834 ± 0.085 Palazzi et al. (1990)

113.6 0.264 2.807 ± 0.025 Palazzi, Mandolesi and Crane (1992)

113.6 0.264 2.279+0.023
−0.031 Roth, Meyer and Hawkins (1993)

154.8 0.194 < 3.02 Bernstein et al. (1990)

195.0 0.154 < 2.91 Bernstein et al. (1990)

227.3 0.132 2.656 ± 0.057 Roth et al. (1993)

227.3 0.132 2.76 ± 0.20 Meyer and Jura (1985)

227.3 0.132 2.75+0.24
−0.29 Crane et al. (1986)

227.3 0.132 2.83 ± 0.09 Meyer, Cheng and Page (1989)

227.3 0.132 2.832 ± 0.072 Palazzi et al. (1990)

266.4 0.113 < 2.88 Bernstein et al. (1990)

Broad range Broad range 2.728±0.002 Fixsen et al. (1990)

300 0.1 2.736 ± 0.017 Gush, Halpern and Wishnow (1990)



8 Observational foundations of modern cosmology

An important feature of these data is an extremely low absolute measurement error, which

makes possible the calculation of the amplitude of today’s temperature of the microwave

background at the 95% confidence limit:

T0 = 2.7356 ± 0.038 K. (1.1)

It is well known that this temperature (T0) determines all spectral characteristics of radiation

(see, for example, Landau and Lifshits (1984)). For instance, the spectral intensity of radiation,

defined as energy per unit area element in unit solid angle and unit frequency interval, is given

by the expression

Iν = 2hν3

c2
nν, (1.2)

where h is Planck’s constant, c is the speed of light in vacuum, ν is frequency and nν is the

spectral density of the number of quanta. For the Planck radiation, nν is a function of only

one parameter, namely temperature:

nν = (
ehν/kT − 1

)−1
, (1.3)

where k is the Boltzmann constant, and the corresponding spectral brightness is given by

Bν(T ) = 2hν3

c2

(
ehν/kT0 − 1

)−1
. (1.4)

Note that the dependence of Iν on frequency will be different for non-equilibrium radiation,

but in general it should not necessarily be characterized by a single universal parameter, i.e.

temperature. Equation (1.4) readily leads to asymptotics for Bν(T ) in the limit
(

hν
kT � 1

)

BRJ
ν (T ) � 2ν2

c2
kT (1.5)

for the Rayleigh–Jeans interval, and, for high energies of quanta
(

hν
kT � 1

)
,

BW
ν (T ) � 2hν3

c2
e−hν/kT (1.6)

for Wien’s interval. We see that BRJ
ν (T ) describes the classical (non-quantum) part of the

spectrum, which is independent of the value of Planck’s constant. The Rayleigh–Jeans formula

is well known in radioastronomy for determining the brightness temperature of a radiation

source with spectral intensity Iν :

TA = c2

2kν2
Iν(T ). (1.7)

As we see from Eq. (1.7), the relation between the thermodynamic and brightness tempera-

tures for blackbody radiation has the form

TA(ν) = T0

x2ex

(ex − 1)2
, (1.8)

where x = hν
kT . Therefore, in the low-frequency limit, x � 1, Eq. (1.8) immediately implies

the equality TA = T0, and if x � 1 then the brightness temperature is found to be systemati-

cally below the thermodynamic temperature. In what follows we require integral characteris-

tics of the CMB in addition to spectral ones: energy density, εγ ; concentration of quanta, nγ ;
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entropy density, Sγ ; and quantum energy averaged over the spectrum, Eγ . These quantities

are defined for the CMB in the standardized manner (Landau and Lifshits, 1984), regardless

of its cosmological nature:

εγ = σ T 4
0 = 4.24 × 10−13 erg cm−3; nγ = 0.244

( kT0

h̄c

)3 = 414 cm−3;

Sγ = 4
3

εγ

kT0
= 1.496 × 103 cm−3; Ēγ = εγ

nγ
= 1.02 × 10−15 erg,

(1.9)

where σ = (π2ky/15h̄3c3) = 7.5640 × 10−15 erg cm−3 K−1 is the emission constant and

h̄ = h/2π .

1.2.1 Electromagnetic emission from space
We mentioned at the beginning of this chapter that the pioneers of CMB research

considered various types of electromagnetic emission coming from space as sources of very

undesirable noise. However, in contrast to the CMB, electromagnetic radiation in the optical,

ultraviolet, x-ray, γ and also long-wavelength ranges (λ > 1 m) are of non-cosmological

origin. The most important characteristics of these electromagnetic backgrounds are, as in

the case of the CMB, the intensity and degree of anisotropy of distribution over the sky. In this

section we are mostly interested in the isotropic extragalactic component which is obtained

by subtracting the component generated by the activities within the Milky Way Galaxy from

the total signal. Figure 1.2 (Halpern and Scott, 1999) shows the combined distribution of

various electromagnetic backgrounds published in Dwek and Arendt (1998), Hauser et al.
(1998), Kappadath et al. (1999), Lagache et al. (1998), Miyaji et al. (1998), Pozzetti et al.
(1998), and Sreekumar et al. (1998). In the long-wavelength limit (λ > 103 mm), we clearly

see a contribution from extragalactic radio sources that is characterized by a power-law

spectrum:

Iν � 6 × 103
( ν

1GHz

)α

Jy ster−1, (1.10)

with the spectrum exponent α = −0.8 ± 0.1 (Longair, 1993) and 20% uncertainty in ampli-

tude. The total contribution of this component to the total energy density of the radiation is

extremely small, but the role of this background is found to be very significant in clarifying

the origin of the so-called superhigh-energy cosmic rays (E ≥ 1020 eV) (Bhattacharjee and

Sigl, 2000; Blasi, 1999; Doroshkevich and Naselsky, 2002).

Note, however, that as ν → 0, the intensity increases (Iν ∝ ν−0.8) only up to frequencies

ν ∼ 1–3 MHz. The data of Clark, Brown and Alexander (1970), Longair (1993) and Simon

(1978) point to this behaviour. The slope Iν changes at ν ≤ 3 MHz and the effective exponent

becomes α � 1. The causes of this behaviour may be traced to synchronous self-absorption

of radiation in the sources responsible for the formation of long-wavelength radio background

(Longair, 1993).

Let us return, however, to discussing background radiation outside the range in which

the CMB dominates. The most complete review of the available observational data in the

infrared (IR) range of wavelengths from 1 mm to 10−3 mm is given in Hauser (1998) and

Gispert, Lagache and Puget (2000). Note that the study of the defuse cosmic IR radiation

is relatively recent, even though the data on the intensity of this background radiation make

it possible to extract unique information on the evolution of pregalactic matter and on the

dynamics of the formation of galaxies and stars. It appears that the first indications of the
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Figure 1.2 Spectral density of extragalactic electromagnetic radiation in the Universe.
From Scott (1999a).

existence of this background were obtained in rocket experiments (see, for example, Hauser

et al. (1991)). The IR background was later studied specifically using the DIRBE tool in

the framework of the Cosmic Background Explorer (COBE) project that we have mentioned

earlier. In combination with FIRAS – an instrument in the same project (Gispert et al., 2000) –

it was possible to obtain unique data on the spectral characteristics of IR radiation in the range

from 100 μm to 1 cm, as shown in Fig. 1.3. The same figure shows the data for the optical and

ultraviolet (uv) ranges that follow the IR range in the order of increasing energy of quanta. An

important feature of these ranges, as in the case of the IR background, is their genetic relation

to young galaxies being formed in the process of evolution of the Universe (the optical range

0.15–2.3 μm), to the diffuse thermal emission of intergalactic medium and to the integral

ultraviolet luminosity of galaxies and quasars (UV range; λ � 1000–2500 Å) (see Gispert

et al. (2000) and the relevant references therein).

In the optical range in the interval λ � 3200–24 000 Å, the intensity distribution is

described sufficiently well by the following expression:

λFλ � A(λ)10−6 erg cm−2 s−1 ster−1, (1.11)
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Figure 1.3 Spectrum of extragalactic radiation in the ultraviolet to millimeter wavelength
ranges. From Gispert et al. (2000).

where the coefficient is given by A = 2.5+0.07
−0.04 for λ = 3600 Å, A = 2.9+0.09

−0.05 for λ = 4500 Å

and λ = 6500 Å, and A = 2.6+0.3
−0.2 for λ = 9000 Å (Gispert et al., 2000). We see from these

data that A can be considered to be practically independent of wavelength in a wide range of

λ. From 2 μm (22 000 Å) we observe that the amplitude A(λ) is almost doubled to A = 7 ± 1

(Gispert et al., 2000). In contrast to the optical range, this situation in the (UV) range is not

as obvious. Here it is very difficult to separate the galactic and extragalactic components. It

is assumed (see, for example, Henry and Murthy (1996) and Jakobsen et al. (1984)), that

UV observations at high galactic elevations mostly single out the extragalactic component,

even though it is not clear to what extent it is distorted by the influence of our Galaxy. The

anticipated limits and observational data on the spectrum of extragalactic UV background

may be found in Andersen et al. (1979), Fix, Craven and Frank (1989), Henry and Murthy

(1996), Hurwitz, Bowyer and Martin (1990), Jakobsen et al. (1984), Joubert et al. (1983),

Martin and Bowyer (1990), Onaka (1990), Parese et al. (1979), Tennyson et al. (1988), Weller

(1983).

Moving further on along the scale of wavelengths of cosmic background, we reach, after

the UV range, the region of diffuse x-ray radiation within wavelengths from 10−9 to 10−6 mm

(see Fig. 1.4). Note that this range of wavelengths was an object of study even before the

discovery of the cosmic microwave background. Even in 1962, in the course of rocket exper-

iments, a diffuse x-ray component was detected, combined with simultaneously discovered

powerful discrete sources of x-ray emission (Gehrels and Cheng, 1996; Zamorani, 1993).

An x-ray survey of the sky followed, using the satellites UHURU, ARIEL V, EINSTEIN,
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Figure 1.4 The spectrum of x-ray background in the range 1–103 keV. Lines correspond to
models of generation of background radiation (see Gehrels and Cheng (1996) and
Zamorani (1993)). Adapted from Hasinger and Zamorani (1997).

ROSAT, GINGA, etc.; this made it possible to identify with certainty the spectrum of

the diffuse component that reaches maximum at quantum energies E � 25 keV and mani-

fests power-law asymptotics at E < E and E > E with exponents α1 � 0.4 and α2 � 1.4,

respectively.

Figure 1.5 plots the data on the spectrum of diffuse x-ray and γ -ray backgrounds according

to Strong, Moskalenko and Reimer (2004) and Zamorani (1993). The results of observation

of the role of Seyfert galaxies of types I and II, taking into account the role of quasars

with x-ray luminosities Lx ≥ 5 × 1044 erg s−1, show that this component of diffuse cosmic

background was formed at relatively low redshifts, z < 3. Note that excessive intensity of

quanta at E > 102 keV up to 1 MeV shows a knee in the range E ≥ 1 MeV, which is clearly

seen in Fig. 1.5. In the γ part of the spectrum, the intensity I (E) ∝ E−α for quanta with

energy E > 1 MeV can be approximated, by following the work of Gehrels and Cheng

(1996) by a set of power-law functions with exponents α � 0.7 for E � 1 MeV and α � 1.7

for 2 MeV< E < 10 MeV. The distribution of quanta over energy for the function E I (E)

is clearly manifest in the shape of the peak (Fig. 1.5). Note that the nature of this diffuse

background remained unclear for a long time, despite numerous attempts to identify possible

sources of its formation. Only a few powerful sources of gamma radiation were identified up

to the end of the 1990s in the gamma range, such as 3C273, CenA, NGC4151 and NGC8-

11-11 (Bassani et al., 1985). The situation with the gamma background changed radically

after the successful launch of the COMPTON satellite. The all-sky map obtained by the

Energetic Gamma Ray Experiment Telescope (EGRET) on board the COMPTON Gamma

Ray Observatory is shown in Fig. 1.6.

To conclude this section, it will be useful to summarize the observational data regarding

the intensity distribution of cosmic rays (CRs) with energy above 102 keV and up to the

maximum energies that can be currently detected, ∼ 1021 keV. Figure 1.7 shows the energy

distribution of the flux of the CRs (no special effort was made to separate the electromagnetic
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Figure 1.5 The spectrum of the diffuse x-ray and γ -ray backgrounds. Adapted from Strong,
Moskalenko and Reimer (2004).

Figure 1.6 EGRET all-sky map of E	 > 100 MeVγ -ray intensity in galactic coordinate
Aitoff projections. Adapted from Willis (2002).
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Figure 1.7 Flux of cosmic rays in the range 108 eV < E < 1021 eV. From Sigl (2001a).

components). It is generally accepted that the main sources of formation of the CR spectrum

in the energy range 1017–1018 eV are pulsars, nuclei of active galaxies, galaxy clusters and

a number of other non-cosmological sources of particle acceleration. However, in the range

above 1018 eV, especially E ≥ 1020 eV, the situation is less trivial.

The spectrum of the so-called ultrahigh-energy cosmic rays (UHECR) composed from a

number of sets of experimental data (Ave et al., 2000; Hayashida et al., 1994; Lawrence, Reid

and Watson, 1991; Takeda et al., 1998; Yoshida and Dai, 1998; Yoshida et al. 1995), is shown

in Fig. 1.8. The fact of special importance is that several dozens of events were recorded in the

energy range above the so-called Greisen–Zatsepin–Kuzmin limit (Greisen, 1966; Zatsepin

and Kuzmin, 1966), EGZK � 7 × 1019
(
E/10−3 eV

)−1
eV, where E is the mean energy of the

cosmic microwave background. The gist of the UHECR problem lies in that the characteristic

free path length of nucleons in the cosmic background (γCMB + p → p + e+ + e− + γ ) is

found to be ∼ 20 Mpc (Greisen, 1966). In this case, the observed flux of CRs near the Earth

must be characterized by a considerable correlation between the direction of arrival of the

CRs and the expected sources that generate them. However, experimental data point to a high

degree of isotropy of the background; this is the reason why the hypothesis of its cosmological

nature deserves attention.
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Table 1.2. Energy distribution over various components of
cosmic background

Intensity

Frequency range (m−2 sr−1) Fraction of energy density

Radio 1.2 × 10−12 1.1 × 10−6

CMB 9.96 × 10−7 0.93

IR 4–5.2 × 10−8 0.04–0.05

Optical 2–4 × 10−8 0.02–0.04

X-rays 2.7 × 10−10 2.5 × 10−4

Gamma radiation 3 × 10−11 2.5 × 10−5

Figure 1.8 UHECR spectrum according to the observations by the facilities shown in the
figure. From Sigl (2001b).

To conclude the survey of the current data on the distribution of cosmic radiation from the

radio range to UHECR particle energies, we give in Table 1.2 a summary of the intensities of

various components and their contribution to the total density of electromagnetic energy in

the Universe. As we see from this table, 93% of the total energy density of electromagnetic

radiation comes from CMB radiation, while the optical and infrared ranges constitute most of

the remaining 7%. Taking into account the fact that diffuse components are formed at redshifts

z ≤ 3, we arrive at a result quite familiar in cosmology: the electromagnetic component of

matter in the early Universe at z � 3 consisted of CMB only.
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As the Universe continued expanding, the maximum of the spectrum shifted towards lower

energies, in accordance with the law of temperature decrease TR(z) = T0(1 + z) (Zeldovich

and Novikov, 1983) and the quanta of CMB were undergoing the Doppler frequency shift.

In this process, the energy density of radiation, εγ , the quantum concentration, nγ , and the

density of entropy, Sγ , changed with z in the following manner:

εγ = εγ (1 + z)4, nγ = nγ (1 + z)3, Sγ = Sγ (1 + z)3, (1.12)

where εγ , nγ and Sγ correspond to the current values for z = 0 (see Eq. (1.9)).

1.3 The baryonic component of matter in the Universe
In Section 1.2 we summarized the main parameters of the electromagnetic compo-

nent of the current density of matter, in the Universe. However, in addition to this electromag-

netic radiation, today’s Universe is filled with conventional baryonic matter, which provides

the original material for star formation and later serves as nuclear fuel that sustains their lumi-

nosity. An important feature of this component of matter is typically a very low temperature

of matter, much lower than the relativistic limit, Tp � mpc2/k ∼ (1013) K, where, mp is the

proton mass. Therefore, as the Universe expands, the baryonic component of matter changes

following a law that differs from that for the primordial electromagnetic radiation,

ρb = ρb(1 + z)3, (1.13)

where ρb is the current value of the baryonic density at z = 0. We know that this fraction

exists in the form of various structural forms, beginning with the condensed state and ending

with plasma. It is mostly concentrated in clouds of gas and dust, in planets, stars and stellar

remnants. In their turn, these younger components are building material for galaxies, groups

of galaxies and galaxy clusters. Therefore, in contrast to the electromagnetic component,

the baryonic matter is now very highly structured. In fact, by analysing the observational

manifestations of these structural units, we can make a judgement about the content of baryons

in them and, therefore, about their cosmological abundance. Following Fukugita, Hogan, and

Peebles (1998), we evaluate the baryonic density of various structural forms of condensation

of matter, using the standard normalization of the mean baryon density, �b = ρb/ρcr, to the

critical density, ρcr = 3H 2
0 /8πG � 1.8 × 10−29h2, where h is the Hubble constant in units

of 100 km s−1 Mpc−1.

1.3.1 Stars and stellar remnants in galaxies
Two subsystems of stars and their remnants must be distinguished in order to char-

acterize the role of stars and stellar remnants in galaxies; these are connected to the structure

of spiral and elliptical galaxies, namely the spherical population of old stars and the disk

population that contains younger stars. The contributions of these two subsystems to the total

mass of stars may differ for each type of galaxy. For instance, the spherical stellar population

is most pronounced in elliptic galaxies, while the spherical component in irregular galaxies

is either much less pronounced or is completely absent. Evaluations of baryon density in

these two basic types of galactic population yield the following values for the parameter �b

(Fukugita et al., 1998):

�sph = 0.0018+0.0012
−0.0009

�αh = 0.0006+0.0003
−0.0002.

(1.14)
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The estimate for irregular galaxies is given by

�Irh = 0.0005+0.0003
−0.0002.

1.3.2 Atomic and molecular gaseous components
The data for this fraction were obtained from HI 21 cm surveys (Rao and Briggs,

1993; Roberts and Haynes, 1994). For atomic hydrogen we have

�Hh = 0.00025 ± 0.00006;

�H2
h � 0.00020 ± 0.00006.

(1.15)

1.3.3 Baryons in galaxy clusters
Evaluations for �b from the data of matter density concentrated in galaxy clusters

are based on the distribution of the number of clusters as a function of their mass, suggested

in Bahcall and Chen (1993):

ncl(>M) = 4 × 10−5h3

(
M

M∗

)−1

exp

(
− M

M∗

)
Mpc−3, (1.16)

where M∗ = (1.8 ± 0.3) × 1014h−1 M� and M is the total mass of matter inside a sphere of

radius 1.5h−1 Mpc, enclosing the cluster. The distribution of matter within this radius is close

to dynamic equilibrium. Following Fukugita et al. (1998), we define a galaxy cluster as an

object with mass M > 1014hM�. Then the integral
∫

dM Mdncl/dM = ρcl corresponds to

the average density of the baryonic component in the cluster:

ρcl = (
7.7+2.5

−2.2

) × 109h2 M� Mpc−3. (1.17)

Normalizing ρcl to the critical matter density, we obtain

�cl = 0.028+0.009
−0.008. (1.18)

Note that the mass of the gas in the space between the galaxy clusters is reliably identified

with the data of x-ray observations (Fabricant et al., 1986; Hughes, 1989; White, Efstathiou

and Frenk, 1993). A recalculation of the contribution of this component to the parameter �b

points to an extremely small contribution of the intercluster gas to the aggregate density of

baryons (Mayers et al., 1997; White and Fabian, 1995) as compared to Eq. (1.18):

�HII,clh
3/2 = 0.0016+0.001

−0.0007. (1.19)

1.3.4 Plasma in groups of galaxies
Evaluations of the density of the baryonic fraction in groups of galaxies are based

on the observations of hard x-ray radiation made with the ROSAT satellite (Mulchaey et al.,
1996). According to Fukugita et al. (1998) it was possible to evaluate the density of the

baryonic component for 17 groups of galaxies using the measurements of fluxes of soft x-ray

radiation:

�HII,grouph3/2 � 0.003+0.004
−0.002. (1.20)

1.3.5 Massive compact halo objects (MACHOs)
Immediately after the discovery of the effect of gravitational lensing of starlight

in the larger Magellanic Cloud (Alcock et al., 1997), the nature of this galactic component
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Table 1.3.

Component Mean value Maximum value Minimum value

1 Stars in spherical subsystems 0.0026h−1
70 0.0043h−1

70 0.0014h−1
70

2 Stars in the disk 0.00086h−1
70 0.00129h−1

70 0.00051h−1
70

3 Stars in irregular galaxies 0.000069h−1
70 0.000116h−1

70 0.0000331h−1
70

4 Neutral atomic gas 0.00033h−1
70 0.00041h−1

70 0.00025h−1
70

5 Molecular gas 0.00030h−1
70 0.00037h−1

70 0.00023h−1
70

6 Plasma in clusters 0.0026h−1.5
70 0.0044h−1.5

70 0.0014h−1.5
70

7 Plasma in groups 0.014h−1
70 0.030h−1

70 0.0072h−1
70

Gas component at z � 3

10 Lyman-alpha clouds 0.04h−1.5
70 0.05h−1.5

70 0.01h−1.5
70

h70 – Hubble constant

in units of 70 km s−1 Mpc−1

attracted widespread attention. Judging by the data of Alcock et al. (1997), we can state

that these are manifestations of objects whose masses are comparable to the solar mass,

i.e. MMACHO � 0.5+0.3
−0.2 M�. Nevertheless, their nature remains problematic. Fukugita et al.

(1998) note that if MACHOs consist of baryons, then the maximum of the parameter �b

may reach �b,MACHO � 0.25. However, this evaluation only points to an upper bound, and its

reliability is uncertain. As a counter-example, we may cite the hypothesis that these objects

are massive black holes (Ivanov, Naselsky and Novikov, 1994) formed at the earliest stages

of the expansion of the Universe. Then the fraction of baryons in these objects should be

negligibly small, �b � 0 (see the discussion in de Freitas-Pacheco and Peirani (2004)).

1.3.6 Ly-α ‘forest’ for redshifts z � 3

In contrast to the current epoch, in which the main representatives of the baryonic

fraction of matter are stars, an analysis of the Ly-α lines in absorption spectra of quasars at

redshifts z � 3 makes it possible to evaluate the density of baryonic matter in the gaseous

phase. The abundance of such clouds and the density contrast in them depend on a specific

model of structure formation in the expanding Universe. It was shown in Rauch et al. (1997)

that for the theory to fit the observational data on Ly-α absorption lines, the baryon fraction

in clouds must be above �Ly-αh2 ≥ 0.017 − 0.021. However, this estimate depends greatly

on the choice of the cosmological model (Fukugita et al., 1998). Hui et al. (2002) came

to a similar conclusion, showing that the baryon density may reach �bh2 � 0.045. In this

case, we speak about uncertainty characterized by a factor of 2, even though it could be

possible that all subsequent improvements of the models would lead to a significantly reduced

estimate.

The summary of the results of this subsection are given in Table 1.3 for the expected values

of density of the baryonic fraction of matter based on the above-listed observational tests and

on their theoretical interpretation.

Assuming �bh2 � 0.02 in order to estimate the total density of the baryonic fraction, it

is not difficult to evaluate today’s concentration of baryons: nb � 2 × 10−7
(

�bh2

0.02

)
cm−3. For
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comparison, the concentration of CMB quanta is 412 cm−3, and therefore

ξ10 = 1010 nb

nγ

= 274�bh2. (1.21)

1.3.7 Cosmological nucleosynthesis and observed abundance of light
chemical elements
We mentioned in Section 1.1 that the effort to try to explain why the current chem-

ical composition of matter in the Universe is as we observe today was the starting point

for creating today’s cosmology and for expanding it. Beginning with the pioneering paper

of George Gamow and his colleagues, the theory of the cosmological synthesis of light

chemical elements was gradually improved, acquiring ever greater predictive power. We also

mentioned that the blackbody (Planckian) character of the spectrum of primordial radiation is

an indication that radiation and the e+e− plasma were in electrodynamic equilibrium at some

point in the past. Inevitably this equilibrium had to break down after the e+e− annihilation,

when the characteristic plasma temperature became comparable to T � mec2/k ∼ 1010 K.

Until that moment, the high concentration of electron–positron pairs, comparable to that of

gamma quanta, sustained the equilibrium not only between them, but also between the elec-

tron neutrinos, νe, and antineutrinos, νe. In its turn, the presence of electron neutrinos (νeνe)

in the cosmological plasma maintains equilibrium between neutrons and protons in weak

interaction reactions (Hayashi, 1950; Olive, Steigman and Walker, 2000; Wagoner, 1973;

Wang, Tegmark and Zaldarriaga, 2002):

n + e+ ↔ p + νe; n + νe ↔ p + e−; n ↔ p + e−νe. (1.22)

Since the typical weak interaction reaction rates, 	 = 〈σνp,nnνc〉, where nν is the neutrino

concentration, are proportional to T 5, and the plasma temperature decreases with progressive

expansion of the Universe, it is clear that beginning with a certain moment, t∗, the equilibrium

between protons and neutrons in weak interaction reactions should break down.2 Formally, the

moment of ‘quenching’ of Eq. (1.22) can be found from the condition 	(t∗) · t∗ = 1. Detailed

calculations show (Olive et al., 2000) that the plasma temperature corresponding to time t∗
is close to T (t∗) = 1010 K ∼ 1 MeV. The residual ratio of neutron to proton concentrations

is given by the Boltzmann factor, (n/p) � exp (−mc2/kT∗), where m is the difference

between the proton and neutron masses. Immediately after quenching of the weak interaction

reactions, the merger of a neutron and a proton into a deuteron nucleus, n + p ↔ D + γ ,

becomes energetically favoured.

However, owing to a large number of quanta with energy E ∼ 2.7kT (nγ /nν ∼ 1010),

the deuterium photodissociation reactions become extremely efficient, and the equilibrium

deuterium concentration at the moment of quenching is extremely low. We have mentioned

earlier that, as the Universe expands, the maximum of the primordial radiation spectrum

shifts to lower temperatures. Note that in Wien’s segment of the spectrum the quantum

concentration decreases as exp
(− E

kT

)
. As the bounding energy of the deuterium nucleus is

ED = 2.2 MeV, it is not difficult to find the critical temperature T = TD, beginning with which

2 The dependence 	 ∝ T 5 is readily obtained using the following argument. With particle energy ∼ 1 MeV, the

cross-sections of the processes (1.22) are σ ∝ E2, where E ∼ kT is the mean neutrino energy. The neutrino

concentration, nν , in equilibrium with the plasma is close to the concentration of γ quanta and, therefore, nν is

proportional to T 3.
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the photodissociation process becomes inefficient. This value of temperature corresponds

to the condition ξ−1 exp
( − ED

kTD

) � 1, where ξ = nN

nγ
∼ 10−10 and yields the value TD �

0.1 MeV (Wagoner, 1973; Wang et al., 2002). The characteristic time counted off the start

of the Universe’s expansion is then close to tD � 102 s, which is of critical importance for

subsequent estimates of the upper bound of the abundance of cosmic He4. The point is

that between the ‘quench’ moment (t∗ � 1 s) of the weak interaction reactions (1.22) and

the ‘quench’ moment of deuterium photodissociation reactions, neutrons decay freely with

characteristic time τN � 887 ± 2 s (Olive et al., 2000). Therefore, the quenched concentration

of neutrons by the moment tD decreases to(
n

p

)
tD

�
(

n

p

)
t∗

exp

(
− tD

τN

)
. (1.23)

Even if all the free neutrons bind later into He4 nuclei, their mass concentration will be given

by

Xmax
He4 �

2
(

n
p

)
tD

1 + (
n
p

)
tD

� 0.26. (1.24)

In reality, the He4 content predicted in the course of cosmological nuclear synthesis is even

lower. The point is that immediately after ‘quenching’ of photodissociation processes, the

deuterium synthesis reaction n + p → D + γ leads rapidly to formation of a deuterium peak

in the concentration of light chemical elements. In addition, reactions that transform deu-

terium into tritium and He3 are immediately triggered:

D + D ↔ p + T; D + D ↔ He3 + n;

D + n ↔ T + γ ; D + n ↔ He3 + γ ;

He3 + n ↔ T + p;

(1.25)

followed by transformation to He4:

D + D ↔ He4 + γ ; D + He3 ↔ p + He4; D + T ↔ He4 + n;

He3 + He3 ↔ He4 + 2p; T + p ↔ He4 + γ ; He3 + n ↔ He4 + γ.
(1.26)

Owing to the absence of nuclei with atomic numbers A = 5 and A = 8, the synthesis of Li,

Be and heavier elements proceeds through the following channels:

He3 + He4 ↔ Be7 + γ ; T + He4 ↔ Li7 + γ ; . . . (1.27)

Figure 1.9 plots the dynamics of synthesis of light chemical elements as a function of tem-

perature as it decreases in the course of expansion of the Universe. Figures 1.10(a) and (b)

plot mass concentration of Be9 and B10−11, respectively, as a function of the parameter η.

Today’s values of mass concentration are given, without taking into account their possible

transformation in the course of formation and evolution of stars (Olive et al., 2000).

Roughly, these are the predictions of the current theory of cosmological nuclear synthesis

based on the ‘hot’ model of uniform and isotropic Universe. As we see from Fig. 1.10 (a) and

(b), the predictions of the theory with regard to current concentrations of He4, and especially

deuterium, are very sensitive to the current density of baryons, provided the temperature and

concentration of CMB quanta are known. Therefore, observational cosmology offers us a new
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Figure 1.9 Dynamics of synthesis of light chemical elements in the hot Universe. Adapted
from Taytler et al. (2000).

(a) (b) 

Figure 1.10 The mass element abundances from the Big Bang nucleosynthesis as a function
of η. (a) For He4, He2, Li7; (b) for Be9, B10 and B11. Solid lines for Be9 and B10 correspond
to uncertainties in the theoretical predictions. Taken from Esposito (1999) and Thomas
et al. (1993).

possibility of higher accuracy of calculation of the current density of baryonic matter based

on analysing the cosmic abundance of He4, D and Li7. Note, however, that this method is not

direct, mostly because light chemical elements are either synthesized (for example He4) or

will burn out in the course of evolution of the stellar populations of galaxies. Subsequently,

a detailed analysis of the possible channels of transformation of the primordial chemical



22 Observational foundations of modern cosmology

composition of baryonic matter to its current state is one of the most important problems

of today’s astrophysics, attracting more and more attention from researchers. An additional

important factor that strengthens the hope of successful implementation of the program of

establishing the primordial chemical composition of matter is the following familiar observa-

tional fact: different chemical elements are contained in different types of objects in different

ratios. For instance, an analysis of UV absorption from the ground level (see references in

Olive et al. (2000)) detects deuterium mostly in cold clouds of neutral gas (HI regions). At

the same time, the abundance of He3 can be determined by radioastronomical techniques

(similar to observing the 21 cm line) that detect He3+ that concentrates in clouds of hot ion-

ized hydrogen, HII. However, tritium is observed in absorption spectra of hot low-mass stars.

Naturally, the two most abundant isotopes of hydrogen, He4 and D, play the main role in

determining the present value of the baryonic density in the Universe. Let us consider this

aspect of the problem in more detail.

Cosmic He4

We know that in addition to the cosmological nucleosynthesis channel, the He4

isotope can be synthesized in the process of stellar evolution, though in considerably smaller

amounts. Therefore, for greater certainty in identifying the upper bound of its cosmological

abundance, it was suggested in Izotov and Thuan (1998), Izotov, Thuan and Lipovetsky

(1994), Olive and Steigman (1995), Pagel et al. (1992), Skillman and Kennicutt (1993),

Skillman et al. (1994) that attention should be focused on analysing the He4 content of

extragalactic HII regions characterized by undoubtedly low metal content. Since a sample of

such regions is composed of about 40 areas, the accuracy of determining XHe4 is sufficiently

high (∼ 1%) (Olive et al., 2000). In fact, we are talking here, and later when discussing

lithium abundance, about He generated in nuclear reactions in primordial matter within the

first five minutes of the life of the Universe. Furthermore, as the lowest-metallicity areas

of the sample contain 2–3% of the solar abundance of He4, the recalculation of the mass

concentration of He4 to its mean abundance has an uncertainty at the same error level (∼ 2%).

For instance, the estimate of the mass concentration of He4 made in Olive and Steigman

(1995) using low-metallicity HII regions (Pagel et al., 1992) yielded YHe4 � 0.234 ± 0.003.

At the same time, Izotov and Thuan (1998) used a somewhat bigger sample and arrived

at YHe4 � 0.244 ± 0.002. It is pointed out in Skillman, Terlevich and Terlevich (1998) that

the cause of the discrepancy between these two estimates may be the insufficient attention

paid to the collisional excitation of recombination lines of He4 as it could result in reduced

YHe4 � 0.241 ± 0.002. Added to this must be the effects related to the systematic effects, for

instance the uncertainty in the absorption estimates that result in increased He4 content in

analysed areas. In view of these factors, we can arrive at a sufficiently reliable evaluation of

the cosmic abundance of He4: 0.228 ≤ YHe4 ≤ 0.248 (Olive and Steigman, 1995).

Cosmic deuterium
It is generally accepted (see, for example, Olive and Steigman (1995) and references

therein) that the cosmic abundance of deuterium is one of the more reliable tests for identifying

the current density of the baryonic fraction of matter. First of all, in contrast to He4, the

cosmological abundance of deuterium essentially depends on the parameter ξ , which allows

us to narrow down the range of possible values of �bh2 and achieve an agreement between

the predictions of the theory of cosmological nucleosynthesis and the observational data.
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Furthermore, in contrast to He4, the cosmological deuterium can only decay in the course

of star and galaxy formation (Olive and Steigman, 1995). Therefore, those observations that

identify the maximum possible deuterium content (Epstein, Lattimer and Schramm, 1976) are

of special interest. It is curious that without taking into account the evolution of the chemical

composition of our Galaxy, deuterium content relative to hydrogen is evaluated using the UV

observation data (Linsky, 1998) as D/H � (1.5 ± 0.1) × 10−5. We also need to mention

recent measurements of deuterium abundance in Jupiter’s atmosphere (Mahaffy et al., 1998)

that yielded an estimate D/H � (2.6 ± 0.7) × 10−5. An important place among the newer

methods of evaluating the cosmic abundance of deuterium is occupied by observations of

low-metallicity clouds at high (z ∼ 2–4) redshifts. Spectra of the absorption system Q1937-

1009 (z � 3.572) were studied in Tytler, Fan and Burles (1996). It was shown that, in this

system, D/H = (2.3 ± 0.3) × 10−5. For a similar combined object Q1009 + 2956, the value

D/H = (4.0 ± 0.7) × 10−5 was obtained. Summarizing the results of this study, we calculate

the 95% significance level interval for deuterium abundance to be as follows:

2.9 × 10−5 ≤ D/H ≤ 4 × 10−5. (1.28)

The paper by O’Meara et al. (2001) that reports the measurement of deuterium in QSO

HS0105 + 1619 for z = 2.536 should also be mentioned. The abundance was calculated

for D/H = (2.54 ± 0.23) × 10−5. We can say, with a degree of caution, that these estimates

result in placing the parameter η10 = 1010η in the range 4.2 ≤ ξ10 ≤ 6.3. Taking into account

the dependence of η10 on the density of the baryonic fraction, we obtain

0.015 ≤ �bh2 ≤ 0.023. (1.29)

Note that the uncertainty in choosing the range of the parameters ξ10 and �b could, in

principle, be minimized relative to cosmic lithium (Olive et al., 2000).

Lithium
The abundance of the Li7 isotope is evaluated from the data of observations of about

100 hot stars of population II. For such stars with high surface temperature, T > 5500 K,

and relatively low metal content (∼ 0.05z�), it is possible to determine the Li7 content

Li7/H = (1.6 ± 0.1) × 10−10 (Molaro, Primas and Bonifacio, 1995). However, it was men-

tioned earlier that the observed content of Li7 cannot in any way be interpreted as the primor-

dial level. We refer those who are interested in specific details to the original publications

(Cayre et al., 1999; Molaro et al., 1995; Ryan, Norris and Beers, 1999; Ryan et al., 2000).

Recapitulating on the results of theoretical predictions of the mass content of light chemical

elements and observational data concerning their abundance, we provide a summarizing dia-

gram (Fig. 1.11a) in which the evaluation errors are marked as grey rectangles. It is clear from

this figure that the optimum range for the parameter η10 is 1.5 ≤ η10 ≤ 6.3, which means that

the current density of the baryonic fraction of matter does not exceed �bh2 = 0.023. Recal-

culated to the Hubble constant, H0 = 70 km s−1 Mpc−1 (h = 0.7), this result is in excellent

agreement with the results of evaluating the baryonic density in the Universe from the data

on Ly-α clouds.

1.3.8 Global parameters of the present-day Universe
We have mentioned several times that the considerable progress made in cosmology

has been, driven not only by the detailed study of the spectrum of primordial electromagnetic
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Figure 1.11 (a) Theoretical predictions and (b) observational constraints on the abundance
of light chemical elements in the Universe as a function of the parameter η10. Adapted from
Olive (2000).

background, but also by the discovery of a number of novel phenomena and the improvement

in the already classic tests of observational cosmology. In this context, questions about what

the ‘dark matter’ (which provides most of the density of matter in space),3 really is what

its physical nature is, what its properties are and to what extent it determines the age of the

Universe, are still topical and important, and, furthermore, lead to a number of questions of

principal importance for astrophysicists. It is natural that the two most important parameters,

namely the current density of the ‘dark matter’ and the value of the Hubble constant, cannot

be treated separately from one another. On the other hand, the fraction of density carried by

the hidden mass, �dm, and the Hubble constant, H0, are the main parameters that characterize

the current expansion of the Universe and furthermore dictate the possible evolution scenarios

for its future. Moreover, we have already seen in the preceding sections that not only does

the value of the Hubble constant determine the age of the Universe, but that it is also a

normalizing parameter through which the current density of the baryonic fraction of matter

expresses itself.

In this subsection we mostly discuss the observational aspect of the problem of mea-

suring two global parameters – the density of the dark matter, �dm, and the Hubble con-

stant, H0. Each of these parameters has a long and fairly dramatic history. We can recall

that between the mid 1940s and the end of the 1950s the calculated value of the Hubble

constant was higher than its current value by a factor of 5 to 10, which implied an anoma-

lously low age of the Universe. The ‘dark matter’ problem in astrophysics was formulated

slightly earlier, in the mid 1930s. On one hand, this matter manifested itself as a stabi-

lizer of the visible (‘luminous’) component of galaxies (Zwicky, 1957), but, on the other

hand, in the form of uniformly distributed component (the cosmological constant), this

3 We include in the density of the dark matter not only the invisible matter concentrated in galaxies and their

clusters, but also the uniformly distributed component – the cosmological constant, or quintessence (the

so-called dark energy; see below).
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matter increased the theoretically predicted age of the Universe (Kardashev, 1967; Shklovsky,

1965).

These problems are still relevant and important today, they and stimulate progress in novel

techniques that improve the accuracy of the evaluations of H0 and �dm. In this subsection we

briefly discuss the current observational status of these two most important global parameters

of the present Universe.

The Hubble constant
It is amusing that the entire ‘dramatic clash of ideas’ of the last 20 years in connection

with the determination of the value of the Hubble constant takes root at the very beginning of

the 1980s (but was discernible even before that), when Sandage and Tammann, and practically

at the same time de Vaucouleurs, arrived at two mutually exclusive estimates of the value of

H0. According to Sandage and Tammann (1982), H0 = 50 km s−1 Mpc−1. According to de

Vaucouleurs (1982), the constant was twice as large, H0 = 90–100 km s−1 Mpc−1. Curiously

enough, astrophysicists of the day were joking that if one wanted to know the value of the

Hubble constant, they should take the result of Sandage and Tammann, add it to the result of

de Vaucouleurs and divide by 2.

It was later found that this joke, as often happens, contained an element of, if not the

entire, truth. Namely, the current data relevant to the value of the Hubble constant and

based on the models of expanding photospheres of type II supernovas yield the value

H0 = 73 ± 9 km s−1 Mpc−1 (Schmidt, Eastman and Kirshner, 1994). The method of deter-

mining H0 from the retardation of the signal in gravitational lensing of quasars yielded very

similar values. Franx and Tonry (1999) found for the system 0957 + 561 the value H0 = 71 ±
7 km s−1 Mpc−1. The effect of retardation was measured quite recently for three lenses,

namely B0218 + 357, B1608 + 656 and PKS 1830 + 211. Retardation time for the sys-

tem B0218 + 357 (Biggs et al., 1999) yielded H0 = 69+13
−19 km s−1 Mpc−1. In B1608 + 656

the corresponding value was H0 = 64 ± 7 km s−1 Mpc−1 for �dm = 0.3, and 59 ± 7 km

s−1 Mpc−1 if the total density of matter in the Universe corresponds to �dm = 1 (Koopmans

and Fassnacht, 1999). We must emphasize that the dependence of retardation time on �dm in

this technique is fairly weak, but must nevertheless be taken into account when processing

experimental data (Fukugita, 2000). In addition to the methods cited above for evaluating H0,

we also need to mention such astronomical methods as observation of Cepheids, planetary

nebulae and type I supernovas using both land-based telescopes and, above all, the Hubble

Space Telescope.

Table 1.4 summarizes the data on the evaluation of the Hubble constant based on using the

above-described methods (see references in the table). The data are combined in the table

with the results obtained from gravitational lensing of quasars, yielding as a result the current

value of the Hubble constant (Fukugita, 2000):4

H0 = (71 ± 7) ×1.15
0.95 km s−1 Mpc−1, (1.30)

where the 10% error source in parentheses originates with the error of measuring distances

to the Large Magellanic Cloud (LMC), LLMC � 50 kpc, which is the standard ‘unit’ for

measuring distances to cosmic objects. As we see from Eq. (1.30), the upper bound on

H0 reaches the already mentioned value H0 � 90 km s−1 Mpc−1, and the lower bound is

4 The upper index (1.15) corresponds to choosing the + sign and the lower index (0.45) to choosing the minus sign.
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Table 1.4.

Secondary indicators References Hubble constant (km s−1 Mpc−1)

Tally–Fisher test HST-KP (Sakai et al., 2000) 71 ± 4 ± 7

Fundamental plane HST-KP (Kelson et al., 1999) 78 ± 8 ± 10

SBF HST-KP (Ferrarese et al., 1999) 69 ± 4 ± 6

SBF Tonry et al. (2000) 77 ± 4 ± 7

SNeIa Riess, Press and Kirshner (1995) 67 ± 7

SNeIa Hamuy et al. (1996) 63 ± 3 ± 3

SNeIa Jha et al. (1999) 63+5.6
−5.1

SNeIa Suntzeff et al. (1999) 65.6 ± 1.8

SNeIa HST-KP (Gibson et al., 2000) 68 ± 2 ± 5

SNeIa Saha et al. (1999) 60 ± 2

Combined value (see text) (64−78) ± 7

H0 � 60 km s−1 Mpc−1. Note that the values of H0 close to H0 = 58 ± 6 km s−1 Mpc−1

were obtained in Tammann (1999) from the data of the velocity distribution in Type Ia

supernovae (SNeIa) using the Hubble Space Telescope. (For a review of the problem, see in

Jansen, Tonry and Blakeslee (2004). For new data on H0 from the observation of the CMB

anisotropy, see Chapter 8.)

The �dm parameter
The evaluation of the total density of matter in the Universe includes the estimation

of both the clusterized component, �dm, and a possible diffusely distributed component that

is not included in the galaxies and their clusters and is spread uniformly through the Universe.

Following the tradition, we assign this component to the cosmological constant � (and the

corresponding parameter ��), the background of low-mass particles (for example, neutrinos)

or other physical fields whose presence in the current Universe is being actively discussed in

the literature (the so-called ‘quintessence’). Differences in the characteristics of the special

distribution of ‘dark’ matter dictate the differences in methods of detecting it. Note that in

this subsection we mostly concentrate on considering the observational manifestations of the

‘hidden mass’, leaving the discussion of various models of its physical nature to later sections.

In this context the ‘hidden mass’ interests us only as another source of gravitational field in

addition to baryonic matter and electromagnetic radiation, acting as a stabilizing factor for

the structural forms in the mass distribution that we observe.

Hidden mass in galaxies and clusters
Historically, the first objects that clearly demonstrated that there was a ‘virial para-

dox’ between the luminous and gravitating masses were the spiral galaxies, for which the

rotation curves V (r ) are non-decreasing functions of distance from the centre (Fig. 1.12).

This behaviour of V (r ) is an important observational confirmation of the hypothesis that a

massive component exists in these galaxies, which extends to scales that exceed the visual

size of the galaxies. The natural cause of this behaviour of rotation curves V (r ) is the pres-

ence of a massive galactic halo containing a low-luminosity component. The existence of a
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Figure 1.12 Rotation curves for the galaxy M33. Dots with vertical bars are observational
data; solid curves trace the best-fit approximation of observations in models with different
contributions of stars of the disk (short dashed line), halo (dot–dash) and the gas (long
dashed line). Adapted from Corbelli and Salucci (1999).

background of weakly luminous matter (or matter emitting no quanta at all) also manifests

itself in the so-called ‘mass–luminosity’ test. The idea of this method is based on the relation

ρG � IG · 〈 M
L 〉, where ρG is the density of matter in the galaxy, IG is the specific luminosity

per unit volume and 〈 M
L 〉 is the mean ratio of mass to luminosity averaged over a given class

of galaxies. The specific luminosity, IG, in this formula is approximated fairly well by an

empirical relation IG = (2.0 ± 0.4) × 108hL� Mpc−3 (Fukugita, 2000). For galaxies with

characteristic scales δ ≤ 100 kpc, the value 〈 M
L 〉 approximately equals (1–2) × 102h−1〈 M�

L�
〉,

where the symbol � stands for solar units (Bahcall, Lubin and Dorman, 1995; Zaritsky et al.,
1997). Note that at the end of the 1970s and the beginning of the 1980s, it seemed that

the value of 〈 M
L 〉 grows as the mass of the object increases. Modern observations show that

this growth does indeed take place but, beginning with characteristics scales 200–300 kpc

corresponding to typical sizes of coronas of massive galaxies (Bahcall et al., 1995; Calberg

et al., 1996), the curve reaches a ‘plateau’.

For galaxies with typical sizes below 100 kpc, the virial radius evaluated using the spherical

collapse model is given by rv = 0.13�−0.15
dm (M/1012 M�)1/2 (Fukugita, 2000). It is typically

assumed that the distribution of ‘dark matter’ inside rv is isothermal. Then, 〈 M
L 〉 � 150–400.

Note that this value is practically the same as the value one finds for groups and clusters

of galaxies (Fukugita, 2000). Using the relationships presented above, we can evaluate the

parameter �dm in the framework of the method outlined above. According to Fukugita (2000)

and Fukugita et al. (1998), it is close to �dm � 0.2+0.2
−0.1. A more reliable estimate of �dm �
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0.19 ± 0.06 was obtained in Calberg, Yee and Ellingson (1997), where the galactic field

method was used. However, the error depends essentially on assumptions about the nature of

the dark matter distribution outside galaxy clusters. We see that uncertainty of evaluations is

fairly high; nevertheless, the fact that the value of �dm does not exceed 40% of the critical

density is fairly significant.

Another method of finding the density of dark matter is the so-called ‘peculiar velocity

versus density’ test based on the relationship of a perturbation of the Hubble velocity of matter

(�v) and a perturbation of matter density, δ = δρ/ρ, in the expanding Universe (Peebles, 1983):

�v + H0�
0.6
dmδ = 0. (1.31)

Small-scale peculiar motion of matter (r < 1 Mpc) and the density, δ, evolve in a non-linear

mode. For these scales, an analysis of the relation ‘�v − δ’ is based on the so-called cosmic

virial theorem, in which it is assumed that the peculiar accelerations occurring on small

scales between pairs of galaxies are balanced out by their relative motion velocities. Using

this approximation, it is possible to evaluate rather crudely the parameter �dm(10 kpc < r ≤
1 Mpc) � 0.15 ± 0.10 (Peebles, 1999a). On scales exceeding 1 Mpc, density perturbations

and matter velocities evolve linearly (|v| � c and δ � 1). In this case, the value �dm � 0.2

was obtained using, for instance, the data on the velocity field of galaxies in the neighbourhood

of the Virgo cluster (Davis and Peebles, 1983). However, it is necessary to emphasize that

attempts to evaluate �dm from the data on large-scale matter–velocity field typically result in

large systematic errors and often yield mutually exclusive results (see, for example, Dekkel

et al. (1999) and Hamilton (1998)).

One of the factors leading to this situation is the fact that the field of velocities, v, and

density perturbations, δG, are detected using the luminous matter in galaxies and clusters, δg,

while Eq. (1.31) deals with the total density, �dm, and its perturbations, δ. By introducing a

normalizing parameter b = δG/δ, we find from Eq. (1.31) that the velocity field is directly

related not only to �dm, but also to the parameter b that indicates to what extent luminous

matter represents the distribution of the hidden mass. Another important factor is found in

the errors of determining the field of peculiar velocities and, as we have already mentioned,

uncertainties in determining the distance scale.

In addition to the methods outlined above, techniques for indirect determination of �dm are

rapidly progressing; they are based on models of specific effects. Among them we find first

of all the direct analysis of the spectrum of density and velocity of matter perturbations on

scales up to 10–100 Mpc (Peacock and Dodds, 1996), an analysis of formation of the current

abundance of galaxy clusters (Viana and Liddle, 1999; White et al., 1993), an analysis of

the power spectrum of density fluctuations on small scales r ≤ 3 Mpc (Peacock, 1997), and

some others.

At the same time, a very important factor that gives a measure of today’s density of not

only the hidden mass, but also of the diffusely distributed component is the evaluated age

of the Universe, tU. In this case, it is not enough to know the density of matter confined to

galaxies and clusters; we need to take into account all possible types of diffusely distributed

matter. Traditionally the nature of this ‘hidden mass’ of the Universe was identified with the

cosmological term � that characterizes the energy density and pressure of the vacuum.

The idea that is being actively discussed these days is that the age of the Universe can

be affected not only, and not so much by, the vacuum; in principle, any highly uniform and

isotropic physical fields may act as sources of ‘negative’ pressure. We leave these novel
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Table 1.5.

�dm 0.2 0.3 0.2 0.3 1.0

�� 0 0 0.8 0.7 0

tU(109 years) 12 11 15 13.5 9

cosmological hypotheses to subsequent chapters and concentrate now on discussing the

cosmological model with the � term, nowadays a standard model, which reflects the main

features of the effect of diffusely distributed dark matter on the age of the Universe.

Within the model of the on-average uniform and isotropic Universe, its current age is related

to the parameter �dm as follows (Kolb and Turner, 1989; Zeldovich and Novikov, 1983):

tU = �dm H−1
0

2(�dm−1)3/2

[
cos−1

(
2�−1

dm − 1
) − 2

�dm
(�dm − 1)1/2

]
for �dm > 1,

tU = �dm H−1
0

2(1−�dm)3/2

[
2

�dm
(1 − �dm)1/2 − cos h−1

(
2�−1

dm − 1
)]

for �dm < 1,

tU = 2/(3H0) for �dm = 1.

(1.32)

These expressions hold if the dynamics of expansion of the current Universe is dictated

by the dark matter, � ≡ 0. For a non-zero cosmological term and assuming �� + �dm = 1,

the expression for tU changes to (Kolb and Turner, 1989):

tU = 2

3H0�
1/2
�

ln
1 + �

1/2
�

1 − �
1/2
�

. (1.33)

Assuming H0 = 70 km s−1 Mpc−1 to be the value of the Hubble constant in the evaluations

to follow, we immediately obtain from Eq. (1.32)–(1.33) several characteristic values of the

theoretically predicted age of the Universe.

Let us compare these theoretical predictions with estimates of the age of the Universe.

One of the classical, but unfortunately still imprecise, tests is the time scale of decay of

heavy isotopes: Th232(τ � 20.3 × 109 years); U235(τ � 20.3 × 109 years); U238(τ � 6.8 ×
109) years; and Rb87(τ � 69.2 × 109 years). The crucial point of radiocosmochronology is

the prediction of the possible initial contents of these elements or their ratios using models of

stellar evolution and the comparison of the observed abundances with the predictions of the

theory of nuclear decay. Unfortunately, the age of the Universe is evaluated by this technique

very imprecisely: tU � (10–20) × 109 years (Kolb and Turner, 1989), which, in fact, supports

any of the models given in Table 1.5. Thus this test proves unsuitable for comparing the value

of �dm with the hidden mass density found from brightness curves of SNeIa Supernovas

(Riess et al., 1998; Schmidt et al., 1998).

If Euclidean geometry is applicable and the Universe is stationary, the distance to the

supernova is evaluated from its own luminosity, I , and the observed flux, F :

DL =
(

I

4π F

)1/2

. (1.34)

In terms of the observed (m) and absolute (M) stellar magnitudes, this distance corresponds

to

μ = m − M = 5 log DL + 25. (1.35)
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Figure 1.13 The �� − �M diagram (see explanation in the text). Adapted from Perlmutter
and Schmidt (2003).

On the other hand, in a cosmological model with non-zero vacuum constant �� �= 0, the

same distance is given by

DL = cH−1
0 (1 + z)|�t|− 1

2 Sinn

{
|�t| 1

2

∫
dz

[
(1 + z)2(1 + �Uz) − z(2 + z)��

]− 1
2

}
,

(1.36)
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Figure 1.14 (a) m − M(mag) as a function of z for a number of models of �M and ��.
(b) Difference (m − M))/M(mag). Adapted from Perlmutter and Schmidt (2003).

where �t = 1 − �M − �� and Sinn = sinh for �t ≥ 0 and Sinn = sin for �t ≤ 0. A

comparison of Eq. (1.34) with Eqs (1.32)–(1.33) makes it possible to extract from the

SNeIa data in an independent manner both �U vs �� and the value of H0. The corre-

sponding �m vs �� diagram is plotted in Fig. 1.13. In Fig. 1.14 we plot m–M as a function

of z.
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Table 1.6.

�

Primary sources
‘Dark energy’ (�-term, quintessence) 10−0.1±0.1

Non-baryonic hidden mass in galaxies and clusters 10−0.75±0.25

Baryonic fraction of matter 10−1.3±0.1

Primordial neutrinos 10−2.4±0.8

Thermal radiation 10−4.15

Energy of gravitational bonding ∼−10−6

Energy release during structure formation
Energy of gravitational bonding:

Relativistic ∼−10−5.4

Stellar ∼−10−7.8

Galactic ∼−10−8.3

Nuclear bonding energy:
Helium 10−5.6±0.5

Heavy elements 10−5.9±0.3

X-ray radiation ∼−10−8.5

Optical/near IR ∼−10−6

Far IR/ submillimeter radiation ∼−10−6

To conclude this chapter, we briefly recapitulate the main results of determining the values

of the most important parameters using classical astronomical methods. These methods do

not include those techniques that are based on using the primordial background radiation as

a kind of probe of the early stages of cosmological expansion. For this purpose, we use the

data of Table 1.6 taken from Peebles (1999b) (see also de Freitas-Pacheco and Peirani, 2004).

In fact, these are the very values of parameters with which modern cosmology enters the era

of ‘precision cosmology’, increasing the accuracy of classical methods and adding a new

tool: measuring anisotropy and polarization of background radiation in order to construct a

realistic theory of structure and evolution of the Universe. Chapter 2 is devoted to describing

this approach to cosmology research.



2

Kinetics of electromagnetic radiation in

a uniform Universe

2.1 Introduction
When discussing the observational status of modern cosmology in Chapter 1, we

emphasized that the spectrum of primordial background radiation corresponds in a high degree

to the equilibrium Planck distribution of quanta with temperature T0 = 2.735 K (Fixsen et al.,
1996). Although possible deviations from the equilibrium distribution function of quanta must

be extremely small (≤ 10−4), they may contain information on processes of energy release

both in the early Universe and at stages that are closer to the current phase of cosmological

expansion. Let us recall that the blackbody spectrum of primordial background radiation

provides evidence that in the past there existed a local thermodynamic equilibrium between

plasma and photons, at least at temperatures 1010 K (Kolb and Turner, 1989; Zeldovich

and Novikov, 1983). An indirect confirmation of this is found in the predictions of the

theory of cosmological nucleosynthesis. However, this test is only sensitive to substantial

deviations of the spectrum from Planck’s curve
(

δ f (ν)
f (ν)

∼ 0.1–1
)

while the current experiments

predict the level of deviations by almost three orders of magnitude smaller than that indicated

above.

The factor that exerts the decisive influence on the spectral characteristics of primordial

background radiation is the interaction of quanta with the electron–positron plasma (at plasma

temperatures above the threshold of electron and positron creation, Tcr � 2mec2/k) and with

a background of random electrons (at relatively low temperatures T < mec2

K ).

Possible deviations from the equilibrium energy distribution of quanta are damped in

the range Tcr ≤ mec2

K � 5 × 109 K owing to the Compton scattering (γ + e ↔ γ + e) and the

double Compton scattering (γ + e → γ + e + γ ). Moreover, processes of electron scattering

on nuclei (e + A ↔ e + A + γ ), play an important role and help maintain the equilibrium

nature of the background radiation spectrum (Rephaeli, 1995; Sunyaev and Zeldovich, 1970a;

Zeldovich and Novikov, 1983; Zeldovich and Sunyaev, 1969). It is natural that the method

of ‘freezing’ Planck’s frequency distribution function for quanta should be valid only if

the thermal balance between electrons, positrons and radiation is in fact a thermodynamical

equilibrium so that plasma at large redshifts lacks efficient sources for ‘pump-feeding’ energy

to the plasma. We can point to decays of long-lived massive particles (decay halftime >102 s),

the dissipation of adiabatic perturbations of density and velocity of plasma, the evaporation

of primary black holes with masses 109 < M < 1013, and some other processes, such as

hypothetical sources at high z ∼ 106–107.

As sources of spectral distortions of primordial radiation background at relatively small

redshifts, z � 103, we can point to young galaxies and quasars, pregalactic massive black

holes and some others. Finally, at z ≤ 5–10 and up to our epoch, spectral distortions of

33
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primordial radiation background in the direction of a galaxy cluster are formed as a result

of interaction with the hot gas at relativistic temperatures, ∼107−8 K. These distortions are

experimentally observed and lie at the foundation of one of the novel methods of determining

the Hubble constant (see references in Fukugita, Hogan and Peebles (1998)). Consequently,

this chapter is devoted to analysing Compton distortions of the spectrum of primordial radi-

ation background at various stages of cosmological evolution and to comparing theoreti-

cally predicted variations in frequency distribution function of quanta with observational

data.

2.2 Radiation transfer equation in the Universe
When using a kinetic description of the spectral properties of the cosmic microwave

background radiation in the expanding Universe, we make use of the quantum transfer equa-

tion in its most general symbolic form,

d f

dt
= St [ f ] + In, (2.1)

where f (t, 	x, pi ) is the distribution function, St [ f ] is the collision integral describing the

transformation of the distribution function as a result of interaction with electrons, In is

the quantum source function, 	x are the space variables and pi is the energy–momentum

four-vector (i = 0, 1, 2, 3).

For a uniform and, on average, isotropic Universe, the geometric properties of spacetime

are completely characterized by fixing the interval

ds2 = gik dxi dxk = −dt2 + (a2(t))ξμν dxμ dxν, (2.2)

where gik is the metric tensor of four-dimensional space, ξμν is the metric tensor of the three-

dimensional space and a(t) is the scale factor; the Latin indexes run through the values from

0 to 3, and the Greek indexes run from 1 to 3.

The left-hand side of Eq. (2.1) describes the free distribution of photons in the absence of

collisions and external sources:

d f

dt
= ∂ f

∂t
+ ∂ f

∂xμ

dxμ

dt
+ ∂ f

∂γ μ

dγ μ

dt
+ ∂ f

∂p0

dp0

dt
. (2.3)

The following notation was used in this equation: γ μ = a(pμ/p), p2 = pi pi and dxμ/dt =
pμ/p0; dp0/dt = −(ȧ/a)p. For a uniform and, on average, isotropic Universe, only the first

and the last terms on the right-hand side of Eq. (2.3) are non-zero. Let us turn to analysing

the collision integral for Compton processes. We assume, first of all, that the temperature

of the electron gas is definitely below the relativistic limit Tcr � 5 × 109 K. Furthermore,

if z � 109, the radiation temperature is also below Tcr and, therefore, the Compton limit

for the interaction cross-section can be used when describing the e–γ scattering. Also, the

energy transfer from electrons to radiation at Te � Tcr changes the frequency of quanta by

the quantity

�ν

ν
� K Te

me

∼ Te

Tcr

� 1

(
�P

P
� 1

)
.
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Under these assumptions, the collision integral in Eq. (2.1) is, as shown in Hu (1995), Hu

and Silk (1993) and Hu, Scott and Silk (1994), given by

St [ f ] = 1

16(2π )5 E(p)

∫
d3q d3q ′ d3 p′

E(q)E(q ′)E(p′)
|M(p, q, q ′, p′)|2

× δ(4)(p + q − p′ − q ′) (2.4)

× {
fe(t, 	x, 	q ′) f (t, 	x, 	p′)[1 + f (t, 	x, 	p)] − fe(t, 	x, 	q) f (t, 	x, 	p)[1 + f (t, 	x, 	p′)]

}
,

where |M |2 is the matrix element for the Compton scattering of quanta by electrons, δ(4)(p)

is the Dirac delta function, f (t, 	x, 	p) is the photon distribution function, and fe(t, 	x, 	q)

is the electron distribution function. Again following the work of Hu and colleagues (Hu,

1995; Hu and Silk, 1993; Hu, Scott and Silk, 1994) we consider the equilibrium distribution

of electrons over momentum q in the neighbourhood of a certain mean value of me	ve that

describes possible large-scale matter fluxes. Obviously, no such direction of plasma flow

exists in the cosmological formulation of the problem (	ve ≡ 0 owing to the isotropy and

uniformity of the Hubble motion of the medium). However, when analysing various types of

non-equilibrium sources of plasma heating, and also in analysing the motion of the hot gas

in galaxy clusters, situations when 	ve �= 0 become possible.

In the general case, therefore, the Maxwellian momentum distribution of electrons has the

following form:

fe(t, 	x, 	q) = (2π )3ne(2πmeTe)−3/2 exp

[
− (q − me	ve)2

2meTe

]
, (2.5)

where me and Te are the electron mass and temperature, respectively.1

In the electron’s rest reference frame, the scattering matrix element has the following form

after averaging over the photon’s polarization:

|M |2 = 8(2π )2α2

[
p̃′

p̃
+ p̃

p̃′ − sin2 β̃

]
. (2.6)

The tilde denotes the choice of the reference frame, α = 1
137

is the fine structure constant, β̃

is the scattering angle in the chosen reference frame,

p̃ = 1 − 	p · 	q/pme√
1 − q2/m2

· p (2.7)

and the relation p̃μ · p̃′μ = pμ · p′μ fixes the dependence of the scattering angle on the

particles’ momenta.

As we see, the matrix element of scattering of quanta by electrons in the form of Eq. (2.6)

describes only the first term of the expansion of |M |2 in the parameter α2 that takes into

account only the Coulomb and Compton processes. An analysis of inelastic processes that

emerge in the order α3 was given in Bernstein and Dodelson (1990), Hu and Silk (1993),

Lightman (1981). Following Hu and Silk (1993), we use the expansion of the matrix element

1 Here and later in this section we use the h̄ = c = k = 1 system of units.
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of |M |2 in the parameter q/me � 1:

|M |2 = 8(2π )2α2
4∑

i=0

Ii + O

(
q

me

)3

, (2.8)

where

I0 = 1 + cos2 β; I1 = −2 cos β(1 − cos β)

[ 	q 	p
me p

+ 	q 	p′

me p′

]
;

I2 = cos β(1 − cos β)
q2

m2
e

; (2.9)

I3 = (1 − cos β)(1 − 3 cos β)

[ 	q 	p
me p

+ 	q 	p′

me p′

]2

+ 2 cos β(1 − cos β)
(	q 	p)(	q 	p′)

m2
e pp′ ;

I4 = (1 − cos β)2 p2

m2
e

.

Likewise, the following expression for the electron energy in Eq. (2.4) is obtained by taking

into account Eq. (2.7):

1

E(q ′)
= E(q)

m2
e

[
1 − q2

m2
e

− (p − p′) · 	q
m2

e

− (p − p′)2

2m2
e

]
+ O

(
q

me

)3

. (2.10)

Finally, the Dirac δ-function that we find in Eq. (2.4) can also be written as a Taylor series

expansion in the parameter q/me � 1, as follows:

δ(4)(p + q − p′ − q ′) = δ(p − p′) + G(p, p′, q)p

[
∂

∂p′ δ(p − p′)
]

+ 1

2
G2(p, p′, q)p2

[
∂2

∂p′2 δ(p − p′)
]

+ O

(
q

me

)3

, (2.11)

where G(p, p′, q) = 1
me p [(p − p′) · 	q + (p − p′)2]. Integrating Eq. (2.4) over the momenta

of the electronic component and taking into account the normalizations,∫
d3 	q

(2π )3
fe(	q) = ne;

∫
d3 	q

(2π )3
qi fe(	q) = mev

i
ene;

(2.12)∫
d3 	q

(2π )3
qi q j fe(	q) = mev

i
ev

j
e ne + meT δi j ne,

where δi j is the Kronecker delta, we arrive at the following expression for the collision integral

(Hu and Silk, 1993):

St [ f ] = dτ

dt

∫
dp′ p′

p

∫
3d�

16π

4∑
i=0

Hi ( f ), (2.13)

where the function H [ f ] describes the following processes.

Thomson scattering

H0[ f ] = δ(p − p′)(1 + cos2 β)[ f (t, x, p′) − f (t, x, p)]. (2.14)
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Linear and quadratic Doppler effects

H1[ f ] =
{[

∂

∂p′ δ(p − p′)
] (

1 + cos2 β
) 	ve( 	p 	p′)

− δ(p − p′) · 2 cos β(1 − cos β)

[ 	ve 	p
p

+ 	ve 	p′

p′

]}
· F1(t, 	x, 	p, 	p′), (2.15)

H2[ f ] =
{

1

2

[
∂2

∂p′2 δ(p − p′)
]

(1 + cos2 β)[	ve( 	p − 	p′)2]

−
[

∂

∂p′ δ(p − p′)
]
· 2 cos β(1 − cos β)

[ 	ve 	p
p

+ 	ve 	p′

p′

]
· (	ve( 	p − 	p′))

}
F1(t, 	x, 	p, 	p′)

+ δ(p − p′)
{
−(1 − 2 cos β + 3 cos2 β)v2

e + 2 cos β(1 − cos β)
(	ve · p)(	ve · p′)

pp′

+ (1 − cos β)(1 − 3 cos β)

[ 	ve · 	p
p

+ 	ve · 	p′

p′

]2
}

F1(t, x, p, p′), (2.16)

where F1(t, x, p, p′) ≡ f (t, x, p) − f (t, x, p′).

Thermal Doppler effect and ‘recoil’ effect
In the absence of a directional electron flux 	ve, the thermal velocities of the electrons

of order (q/me)2 result in the same dependence of H2( f ) on thermal energy, 〈v2
T〉 = 3Te

me
, as

does the quadratic Doppler effect, Eq. (2.16). For the isotropic photon distribution, this effect

is known as the Zeldovich–Sunyaev effect (Zeldovich and Sunyaev, 1969). The corresponding

expression for the function H T
3 [ f ] has the following form:

H3[ f ] =
{[

∂2

∂p′2 δ(p − p′)
]

(1 + cos2 β)
( 	p − 	p′′)2

2
− 2 cos β(1 − cos2 β)

× (4 cos3 β − 9 cos2 β − 1)(p − p′) ×
[

∂

∂p′ δ(p − p′)
]}

Te

me

F1(t, 	x, 	p, 	p′).

(2.17)

Subsequent sections within this chapter treat the Zeldovich–Sunyaev effect in astrophysics in

more detail. The effect of ‘recoil’ of electrons plays an important role not only in analysing

the quadratic effect, but also in e–γ scattering at thermal energies close to the energies of

photons. In this case, according to Hu and Silk (1993), the corresponding term in Eq. (2.13)

is given by

H4[ f ] = −
[

∂

∂p′ δ(p − p′)
]

(1 + cos2 β)
( 	p − 	p′′)2

2me

− F2(t, 	x, 	p, 	p′), (2.18)

where F2(t, 	x, 	p, 	p′) = f (t, 	x, 	p) + f (t, 	x, 	p′) + 2 f (t, 	x, 	p) f (t, 	x, 	p′). Therefore

Eqs (2.13–(2.18) provide an exhaustive mathematical formulation of the problem of finding

the form of the collision integral in the first order in the parameter α and up to the second

order in the parameter q/me � 1.



38 Kinetics of electromagnetic radiation

In this chapter we are mostly interested in applications of the theory of radiation transfer,

dealing with spectral distortions of the initial Planck function of quantum distribution. The

mathematical formulation of the problem is discussed in more detail in the following section.

2.3 The generalized Kompaneets equation
We shall consider the interaction of uniformly distributed radiation with electron

plasma, assuming deviations of the distribution function from the equilibrium value to be

small. In this approximation, Eqs (2.4)–(2.18) yield the transfer equation for quanta in the

absence of sources which, after integration over momenta p′, takes the form (Hu and Silk,

1993; Zeldovich and Sunyaev, 1969, 1970):

∂ f

∂t
− ȧ

a
p

∂ f

∂p0
= τ ′

T

{
−	γ 	ve p

∂ f

∂p
+ [( 	γ 	ve)2 + v2

e ]

×p
∂ f

∂p
+

[
3

20
v2

e + 11

20
( 	γ 	ve)2

]
p2 ∂2 f

∂p2

+ 1

me p2

∂

∂p

[
p4

{
Te

∂ f

∂p
+ f (1 + f )

}]}
. (2.19)

Here, τ ′
T = σT ne, σT = 8πα2/3m2

e , is the Thomson cross-section. This equation is obviously

the generalized Kompaneets equation that includes possible microscopic fluxes in the medium

in addition to the thermal motion of electrons.

Note that microscopic motions of matter in a uniform and, on average, isotropic Universe

are either completely absent ( 	ve ≡ 0) or are of random nature such that 〈 	ve〉 �= 0 but 〈| 	ve|2〉 =
0. In this case, Eq. (2.19) takes the following form (after averaging over the scales of possible

peculiar motions):

∂ f

∂t
− ȧ

a
p0 ∂ f

∂p0
= τ ′

T

{〈	v2
e

〉
3

1

p2

∂

∂p

(
p4 ∂ f

∂p

)
+ 1

me p2

∂

∂p

[
p4

{
Te

∂ f

∂p
+ f (1 + f )

}]}
.

(2.20)

Let us first consider the effect of heating of electrons on the CMB spectrum assuming 〈	v2
e 〉 = 0.

After a substutition x = p0/Te on the left-hand side of Eq. (2.20), we make use of the condition

Ṫγ /Tγ = −ȧ/a, where Tγ is the radiation temperature. Then we ultimately obtain

∂ f

∂t
= y′ 1

x2

∂

∂x

[
x4

(
∂ f

∂x
+ f ( f + 1)

)]
+ x

∂ f

∂x

∂

∂t
ln

Te

T0(1 + z)
, (2.21)

where y′ = neσT (Teme). When analysing Eq. (2.21), we shall neglect the last term. This

approximation can be used because the characteristic time of the Doppler shift in the frequency

of quanta, τ ∼ a/ȧ, is practically identical to the cosmological times, whereas the processes

of heating of electrons and energy exchange between electrons and quanta have considerably

shorter characteristic times. This aspect is discussed in more detail in Section 2.4. To conclude

this section, we note that in Eq. (2.21) we can convert from differentiating with respect to the

variable t to differentiating with respect to y:

y =
∫

neσT

Te

me

dt. (2.22)
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It then follows from Eqs (2.20) and (2.21) for the quantum distribution function f (x, y) that

∂ f

∂y
= x−2 ∂

∂x

[
x4

(
∂ f

∂x
+ f (1 + f )

)]
. (2.23)

This equation was first derived by Kompaneets (1957), and its astrophysical applications

were studied in detail in Sunyaev and Zeldovich (1970a,b, 1972) and later in Illarionov

and Sunyaev (1975a,b). Let us emphasize two important features of Compton interactions

between quanta and electrons. First, as follows from Eqs (2.20)–(2.22), this process conserves

the total number of quanta. Multiplying the left- and right-hand sides of Eq. (2.20) by x2 and

integrating over x from 0 to ∞, we easily obtain

d

dt
(nγ a3) ∝

∫
dx · x2St [ f ] = 0, (2.24)

where nγ is the photon concentration.

This result allows very clear interpretation (see Zeldovich and Sunyaev (1969), (1970)).

Since the dynamics of the process is accompanied by a redistribution of quanta, it is clear

that the reduction in the number of quanta in one frequency range results in the emergence of

quanta in another range, so that the total concentration does not change. The second important

consequence follows from Eq. (2.20) if it is multiplied by x3 and integrated over x :

1

εγ a4

∂

∂t
(εγ a4) = 4τ ′

T

Te

me

[
1 − T 4

e

4π2εγ

∫ ∞

0

dx x4 f (1 + f )

]
. (2.25)

Here, εγ is the radiation energy density. The first term in the square brackets corresponds to

the thermal Compton effect, and the second describes the ‘recoil’ effect (Hu and Silk, 1993).

2.4 Compton distortion of radiation spectrum on interaction with
hot electrons
In this section we discuss one of the most important applications of the theory of

the Zeldovich–Sunyaev effect to the interaction model of cosmological ‘hot’ electrons with

quanta of primordial background radiation. In the Te � Tγ approximation, it is convenient to

transform Eq. (2.23) from variable x = p/Te to ξ = p/Tγ and to ignore on the right-hand side

those terms that are proportional to f ( f + 1)(Tγ /Te). This operation transforms Eq. (2.23)

as follows:

∂ f

∂y
= ξ−2 ∂

∂ξ

[
ξ 4 ∂ f

∂ξ

]
. (2.26)

Following Sunyaev and Zeldovich (1970a), we can apply perturbation theory in order to find

a solution of this equation in the limit y � 1, after substituting the non-perturbed Planckian

expression for f0(x) = (ex − 1)−1 into the right-hand side of Eq. (2.26). After this, we obtain

from Eq. (2.26) the following expression for the perturbation, � f , of the distribution function:

� f � ex · xy

(ex − 1)2

{
x

tanh
(

x
2

) − 4

}
(2.27)

and

� f

f0

= xex

(ex − 1)2

{
x

tanh
(

x
2

) − 4

}
. (2.28)
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In the Rayleigh–Jeans asymptotics x � 1, Eq. (2.27) immediately yields

� f

f0

� δTRJ

TRJ

= −2y. (2.29)

In the general case, the deformation of the quantum spectrum can be presented in the integral

form for any value of the parameter y and for any x (Sunyaev and Zeldovich, 1970a):

f (x, y) = 1√
4πy

∫ ∞

0

dξ

ξ
f0(0, ξ ) exp

[
− (ln x − ln ξ + 3y)2

4y

]
, (2.30)

where, as before, f0(0, ξ ) = (eξ − 1)−1. Multiplying f (x, y) by x3 and integrating in the

entire domain of variation of x , we arrive at the well known expression for the radiation

energy density,

εγ (y) = σ T 4
0,γ e4y, (2.31)

where T0,γ is the non-perturbed value of temperature. Since the Compton effect results in

reduced temperature in the Rayleigh–Jeans range, and therefore lowers energy, it is clear that

the increase in quantum energy density, Eq. (2.30), corresponds to accumulation of quanta in

the Wien range of the spectrum. This factor was first pointed out by Sunyaev and Zeldovich

(1970a). Figure 2.1 shows the spectrum of the CMB in the Zeldovich–Sunyaev approximation

for various values of the parameter y. Leaving aside a discussion of the possible mechanisms

of electron heating, we can present the dependence of the effective temperature on frequency

and the parameter y in the most general case, as shown in Fig. 2.1. An analysis of this plot

will be conducted in the following section, in which we discuss relativistic corrections to the

Zeldovich–Sunyaev effect.

2.5 Relativistic correction of the Zeldovich–Sunyaev effect
The effect of scattering of quanta by hot electrons in the approximation of diffu-

sion of quanta in frequency from the Rayleigh–Jeans range to the Wien range, discussed in

Section 2.2, is of utmost importance, both for the understanding of the mechanisms of spec-

trum transformation in the early Universe, and for describing the interaction of quanta of

the CMB with the hot gas in galaxy clusters. The key element in the description of quantum

diffusion is the use of the parameter y as the time variable (see Eq. (2.22)); y is a function

both of the optical depth of the plasma and the electron temperature Te.

In this section, we are interested in two aspects.

(1) How correct is it to use the diffuse approximation in the case when the optical depth of

the plasma relative to the Thomson scattering is small (τ � 1)?

(2) What are the quantitative changes in the predictions of the diffuse approximation as the

temperature of the electrons increases to several tens of keV? In other words, what will

the behaviour of the radiation spectrum be in the limit y � 1 if the parameter Te/me is

not too small?

Note that this formulation of the problem attracted careful scrutiny immediately after the

publication of Zeldovich–Sunyaev papers (Zeldovich and Sunyaev (1969) and then Sunyaev

and Zeldovich (1972)). Interest in the relativistic correction of the Zeldovich–Sunyaev effect

was largely stimulated by the discovery of galaxy clusters with gas temperature up to 15 keV;
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Figure 2.1 Comparison of the intensities �I/τ (in units of h2c2/2k3T 3) in the
Zeldovich–Sunyaev approximation (thin solid lines), taking into account relativistic
corrections (thicker curves). The numbers above the curves denote electronic temperatures
in keV. The intensities �I/τ are given in units of (hc)2/2(kT )3. Adapted from Rephaeli
(2001).
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on the other hand, the high precision of measurements of primordial radiation background

using the DERBI and FIRAS instruments in the COBE project (Fixsen et al.,1996) makes it

necessary to return again to the basics of the Compton theory of quantum interaction with

electrons. As a result, we follow Rephaeli (1995) and Wright (1979) and assume that the

smallness of the parameter y is especially due to the smallness of the optical depth of the

plasma relative to the Thomson scattering, τT .

Following Wright (1979), we analyse this scattering of a quantum by an electron in the

Chandrasekhar approximation (Chandrasekhar, 1950). The probability of scattering of a

photon moving in direction θ (μ = cos θ ) before being scattered by an electron moving in

direction θ ′ (μ′ = cos θ ′) after the act of scattering, has the following form (in the reference

frame of the electron at rest):2

ϑ(μ, μ′, β) = 3

8

[
1 + μ2μ′2 + 1

2
(1 − μ2)(1 − μ′2)

]
, (2.32)

where β = v/c. The scattering by an electron results in a frequency change of the quantum,

characterized by a parameter S,

S = ln
ν ′

ν
= ln

(
1 + βμ′

1 − βμ

)
, (2.33)

where ν is the frequency before scattering and ν ′ is the frequency after scattering. After

integration over the initial angles of arrival of quanta, we obtain from Eqs (2.31) and (2.32)

the probability for this process to occur (Rephaeli, 1995):

P(S, β) = 1

2γ 4β

∫
dμ

(1 + βμ′)ϑ(μ, μ′, β)

(1 − βμ)3
, (2.34)

where γ is the electron’s gamma-factor. Integrating Eq. (2.33) over the electron distribution

function, we arrive at the distribution function for the shift of the quantum frequency per

scattering act (Rephaeli, 1995):

P1(S) =
∫

dβ · β2γ 5e−ξ (γ−1) P(S, β)∫
β2γ 5e−ξ (γ−1)dβ

, (2.35)

where ξ ≡ mec2/kTe. Taking into account the fact that τ � 1, we can write the distribution

of quanta over frequency in the following form:

P(S) = (1 − τ )δ(S) + τ P1(S) + O(τ 2), (2.36)

where the first term in Eq. (2.36) describes the effect of scattering with frequency unchanged

and the second term describes the change in frequency in a single-scattering event. As

a result, taking into account single Compton scattering, we have, for the spectrum of

radiation,

�I = I0(x)τ [�(x, ξ ) − 1], (2.37)

2 In this section, we use the conventional system of units.
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where I0(x) = [2(kT0)3/(hc)2]x3(ex − 1)−1 is the spectral energy density of blackbody

radiation,

�(x, ξ ) = A(ξ )[ϕ1(x, ξ ) + ϕ2(x, ξ )],

ϕ1(x, ξ ) =
∫ 1

0

dt t(ex − 1)

ext − 1

∫ 1

βm

dβ γ e−ξ (γ−1)

∫ 1

μm

dμ q(t, μ, β), (2.38)

ϕ2(x, ξ ) =
∫ 1

0

dt(ex − 1)

t3(ex/t − 1)

∫ 1

βm

γ e−ξ (γ−1)dβ

∫ μM

−1

dμ q(t, μ, β),

q(t, μ, β) =
β−2(3μ2 − 1)

[(
1 − βμ

t

)
− 1

]2

+ (3 − μ2)

(1 − βμ)2
,

and

A(ξ ) = 3

32

(∫ 1

0

dβ · β2γ 5e−ξ (γ−1)

)−1

;

βm = 1 − t

1 + t
; μm = t(t−1 − 1 − β)

β
; μM = t − 1 + β

tβ
.

Detailed information about the calculation of the function �(x, ξ ) is given in Rephaeli (1995)

along with the numerical calculation of the function �I (x, ξ ). Note an important conclusion

that follows from Eq. (2.37): in the general case, there is no self-similar solution for arbitrary

values of the parameter x . Intensity perturbations, �I , of Eq. (2.37), as well as temperature

perturbations,

�T

T0

= ex − 1

xex
τ [�(x, ξ ) − 1], (2.39)

are functions of τ and ξ ; to be precise, functions of the combination τ f (ξ ). This effect

manifests itself best for x > 5–6 (see Fig. 2.1). Figure 2.1 plots the frequency distribution

for the function �I/τ calculated in the Zeldovich–Sunyaev approximation (Zeldovich and

Sunyaev, 1969) and also from Eqs (2.37) and (2.38) (Rephaeli, 1995). As we see from this

figure, deviations are considerable in the frequency range x ≥ 6. At the same time, it follows

from Eqs (2.38) and (2.39) that, as x → 0, the function �(x, ξ ) = −ξ−1 and, for kTe/mec2 =
constant, we arrive at Eq. (2.29).

A similar derivation of the relativistic correction of the Zeldovich–Sunyaev effect is given

in Challinor and Lasenby (1997), where it is also shown that temperature deviations for the

low-frequency part of the spectrum have the following form:

�TRJ

T0

= −2y

[
1 − 17

10
ξ−1 + 123

40
ξ−2 + O(ξ−3)

]
. (2.40)

As we see from this expression, the self-similarity effect breaks down in the first order of the

parameter ξ−1 � 1. Detailed numerical calculations of correction terms were carried out in

Dolgov et al. (2001) and Itoh et al. (2001).

The relativistic correction of the defuse approximation is thus found to be the most

important aspect of the analysis of possible spectral distortions in the Wien range of
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the spectrum, where stronger distortions are formed as the temperature of electrons

increases.

2.6 The kinematic Zeldovich–Sunyaev effect
In addition to cosmological applications to the effect of comptonization of the

CMB spectrum when it interacts with hot electrons, its astrophysical aspect has an important

practical significance. We speak here of the interaction of the quanta of the CMB with the

hot gas in clusters of galaxies whose temperature may be as high as 108 K. The thermal

Zeldovich–Sunyaev effect in the Rayleigh–Jeans range of the spectrum is then described by

the following formula:

�TRJ

T0

= − 2kTe

mec2
· τ, (2.41)

where τ = ∫
dl σTne(r ) is the optical depth relative to the Thomson scattering, measured

along the line of sight. However, as shown by Sunyaev and Zeldovich (1980) when analysing

the interaction of quanta of the CMB with the gas in galaxy clusters, it is necessary to take

into account the Doppler shift of the frequency of quanta caused by the motion of a cluster

as a whole relative to the background radiation. In this case, the change in the intensity of

radiation is given by

�I

I

∣∣∣∣
D

= − xex

ex − 1

vr

c
· τ, (2.42)

where x = hν/kTγ and vr is the radial component of the velocity of the cluster.

Recalculated to temperature perturbations, Eq. (2.42) immediately implies

�T

T
� −vr

c
· τ. (2.43)

We see from Eq. (2.43) that the effect of increasing or reducing �T/T is frequency-

independent and is only dictated by the direction of motion of the cluster. Temperature

decreases if the cluster moves away from us, and increases if it moves towards us. Therefore,

the fact of principal importance is that the data of the spectrum of CMB in the direction of

galaxy clusters may yield radial components of their velocity of motion. In principle, how-

ever, it is also possible (but far from easy) to evaluate the tangential component from the data

of polarization of the CMB in the direction of the galaxy cluster (Sunyaev and Zeldovich,

1980).

Since the optical depth of the best known clusters for which the kinematic Zeldovich–

Sunyaev effect has already been measured does not exceed τ � 0.02–0.05, and is generally

found to be even smaller, it is possible to use the single-scattering-event approximation to

simulate the effects of polarization generation in scattering of quanta by hot electrons in the

CMB (see Section 2.3).

According to the general theory of the Doppler effect (Landau and Lifshits, 1962),

the temperature of radiation in scattering by an electron (in its rest frame) is given by the

expression

T0 = Tγ

√
1 − v2/c2

1 + v
c cos θ

, (2.44)
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where θ is the angle between the directions of momentum of the quantum and the electron,

and Tγ is the true temperature of the CMB. Assuming the motion of electrons to be non-

relativistic, we can apply expansion in the small parameter v/c � 1 in Eq. (2.43) up to the

second order of magnitude, ∼ (v/c)2,

T0 = Tγ

[
1 − β cos θ + β2

(
cos2 θ − 1

3

)]
, (2.45)

where β = v/c.

The intensity of radiation in the Rayleigh–Jeans range of the spectrum is connected to

its temperature and possesses quadruple anisotropy in the order (v/c)2. Since the differen-

tial cross-section of scattering of quanta by electrons is a familiar function of polarization

(Chandrasekhar, 1950),

dσT

d�
∝ |ε̂ · ε̂′|2, (2.46)

where ε̂ and ε̂′ are the initial and final polarizations of photons, respectively; then, averag-

ing over the initial values of polarization produces the resulting polarization (Sunyaev and

Zeldovich, 1980):

I|| − I⊥
I|| + I⊥

= P � 0.1
(vt

c

)2

. (2.47)

Note that this evaluation involves precisely the tangential component of velocity, vt, while

the contribution from the radio component is zero owing to Eq. (2.46). The polarization for

galaxy clusters will be less by a factor of τ � 1 than in Eq. (2.47) since the smallness of

optical depth is related to the scattering probability via Eq. (2.36). Finally, we have

Pcl � 0.1τ
(vt

c

)2

. (2.48)

Note also that, in addition to Eq. (2.48), the polarization of radiation resulting from scattering

by a moving cluster appears in the first order in vt/c but only in the second order in τ 2. The

relevant evaluations were made by Sunyaev and Zeldovich (1980):

P̃cl � ± xex

4θ (ex − 1)

vt

c
τ 2. (2.49)

Before concluding this section, we should remark that, in addition to weakly linear effects

emerging in the order τ (v2
t /c2) or (vt/c)τ 2, there is also a purely gravitational correction to

the spectrum of the background radiation, independent of the optical depth of the plasma.

This fact was first noticed by Gurvitz and Mitrofanov (1986), who discussed the effect

of gravitational lensing of background radiation by a moving cluster. Perturbations of the

background radiation intensity are evaluated within an order of magnitude as follows:

�I

I
� xe∗

e∗ − 1

vt

c
· θ. (2.50)

Here the beam deflection angle, θ ∼ G M/Rc2, depends on the cluster mass M and its

radius R. Assuming, for the sake of estimation, that M ∼ 2 × 1015 M�, R ∼ 2 Mpc and

vt ∼ 2 × 103 km · s−1, we obtain from Eq. (2.49) that �T /T � 10−6 in the Rayleigh–Jeans

part of the spectrum.
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On the whole, recapitulating this section, we need to acknowledge that even granting the

importance of analysing non-linear corrections to the thermal and kinetic Zeldovich–Sunyaev

effects, today’s experimental capabilities are unfortunately quite far from achieving detection

of high-order corrections. At the same time, the linear effects, especially when combined with

x-ray and γ observations, make it possible not only to extract unique information on a type

of motion of gas and its temperature in galaxy clusters, but also to map out approaches to

independent determination of the Hubble constant, H0, using the observed spectrum of the

primordial background radiation. The following section is devoted to illustrating the general

ideology of this technique.

2.7 Determination of H0 from the distortion of the CMB spectrum and
the data on x-ray luminosity of galaxy clusters
Novel methods of determining the value of the Hubble constant were discussed in

Chapter 1; these methods used various objects – Cepheids, supernovas, etc. – as new ‘standard

references’. In this section we add to this list another ‘standard candle’ – the calculation of H0

from the distortion of the background radiation spectrum via the thermal Zeldovich–Sunyaev

effect, combined with the data on the x-ray luminosity of the gas in galaxy clusters. The

gist of this idea of the combined use of two effects is extremely simple. X-ray luminosity

yields a relation between temperature and luminosity of the cluster and density distribution

within the cluster. Moreover, the Zeldovich–Sunyaev effect operates with practically the same

parameters. Therefore, by combining the two effects, it is possible to express the angular size

of the cluster in terms of the combination of x-ray and radio luminosities. The same angular

size can be found using standard cosmological techniques (see Chapter 1) that relate the

value of the Hubble constant H0 with the radio and x-ray luminosities of clusters. A specific

implementation of this algorithm was given in Birkinshaw (1999), Birkinshaw and Hughes

(1994), Carlstrom, Joy and Greco (1996), Carlstrom et al. (2000, 2001), Reese (2004) and

Udomprasert, Mason and Readhead (2001), where the latest results on H0 obtained by this

method are discussed. Let us look at the fundamental aspects of this approach.

The observed x-ray luminosity of the gas inside a cluster is described by a simple formula

(Birkinshaw, 1999):

Bx � �0n2
0dA

4π (1 + z)3

∫ θcl

0

ω2
nω� dξ, (2.51)

where n0 · ωn = ne is the radial electron concentration distribution in the cluster, �0 · ω� is

the radial distribution of the x-ray luminosity of the hot gas, ξ = r/dA, dA is the distance to

the cluster, r is the cluster radius, z is the redshift and θcl is the angular size of the cluster.

The distortions of radiation intensity due to the Zeldovich–Sunyaev thermal effect are given

by the formula

�I = i0g(x)
kTe0

mec2
σTn0dA

∫ 1

0

ωnωT dξ, (2.52)

where

i0 = 2(kT0)3

(hc)2
, g(x) = x4e4

(ex − 1)2

[
x(ex + 1)

ex − 1
− 4

]
,

and Te = Te0 · ωT is the angular distribution of the electron temperature.
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By combining Eqs (2.51) and (2.52), we finally obtain

dA = 1

4π (1r z)3

(
�0

σ 2
T Bx

) (
�I

i0g(x)

)2 (
mec2

kTe0

)2 (
Qx

Q2
m

)
, (2.53)

where Qx = ∫
dξ ω2

nω� and Qm = ∫
ωnωT dξ . A comparison of Eq. (2.53) and Eq. (2.51)

allows us to express H0 in terms of the parameters of the problem.

As we see from Eq. (2.53), the accuracy of determining the distance dA to a cluster

depends on the ‘geometrical’ parameters Qx and Qm , which are found by integrating the

radial distribution functions of temperature and concentration of the gas and of its x-ray

luminosity. In the 1990s, the decisive success in finding ωn , ωT and ω� was achieved by

using interferometric measurements in combination with high-angular-resolution x-ray data.

Among such radio measurements we need to mention first of all the data of the BIMA and

OVRO collaborations (Carlstrom et al., 1996, 2000), which conducted observations of 35

galaxy clusters in the redshift range from 0.17 to 0.89.

Figure 2.2(a) shows a radio image of the cluster CL0016+16 obtained with the BIMA

interferometer at 28 GHz. Shown in Fig. 2.2(b) is an x-ray photograph of the same cluster

recorded by the ROSAT satellite. Note the high degree of correlation in the orientation of hot

gas areas detected both in the radio and in the x-ray spectrum of emission from the cluster.

Radio luminosity distributions of the nine nearest galaxy clusters were measured recently

by the CBI interferometer with angular resolution reaching 3′ (Udomprasert et al., 2000). A

similar program was implemented in the framework of the observational programs SuZIE,

PRONAOS and MITO. Compton distortions y � 1.2 × 10−3 were measured in the observa-

tions of the cluster RXj1347 (Pointecouteau, 1999) using the 30 cm IRAM radio telescope.

Especially important among the experiments on the observation of the Zeldovich–Sunyaev

effect are the BIMA and ORVO data on measuring the Hubble constant. The results were

summarized for 33 galaxy clusters (Carlstrom et al., 2000); see Fig. 2.3. Since the expression

for the distance, dA, includes, in addition to the Hubble constant, the total density of mat-

ter and the cosmological constant, the results of calculation of H0 are model-dependent.

For instance, assuming � = 0.3, the expected value of the Hubble constant is close to

60 km s−1 Mpc−1, and for � = 1 (� = 0) it reduces to H0 = 58 km s−1 Mpc−1 with ±5%

observational error. The level of systematic error is evaluated here to be almost six times

higher (∼ 30%) (Carlstrom et al., 2000).

2.8 Comptonization at large redshift
This section is devoted to applications of the theory of Compton distortions of

the spectrum of the CMB radiation caused by energy releases in the early Universe. Note

that this aspect was first studied in Sunyaev and Zeldovich (1972), where the main features

of the transformation of the background radiation spectrum upon heating of cosmological

electrons were listed for times long before the epoch of the formation of the galaxy and galaxy

clusters. In this section we return to this problem predominantly because the latest data from

the DERBI and FIRAS instruments, obtained in the framework of the COBE project (Fixsen

et al., 1996), impose strict observational constraints on the chemical potential of photons and

the degree of spectrum non-equilibrium.

An analysis of the temperature regime of electrons affected by possible energy releases in

the early Universe will be conducted under the assumption of Maxwellian velocity distribution
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(b)

Figure 2.2 (a) Radio (b) and x-ray (ROSAT) images of CL0016+16, obtained by the BIMA
collaboration (for details, see Carlstrom et al. (2000)).

and equality of the temperatures of electron and proton components. This hypothesis assumes

that the characteristic electron–electron collision time, τee, and electron–proton collision time,

τep, must be considerably shorter than the Compton time of energy ‘pumping’ from electrons

to τeγ (see Zeldovich and Novikov (1983)).

When the condition τee, τep � τeγ is satisfied, the thermal balance in the electron gas in

the presence of sources of electron heating is found from the first law of thermodynamics
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Figure 2.3 The distribution of dA as a function of redshift, from Carlstrom et al. (2000).

to be

d(ρtota
3) + Ptot da3 = dQ, (2.54)

where a is the scale factor, dQ is the energy release from heat sources, and ρtot and Ptot are

the total density and total pressure of the electron–proton gas and radiation, respectively.

Taking into account the relations between energy density, pressure and temperature for each

component,

Pγ = 1

3
ργ ; ρec2 = menec2 + 3

2
nekTe; P = kneTe, (2.55)

where ne is the electron concentration and Te is the electron temperature, we can obtain

from Eqs (2.54) and (2.55) the following equations of thermal equilibrium for hydrogen and

helium:

dTe

dt
+ 2

ȧ

a
Te = 2

3(ne + nH + nHe)

[
Q̇

ka3
− d

a4dt
(ργ a4)

]
. (2.56)
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From Eq. (2.25), in the approximation of Compton heating of radiation by hot electrons, we

find

d

a4dt
(ργ a4) = ργ · 4τC

kTe

mec2

[
1 − σ T 4

e

4π2εγ

∫
dx · x4 f (1 + f )

]
, (2.57)

where εγ = ργ c2, x = hν/kTe and f is the frequency distribution function of quanta.

Integrating now in Eq. (2.57) over a new variable x ′ = hν/kTγ , we finally obtain

d(Tea2)

a2dt
+ 1

τeγ

(
Te − 15

4π4

σ T 5
γ

εγ

∫ ∞

0

dx · x4 f (x)(1 + f )

)
= 2q

3ntota3
, (2.58)

where

ntot = ne + nH + nHe; q ≡ Q̇; τeγ = 3

8

mec

σTεγ

· ntot

ne

= 3

8

mec

σTεγ

x−1
e , (2.59)

where the degree of plasma ionization is xe = ne/ntot. Recalling here that the cosmic plasma

is totally ionized at redshifts z � 103, and also that the characteristic time of Compton

interaction is much shorter than the cosmological time scale, we can derive from Eq. (2.58)

the following:

Te � 15

4π4

σ T 5
γ

εγ

∫ ∞

0

dx · x4 f (x)(1 + f ) + 2

3
τeγ

q

ntot

a3. (2.60)

If we assume that deviations from the equilibrium form of the distribution function for quanta

are small, we can reduce the second term on the right-hand side of Eq. (2.60) to the radiation

temperature, Tγ , so that the corresponding value of the parameter y is found to be

y �
∫

k(Te − τ )

mec2
� 2

3

∫
dτ · τeγ

mec2

qk

ntota3
. (2.61)

Further evaluation of the parameter y depends on the relation between the characteristic

variation time of source parameters, tS � (Q/Q̇), and the characteristic variation time of

the plasma optical depth, topt � τ/τ̇ . If we ignore for the moment the period of hydrogen

recombination during which topt is small, we can assume that topt ∼ texp for z � 103, where

texp � a/ȧ is the characteristic time of expansion. Then the parameter y for tS � texp is on

the order of

y � 2

3
τ ′

T · τeγ

mec2

Q

ntota3
. (2.62)

In the opposite case, when the evolution of the heating source is slow (tS ≥ texp), we can use

the following approximate expression for y:

y � 2

3
τ · τeγ

mec2

Qk

ntota3
= 2

3
τ

τeγ

mec2

q

ntota3
. (2.63)

For the sake of certainty, we refer to the regime described by Eq. (2.62) as the regime

of explosive energy release, and to the regime of Eq. (2.63) as the quasi-stationary one.

Forgetting for the moment concrete details of possible mechanisms of implementing the

explosive and quasi-stationary modes, we can say that, to within a coefficient ∼1, they

correspond to approximately the same value of y. To be specific, let us consider the mode
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given by Eq. (2.62). In view of the equality τ ′
T = σT nec and Eq. (2.59), we arrive at the

following expression for y:

y � 1

4

Q

εγ a3
. (2.64)

The quantity εS = Q
a3 in Eq. (2.64) identifies with the density of energy released by external

sources to heat electrons. Then Eq. (2.64) implies a simple estimate of the ratio εS/εγ :

εS

εγ

� 8 × 10−5

(
y

2 × 10−5

)
∼ 10−4, (2.65)

where the parameter y was normalized using the data of Fixsen et al. (1996).

Note that this evaluation is of sufficiently general nature and can be applied successfully to

evaluate energy release regardless of the value of the redshift. In addition to the y-distortions

of the primordial background radiation spectrum discussed above, it is also necessary to look

at another mechanism of principal importance that arises if the optical plasma depth is large.

By this we mean the formation of the Bose–Einstein spectrum of the CMB:

f (x, μ) =
[

exp

(
hν + μ

kTe

)
− 1

]−1

. (2.66)

Formally, this spectrum satisfies the Kompaneets equation, Eq. (2.22), for ∂ f /∂y = 0. This

means in turn that the parameter y must be sufficiently large, i.e.

y ∼ τ · k(Te − Tγ )

mec2
� 1. (2.67)

We can expect in this case that the asymptote of the solution of Eq. (2.23) will tend to the mode

described by Eq. (2.66) and that the chemical potential μ will be (Sunyaev and Zeldovich,

1972)

μ = 1.4 kTγ δS, (2.68)

where δS is the energy release.

To recapitulate the results of this section, we can point to two basic types of spectrum

distortions for the primordial background radiation: y-distortions and the chemical potential,

μ. Both these parameters are dependent on specific features of electron heating and are calcu-

lated with certain assumptions concerning the properties of the sources of a non-equilibrium

energy release. In Chapter 3 we analyse the ionization history of the Universe and specifically

the mechanisms of reionization of the cosmic plasma, and treat in detail a number of such

mechanisms, paying attention to possible observational manifestations of non-equilibrium

energy release processes. At the same time, the most important factor that defines constraints

on the limits of applicability of the theory is the experiment. For spectral distortions of back-

ground radiation, the role of such ‘critical’ experiments is played by the data of the DERBI

and FIRAS instruments of the COBE project, which limit the observational values of the

parameters y and μ as follows:

y0 ≤ 1.5 × 10−5 (95% CL),

μ < 9 × 10−5 (95% CL).
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Figure 2.4 Upper confidence limits (95%) on fractional energy release, �E/ECMB from
different epochs. Adapted from Smoot and Scott (1997).

The constraints on the possible energy release in the early Universe are plotted in Fig. 2.4

for these parameter values as functions of redshift (Fixsen et al., 1996).

As we see, the level of energy release does not exceed 10−3–10−4 in practically the entire

range of values of redshift, 103 < z ≤ 106. If z ≥ 107, the ‘degree of non-equilibrium’ in the

Universe, �ε/εγ , does not exclude the possibility of considerable energy release, �ε/εγ ∼ 1.

However, this ‘softening’ of the limitation fails to highlight the fact that the cosmic plasma

needs to be in non-equilibrium. What we mean is that the Compton mechanism of distortion

formation is found not to be sensitive to considerable distortions in the spectrum of the CMB.

It should be remembered that the epoch of cosmological nucleosynthesis is not immediately

followed by the z ∼ 107 epoch, and that the survivors of nucleosynthesis (He4 and D) are

indicators of the equilibrium nature of the spectrum of quanta up to z ∼ 109–5 × 109.
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The ionization history of the Universe

3.1 The inevitability of hydrogen recombination
The physics of the cosmic microwave background is tightly related to the kinetics of

interactions between quanta and electrons because electrons are the lightest charged particles

that annihilated with positrons in the process of cooling of the Universe at the time when its

temperature was falling to 109 K. The remaining electrons, by now non-relativistic, constitute

the most important factor of possible distortions of the primordial microwave background

during the z < 107 epoch when Compton scattering became the dominant mechanism of

the e–γ interaction. Within the ‘y-theory’ of Comptonization of the CMB, we find that this

parameter, which characterizes the degree of ‘non-equilibrium’ of electrons with respect to

radiation, depends not only on temperature, Te, but also on the plasma’s optical depth in

terms of Thomson scattering, τ . In turn, the rate at which the optical depth changes in time,

τ̇ = σTnec, is determined by two very important factors: the expansion of the Universe and

the dynamics of evolution of electron concentration. As a rule, this process is described in

terms of the degree of ionization of the plasma, as follows:

xe = ne

ntot

, (3.1)

where ntot is the total concentration of baryons in the plasma. If the plasma temperature

definitely exceeds 105 K, electrons must be free (i.e. not bound to protons) since otherwise

a gigantic number of ionizing quanta would immediately destroy hydrogen atoms. In other

words, the efficiency of the reaction H + γ → p + e is so high that it is beyond any doubt

that the amount of neutral hydrogen in cosmological matter is inconsequential. In this case,

therefore, the degree of ionization, xe, equals unity with high accuracy, and changes in the

optical depth of the plasma relative to Thomson scattering are caused only by the expansion

of the Universe. Note that even when the degree of plasma ionization does not change with

time (xe = 1 = const.), the anticipated plasma depth continues to diminish anyway as a result

of the cosmological expansion (Hu, 1995):

τ =
∫ tnow

t
σTnbc dt � 4.1 × 10−2 �b

�m

h
{[

�� + �m(1 + z)3
]1/2 − 1

}
, (3.2)

where we have used the same notation as in Chapter 2 and �� + �m = 1. Equation (3.2)

clearly shows that if z > zcr, where zcr is found from the condition �� � �m(1 + zcr)
3, the

behaviour of the optical depth follows the relation τ ∝ (1 + z)3/2, while for z → 0 we have

τ (z) ∝ 3
2
�m · z → 0.

53
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In fact, the first important conclusion that follows from this analysis of the extremal

asymptote xe = 1, regardless of the value of the redshift, is that, relative to the Thomson

scattering, today’s Universe must be optically thin – to within ≤ 1%. As we see from Eq. (3.2),

the behaviour of the optical depth for z � 1 is independent of ��:

τ (z) � 4.1 × 10−2�b�
−1/2
m h(1 + z)3/2, (3.3)

and formally the zone of the ‘last scattering’ of quanta by electrons (τ (z) = 1) corresponds

to the redshift

z∗ � 8.4�
−2/3
b �1/3

m h−2/3. (3.4)

To be specific, we assume �bh2 � 0.02, �m � 0.3 and h � 0.7 (see Chapter 1) and we

finally obtain z � 60. Therefore, with the cosmic plasma completely ionized, the maximum

redshift after which the CMB radiation propagates freely is a relatively low at z � 60. There

remains the question of whether the total hydrogen ionization can be self-maintained down

to this redshift. This question can be answered using the following qualitative reasoning.

To maintain the degree of ionization at the level xe = 1, it is necessary for the fraction

of quanta having energy above the hydrogen ionization potential, I � 13.6 eV, to reach

approximately one quantum per baryon. As in cosmological nucleosynthesis (see Chapter 1),

this formally leads to an estimate of

ξ−1 exp

(
− I

kT (z)

)
∼ 1, (3.5)

where ξ = ξ10 × 1010. We can evaluate the optimum range for ξ from the data on the abun-

dance of the cosmic He4 and D: ξ10 ∼ 5. The substitution of this estimate into Eq. (3.5)

yields

T (z) ∼ Ti ln−1(ξ−1) � 3.8 × 103 K, (3.6)

where Ti = I
k � 1.5 × 105 K is the temperature corresponding to the ionization energy. Tak-

ing into account T (z) = T0(1 + z), where T0 = 2.736 K is the current temperature of the

CMB radiation, we see that Eq. (3.6) implies that the ionizing (Wien) part of the spectrum

cannot sustain the degree of ionization at the level xe � 1 at redshifts z < 1400. Therefore,

to sustain the xe = 1 mode at z < 1400, it is necessary that a powerful ionizing component

of matter is present because there is simply not enough quanta of the primordial background

radiation!

The estimates given above yield the obvious conclusion that the ionization history of the

cosmic plasma is one of the most important probes for studying the properties of cosmic

matter in the epoch of redshift z ≤ 1400. Any information on the degree of plasma ionization

in this period is inevitably tied to testing the processes of energy release and, therefore, to the

identification of the possible sources of this energy release. In fact, the situation becomes even

more dramatic if we take into account the observation of the hydrogen line λ = 21 cm and the

Ly-α absorption in the spectra of remote quasars: these show that the cosmological hydrogen

must already be ionized up to xe � 1 at redshifts z ∼ 5–6 (see Section 3.8). Therefore, the

idea of non-equilibrium sources of energy release is directly confirmed, but unfortunately for

small redshifts only. What is the situation in the range 60 < z < 1400? What can we say about

the presence or absence of sources of non-equilibrium ionization (non-equilibrium relative to

the primordial background radiation)? It appears that Zeldovich and Sunyaev (1969) were the
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first to attempt to justify the inevitability of a neutral hydrogen period in the Universe, at least

over a limited range of redshifts z. The key element in their work was the idea that hydrogen

ionization must be accompanied by heating of electrons to temperatures Te ≥ 104 K. At

such temperatures the plasma would emit quanta (the free–free emission) with the emission

coefficient given by

Eff(ν) = 5.4 × 10−39gT 1/2
e e− hν

kTe n2
e erg cm−3 s−1 ster−1 Hz−1 (3.7)

where g is the Gaunt factor (g = 1 for hν � kTe and g =
√

3
π

ln[(4kTe/hμ) − 0.577] in

the limit hν � kTe (Karzas and Latter, 1961)). As we see from Eq. (3.7), the emission

spectrum in the long-wavelength range is practically independent of frequency. Therefore, in

this wavelength range we should expect peculiarities in today’s spectrum of the background

radiation due to the heating of cosmic plasma at high redshifts.

When describing the spectrum of cosmic electromagnetic radiation in the Universe in

Chapter 1, we pointed out that the radiation flux in the radio wavelength range (ν � 1–

10 GHz) is definitely below JR � 10−23 erg s−1 ster−2 Hz−1 for ν ∼ 10 GHz (see Fig. 3.1).

Note that the value for JR chosen in the original paper (Zeldovich and Sunyaev, 1969) was

almost four orders of magnitude higher than the limit given above, even though this was at a

different frequency (ν � 0.6 GHz; λ � 50 cm). In view of the ‘flat’ behaviour of the spectrum

of free–free emission, it is clear that the values Eff(ν � 0.6 GHz) and Eff(ν � 10 GHz) should

remain constant to within an order of magnitude. At the same time, the observed flux at the

frequency 600 MHz decreases in comparison with that at ν � 10 GHz by approximately

another order of magnitude (see Fig. 3.1), reaching a local minimum. Consequently, the

bounds on the temperature of electron heating can be derived from the condition (Zeldovich

and Sunyaev, 1969)

∫
Eff dl

(1 + z)3
< JR(ν), (3.8)

where dl = c dt � (c/H0)(�m)−1/2z−5/2 and z � 1. Combining Eqs (3.7) and (3.8), we

finally obtain

(�bh2/0.02)2

(�mh2)1/2

∫ zmax

0

dz
√

1 + zT −1/2
e (z) ≤ 0.5 jR, (3.9)

where jR ≡ JR f (ν)/10−24 erg s−1 cm−2 Hz−1 ster−1. As is clear from Eq. (3.9), the con-

straints on Te(z) depend on the dynamics of variation of the electron temperature as the

redshift diminishes.

Let us consider a model in which the electron temperature depends on z in a power-

law fashion, Te(z) � 104 (1 + z)ξ /(1 + z∗)ξ , where the parameter ξ ≤ 0 and z∗ defines the

moment when heating starts. Clearly, as z changes at ξ > 0, the electron temperature should

decrease, and therefore the ionizing power of the source would become insufficient for

sustaining the xe = 1 mode.

Let us consider the limiting case of Te = const. � 104 K, when Te is independent of z
(ξ = 0). We immediately obtain from Eq. (3.9) that

z3/2
max ≤ 75 jR(�mh2)1/2

(
�bh2

0.02

)−2 (
Te

104

)1/2

. (3.10)
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Figure 3.1 Contributions of normal galaxies (dotted curves), radio galaxies (long-dash
curves) and the CMB (short-dash curve) to the extragalactic radio background intensity
(thick solid curves) for the models (a) no evolution and (b) with evolution of galactic
luminosity. Dotted lines depict an observational estimate of the total extragalactic radio
background intensity and the dot–dash curve gives an earlier theoretical estimate. For
details, see Protheroe and Biermann (1996).

So, electrons heated to 104 K must transfer energy to CMB quanta through the Compton

mechanism. The corresponding value of the parameter y is then evaluated to be

y ∼ τ
kTe

mec2
� 1.6 × 10−9

(
�bh2

0.02

)
(�mh2)−1/2

(
Te

104

)
z3/2

max. (3.11)

Taking into account Eqs (3.10) and (3.11), we find

y ≤ 1.2 × 10−7

(
�bh2

0.02

)−1 (
Te

104

)3/2

jR, (3.12)
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which is definitely below the observational limit of COBE for Te < 6.5 × 106 K. Returning

to Eq. (3.10) and using the value Te < 6.5 × 106 K as the temperature maximum, we arrive at

zmax ≤ 150. Note that a more detailed derivation of the quantity zmax, based on searching for

today’s minimum of the functional that takes into account constraints on the radio background

and the y parameter that do not require the assumption Te(z) = const., was given in Zeldovich

and Novikov (1983). In the framework of this generalized formulation, it is readily shown

that quantitative conclusions on a requirement for the neutral hydrogen epoch in the Universe

to have existed are only weakly affected. We can state, quite safely, that cosmic plasma must

be neutral (xe � 1) down to redshifts as low as z � 300, and that its temperature must be

low (Te < 104 K).

It is therefore inevitable that the cosmological hydrogen must undergo recombination and,

taking into account the Gunn–Peterson effect, be re-ionized later. The hidden plot behind the

history of ionization of the Universe boils down to what the sources of this process could be;

we discuss this aspect in the subsequent sections of this chapter.

3.2 Standard model of hydrogen recombination
In this section we turn our attention to the standard model of hydrogen recombina-

tion. Its fundamentals were formulated at the end of the 1960s and the 1970s in a number of

pioneer publications (Peebles, 1968; Zeldovich, Kurt and Sunyaev, 1969). It is necessary to

point out that during this period the role played by hidden mass (dark matter) in the kinematics

and dynamics of the evolution of the Universe was underestimated. Therefore, all the results

of the hydrogen recombination theory in the baryonic Universe needed certain corrections

that would take into account the simple fact that the density of hidden matter exceeds that

of baryonic matter. Consequently, the rate of expansion of the Universe should follow the

law a ∝ t2/3 from the time of redshift zeq � 1.2 × 104ω4�mh2 when its density becomes

equal to that of the radiation background. At the same time, the moment of equality for zeq

at low density of baryonic matter �bh2 � 0.02 would correspond to zeq ∼ 240 (�bh2/0.02)

(with the hidden mass (dark matter) background neglected), and hydrogen recombination

would be completed already at the radiation-dominated phase. The imbalance of hydrogen

recombination reaction rates (affected by �b) and the rate of cosmological expansion (dic-

tated by �m) is the principal distinctive feature of the ‘standard’ models when the hidden

mass (dark matter) is taken into account. This factor was first pointed out by Zabotin and

Naselsky (1982a) (see also Jones and Wyse, 1985; Krolik, 1990; Lubarsky and Sunyaev,

1983). At the same time as the hidden matter factor was being taken into account, Basko

(1981), Krolik (1990) and Rybicki and Dell’Antonio (1994), improved the model of trans-

fer of resonance quanta in the expanding Universe, and Lepp, Stancil and Dalgarno (1998)

calculated the effect of the ionization regime on the molecular synthesis at later stages of

hydrogen recombination (z � 400). A new element due to the unique accuracy of the future

CMB experiments was that the effect of He4 on the kinetics of the cosmological hydrogen

recombination, and on its residual ionization, was to be taken into account. Seager, Sasselov

and Scott (1999a,b) analysed a multilevel model of the hydrogen atom (∼300 levels) and

gave a systematic summary of the main achievements of the theory. This work reached its

conclusion with the creation of a specialized programs package RECFAST, which at the

moment is the most successful tool for calculating the dynamics of cosmological hydrogen

recombination.
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Figure 3.2 The three-level model of the hydrogen atom.

3.3 The three-level approximation for the hydrogen atom
In this section we consider the three-level model of the hydrogen atom comprising

the ground state HI and the 2P and 2S states as the initial approximation for describing

its recombination kinetics. We will neglect the contribution of He4 atoms to this process,

leaving it to the following section. In this formulation, the ideology of the model is in

complete agreement with the approximations of Peebles (1968) and Zeldovich et al. (1969).

The model is schematically presented in Fig. 3.2 and indicates the possible directions of

electron transitions in the hydrogen atom.

Following the papers of Peebles (1968) and Zeldovich et al. (1969), we describe the

recombination kinetics, taking into account the following specifics of the level structures of

the hydrogen atom and also the properties of the plasma.

(1) The plasma temperature is sufficiently low (< 104 K) for the collisional ionization to be

negligible in comparison with radiative processes.

(2) The time of transition for an electron to travel from the 2P level to the ground state is

much shorter than the cosmological time.

(3) The population of higher levels obeys equilibrium thermal distribution.

(4) The population of the 2S level satisfies the condition n2S � n1, where n1 is the hydrogen

population at the ground level.

(5) Each act of recombination to the 2P level creates a resonant Ly-α quantum, and each

decay of the 2S level produces two low-energy photons.

(6) Electrons, protons and radiation are in equilibrium at temperatures above 104 K.

This means that the reaction e + p ↔ H + γ occurs in both directions, in such a way that

the equilibrium concentrations of electrons, protons and neutral hydrogen atoms obey the

Saha formula,

nenp

nH

= gegp

gH

(2πmekT )3/2

h3
e−I/kT , (3.13)

where gi are the statistical weights of each component. We now introduce the degree of

ionization, x0 ≡ ne/(np + nH). Then the evolution of the equilibrium degree of ionization is

described by the following equation (Zeldovich and Novikov, 1983):

x2

1 − x
� 4.4 × 1022

(
�bh2

0.02

)−2

(1 + z)−3/2 exp

[
−5.77 × 104

1 + z

]
. (3.14)
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Note, however, that the equilibrium degree of ionization determined from the Saha formula

(3.14) does not provide the entire detailed picture of the formation of neutral hydrogen

atoms. The point is that each act of recombination, p + e → H + γ , is accompanied by the

emission of one Ly-α quantum with energy hνα = 3
4

I = 10.2 eV, which immediately excites

a hydrogen atom, while quanta with hνα = 1
4

I = 3.4 eV that are abundant in the blackbody

radiation immediately ionize this atom.

The absorption cross-section of neutral hydrogen for resonance quanta is found to be

extremely large. The corresponding optical depth, τα � σInbct , is found to be ≥ 4 × 108

(Peebles, 1968), and therefore Ly-α quanta generated in each recombination event should be

immediately absorbed by the generated hydrogen atoms.

Relatively low-energy quanta are needed to ionize hydrogen atoms from the 2P level:

E = I − hνα = 1
4

I � 3.4 eV. Owing to the Wien character of the spectrum of background

photons, the number of such ‘soft’ quanta is found to exceed that of ‘hard’ quanta (with energy

E � I ) by a factor of approximately e−I/4kT /e−I/kT � e
3
4

I
kT � 1; therefore, hydrogen atoms

in the 2P state are immediately ionized by quanta from the ‘soft’ part of the CMB spectrum.

Therefore, the right-hand side branch in Fig. 3.2 that describes the dynamics of population

of the hydrogen atom 2P state is, at the same time, a sort of ‘engine’ for producing – and,

more importantly, accumulating – Ly-α quanta in the process of hydrogen recombination

over their equilibrium concentration in the Wien range of the spectrum. The reaction channel

on the left is directly responsible for the formation of neutral hydrogen – via the metastable

2S level, as was first shown in Peebles (1968) and Zeldovich et al. (1969). Let us consider

the kinetics of this process in more detail.

3.3.1 Equations for the populations of hydrogen levels
Look at the diagram of electron transfers in the hydrogen atom as shown in

Fig. 3.2. In the three-level atom approximation, this diagram corresponds to the processes

Hn=2,l=2S + γα ↔ e + p+, Hn=1 + γα ↔ Hn=2,l=2P, Hn=2,l=2S + γα ↔ Hn=1 + γ + γ . For

each state of an electron, we introduce the corresponding concentration of hydrogen atoms,

ni (n1S, n2S, n3S, . . .). This concentration is found from the following kinetic equation

(Seager, Sasselov and Scott, 2000):

d(ni (t)a3)

a3dt
= nenpαic − niβic +

N∑
j=1

n j (+)ρ j i − ni

N∑
j=1

ρi j , (3.15)

where α is the coefficient of recombination to level ν from the continuum, βic is the corre-

sponding coefficient of ionization from level i to continuous spectrum, ρi j are the coefficients

of transition from level i to j , ne is the electron concentration and nP is the concentration of

atoms in the ionized state.

The set of equations (3.15) must be supplemented with an equation for the concentration

of free electrons; in fact, this equation describes the rate of change of the degree of ionization,

xe, as a function of time (Peebles, 1968) as follows:

d(nea3)

a3dt
= −

∑
i>1

(
αien2

e + βiene

)
, (3.16)

where αil and βil are the coefficients of recombination and photoionization at the level i , and

the index l describes the possible P and S states.
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We have emphasized earlier that all high-energy levels of the hydrogen atom are in dynamic

equilibrium with radiation. In this case (Peebles, 1968),

nie = n2S(2l + 1)e− (B2−B1)

kT , (3.17)

where Bi is the bonding energy of the i th level. Introducing the notation

αc =
∑
i>1

αie; βc =
∑
i>1

(2l + 1)βiee− (B2−B1)

kT = αc · e− B2
kT

(2πmekT )3/2

h3
(3.18)

for free electron concentration, Eqs (3.16)–(3.18) yield the following equation:

d(nea3)

a3dt
= −αcn2

e + βc · n2S. (3.19)

We see from this equation that the dynamics of evolution of ne is directly related to the

population dynamics of the level 2S, found from the set of equations (3.15). Following

Peebles (1968), we introduce the relative population of the 2S level:

R2S = n2S

n1S

. (3.20)

Obviously this population is sustained by Ly-α quanta, whose dynamics is described by the

following transfer equation (Peebles, 1968):

d
(
n3

α

)
a3dt

= −να H [n(ν+) − n(ν−)] + R, (3.21)

where nα = ∫ ν+
ν− nν dν is the concentration of Ly-α quanta in the spectral line, ν− and ν+

are, respectively, the lower and upper bounds dictated by the profiles of the Ly-α line, R is

the concentration of the Ly-α quanta fed into the plasma by each hydrogen recombination

event per unit time, and H is the Hubble constant. Since the width of the Ly-α line is

�ν/να = (νt − ν−)/να ∼ 10−5 and nα ∼ n(−)�ν, Eq. (3.21) immediately implies that the

right-hand side must be nearly zero. Therefore

n(ν−) � n(νt ) + R

να H
. (3.22)

Introducing filling numbers for quanta, � = nνc/(8πν2), we find from Eq. (3.22)

�− = �+ + Rλ3
α

8π H
, (3.23)

where λα = c/να and �+ = exp(−(B1 − B2)/kT ) correspond to the thermodynamic equi-

librium value.

To find the intensity of Ly-α quanta that are newly fed into the process during recom-

bination, it is necessary to remember that their number is determined using the following

arguments. Each recombination event generates one Ly-α quantum which is absorbed by a

hydrogen atom. At the same time the decay of the 2S level ‘removes’ Ly-α quanta from the

plasma, converting them to ‘soft’ photons. Therefore,

R = (
αcn2

e − βcn2S

) − �2S−1S

(
n2S − n1Se− (B1−B2)

kT

)
, (3.24)

where �2S−1S = 8.224 58 s−1 (see Spitzer and Greenstein (1951)) is the rate of the two-atom

decay of the 2S state. Equation (3.24) shows that in the equilibrium state R ≡ 0 because
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recombination and ionization events completely cancel out (the expression in the first brackets

in Eq. (3.24)) and the equilibrium population of the 2S level ensures that the expression in

the second pair of brackets is zero.

The last condition that closes the set of equations for the degree of ionization in the

presence of Ly-α quanta reduces to the equality R2S = �+, which points to a simple fact: the

population of the 2S level is dictated by the equilibrium value of �+ plus the Ly-α quanta

that the redshift pushed under the ionization threshold. Substituting R2S = �− into Eq. (3.20)

and taking into account Eq. (3.23), we arrive at an equation for R, and therefore also for R2S,

by expressing n2S in terms of n1S and other parameters of the problem. Introducing now the

degree of ionization, xe = ne/(np + n1S), we obtain from Eq. (3.19)

−dxe

dt
= D

[
αcnx2

e − βc(1 − xe)e− B1−B2
kT

]
, (3.25)

where

D = 1 + K�2S,1Sn(1 − xe)

1 + K (�2S,1S + βc)n(1 − xe)
(3.26)

and K = λ3
α/6π H (t), B1 − B2 = I

4
. For the recombination coefficient we use the improved

value (Hummer, 1994; Pequignot, Petitjean and Boisson, 1991; Verner and Ferland, 1996)

αc = 10−13 atb

1 + ctd
cm3 s−1, (3.27)

where a = 4.309, b = −0.6166, c = 0.6703, d = 0.5300 and t = TM/104 K. Here, TM is the

plasma temperature, which is assumed to be equal to the CMB temperature in the three-level

recombination model chosen here.

3.4 Qualitative analysis of recombination modes
In this section we give a qualitative description of the behaviour of the plasma

ionization degree, xe, in various ranges of redshift z, leaving detailed numerical calculations

to the following section. The point is that the three-level hydrogen recombination model

discussed above requires certain modifications. Namely, we need to take into account the

role of He4 and also a detailed description of the behaviour of Ly-α quanta and of the

temperature of matter (it does not always follow the radiation temperature, especially for low

redshifts, z < 102). Nevertheless, an analysis of the approximate model proves extremely

useful for describing the dynamics, ẋe, in the range 700 ≤ z ≤ 1100 if the factors listed

above do not noticeably affect the ionization balance, and the result of the analytical solution

of Eq. (3.23) is found to be applicable not only for a qualitative, but equally well for a

quantitative description of the problem.

Therefore, for redshifts z ≥ 1400 the degree of ionization, xe, is given by the stationary

solution of Eq. (3.25):

x2
e

1 − xe

= βc

αcn
e− B1−B2

kT . (3.28)

Taking into account the relationship between βc and αc (see Eq. (3.18)), we readily see

that Eq. (3.28) corresponds to the equilibrium Saha formula. As the radiation temperature

decreases, Eq. (3.25) predicts that this equilibrium is violated.
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Taking into account the fact that in Eq. (3.25) D � (�2S,1S/(�2S,1S + βc)) and also that

βc � �2S,1S, we obtain

dxe

dt
= �2S,1S

[
αcnx2

e

βc

− (1 − xe)e− B1−B2
kT

]

= �2S,1S

αcn

βc

[
x2

e − (1 − xe)
x2(eq)

e(
1 − x (eq)

e

)
]

. (3.29)

The equilibrium degree of ionization, x (eq)
e , decreases exponentially with decreasing redshift.

Therefore, beginning with a certain critical value z = z∗, for all z < z∗, in Eq. (3.29), we can

neglect the quantity ∼ x2(eq)
e and retain only the first term in square brackets. Since z∗ and

z � 1, we have

dxe

dt
= −dxe

dz
H0

√
�mz5/2 (3.30)

and Eq. (3.29) takes the form (Longair and Sunyaev, 1969)

dxe

dt
= �2S,1Sn(0)

bare
I

4kT0 z h3
P

(2πmekT0)3/2
H−1

0 �−1/2
m x2

e z−1, (3.31)

where T0 is the current CMB temperature, n(0)
bar � 2 × 10−7

(
�bh2/0.02

)
is the cur-

rent baryonic density, and hP is the Planck constant. Introducing the notation A =
(�2S,1Sn(0)

b h3
P H−1

0 �
−1/2
m )/(2πmekT0)3/2 and I/4kT0z � 1, we derive from Eq. (3.31)

(Zabotin and Naselsky, 1982a,b):

xe �
[

C + 4kT0z

I
Ae

I
4kT0 z

]−1

. (3.32)

The constant C is found from the condition xe(z = z∗) = x (eq)
e (z∗). Let us look at the asymp-

totic behaviour in Eq. (3.32) for z < z∗. In this case, the second term in square brackets

increases in comparison with the first and (see Zeldovich and Novikov (1983))

xe � I

4kT0z
Ae−I/4kt0z � 1. (3.33)

As this expression clearly shows, the degree of ionization of hydrogen considerably exceeds

the equilibrium value given in Eq. (3.28); this occurs because of the exponential factor

I/4kT0z � 1 obtained from Saha’s formula, which is slower in comparison with I/2kT0z �
1. In fact, once recombination starts in the equilibrium mode (z = z∗ ∼ 1400), the generation

of excessive Ly-α quanta and their redshifting in frequency result in an increased degree of

ionization, the behaviour of which is described by Eq. (3.33).

We must emphasize that the solution for xe in the form (3.33) describes the behaviour of

the degree of ionization within a relatively small interval of redshifts z: 900 < z < 1400.

If z < 900, the function D in Eq. (3.25) approaches unity and the asymptotic behaviour of

recombination begins to be dominated by the first term on the right-hand side of Eq. (3.25)

with D = 1. At this stage, the plasma is sufficiently rarefied, and recombination quanta are

incapable of sustaining the equilibrium between the excited levels of the hydrogen atom.

In reality, each recombination event results in the emission of a Ly-α quantum, which is
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removed by the redshift beyond the half-width of absorption. In this mode, Eq. (3.25) implies

dxe

dz
= �(z) · x2

e , (3.34)

where �(z) = αcn(0)
b z1/2 H−1

0 �
−1/2
m , and the solution for xe(z) has a simple form (see

Eq. (3.25)) (Zabotin and Naselsky, 1982a,b; Zeldovich et al., 1969)

xe �
[

a −
∫

�(z) dz

]−1

, (3.35)

where a is the integration constant found from the condition of matching to the preceding

mode. Note that owing to the power-law dependence of �(z), the decrease in ionization

degree is fairly monotonic in contrast to the initial stages at z ∼ 103–1.4 × 103. We must

stress at the same time that the transition from one asymptotic behaviour xe(z) to another

constantly requires matching the solutions in the transition zone, resulting in accumulation

of errors. Indeed, it is impossible to delineate unambiguously the zones of influence of

distinct ionization modes. Therefore in this section we have limited the discussion to the

above-described characteristic modes of diminishing of plasma ionization degree, preferring

to look at the quantitative side of the problem in the light of the numerical solutions given in

the following section.

3.5 Detailed theory of recombination: multilevel approximation
We begin by formulating the main reasons for which it is necessary to analyse the

kinetics of hydrogen recombination in detail, in contrast to the framework of the approximate

three-level model of the hydrogen atom. One of the main reasons for this lies in the need to

develop a modern theory of formation of the CMB anisotropy. We will see in Chapter 5 that

fluctuations �T/T on a scale of several minutes of arc are formed at the very beginning of

recombination, at z ∼ 1400. In fact, it is this phase of hydrogen recombination that is fairly

sensitive to the presence of He4 (Seager et al., 1999a,b). From this, a direct connection can

be traced between cosmological nucleosynthesis (prediction of mass concentration of He4),

hydrogen recombination and small-scale CMB anisotropy.

Another important reason follows from the high accuracy of measurements in the WMAP

experiment and in the PLANCK mission planned for 2007. If we choose the relative error of

determining �T to be 10% – a very conservative estimate of determining the characteristics

of CMB anisotropy – we need to be absolutely sure that these errors are not ‘accumulated’

only as a result in inaccuracies in theoretical predictions of the dynamics of the thinning of

cosmic plasma for primordial radiation. Therefore, a detailed theory of recombination must

be capable of predicting the behaviour of xe(z) with an error ≤ 1%, and possibly even lower.

Finally, there is the third cause, which is mostly of predictive nature. Hydrogen recombi-

nation results in considerable distortions of the background radiation spectrum in the Ly-α

frequency range at the expansion stage, z ∼ 103. As a result of redshifting, these distortions

must be represented today in the long-wavelength range λ � czrec/να ∼ 11.3 × 10−2 cm

(Peebles, 1968; Zeldovich, Kurt and Sunyaev, 1969) that is, in the near-infrared range of the

cosmic radiation spectrum. Experimental detection of a specific electromagnetic ‘echo’ of the

recombination epoch would be fantastically important for testing the properties of the cosmic

plasma at redshifts z ∼ 103. Unfortunately, the high level of infrared background in this range

does not offer us any hope of rapid experimental solution of the problem. However, a detailed
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Figure 3.3 He atom levels included in the comparative analysis of models. Adapted from
Seager et al. (1999a).

prediction of the shape of these distortions would be of extreme interest for understanding

the mechanisms of formation of radiation in the near-infrared band.

It must be emphasized that the ionization history of the cosmic plasma at the stage z � 103

is extremely important for understanding the processes of formation of primary molecules

of cosmological origin – those that could act as an efficient ‘coolant’ in dense clouds, facil-

itating the formation of first-generation stars. We must again emphasize that the develop-

ment of a detailed theory of hydrogen recombination does not mean in any way a diversion

from the simplified two-level recombination model, the fundamentals of which were cre-

ated more than 30 years ago. Moreover, this simplified model reproduces qualitatively, and

very often quantitatively, the main physical principles and processes that resulted in the

transformation of ionized hydrogen to the neutral state. Assuming this model as a basis,

we will focus mainly on discussing its more important additions that considerably increase

the predictive accuracy of the theory. The paper by Seager et al. (1999a,b) that formed the

basis for the development of a specialized package, RECFAST, for calculating the dynam-

ics of evolution of xe(z), beginning from the earliest recombination phases at z ∼ 104 up

to z = 0, became an important step on this path, stimulating many years of research into

the recombination kinetics of cosmological hydrogen. When describing important addi-

tions to the standard hydrogen recombination scheme below, we follow the ideology of this

publication.

We will now list the main features of the detailed theory of cosmological recombination.

3.5.1 Dynamics of excited states of hydrogen and helium
Equations for the populations of hydrogen and helium atomic levels coincide, in

the general case, with Eq. (3.15). The main difference lies in the increase in the number of

hydrogen levels to N = 300 and in adding higher levels of He4 to the analysis (see Fig. 3.3).

A new term responsible for collisional ionization, and the excitation of hydrogen atoms is
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included in the reaction rates αi j and βi j in addition to radiative processes:

αi j = αrad
i j + neC (col)

i j . (3.36)

3.5.2 Radiation kinetics
As we saw in the three-level model of the hydrogen atom, the kinetics of cosmo-

logical hydrogen recombination is very sensitive to the behaviour of hydrogen resonance

lines. Resonance quanta take part in absorption, scattering and emission by hydrogen and

helium atoms, undergoing redshift because of the expansion of the Universe. The following

kinetic equation is used to describe radiation transfer within lines for the directions-averaged

intensity of quanta, instead of Eq. (3.21):

∂y(ν, t)

∂t
− νH (t)

∂y(ν, t)

∂ν
= −3H (t)y(ν, t) + c [ j(ν, t) − k(ν, t)y(ν, t)] . (3.37)

Here j(ν, t) is the spectral power of the sources, k(ν, t) is the radiation absorption coefficient

and H (t) = ȧ/a is the Hubble parameter at time t . The ‘Sobolev approximation’ is used for the

coefficient k(ν, t) (see Dell’Antonio and Rybicki (1994)). For each cascade transition between

the levels i and j (i < j) of the discrete spectrum, we can introduce photons concentration

in the following equation:

�Ri j = Pi j
[
n j [Ai j + B ji B(νi j , t)] − ni Bi j B(νi j , t)

]
, (3.38)

where Ai j , B ji and Bi j are the Einstein coefficients, B(νi j , t) is the spectral intensity of the

CMB radiation at frequency νi j and Pi j is the probability that a quantum emitted in the

j → i transition does not undergo a subsequent scattering or absorption. By the logic of

the definition, Pi j = 1 corresponds to the probability of a quantum ‘escaping’ to infinity,

and Pi j = 0 signifies that all photons of the j → i transition will be absorbed by atoms. As

we have already seen for the Ly-α line of hydrogen, its dynamics in terms of the Sobolev

probability of ‘escaping’ corresponds to the approximation Pi j � 1, while for all other lines

we assumed Pi j = 1. Following Seager et al. (2000), we first consider the dynamics of

transitions between the i and j levels, neglecting the cosmological solution. In this case the

population dynamics for i and j levels is given by the equation

ni Ri j = ni Bi j y; n j R ji = n j A ji + n j B ji y, (3.39)

where

y =
∫ ∞

0

Y (ν, t)�(ν) dν

and �(ν) is the line profile. To simulate �(ν), we can use, depending on the accuracy required

of the solution, the Voigt profile or the �(ν) = δ(ν − να) approximation.

In Sobolev’s approximation for the probability Pi j , it is necessary to take into account the

expansion of the Universe, which determines the matter velocity field, v(r ), at the scale r ∼ L ,

comparable to thermal velocity vT: L � δT/(dv/dr ). On the other hand, the probability Pi j

is a function of the optical depth of matter (Rybicki, 1984):

Pi j = exp(−τ (ν j i )). (3.40)

Here dτ (ν j i ) = −K̃�(ν j i ) dl, τ is the optical thickness along the line of sight from the

point of emission to the point of absorption, and K̃ is the integral absorption coefficient:
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K = K̃�(ν j i ). Introducing the notation x = (ν − νi j )/�ν, where �ν is the line width (in

units of the Doppler shift of the frequency of quanta) and νi j is the frequency corresponding

to the line centre, we derive from Eq. (3.40)

dτi j = − K̃

�ν
�(x) dl. (3.41)

According to Seager et al. (2000) the absorption coefficient, K̃ , in Eq. (3.41) has the form

K̃ = hPν

4π
(ni Bi j − n j B ji ). (3.42)

Then, taking into account that gi Bi j − g j B ji and A ji = (2hν3/c2)B ji , we transform K̃ to

K̃ = A jiλ
2
i j

8π

(
ni

g j

gi
− n j

)
. (3.43)

Substituting Eq. (3.43) into Eq. (3.41) and taking into account Eq. (3.40) we obtain for the

probability Pi j

Pi j = exp

[
−τs

∫ ∞

−∞
�(x ′) dx ′

]
, (3.44)

where

τs ≡ K̃

�
· L , L = vT

dv/dr
=

√
3kTM

mA

/
dv

dr
, � = ν0

c

√
3kTM

mA

/
dv

dr
,

ν0 is the line centre frequency, mA is the atomic mass and TM is the temperature of the matter.

Also taking into account that dv/dr = H0 for the Hubble flow and choosing the normalization

of the line profile integral
∫ ∞

0
�(x) dx = 1, we derive from Eq. (3.44) expressions for τs and

Pi j :

τs = A jiλ
3
i j [ni (g j/gi ) − n j ]

8π H (t)
, (3.45)

Pi j = 1 − exp(−τs)

τs
. (3.46)

It is easy to understand from Eq. (3.46) the dynamics of the sinking of the Ly-α line under

the absorption threshold. At high redshifts, when τs � 1 and Pνα
� 1/τs � 1, practically

all Ly-α quanta are absorbed by hydrogen atoms that are being formed. In the process of

recombination, the Sobolev optical depth switches to the mode with τs � 1 and Pνα
� 1. In

the intermediate range of z, when τ � 1, the probability for this ‘sinking’ is Pνα
� 0.6 and

rapidly diminishes to τs � 1 for z < 103.

3.5.3 Thermal history of matter
Details of the thermal history of matter are extremely important when analysing

the asymptotics of recombination (z � 103), when the Compton scattering of the CMB

quanta fails to sustain the thermal contact, TM = TR. When constructing the thermal history

of cooling of the matter, we need to take into account, along with the Compton process,

the free–free transitions and the cooling via photorecombination radiation in the plasma. A
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detailed balance of these processes in a hydrogen–helium plasma was described in Seager

et al. (2000). We give here the final equation for the temperature of the matter:

(1 + z)
dTM

dz
= 8σTεR

3H (z)mec

ne(TM − TR)

ne + nH + nHe

+ 2TM + 2

3K ntot H (z)

6∑
i=1

�i , (3.47)

where ntot = ne + nH + nHe, εR is the energy density of the primordial background radiation

in the epoch with the redshift z and TR is the background radiation temperature. The functions

of heating and cooling, �i , in Eq. (3.47) for various processes are as follows.

Free–free emission

�1 = �ff = 25πe6z

33/2hPmec3

(
2πkTM

me

)1/2

gffne(np + nHeII + 4nHeIII), (3.48)

where gff is the Gaunt factor, np is the proton concentration, and nHeII and nHeIII are

the concentrations of single- and double-ionized helium nuclei, respectively.

Photorecombination cooling

�2 = +4π

N∑
j=1

nenp

(
ni

nenp

)LTE

×
∫ ∞

ν j

dν hP(ν − ν0)
αi j (ν)

hPν

×
[

2hPν
3

c3
+ B(ν, TR)

]
exp

[
− hPν

kTM

]
, (3.49)

where α j is the recombination rate to the j th level and the ratio
(
ni/(nenp)

)LTE
(the superscript

LTE stands for ‘local thermodynamic equilibrium’) is found from the equilibrium Saha

formula as follows:(
n j

nenp

)LTE

= gi

2gc

(
h2

2πmekTM

)3/2

eE j /kTM .

Photoionization heating

�3 = −4π
∑

j

n j

∫ ∞

ν0

α jc(ν)

hPν
B(ν, TR)hP(ν − ν0) dν, (3.50)

where αi j (ν) is the ionization rate from level j to continuum.

Cooling in lines

�4 = −hPν0[n j Ri j − ni Ri j ]. (3.51)

Collisional cooling and heating

�5 = hPν0Cic,

�6 = −hPν0Ci j ,
(3.52)
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Figure 3.4 Multilevel model of hydrogen recombination. Upper set of curves: the standard
CDM model with �tot = 1.0, �b = 0.05, h = 0.5. Lower set of curves: �tot = 1.0,
�b = 1.0, h = 1.0. Both models assume T0 = 2.728 K, Yp = 0.24. From Seager et al.
(1999a).

where Cic and Ci j are the coefficients of collisional ionization and recombination, respectively

(Mihalas, 1978).

3.6 Numerical analysis of recombination kinetics
We will now consider various modes of recombination of hydrogen and helium as

functions of the parameters of the cosmological plasma in the framework of the mathemat-

ical formulation of the problem posed in the previous section. At the same time, following

Seager et al. (2000), we will monitor the error level generated in analysing the dynamics

of xe(z) in terms of the simplest model of the three-level recombination and with multilevel

approximation. Figure 3.4 plots the dynamics of the decrease in the degree of ionization in

two cosmological models with �tot = 1 but differing in the density of the baryonic fraction

of matter. The upper curves correspond to the model �b = 0.05, h = 0.5, and the lower ones

to the model �b = 1, h = 1. For each of these models, Seager et al. (2000) give the depen-

dence of the degree of ionization, xe(z), for various sets of levels of the hydrogen atom. As

we see from Fig. 3.4, the most ‘sensitive’ to the choice of model is the range z ≤ 103, where

the maximum difference is obtained (of approximately one order of magnitude) between

the two-level and the 300-level approximations. We need to emphasize especially that in the

model with the 10-level hydrogen atom we find a substantial difference in residual ionization

at z = 0; it reaches a factor of 3.
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An important element of numerical analysis of hydrogen recombination dynamics is the

clarification of how the basic reaction rates of transitions 2P − 1S, 2S − 1S and the rate of for-

mation of neutral hydrogen atoms depend on the redshift, z. The dynamics of these processes

is shown in Fig. 3.5 for the two cosmological models plotted in Fig. 3.4. Figures 3.5(b) and

(c) show the corresponding reaction rates for the recombination of HeI and HeII. An impor-

tant conclusion that follows from Seager et al. (2000) is that by the moment when hydrogen

recombination started (z ∼ 1500), helium recombination was practically completed. For the

two cosmological models mentioned above, this conclusion follows from Fig. 3.6, which is

a comparison of the results of detailed calculations of changes in the degree of ionization in

the course of HeI recombination and of the dynamics of xe(z) in accordance with the Saha

formulas for helium,

xe(xc − 1)

1 + fHe − xe

= 4
(2πmekT + M)3/2

h3
PnH

e−xHeI/kTM for HeI → HeII,

(xe − 1 − fHe)xe

1 + 2 fHe − xc

= (2πmekT + M)3/2

h3
PnH

e−xY t HeI I /kTM for HeII → HeIII,

(3.53)

where xHeI and xHeII are the corresponding helium ionization potentials, fHe = nHe/nH =
Yp/[4(1 − Yp)], nH is the hydrogen concentration and Yp is the He4 mass concentration.

On the basis of the available numerical data, Seager et al. (2000) proposed a generalized

model of the three-level recombination that takes into account the contribution of helium

recombination. This model is the basis of the program package RECFAST for computing the

ionization history of cosmic plasma. The package is widely used in analysing the anisotropy

of the CMB. In the framework of this generalized model, the dynamics of hydrogen and

helium ionization degrees is described by the following set of equations:

H (z)(1 + z)
dXH

dz
= D(xH, xHe, x0)

[
x · xHnHαH − βH(1 − XH) × e

− hpνHeII
kTM

]
, (3.54)

H (z)(1 + z)
dXHeII

dz
= G(xH, xHe, x0)

[
xHe · xnHαHeI − ( fHe − xHeII)e

− hpνHeII
kTM

]
,

where αH = 5 × 10−13 atb · f
1+ctd cm3 s−1 (see Eq. (3.27) for values of b and d) and

αHeI = q × 106

⎡
⎣

√
TM

T2

(
1 +

√
TM

T2

)1−p (
1 +

√
TM

T1

)1+p⎤
⎦

−1

cm3 s−1;

x ≡ xc = xH + fHe · xHe, q = 10−16.744, p = 0.711, T1 = 205.114 K, T2 = 3 K, f = 1.14.

The functions D and G that we find in these equations are given by the following expres-

sions:

D = 1 + �2S,1S KHnH(1 − xH)

f −1 KH(�2S,1SnH(1 − xH) f −1 + KHβHnH(1 − x)
,

G = 1 + KHe�HenHe(1 − xHe)e−hνPS/kTM

1 + KHe(�He + βHe)nHe(1 − xHe)e−hνPS/kTM
, (3.55)

where KHe = �3
HeI/8π H (z), KH = �3

H2P
/8π H (z), �HeI � 58.433 nm is the wavelength of

the quantum corresponding to the 21P → 11S transition in the helium atom and, νPS =
νHeI 21P − νHeI 21S.
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(a)

(b)

(c)

Figure 3.5 A comparison of reaction rates that dictate the hydrogen–helium recombination
kinetics. (a) 2P to1S transition rate (dashed curve) and 2S to1S two-photon decay rate
(dotted curve) against the recombination rate (solid curve) for CDM models with different
�b and h. The vertical line marks the level at which 5% of hydrogen atoms have already
recombined. (b) Same as (a) but for the HeI recombination. Dashed curve: the rate of the
2′P to1′S transition; dotted curve: the two-photon 2′S to1′S decay; solid curve:
recombination rate. (c) HeII recombination. Dashed curve: 2P to1S transition rate; dotted
curve: two-photon 2S to1S decay; solid curve: recombination rate. From Seager et al.
(1999a).
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Figure 3.6 Hydrogen recombination dynamics taking into account He for two CDM models
that differ in baryon density and Hubble constant. The dotted curve plots the data of Saha
et al. (1999) and the dashed curve is an approximation from Seager et al. (2000). Adapted
from Seager et al. (1999a).

The thermal contact between radiation and matter is described, as before, by Eq. (3.47),

in which the main part is played by Compton processes and adiabatic cooling resulting from

the expansion of the Universe. Using this modification of the three-level model of hydrogen

recombination as a basis, we consider the dependence of ionization modes, x(z), on the

parameters of the cosmological model.

3.6.1 The function xe(�dm)

As our base model, we use the frequently cited �CDM cosmological model with

the following set of parameters: �m = 0.3, �bh2 = 0.02, h = 0.65 and �tot 1 = �m + �b +
��. To analyse the function xe(�m) we fix the parameters �bh2 and h of this model, but, at the

same time, we vary �m and ��, so that the condition �tot continues to hold. Using RECFAST,

we calculate the function xe(z), taking into account that the helium mass concentration is

independent of the value �m. The results of these calculations are plotted in Fig. 3.7. This

plot shows that as the density of dark matter �m decreases (while �m + �λ � 1), the degree

of ionization drops systematically in the whole redshift range 0 ≤ z ≤ 1500. In Fig. 3.8

we illustrate the corresponding ratio for ionization degrees xe(�m)/xl(�m = 0.3) = �(�m).

Figure 3.8 demonstrates that differences in ionization degrees during the z ∼ 103 epoch are

at the 10–25% level while the residual degree of ionization (for z = 0) for �m = 0.1 is lower

by a factor of approximately 1.5 than in the model with �m = 0.3. Qualitative arguments

support this result. Namely, a decrease in �m is accompanied by a rise in �� and, as a

consequence, by an increase in the age of the Universe. In its turn, the rate of expansion for z >

1 mostly depends on �m and is practically independent of ��: texp ∼ a/ȧ ∼ H−1
0 �

−1/2
m z−3/2.

It is clear now that in models with lower values of �m the age of the Universe for the

same z is higher and, therefore, a larger fraction of hydrogen atoms have sufficient time to

recombine.
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Figure 3.7 Degree of ionization, x(z), as a function of redshift, z, for a number of values of
the parameter �m. The solid curve corresponds to �m = 0.3, the dash–dot curve to
�m = 0.2 and the dashed curve to �m = 0.1.

Figure 3.8 Parameter �(�m) (ratio) as a function of redshift in the cosmological �CDM
model. The solid curve corresponds to �m = 0.1, the dashed curve to �m = 0.2.

3.6.2 The function xe(�bh2)

The quantity xe(z) is plotted in Fig. 3.9 as a function of density of the bary-

onic fraction of matter in the base �CDM model. The main conclusion is that as �bh2

increases, the recombination rate, αH, grows, resulting in reduced ionization degree of

the plasma. In Fig. 3.10 we plot the ratios of the corresponding ionization degrees,

�(�b) = xe(�bh2)/xe(�bh2 = 0.02) for the two values of the parameters �bh2 = 0.01

and 0.03 in the entire range of variation of z. As we see from these curves, the residual

degree of ionization varies roughly by a factor of 2 in comparison with the �bh2 = 0.02

model.

3.6.3 The function xe(h)

Figure 3.11 gives the results of numerical calculations of the ionization degree for

three values of the Hubble constant: H0 = 50, 65 and 100 km s−1 Mpc−1. The effect of

this parameter is not as trivial as that of �m because, on one hand, it dictates the rate of

expansion of the Universe, and on the other hand it determines the recombination rate via the
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Figure 3.9 Degree of ionization as a function of redshift in the �CDM model for various
densities of the baryonic fraction. Solid curve: �bh2 = 0.02; dashed curve: �bh2 = 0.03;
dash–dot curve: �bh2 = 0.01; h = 0.65.

Figure 3.10 Parameter �(�m) as a function of redshift. The solid curve corresponds to
�bh2 = 0.03, the dashed curve to �bh2 = 0.01.

Figure 3.11 Degree of ionization as a function of z for various values of the Hubble
constant. Solid curve: h = 0.65; dashed curve: h = 1; dash–dot curve: h = 0.5. The base
model is �CDM with �tot = 1, and �b is identical for all models.
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Figure 3.12 Ratio of ionization degree �(h) as a function of z for h = 0.5 (solid curve) and
h = 2 (dashed curve).

Figure 3.13 Degree of ionization x(z) in an ‘open’ model: �� = 0, �bh2 = 0.02,
h = 0.65. Solid curve: �m = 0.3; dashed curve: �m = 0.5; marked curve: �m = 1.

parameter �bh2. Figure 3.12 plots the ratio of ionization degrees x(h = 0.5) and x(h = 1) to

x(h = 0.65) as a function of redshift z. As we see from this figure, the effect of this parameter

is comparable to that of �b.

3.6.4 The function x(�m) in ‘open’ models
In this class of models we drop the condition �m + �b + �� = 1, analysing differ-

ences in ionization modes in the so-called ‘open’ models of the Universe. In all models with

�tot ≤ 1 we fix the parameters �bh2 = 0.02 and h = 0.65 and vary the parameter �m from

�m = 0.3 up to �m = 1. The results of the calculations of the ionization degrees and their

ratios are given in Figs 3.13 and 3.14. On the basis of these numerical calculations of the

dynamics of the degree of ionization given in Section 3.6.1 for various cosmological models,

we can suggest the following approximation for x(�b, �, h) (Boschan and Biltzinger, 1998):

x ∼ �1/2
m �−1

b h−1. (3.56)
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Figure 3.14 Ratio of ionization degree �(�m) = x(�m)/x(�m = 0.3) in ‘open’ models.
Solid curve: �m = 0.5; dashed curve: �m = 1.

This approximation takes into account both quantitatively and qualitatively all specific

features of the function x(�m, �b, h) in the framework of the standard model of recombination

of cosmological hydrogen.

3.7 Spectral distortion of the CMB in the course of cosmological
recombination
One of the most important features of the ionization history of the Universe was the

formation of distortions of the primordial microwave background as a result of the complex

dynamics of interaction between Ly-α quanta and neutral hydrogen atoms. As we mentioned

in Section 3.6, this interaction results in ‘delayed’ recombination of hydrogen and, conse-

quently, of the formation of excess Ly-α quanta in the Wien part of the spectrum of the

primordial CMB. This specificity of recombination was emphasized in the pioneer papers by

Peebles (1968), and Zeldovich et al. (1969), where qualitative and quantitative estimates were

given of the level of distortion of the CMB spectrum in baryonic models of the Universe.

Recent progress in this field has left the understanding of the physical foundations of the

effect unchanged, but has led to a more detailed picture of spectral distortions (Boschan and

Biltzinger, 1998; Dell’Antonio and Rybicki, 1993) and to its generalization to models that

include non-baryonic fractions of matter.

Mathematically, the problem of establishing spectral distortions of the CMB by recombi-

nation quanta boils down to finding the asymptotics of the solutions of transfer equations for

quanta in lines, described in Section 3.6 for t → ∞. Mostly, Ly-α quanta and photons of the

two-quantum decay of the 2S level of hydrogen atom constitute the sources of distortions.

Following Boschan and Biltzinger (1998), we introduce variables that describe the kinetics

of formation of recombination distortions in the CMB spectrum:

τ =
∫

dt H (t); g(ν, τ ) = ν

nb

n′(ν, t); n′(ν, t) = n(ν, t) − ñ(ν, t); x = ln
hν

I
,

(3.57)

where H (t) is the Hubble parameter, n(ν, t) is the radiation spectrum (concentration of quanta

in cm−3 Hz−1), ñ(ν, t) is the equilibrium Planck distribution, nb(τ ) is the baryonic concen-

tration and I = 13.6 eV is the hydrogen ionization potential. In terms of these variables, the
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equation for perturbations of the distribution function of quanta takes the form (Boschan and

Biltzinger, 1998)(
∂

∂τ
− ∂

∂x

)
g(x, τ ) = I · ex

2π h̄ H (τ )nb(τ )
Q(x, τ ), (3.58)

where Q(x, τ ) is the production of recombination quanta (in cm−3 Hz−1 s−1). As we men-

tioned earlier, Q(x, τ ) depends on the generation of 2S − 1S and Ly-α photons:

Q(x, τ ) = R1ex−x12δ(x − x12) + R2�(x). (3.59)

Here, x12 = x1 − x2 is the frequency of the transition,

�(x) = 0.7081ex�

(
4

3
ex

)
, (3.60)

where the function �(t) was calculated in Spitzer and Greenstein (1951) and

R1 = 8πν3
12 H

c3

(
n2S

n1S

−
(

e
hν12
kT − 1

)−1
)

, (3.61)

R2 = �2S−1S ·
(

n2S − n1Se− I
4kT

)
. (3.62)

As we see from Eqs (3.59)–(3.62), detailed information on the kinetics of hydrogen recom-

bination has to be taken into account to calculate the dynamics of formation of spectrum

distortions. Following Boschan and Biltzinger (1998), we reproduce here the results of a

numerical solution of the problem. Figures 3.15 and 3.16 show the behaviour of the spec-

tra of generated quanta at different stages of cosmological recombination in models with

�tot = 1, �b = 0.1, 0.01 and h = 1 (�� = 0).

As we see from Figs 3.15 and 3.16, the main contribution to the spectral power of the

distortion source at the beginning of recombination for z � 103 is provided by Ly-α quanta.

However, as recombination proceeds, the gradually more and more important role shifts to the

two-quantum decay of the 2S state, which dictates the shape of distortions at low frequencies.

A comparison of Figs 3.15 and 3.16 shows that, amplitude-wise, the effect of the 2S decay in

models with low density of the baryonic fraction is substantially suppressed in comparison

with the case of �b ∼ 0.1. However, in this case as well, the same process dominates the

low-frequency asymptotics of distortions.

In Fig. 3.17 we give the results of calculating the distortions of the Wien part of today’s CMB

spectrum as given by a number of cosmological models (Boschan and Biltzinger,1998, 1999).

As we see from this figure, the largest distortions of the Wien part of the spectrum are expected

on wavelengths λ ≤ 220 μm at �b � 0.1 and h � 1 and on λ ≤ 160 μm for all values of

the parameters �b, �m and h. At this wavelength the corresponding intensity of quanta is

10−25–10−24 erg cm−2 s−1 ster−1 Hz−1 in the range 120 < λ ≤ 160 μm (see Fig. 3.17). We

see, by comparing the predicted intensity with the infrared background data (see Chapter 1),

that the intensity of recombination distortions is comparable with the intensity of background

(∼ 3 ÷ 5 × 10−25 erg cm−2 s−1 ster−1 Hz−1) and, in principle, can make a contribution to the

resulting IR spectrum of radiation comparable to other sources. If λ ≤ 120 μm, recombination

distortions begin to fall off steeply and ‘disappear’ under the detection threshold. Note that

it would be very interesting to observe the anisotropy of the IR background distribution

in the wavelength range 120−160 μm. By virtue of the cosmological nature of spectral
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Figure 3.15 The contribution of Ly-α photons and of the two-quantum decay 2S → 1S to
distortions of the CMB spectrum. Adapted from Boschan and Biltzinger (1999).
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Figure 3.16 Spectra of recombination lines for a number of values of z in the models
(a) �tot = 1, �b = 0.1, h = 1 and (b) �tot = 1, �b = 0.01, h = 1 for the CDM model.
Adapted from Boschan and Biltzinger (1999).

distortions, the angular anisotropy must be characterized by variance comparable to that of

the primordial microwave background measured by COBE in the range of radio wavelengths.

It is possible that the ‘Submillimetron’ project would be able to measure the anisotropy of

the IR background in this range of wavelengths. This result would be a most important

confirmation of the theory of cosmological recombination and would, at the same time, make

it possible to obtain more accurate values of the cosmological parameters �b, �m and h in

our Universe.

3.8 The inevitability of hydrogen reionization
The standard model of hydrogen recombination presented in Section 3.3 is based

on one very drastic assumption, the legitimacy of which is not necessarily obvious. We mean

the hypothesis that beginning with redshifts z ∼ 3 × 103 and ending with z = 0, the Universe

never contained any other sources of ionization of cosmic plasma in addition to the microwave

background radiation. This assumption is certainly wrong for the epoch of z < 10, because

the very fact of the existence of galaxy clusters, especially quasars with high redshifts zq �
3−6, proves that after the recombination epoch at z ∼ 103, gravitationally bound structures

were forming in the neutral gas, constituting potential sources of gas reionization at the
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Figure 3.17 The overall pattern of distortion of the CMB spectrum by recombination
quanta in various cosmological models. Adapted from Boschan and Biltzinger (1999).

expense of internal sources of energy release (explosions of stars, active galactic nuclei, etc.).

The study of this epoch of reionization of cosmological hydrogen is a separate important

chapter of modern cosmology that continues to be researched actively now.

The observation of Ly-α lines in the spectrum of remote quasars provides an experimental

foundation for the conclusion on the inevitability of the hydrogen reionization epoch. Martin

Schmidt (Schmidt, 1965) was the first to conduct the observation of the Ly-α line in the

spectrum of the 3C9 quasar, which stimulated the famous work by Gunn and Peterson (1965).

In this paper, the authors formulated for the first time the conclusion that the observation of

Ly-α lines in quasars with redshift z ≥ 2 signifies that, at this z, hydrogen is almost completely

ionized. According to Gunn and Peterson (1965) the optical depth of neutral hydrogen is

calculated on the basis of Ly-α line absorption using the following expression (see also

Barkana and Loeb (2000)):

τGP = πe2 fαλαnHI(zS)

meC H (zS)
� 4.3 × 105xHI

(
�bh2

0.02

)
×

(
�m

0.3

)−1/2 (
1 + zS

10

)3/2

.

(3.63)

Here, fα = 0.4162 is the oscillator strength for the line λα = 1216 Å, H (zS) is the value of

the Hubble parameter for the redshift, zS, of the source and hHI(zS) is the neutral hydrogen

concentration for z = zS.

Treating the recent data of Fan et al. (2002) on identifying the lines of SDSS 1044-0125

quasar (shown in Fig. 3.18) in the spirit of the paper by Gunn and Peterson (1965), we can

evaluate the expected degree of hydrogen ionization. Assuming in Eq. (3.63) that zS = 5.8

and τGP ≤ 0.5, we find that the fraction of neutral hydrogen, xHI, must be infinitesimally
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Figure 3.18 Optical spectra of the SDSS 1044-0125 quasar at z = 54.8. From Fan et al.
(2000).

small: xHI ≤ 10−6. Therefore, we can be absolutely certain that already at z ∼ 6 the epoch of

neutral hydrogen was replaced by the epoch of its complete ionization. We need to mention

that, regardless of the specific mechanisms that produce the reionization of cosmological

hydrogen at such a high redshift as z ∼ 6, the current data on small-scale anisotropy of the

CMB (see the discussion in Chapter 6) show that the optical depth relative to the Thomson

scattering is unlikely to exceed τT � 0.2−0.3. A simple estimate of the maximum redshift

at which secondary ionization of hydrogen could take place for this constraint follows from

the definition of τT(z) (in Eq. (3.3)):

zmax � 20
( τT

0.2

)2/3
(

�bh2

0.02

)2/3 (
�mh2

0.126

)−1/3

. (3.64)

The whole history of the changes in the hydrogen ionization mode thus unfolds within

a relatively narrow range of redshift, 6 ≤ z ≤ zmax, at which the formation of the very first

objects in the Universe occurs. We have to emphasize that the specifics of secondary ionization

of hydrogen, including that at the maximum redshift, zmax, at which reionization actually

begins, strongly depend on the type of dark matter (Barkana and Loeb, 2000) and in particular

on the characteristic scale of cut-off of the density fluctuation spectrum. Because of the

importance of detailed information on the inter-relation between the properties of dark matter

and the ionization history of the Universe at z � 20−30, we will now discuss this aspect in

more detail.

3.9 Type of dark matter and detailed ionization balance
There is no longer any doubt that the formation of structures in the expanding Uni-

verse is driven by the evolution of small perturbations of density, velocity and gravitational

potential that unfold at the early stages of cosmological expansion in the mixture of ultra-

relativistic matter and the ‘gas’ of primordial gravitating particles – the carriers of the future

dark matter of galaxies and their clusters. The theory of the origin of these fluctuations, and

the description of their specifics in a multicomponent medium, constitute a separate impor-

tant chapter of modern cosmology that started with the pioneering work of Lifshits (1946),

I. Novikov (1964), Bonnor (1957), Zeldovich (1970), Harrison (1970) and others, and still
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continues to progress. Two main elements of the theory of gravitational instability in the

Universe have attracted special attention in the last 10–15 years.

First, owing to the progress in inflation theory, it appears that the source of small pre-

galactic irregularity in the cosmic plasma was identified for the first time. Regardless of

the specific version of the theory (see Linde (1990) and Starobinsky (1979)) it is clear that

small ‘seed’ perturbations of density, velocity and gravitational potential can be traced to

quantum fluctuations of the vacuum of physical fields at the early stages of cosmological

evolution. Moreover, two problems that seemed to be remote from one another, namely that

of the beginning of the expansion of the Universe and that of the origin of the pre-galactic

fluctuations in the framework of the inflation paradigm, appear to have a common source: the

instability of the initial state of the vacuum (Linde, 1990; Starobinsky, 1979). It is beyond

the scope of this book to go into a detailed description of the current theory of inflation and

the origin of pre-galactic fluctuations in the Universe; they are presented in detail in Kolb

and Turner (1989) and Linde (1990) (see also the original papers by Guth (1981), Mukhanov

and Chibisov (1981, 1982) and Starobinsky (1979, 1980)). The problem of the early stages

in cosmological evolution is in itself no less interesting and fascinating than the problem of

formation of structures in the expanding Universe and the related physics of the CMB.

However, referring the reader to the above-mentioned Kolb and Turner (1989) and Linde

(1990), we will limit ourselves in what follows to the role of the ‘consumers’ of information

and assume as an unavoidable fact the existence of small inhomogeneities in the distributions

in density, velocity and gravitational potential in the multicomponent medium, both before and

after the cosmological hydrogen recombination; this medium included baryons, primordial

electromagnetic radiation, neutrinos and any background gravitating particles – the carriers

of dark matter.

Secondly, the evolution of perturbations in this multicomponent medium was accompa-

nied by a rise of gravitationally bound structures whose mass spectrum extended formally

from arbitrarily small values1 up to the masses of clusters and superclusters of galaxies.

As these structures were being formed, the baryonic fraction of matter was also evolving,

accompanied by the emergence of first-generation stars. In fact, the process of the conversion

of gravitational energy to the energy of electromagnetic radiation (via stars) capable of ion-

izing the medium begins to play an important role at this stage, along with gravitational

processes.

The rate at which objects were formed in the Universe and the rate of reionization of

cosmological hydrogen, especially at redshifts z > 6, thus appear to constitute links of the

same chain. The most important factor for CMB physics is the effect of hydrogen reioniza-

tion at z ∼ 10−30. The effect of this factor on anisotropy and polarization is, in principle,

detectable. The formation of galaxies with masses not very different from that of our Galaxy,

MG, occurs at a relatively late stage (z ∼ 1−2) in CDM models, and consequently it is clear

that the fact of early reionization at (z ∼ 10−30) can only be caused by low-mass objects

with M � MG that are formed at z � 1. Hence, by testing the observational manifestations

at the early reionization of hydrogen, we could also answer the question about the extent to

which the spectrum of perturbations of dark matter stretches into the range of low masses,

and hence we could arrive at conclusions about the origin and nature of the dark matter.

1 Provided CDM models do not contain a physical scale for fluctuation spectrum cut-off.



82 The ionization history of the Universe

3.9.1 Phenomenology of reionization
In this subsection we discuss a phenomenological approach to describing the hydro-

gen reionization epoch, as suggested in Tegmark, Silk and Blanchard (1994). Following this

paper, we define the fraction of the mass of intergalactic medium that is ionized,

κ = fS · fUVPP · fion, (3.65)

where fS is the fraction of baryons contained in non-linear (gravitationally bound) structures,

fUVPP is the number of UV photons emitted into the intergalactic medium per proton in non-

linear structures, and fion is the number of ionizations per emitted UV photon.

As for a source of UV photons, Tegmark et al. (1994) suggested that they are generated

in stars and quasars. Using the fact that the transformation of hydrogen into helium in the

process of stellar nuclear synthesis is accompanied by the transformation of the fraction

∼ 7.3 × 10−3 of the proton mass into UV radiation, we obtain the following estimate for the

parameter fUVPP:

fUVPP � 7.3 × 10−3

(
mpc2

I

)
fH fburn fUV fesc, (3.66)

where I is the hydrogen ionization potential, mp is the proton mass, fH = 0.76 (76% hydro-

gen, 24% He4) is the fraction of the hydrogen mass in intergalactic medium, fburn is the

fraction of hydrogen mass in stars, fUV is the fraction of energy contained in UV quanta, and

fesc is the fraction of UV quanta escaping from galaxies into the intergalactic medium. With

Eq. (3.66) taken into account, we have the following value for κ from Eq. (3.65):

κ � 3.8 × 105 fnet fS, (3.67)

where fnet = fburn fUV fesc fion.

As the fraction of ionized gas is definitely below or equal to unity, Eq. (3.67) implies that

fnet fS ≤ 2.6 × 10−6. (3.68)

The presence of a small parameter on the right-hand side of Eq. (3.68) demonstrates that the

condition of complete ionization of hydrogen can be achieved even if each of the co-factors on

the left-hand side is extremely small. At the same time, an evaluation of fS and fnet requires a

more meticulous approach, with a detailed scenario of structure generation in the expanding

Universe and energy transformation into ionizing radiation.

Evaluation of ionization efficiency, fnet

According to Eq. (3.67), the parameter fnet = fburn fUV fesc fion is determined by a

combination of parameters that describe the transformation of the energy of baryons into

ionizing radiation in the course of structure formation in the Universe. The first factor, fburn,

is connected to the metallicity of the gas immediately after the first stars were formed; owing

to their high mass, these stars must evolve over a fairly short time scale (Miralda-Escoude

and Ostriker, 1990).

The value of fburn was evaluated from the data in Miralda-Escoude and Ostriker (1990)

at the level fburn � 1%. The upper bound of this parameter can be obtained by analysing a

model in which all baryons contained in a galaxy condense into stars with a combined mass

M � 30M�, for which Woosley and Weaver (1986) evaluated the resulting metallicity at the

25% level. Consequently, the choice of fburn � 1% ensures a 25-fold safety margin relative
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to the upper bound on this parameter. For the parameters fesc and fUV that characterize

the escape of the UV radiation from the galaxy, the following estimates were obtained in

Miralda-Escoude and Ostriker (1990): fesc � 10−50% and fUV � 5−50%; these obviously

follow from the fraction of stars in the mass spectrum of the objects formed.

In contrast to the parameters mentioned above, an estimate of the fraction of ionized matter

depends on the redshift, zvir, at which the first low-mass objects that include the baryonic

and dark matter are virialized.2 It was shown in Tegmark et al. (1994) that an approximate

estimate can be used for the parameter fion:

fion � [
1 + 0.8�bh(1 + zvir)

3/2
]−1

. (3.69)

An estimate of fion � 0.1−0.95 was obtained in Tegmark et al. (1994) for M ∼ 106 M�.

Combining the parameters fburn, fUV, fesc and fion, it is possible to obtain the upper and

lower bounds on the changes in fnet in a model with �dm = 0.3, h = 0.5, �� � 0.7 and

�bh2 � 0.02:

10−6 < fnet < 6 × 10−2. (3.70)

A considerable gap between the minimum and maximum values of fnet reflects the uncertainty

in the models of formation of low-mass structures (M � MG) in the expanding Universe in

the epoch with z < 20 ÷ 30.

Evaluation of the fraction, fS, of matter
The method of finding the fraction of matter that transferred into objects of mass

M at a redshift z is based on predictions of the theory of gravitational growth of small initial

fluctuations of density, velocity and gravitation potential that evolve in a multicomponent

media. Substantial progress in studying the non-linear phase in the evolution of such fluc-

tuations is predicated on the fact that the density of dark matter is greater than that of the

baryonic fraction by a factor of at least 8–10 and exceeds by five orders of magnitude the

CMB density. The inevitable conclusion from this is that the gravitationally bound structures

in the Universe are formed by the evolution of perturbations mostly in the dark matter, espe-

cially during the epoch z < 1.2 × 104�mh2 when its density dominated that of the CMB.

Following Peebles (1993), we consider specific features of this process in more detail, using

the framework of the hydrodynamic approximation:

∂δx

∂t
+ 1

a
�∇[(1 + δx ) �U ] = 0,

∂ �u
∂t

+ H �u + 1

a
(�u · �∇ �u) = −1

a
�∇�, (3.71)

∇2� = 4πGρa2δ.

These equations are easily linearizable for small perturbations and reduce to a single equation

for density perturbations in the dark matter ‘gas’ (Peebles, 1993), as follows:

∂2

∂t2
δx + 2H

∂δx

∂t
− 4πGρxδx = 0, (3.72)

2 Typically, zvir corresponds to the virialization of objects with a mass ∼106 M� (Tegmark et al., 1994).
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where ρx is the dark matter density. It is known (see, for example, Peebles (1993)) that

Eq. (3.72) implies that δx has a solution that grows and then decays with time. In the general

case, δx (r , t) can be rewritten in the form δx (r , t) = f (x)D(t) � 1, where

D(t) = (��a3 + �ka + �x )1/2

a3/2

∫
da · a3/2

(��a3 + �ka + �m)3/2
, (3.73)

�k = 1 − �tot, �tot = �x + ��, and the function f (x) describes the spatial form of pertur-

bation density distribution, with a value known at a certain initial moment of time, t0. In what

follows we assume that the initial adiabatic mode of perturbations is generated in the process

of restructuring of the vacuum of physical fields at the inflation stage of evolution of the

Universe (Kolb and Turner, 1989; Linde, 1990). This means that we can use the expansion

to a Fourier integral,

f (x) =
∫

d3x f�k e−irk, (3.74)

for the representation of the function f (x), where �k is the wave vector and f�k are random

Gaussian coefficients that satisfy the relation

〈
fk f ∗

k ′
〉 = (2π )3 P(k)δ(k − k

′
) (3.75)

and P(k) is the power spectrum of fluctuation density.

Since the thermal (peculiar) velocities of particles are considered negligibly small in CDM

models, the spectrum of P(k) fluctuations extends up to spatial scales comparable to dis-

tances between particles n−1/3
k . At the linear stage of the evolution of fluctuations there is

no interaction between various harmonics of �k. It is thus possible to introduce the concept

of smoothed field of density fluctuations by using, for example, the filter F(�r ) = θ (R − r ),

where the scale R is connected to the mass of dark matter within a radius R as follows:

M = 4π
3

ρdm R3. Then the density fluctuation field smoothed over the scale R retains its sta-

tistical properties, as does the field δ(�r ), but now it depends on the density contrast, δ(M), in

the sphere of radius R of the corresponding mass. For this smooth field the variance is given

by (Kolb and Turner, 1989; Peebles, 1985, 1993)

σ 2(M) =
∫ ∞

0

dk

2π2
k2 P(k)

[
3 j1(k R)

k R

]2

, (3.76)

where j1(k R) = (sin x − x cos x)/x2.

Note that the linear evolution of fluctuations δx (r , t), similar to δR(x, t), follows one and

the same law (Eq. (3.73)). However, at the non-linear phase, when σ (M) ∼ 1, the pattern of

gravitational instability becomes more complex. Following Kolb and Turner (1989), Peebles

(1993), and Zeldovich and Novikov (1983) we consider the dynamics of a spherically sym-

metric region of radius R � ct in terms of the Newton approach. The equation of evolution

of the radius R(t) in time takes the form

d2 R

dt2
= H 2

0 �� R − G M

R2
, (3.77)

where M is, as before, the mass of matter inside of the volume of this radius. The first term

on the right-hand side of Eq. (3.77) describes the role played by the energy density of the
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Figure 3.19 σ (M, z) for various masses M and redshifts z ≤ 30. The thick solid curve is
the cold dark mass model (CDM); the middle curve is the warm dark mass (WDM) model
with corresponding cut-off masses M � 2 × 1010h−1 M� (short dashed line),
M � 1.5 × 1011h−1 M� (dotted line and thin solid curve obtained by Sommer-Larsen and
Dolgov (1999); lower curve (long dashes) is M � 1.2 × 1012h−1 M�. From Sommer-Larsen
and Dolgov (1999).

vacuum, which is important only for perturbations on a scale not exceeding

Rv =
(

G M

H 2
0 ��

)1/3

� 10

(
��h2

0.7

)−1/3 (
M

M15

)1/3

Mpc,

where M15 = 1015 M�.

If R � Rv, the expansion dynamics obeys a conventional law for spherically symmetric

distribution of matter. If the total energy E = (Ṙ2/z) − (G M/R) < 0 then the spherical

region, having reached the maximum radius, Rmax, begins to contract with the ensuing growth

in density (Peebles, 1993).

Using the linear law of increase δρx/ρx , we find the moment when collapse begins from

the condition δx = δρx/ρx = δcr = 1.686 (Peebles, 1993). Normalizing to D(z = 0) = 1,

we arrive at the criteria of formation of objects for arbitrary values of redshift z in the form

δcr(z) = 1.686D−1(z). Therefore, in terms of variance σ (M) of Eq. (3.76), the condition

of formation of gravitationally bound structures with mass M reduces to σ (M) � δcr(z).

Figure 3.19 shows the behaviour of the function σ (M, z) for three values of redshift z, in the

case when the criteria of formation of objects with mass M is met.

As before, the background parameters of the model were chosen as follows: �tot = 1, �m =
1, �x = 0.7, h � 0.7. The fraction of matter not included into objects of mass M in the course

of non-linear evolution of perturbations equals, in terms of the variables fc and σ (M, z),

fc = erfc

[
δc√

2σ (M, z)

]
, (3.78)
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Figure 3.20 Fraction of collapsed gas as a function of dark matter halo mass at
z + 1 = 35, 30, 25, 20, 15, 10, 4 (from upper right to lower left). The thin portions of the
curves correspond to virial temperatures 104 ≤ Tvir ≤ 105 K. In these haloes, the cooling is
very efficient and all the gas is collapsed; the thick portions of the curves on the left mark
the objects with Tvir < 104 K and on the right objects with Tvir > 105 K. The vertical lines
correspond to the smallest halo mass fully resolved by simulations with mass resolution
Mdm = 4.93 × 103, 3.94 × 104 and 3.15 × 105 M� (from left to right). As a quick reference
they correspond to 2563, 1283, 643 cubes with Lbox = 1 Mpc. The oblique lines show the
largest halo mass that we can find in cubes with Lbox = 0.5, 1, 2 Mpc. For details of
computations see Ricotti, Gnedin and Shull (2001), from which this figure is adapted.

or, using the definition for zvir (Tegmark et al., 1994)

1 + z(M)
vir ≡

√
2

σ (M, z = 0)
,

so that we obtain

fc = erfc

[
1 + z

1 + zvir(M)

]
. (3.79)

Figure 3.20 shows the behaviour of the function fc(M) for several values of redshifts z + 1 =
35, 30, 25, 20, 15, 10, 4 (upwards for solid curves) in the �CDM cosmological model. This

dependence was obtained in the course of numerical simulation of the process of structure

formation for masses from 104 M� to M � 1013 M� (Chiu, Gnedin and Ostriker, 2001).

We can now evaluate the efficiency of hydrogen ionization by objects of different mass

using Fig. 3.20 and Eq. (3.67) and (3.70). Equations (3.67) and (3.70) imply for the lower

bound fnet � 10−6 that κ � 0.38 fS and that χ reaches a maximum at fS � (5−6) × 10−2

in the mass range 108 ≤ M ≤ 109 M� (see Fig. 3.21). The corresponding value, χmin �
2 × 10−2, indicates that in this case the efficiency of hydrogen recombination is very low.

The corresponding redshifts, zr, are then close to z = 3, which is in obvious contradiction

with the observations of the Ly-α lines for the quasar SDSS 1044-0125 for z = 5.8. Values

close to fS � (2−3) × 10−2 are achieved in the mass range 8 × 106−3 × 107 M� for zr � 10.
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Figure 3.21 Fraction of baryons in stars versus redshift for two sets of simulations with
different resolution and box sizes. The three thick lines show 256L1, 128L1 and 64L1
simulations with constant box size (Lbox = 1 Mpc) and varying mass resolutions
(Mdm = 3.15 × 105, 3.94 × 104 and 4.93 × 103 M�, respectively). The triangles show fstar

as a function of redshift in the limit of a simulation with infinite mass resolution and
Lbox = 1 Mpc. The three thin lines show 64L05, 128L1 and 256L2 simulations, with
constant mass resolution (Mdm = 3.94 × 104 M�) and varying box sizes (Lbox = 0.5, 1 and
2 Mpc, respectively). The squares show fstar as a function of redshift in the limit of infinite
box size and mass resolution Mdm = 3.94 × 104 M�. Note that the simulation 128L1
appears in both sets; therefore there are only five lines in the plot. Adapted from Ricotti
et al. (2001).

However, in this case, χmin is very close to 1%, which practically always signifies the absence

of recombination. In the ‘optimistic’ limit fnet � 6 × 10−2, the total ionization of the medium

is achieved for fS � 4 × 10−5. This level, fS(max), is realized in the range of mass from

2 × 105 M� to 1013 M� and covers the range of redshifts from z � 25 (for M � 2 × 105 M�)

to z = 3 (for M � 1013 M�). Hydrogen recombination in this ‘extremely’ favourable model

is thereby achieved in a wide range of parameters (M, z). The situation changes dramatically,

however, if a ‘cut-off’ is observed in the spectrum of initial fluctuations in a gas of cold

particles, near a mass M � 107−108 M�. Physically, this cut-off of the spectrum occurs if

particles of dark matter possess, for instance, non-zero ‘thermal’ particle velocities that lead

to smearing of inhomogeneities on the scale λdis ∼ vT · teq, where vT is thermal velocity and

teq is the cosmological time at which the density of the dark matter becomes comparable to

that of the primordial background radiation.

In this model of ‘warm’ dark matter, the formation of structures with M � 107−108 M� is

hindered owing to the ‘cut-off’ of the spectrum (Bardeen et al., 1986; Dolgov and Sommer-

Larsen, 2001). However, the total recombination of hydrogen is only possible in these

models for z < 20, with the maximum ionization efficiency ( fnet � 6 × 10−2) taken into

account.
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We need to emphasize that estimates given above and the conclusions made concerned

polar values of fnet from Eq. (3.70), which takes into account both the lowest-efficiency and

the maximum-efficiency ionization thresholds.

It is possible at the same time to try to minimize the uncertainty of the parameters fnet and

fS, taking into consideration the fact that quasars are known to exist at z = 5.8 and there are

four quasars in the SLOAN review whose redshift z equals 6.28. Assuming that the fraction

of ionized hydrogen X = 1 at such redshifts z � 6, we immediately find from Fig. 3.21 that

the maximum of fS reached at M ≥ 108−109 M� equals (2−3) × 10−2. Also, fnet � 10−4,

which approximately equals the geometric mean of fnet(min) and fnet(max).

We need to stress that the object of maximum interest for the CMB radiation physics

is obviously not the end of the hydrogen reionization epoch (when, according to estimates

of the Gunn–Peterson effect, the degree of hydrogen ionization falls to XH � 10−6) but

rather the earlier stages at which XH ∼ 0.1. An analysis of Ly-α lines of quasars in the

SLOAN review carried out in Chiu et al. (2001) and Djorgovski et al. (2001) shows that the

redshifts zr � 6.2 ± 0.1S ± 0.2r are a good estimate at the close of the reionization period.

At the same time, the beginning of this process could very well involve much larger redshifts,

z ∼ 15−20, and could result in distortions in the anisotropy of �T distribution on the celestial

sphere.

This factor must at least be taken into account when processing and interpreting the data

of current and future observations of anisotropy and polarization of the CMB (see the remark

at the end of this chapter).

3.10 Mechanisms of distortion of hydrogen recombination kinetics
The standard model of hydrogen recombination presented in Section 3.3 predicts a

rapidly decreasing concentration of free electrons at redshifts z ≤ 1400. In a realistic model

with �tot = �dm + �b + �� = 1 and �m = 0.3, = �bh2 � 0.02, h = 0.7, the degree of

ionization is found to be close to xe � 0.1 by z � 103 and reduces to xe � 10−2 for z � 800.

The optical depth of the plasma with respect to the Thomson scattering then becomes quite

low (τ � 1), and at z < 800 the CMB quanta propagate freely, not being scattered on free

electrons. This picture, standard for each cosmological model operating with its own set of

parameters �tot, �dm, �b, �� and h, is based on the assumption that it is precisely in the epoch

of redshift z ≤ 1400 that the cosmic plasma contains no sources of non-equilibrium ionization

of hydrogen that would supply plasma with additional ionizing quanta not connected with

the kinetics of the Ly-α part of the CMB spectrum.

It is clear that if the power at which such quanta are generated exceeds the power of the

Ly-α range in the Wien part of the CMB spectrum, then the kinetics of hydrogen recombina-

tion should evolve according to a scenario that differs in principle from the standard model;

therefore, the characteristics of CMB anisotropy, shaped during the period of cosmological

recombination, should differ from those of fluctuations that are formed in the ‘standard’

model of plasma becoming transparent for radiation. A reservation is necessary here: the

epoch with redshifts z ∼ 103 is definitely ‘peculiar’ for any models explaining the origin

of structures in the Universe. In Section 3.9, when we discussed possible sources of hydro-

gen ionization, we saw that the formation of gravitationally bound structures with masses

M ∼ MG ∼ 1012 M� proceeds in the framework of CDM models mostly at relatively low

redshifts, z ≤ 2−3. The low-mass part of the spectrum (M ∼ 105−106 M�) is responsible

for the formation of objects at z ≤ 25−30.
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Note that this mass range is close to the Jeans mass, MJ(b), in the baryonic fraction of

matter precisely at the moment when the plasma becomes transparent for the CMB radiation

at z ∼ 103. This means that formally the spectrum of density fluctuations in the dark matter

gas contains perturbations with M � MJ(b) that could reach a non-linear mode at z ∼ 103.

However, the emerging low-mass non-linear structures would not, in fact, involve the baryonic

matter, let alone form the stars. We can add that at z ∼ 103 the age of the Universe was only

trec � 2

3H0z3/2
rec

√
�m

� 106

(
�dmh2

0.15

)−1/2

years,

which is insufficient for transforming the rest energy of baryons into ionizing radiation, even if

the primary stars were supermassive (M ≥ MJ(b)) (Tegmark et al., 1994). In fact, in addition

to stellar energy sources, there exists another mechanism that transforms the rest energy

of matter into radiation. We speak here of the electromagnetic decay of massive particles

X → X′ + γ or X → X′ + e+ + e, in which the initial particle X is transformed into a new

particle X′ and a γ quantum or an electron–positron pair is emitted. Moreover, it is not at

all necessary for the electromagnetic channel to dominate the X particle decays. It would be

sufficient for the supermassive (m � 103) X particle to generate a quark–antiquark jet (X →
q + q), and then the annihilation of quarks would result in both a rapid ionization of decay

products and the formation of the electromagnetic component. Note that this mechanism

is considered nowadays as one of the sources of generation of superhigh-energy cosmic

rays (E ≥ 1020 eV) in the so-called top-down scenario (for details, see Bhattacharjee and

Sigl (2000). The presented model of generation of excess ionizing quanta in the epoch with

z ∼ 103 practically coincides with the model of evaporation of primary black holes (PBH);

the possibility of PBH formation in the early Universe was first considered by Zeldovich

and Novikov (1966) then by Hawking (1971). These objects are quite special in that their

formation requires only a relatively high – in comparison with galactic scales – amplitude

of adiabatic inhomogeneity (δρ/ρ � (3−10) × 10−2 at the moment t � 2G MBH/c3 (where

MBH is the mass of matter collapsing onto a black hole on the scale of the cosmological

horizon).

An important feature of this potential remnant of the very early Universe is the effect of

quantum decay of PBH into particles (Hawking, 1974). The characteristic energy of particles

created in this decay is related to the mass of PBH by the expression

EBH � hc

λ
= hc

rg(M)
∝ hc3

G MBH

, (3.80)

and the decay time is given by

τBH � tu

(
MBH

1014.5

)3

. (3.81)

A comparison of Eq. (3.81) and the characteristic time of the onset of the hydrogen

recombination epoch, trec � 106(�mh2)−1/2, shows that τBH � trec for black holes with mass

MBH � 1014.5 · z−1/2
rec � 1013. The characteristic energy of electron–positron pairs, γ quanta

and neutrinos then equals EBH � 1.5 GeV, which is close to the proton rest energy. If we

assume that the transformation of the rest energy of the PBH to ionizing radiation is charac-

terized by a factor ξ , it is easy to evaluate the ratio of the density of PBH to that of baryons at

z � 103 that are capable of distorting the hydrogen recombination kinetics in this period. We



90 The ionization history of the Universe

have already seen in Section 3.3 that to violate the recombination equilibrium it is necessary

to provide additional energy release, εion ∼ I · nbar. If this energy release is caused by PBH

of mass M ∼ 1013 g, evaporated during this period, then the energy balance yields the ratio

I nbar � ξρBHc2, (3.82)

and

ρBH

ρbar

∣∣∣∣
z∼103

� ξ−1 × I

mpc2
. (3.83)

The factor I/(mpc2) characterizes the ratio of the hydrogen ionization potential I � 13 eV

to the proton rest energy, mpc2 ∼ 1, and equals 10−8. Therefore, if transformation efficien-

cies are not too small, ξ−1 ∼ 10−102, the PBH with M ∼ 1013 constitute an extremely

small fraction of matter density (ρBH/ρbar ∼ 10−7−10−6) (Naselsky, 1978). Interestingly,

if the mass spectrum of PBH contained objects with MBH � 1013(mpc2/I ) ∼ 1024, then the

Hawking radiation spectrum would peak exactly at the energy E ∼ I . However, such objects

evaporate completely over a time τBH � 106(mpc2/I )3 ∼ 1030 years, and the efficiency of

their influence on ionization processes in the epoch of z ∼ 103 is suppressed by a factor

trec/τBH � (I/mpc2)2. Even if ρBH � ρbar and ξ = 1, these objects could not produce any

noticeable distortion of recombination kinetics – owing to the smallness of the fraction of

the mass of PBH transformed into radiation (trec/τBH ∼ 10−24).

As a last step, we follow Landau, Harari and Zaladarriaga (2001) and describe another

potential channel for distorting hydrogen recombination kinetics, not related directly to the

injection of additional photons: time-dependent fundamental physical constants. This would

inevitably result in time-dependent atomic constants which, in principle, may not be equal to

their current values (Ivanchuk, Orlov and Varshalovich, 2001; Varshalovich, Ivanchuk and

Potekhin, 1999). As we saw in Section 3.3, the dynamics for the plasma becoming transparent

for primordial radiation is tied to the kinetics of Ly-α lines via the rate of the two-quanta decay

of the metastable 2S state of the hydrogen atom; hence, a weak variation of these parameters

may be accompanied by strong changes in the dynamics of the degree of ionization.

We are talking here about studying the stability of recombination kinetics, especially at its

initial stages at z ∼ 103, that is the actual time of formation of anisotropy of the primordial

radiation background. Clearly, regardless of the specifics of mechanisms and sources of

energy release, this aspect is of independent interest; we discuss it in Section 3.11.

3.11 Recombination kinetics in the presence of ionization sources
In this section we consider the possible distortion of the kinetics of cosmological

hydrogen recombination if there exist sources of non-equilibrium Ly-α quanta that occur in

the process of decay of hypothetical massive particles or via evaporation of PBH. In principle,

the effects of distortion of ionization equilibrium depend considerably on the dynamics of

the ‘ionizer’, on its energy density, decay energy spectrum, kinetics of transformation from

the maximum energy Emax to the quantum energies ∼ I and a number of other specific

features of ionization sources. However, following Peebles, Seager and Hu (2001), we can

offer a sufficiently general phenomenological description of a ‘non-equilibrium’ hydrogen

recombination by formalizing the effects of various mechanisms of pumping ionizing quanta

into the plasma. Namely, by analogy to Peebles et al. (2001), we introduce the rate of pumping
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an excess of ionizing quanta into the plasma, as follows:

dni

dt
= χ (t)nHH(t), (3.84)

where nH is the concentration of neutral hydrogen atoms, H (t) = ȧ/a is the Hubble param-

eter, and χα(t, E) is the efficiency of transformation of the spectrum of injected high-energy

particles into ionizing radiation. Note that in contrast to Peebles et al. (2001), we assume that

χα(E, t) is a function of time, whereas in the model in Peebles et al. (2001) χα(t) is a con-

stant. In a general analysis of hydrogen recombination kinetics in the presence of an ionizer

(Eq. (3.84)), two characteristic time intervals can be pointed out, differing in principle in the

role played by Ly-α quanta in the formation of the ionization equilibrium (see Section 3.3).

The first of them corresponds to redshifts z < 1400 when Ly-α quanta of the CMB play a

decisive role in the formation of the curve χe(z), and the second corresponds to redshifts

z ≤ 800 when the role of Ly-α quanta becomes insignificant and recombination processes

dominate over ionization processes in the absence of additional ionization sources. We need

to emphasize that this important role of Ly-α quanta in the standard model of hydrogen

recombination occurs entirely due to the Planckian nature of the CMB spectrum and, specifi-

cally, due to its Wien section, where the number of quanta with energy E ∼ I is considerably

smaller than that of quanta with E ∼ 3
4

I = hνLy-α . For non-equilibrium ionizers (Eq. (3.84))

this condition may in general be conserved or violated (see, for example, Doroshkevich and

Naselsky (2002). We make use of the fact that the initial stages of recombination – when the

role of Ly-α quanta of the Planckian spectrum of the CMB is important – are limited in time

to a relatively narrow interval of redshifts, �z ∼ 200 at z ∼ 103.

For a qualitative analysis of the situation, we expand the function χ (t, E) into a Taylor

series in the neighbourhood of a moment of time, trec, corresponding to z = 103:

χ (t, E) = χ (trec, E) + ∂χ (Eα, trec)

∂t

∣∣∣∣
trec

(t − trec). (3.85)

Starting with Eq. (3.85), we introduce a characteristic time for the variation χ (t, Eα):

τχ = χ (trec, Eα)

∂χ/∂t |trec,Eα

.

If the pumping of non-equilibrium quanta into the system is of quasi-stationary nature not

connected with instantaneous energy release, then τχ ∼ trec and the second term in Eq. (3.85)

can be dropped. Consequently, an approximate equality, χ (t, E) � χ (E), holds.

Let us consider possible types of behaviour of the function χ (E) in the neighbourhood of

energy Eα = 3
4

I = hνα . From the most general point of view we can simulate the dependence

κ(E) at E � Eα as a power-law function:

χ (E) = εα

(
E

Eα

)γ

εα = const. (3.86)

If γ > 0 but is not too high (γ ∼ 1), the difference in the efficiency of generation of ionizing

quanta with E � I and of Ly-α quanta is found to be roughly given by

χ (E = I )

χ
(
E = 3

4
I
) �

(
4

3

)γ

∼ 1.
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Figure 3.22 Ionization modes in models with ‘delayed’ recombination (a) Corresponds to
Eq. (3.87); (b) corresponds to an ionizer active at small redshifts (z < 103). Adapted from
Peebles, Seager and Hu (2000).

In this case, the excess Ly-α quanta do not play any important role in the kinetics of hydrogen

recombination because the concentration of non-equilibrium quanta with energy E � I is

comparable to that of quanta with E = 3
4

I . A similar conclusion holds also if the spectral

exponent γ < 0 but still is not too large. The case when γ < 0 and |γ | � 1 is an excep-

tion. Then χ (E = I )/χ (E = 3
4

I ) ∼ (
3
4

)|γ | � 1 and the role of quanta with E = 3
4

I at high

exponent γ becomes predominant.

First of all, these additional quanta sum up additively with Ly-α quanta in the Wien part

of the CMB spectrum and start playing a significant role in the ionization balance of the

medium, mostly acting as an additional source in Eq. (3.24):

R̃ = R + εαnH H (t), (3.87)

where R is given by the expression in Eq. (3.24). Using Eq. (3.87), it is easy to take into

account the renormalization of the ionization and thermal balances in the framework of the

RECFAST program and calculate the function xe(z, εα) for various cosmological models

(Peebles et al., 2001). Figure 3.22 plots various ionization curves in the model of ‘delayed’

recombination for �bh2 = 0.02, �tot = 1, �dm = 0.3, h = 0.7 and �� = 0.7. We see from



3.11 Recombination in the presence of ionization 93

this figure that as the power of the ionizer (εα) increases, the curve xe(εα, z) is ‘flattened’ in the

range 700 ≤ z ≤ 1400. Hydrogen recombination becomes increasingly delayed, even though

the change in the residual degree of ionization (at z = 0) is not so large in comparison with a

drop of 2–3 orders of magnitude in the function xe(z) for z � 800−103. Obviously, low values

of εα � 0.1−1 result in insignificant distortions of the ionization mode at z � 103, which

is the most important range for the formation of temperature fluctuations of the primordial

background radiation.

In the opposite case of asymptotics, when the concentration of quanta with E ∼ I is

comparable to or exceeds the concentration at E ∼ 3
4

I , the role of non-equilibrium Ly-α

quanta in the formation of the ionization equilibrium of the plasma is not so great. In the limit

when the effect of excess Ly-α quanta on the recombination kinetics becomes negligible,

the main mechanism of distortions is the ionization of the 1S state of the hydrogen atom.

Figure 3.22 gives the results of calculations of the degree of the ionization, xe(z), in this

model for various values of ionizer power, χ (E) = εi =const. (Peebles et al., 2001). As we

see from this figure, non-equilibrium hydrogen ionization leads to considerable distortions of

the function xe(z) at z < 103, even at relatively low values of the parameters εi = 10−3−10.

To conclude this section, we follow Peebles et al. (2001) and evaluate Compton distortions

of the primordial radiation spectrum that are produced in the process of ‘pumping’ of non-

equilibrium photons with E ∼ I into the plasma in the z ≤ 103 epoch. Since the rate of

energy pumping is given by the relation in Eq. (3.87) that characterizes the level of distortion

of the primordial radiation spectrum, we can make use of the estimate

y � 1

4

εI

εz
= εαnH I f F

4(1 + z)σ T 4
0

� 10−9 εα f F

z/103
, (3.88)

where εI is the density of ionizing quanta, εR = σ T 4 is the energy density of the CMB,

T0 = 2.73 K is its current temperature, σ is the Stefan–Boltzmann constant, f is the fraction

of the energy εI contained in the distortion of the spectrum of the CMB radiation and F is

the fraction of the energy of ionization sources contained in quanta with E ∼ I . Since the

observational bound on the y parameter is yobs ≤ 2 × 10−5, it is clear that εα f F ≤ 2 × 104

at z ∼ 103. Figure 3.22 clearly shows that even at extremely large values of the parameter

εα � 104 the condition of the smallness of y distortions is always met. Therefore, spectral

distortions are insensitive to the parameters of the ionizer, and the main information on

its characteristics may be obtained directly from the data on the distribution of the CMB

anisotropy, taking into account ionization modes more powerful than in the standard ionization

model (Doroshkevich et al., 2003; Naselsky and Chiang, 2004; Naselsky and Novikov, 2002;

Sommer-Larsen et al., 2004).
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Primordial CMB and small perturbations

of uniform cosmological model

4.1 Radiation transfer in non-uniform medium
When describing transfer processes involving quanta in a uniform and isotropic

Universe in the preceding chapters, we used the Boltzmann equation in a symbolic form:

d f

dt
= St [ f ], (4.1)

where f (t, xν, pi ) is the distribution function of quanta in the primordial background radi-
ation over momenta pi (i = 0, . . . , 3) and coordinates xν (ν = 1, . . . , 3), and St [ f ] is the
collision integral. In Section 2.1 we were mostly interested in the structure of the collision
integral for photons colliding with electrons, under the assumption of uniformity and isotropy,
f (t, xν, pi ) = f (t, p0).

At the same time, the fact that the observable (luminous) matter in today’s Universe is
strongly structured signifies that the hypothesis of uniformity and isotropy of matter distri-
bution has only a limited domain of applicability and that the corresponding cosmological
model needs certain modifications. For gravitating systems the role of such a source of weak
non-uniformity was traditionally played, ever since the publication of Newton’s famous
Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Phi-
losophy) and after later work by James Jeans, by the fluctuations of density, velocity and
gravitational potential of the matter. It is natural that this hypothesis attracted the attention of
theorists. We need to emphasize in particular E. M. Lifshits’s pioneering paper (Lifshits, 1946)
on the gravitational instability of matter in the expanding Universe. Nowadays the presence of
primordial fluctuations in cosmological plasma is a fact, not a hypothesis. Direct observations
of the anisotropy of primordial radiation background, carried out by a number of groups of
experimentalists, indicated that the plasma was ‘perturbed’ already in the hydrogen recom-
bination epoch. This inhomogeneity resulted in perturbed distribution functions of CMB
quanta, which behaved not only as fluctuations of the collision integral St [ f ], but also as per-
turbations of the momenta of quanta related to the perturbation of the gravitational potential.

In a uniform and on-average isotropic Universe that contains metric perturbations, the
interval takes the following form:

ds2 = (�gik + hik
)

dx ′ dxk = −dt2[1 + 2�(�x, t)] + a2(t)[1 + 2�(�x, t)] + γαβ dxα dxβ,

(4.2)

where �(�x, t) and �(�x, t) are conformal perturbations of the metric given in the Newtonian
reference form, γαβ is the metric tensor of the three-dimensional space, a(t) is the scale factor,
and i and j run through the values from 0 to 3, and α and β run from 1 to 3.

94
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Metric perturbations given by Eq. (4.2) are one of the sources of distortion of the distribution
function of quanta as a result of the gravitational shift in their frequency. Taking this factor
into account, we can rewrite the left-hand side of Eq. (4.1) as follows (Peebles and Yu, 1970):

d f

dt
≡ ∂ f

∂t
+ ∂ f

∂xα

dxα

dt
+ ∂ f

∂p0

dp0

dt
+ ∂ f

∂γ α

dγ α

dt
. (4.3)

The following notation was used in this equation: dxα/dt = pα/dp0 is the coordinate velocity
of photons, gik pi pk = 0 is the relation between the energy and momentum of the photon,
dpi/dt = 1

2 g jk,i (pi pk/p0) is the change in the photon’s momentum in its motion along the
geodesic, and γ α = −(pα/p0)(1/a)(1 + �) are the direction cosines.

As before, the distribution function of quanta, without taking into account the collision
term, conserves the number of particles; i.e.

N =
∫

d3x d3 p f (x, p), (4.4)

regardless of the presence of metric perturbations hik .
We need to specify immediately that as far as the problem of generation of CMB anisotropy

is concerned, the term on the right-hand side of Eq. (4.3), proportional to dγ /dt , is in itself a
small quantity ∼ �̇ and ∂ f/∂γ α is non-zero only when the geodesic deviates from a straight
line. This condition is met because of non-zero spatial curvature, whose role in the epoch of
formation of small-scale anisotropy of primordial background radiation is not important. In
any case, the last term on the right-hand side of Eq. (4.3) is of a higher order of smallness in
comparison with other terms and can be neglected in the first approximation in the amplitude
of metric perturbations. Let us turn now to analysing the gravitational frequency shift of
quanta dp0/dt in Eq. (4.3). First of all, p0 changes with time because of the expansion
of the Universe (see Section 2.1); this is simulated by the metric perturbation hαβ . The
following equation is obtained from Eq. (4.3) for the rate of change of the energy of a
quantum:

1

p0

dp0

dt
=

(
−H (t) + 1

2
ḣαβγ αγ β)

)
, (4.5)

where hαβ corresponds to a spatial part of the perturbations for α, β = 1, 2, 3.
We turn now to an analysis of perturbations of the collision integral in Eq. (4.1). We have

already discussed in Section 2.1 the basic processes of interaction between quanta and plasma
electrons characterized by the corresponding expressions for St [ f ]. In the general case the
collision integral has the following form in the approximation linear in velocity:

St [ f ] = 3

4
σTne

∫
dp′ p′

p

∫
d


4π
[C0[ f ] + Cvb [ f ]]. (4.6)

Here, C0[ f ] follows from Eq. (2.14) and Cvb [ f ] follows from Eq. (2.15). Substituting C0[ f ]
from Eq. (2.14) into Eq. (4.6) and integrating in photon momentum, we obtain

St0 [ f ] = σTne[ f0 − f + γαγβ f αβ], (4.7)

where

f αβ(t, �x, �p) = 3

4

∫
d


4π

(
γ αγ β − 1

3
δαβ

)
f.
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Likewise, we find the following expression for the term Cvb [ f ] corresponding to the linear
Doppler effect,

Stv[ f ] = −σTne(γαvα)p
∂ f0

∂p
, (4.8)

where f0 corresponds to the non-perturbed (Planckian) distribution function.
The last step in deriving an equation for the perturbation of the distribution function of

CMB quanta in the presence of fluctuations of density, velocity and space-time metric consists
in the transition from perturbations f (t, �x, �p) to temperature fluctuations. To achieve this,
we multiply Eq. (4.3) by (p0)3 and integrate it in dp0, taking into account the definition

 = �T

T
= 1

4

δργ

ργ

= 1

4

[
1

π2ργ

∫
dp0(p0)3 f − 1

]
. (4.9)

The resultant equation is as follows:

̇ + γα

a

∂

∂xα
− 1

2
γ αγ −β ḣαβ = σTne

(
1

4
σγ − γ ′

αvα −  + 1

16
γαγβ�αβ

)
, (4.10)

where

�αβ = 3

π

∫
d
 (t, �x, �γ )

(
γ αγ β − 1

3
δαβ

)
.

Note that the equation for temperature fluctuations  up to the quadrupole term �αβ

was first obtained in Peebles and Yu (1970). The Doppler part of the collision integral was
studied in Doroshkevich, Zeldovich and Sunyaev (1978) and Zeldovich and Sunyaev (1970).
In fact, the significant difference between the predictions of observable manifestations of
primary Doppler perturbations in the CMB anisotropy and predictions made in the 1970s
lies in taking into account the cosmological hidden mass and its effect on the formation of
gravitationally bound structures. At first glance, the inclusion of an additional component of
matter that manifests itself only gravitationally cannot greatly change the regime of generating
the anisotropy of �T . However, there exist a number of principal differences that show that
this hypothesis is incorrect. We have already mentioned that the presence of dark matter
in the Universe changes the kinetics of the hydrogen recombination. Formally, this effect
manifests itself through the time dependence of the Thomson optical depth on the right-hand
side of Eq. (4.10). Another important difference lies in the specific features of perturbation
evolution in the gas of carriers of the cosmological hidden mass and, as a result, in an
absolutely different sequence of structure formation stages compared with models that were
popular at the beginning of the 1970s. These ‘details’ gave rise to specific quantitative factors
that sometimes reach 102–103 for the characteristic levels of fluctuations �T . Section 4.2
describes additional details of this aspect of evolution of perturbations and classification of
their types.

4.2 Classification of types of initial perturbations
To describe the dynamics of small perturbations in an expanding Universe we first

need to introduce an orthonormalized set of eigenfunctions that make it possible to monitor
time changes in their amplitude. The assumption of a uniform and isotropic expansion of the
Universe forms the background against which perturbations of density, velocity and the metric
of space-time are defined; it is thus an important starting point for this classification. In contrast
to the non-perturbed ground state, these perturbations are functions of spatial coordinates and
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time. The idea of classifying the possible lengths of time of perturbations in the expanding
Universe was first formulated in Lifshits (1946) (see also Lifshits and Khalatnikov (1960)).
The main results of that 1946 paper constitute one of the most important chapters in modern
cosmology and withstood with flying colours more than half a century of testing.1 Following
this paper, we define three types of eigenfunctions of the Laplace operator defined on the
hypersurface t =const.: scalar modes Q(�x), vector modes Qα(�x) and tensor modes Qαβ(�x);
when the coordinate reference frame transforms, these three types transform according to the
laws of transformational of scalars, vectors and tensors, respectively (Landau and Lifshits,
1962) as follows:

Q = Q′,

Qα = ∂xα

∂xγ
Q′γ ,

Qαβ = ∂xα

∂x ′γ
∂xβ

∂x ′δ Q′γ δ(x ′).

(4.11)

Taking into account Eqs (4.11), we consider the problem of eigenfunctions of the Laplace
operator on the hypersurface t = const.

4.2.1 Scalar modes
Assume now that the metric properties of the hypersurface t = const. are given by

the metric tensor γαβ , where α and β = 1, . . . , 3. The problem of finding the principal values
of the Laplace operator in the metric γαβ reduces to finding the solutions of the equation

∇2 Q(�x) ≡ γ αβ Q;α;β = −k2 Q, (4.12)

where k are the eigenvalues and the semicolon indicates the operation of covariant differ-
entiation in the metric γαβ , corresponding to constant curvature E = −H 2

0 (1 − 
0 − 
λ).
For a flat space (
0 + 
λ = 1) the space curvature E ≡ 0 and γαβ ≡ δαβ , where δαβ is the
Kronecker delta. In this model the spectrum of eigenvalues is continuous and the natural
representation for the function Q(�x) is a set in plane waves of the type ei�k �x . If the space
curvature is non-zero, the problem of finding the spectrum and the Laplace operator eigen-
functions depends on the sign of E . Note that E vanishes in ‘close’ models, E > 0, while in
‘open’ models E < 0; this signifies that the total density of matter may exceed (E > 0) or be
less than (E < 0) the critical density of matter ρcr = 3H 2

0 /8πG. Let us consider a specific
model for γαβ that corresponds to a three-dimensional space of constant (positive or negative)
curvature E :

γαβ dxα dxβ = −E−1 [
dχ2 + sinh2 χ (dθ2 + sin2 θ dϕ2)

]
, (4.13)

where χ = √−E · ξ are spatial distances and θ and ϕ are the corresponding angles in the
spherical reference frame of the metric, Eq. (4.13). Then the problem of finding the Laplace
operator eigenfunctions reduces to finding the solutions of the following equations:

∇2 Q(χ, θ, ϕ) = −E sinh−2 χ

×
[

∂

∂χ

(
sinh2 χ

∂ Q

∂χ

)
+ sin−1 θ

∂

∂θ

(
sin θ

∂ Q

∂θ

)
+ sin−2 θ

∂2 Q

∂ϕ2

]
= −k2 Q,

(4.14)

1 Additional types of possible initial perturbations, not connected with metric perturbations, will be discussed later.
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where, by virtue of the linearity of the equation for the description of the angular velocity
Q(χ, θ, ϕ), we can use spherical harmonics Y m

l (θ, ϕ). Then

Q(χ, θ, ϕ) = Gl
ν(χ )Y m

l (θ, ϕ) (4.15)

and Eq. (4.14) immediately implies

Gl
ν(χ ) = (−1)l+1 M−1/2

l ν−2(ν2 + 1)−l/2 sinhl χ
dl+1(cos νχ )

d(cosh χ )l+1
, (4.16)

where

ν2 = −
(

K 2

E
+ 1

)
; Ml ≡

l∏
i=0

ki ; k0 = 1; ki = 1 − (l2 − 1)E

k2
; l ≥ 1.

Since the spherical harmonics Y m
l (θ, ϕ) are orthonormal, the condition of orthonormaliza-

tion for Q(χ, θ, ϕ) in the form (4.15) requires that the functions Gl
ν(χ ) be orthogonal and

normalizable:∫
Gl

ν(χ )Gl ′
ν ′ (χ ) sin h2χ dχ = π

2ν2
δ(ν − ν ′)δ(l − l ′). (4.17)

Note that the functions Gl
ν satisfy the following recursive relation:

d

dξ
Gl

ν = l

2l + 1
kK 1/2

l Gl−1
ν + l + 1

2l + 1
kK 1/2

l+1Gl+1
ν . (4.18)

This last relation is especially important for finding the ‘response’ of the CMB anisotropy to
the metric perturbation in models with E 	= 0, since Eq. (4.15) implies that  from Eq. (4.10)
satisfies Eq. (4.18).

Let us have a good look at the model with E < 0, which is of special interest as one of
the possible alternatives to the �CDM cosmological model, with the data on the age of the
Universe taken into account. Following Wilson (1983), the spatial part of the metric tensor
γαβ in this model for k ≥ √−E can be chosen in the Cartesian coordinate system in the form
γαβ = δαβ/z2(−E); for each fixed z the metric of this model corresponds to the metric of flat
space with |x | < ∞, |y| < ∞ and z ≥ 0. Then the Laplace equation in the γαβ metric has
the simple form

∇2 Q = −Ez2

(
∂2 Q

∂x2
+ ∂2 Q

∂y2
+ ∂2 Q

∂z2

)
+ Ez

∂ Q

∂z
= −k2 Q, (4.19)

and the eigenfunctions are the generalized functions of the type

Q(x, y, z) = zKiν((k⊥z)ei(k1x+k2 y), (4.20)

where Kiν(x) is the modified Bessel function of the second kind of index iν, i = √−1,
k2
⊥ = k2

1 + k2
2, and k1 and k2 are the components of a two-dimensional wave vector. In view

of the Kantorovich–Lebedev relations

g(y) =
∫ ∞

0
f (x)Kix (y) dx ; f (x) = 2

π2
x sinh(πx)

∫ ∞

0
g(y)Kix (y)

dy

y
, (4.21)

we can show that∫ ∞

0
ν sinh(πν)Kiν(k⊥z)Kiν(k⊥z′) dν = π2

2
zδ(z − z′).
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Then, any function F(�x) integrable on a square can be presented as an expansion in generalized
plane waves (Wilson, 1983):

F(�x) =
∫ ∞

0
ν sinh(πν) dν

∫ ∞

−∞
dk1

∫ ∞

−∞
F(�k)Q(�x, �k) dk2,

F(�k) = 1

2π4

∫ ∞

0

dz

z3

∫ ∞

0
dx

∫ ∞

0
F(�x), Q(�x, �k) dy, (4.22)

where Q(�x, �k) corresponds to the definition (4.20), and �x = (x, y, z) and �k = (k1, k2, ν). In
this way the representation (4.22) makes it possible to define the concept of the perturbation
spectrum of the open Universe following similar definitions for the ‘plane’ case with E = 0.

In conclusion it should be remarked that the transition from an ‘open’ model to a closed
one is done by a formal substitution χ → iχ .

4.2.2 Vector and tensor functions
Following Lifshits’ classification, we introduce vector eigenfunctions of the Laplace

operator on the hypersurface t =const:

∇2 Qα = −(k2)Qα. (4.23)

Note that Qα
;α = 0.

The zero-divergence condition signifies that it will not be possible to construct a Qα-based
scalar in the first order in amplitude Qα . At the same time, it is possible to use covariant
differentiation operations to define a tensor as follows:

Sβ
α = Q;β

α + Qβ
;α. (4.24)

Under the condition Qα Qα = 1, the corresponding normalized tensor for flat space is defined
by �Sβ

α = (1/|k|)(kβ Qα + kα Qβ).
Finally, following Lifshits (1946), we introduce tensor eigenfunctions of the Laplace oper-

ator, Gβ
α , that satisfy the conditions Gβ

α,β = 0 and Gα
α = 0, where, as usual, repeated indexes

imply summation. In view of the definitions given above, any perturbation of the metric, den-
sity and velocity of the matter can be presented as an expansion in scalar, vector and tensor
modes. In a flat Universe this expansion takes an especially simple form because conventional
plane waves of the type ei�k �x are used as base functions,

hβ
α =

{
1

3
δβ
αμ1(t)Q�k +

(
1

3
δβ
α − kαkβ

k2

)
Q�kμ2(t) + μ3(t)�Sβ

α + Gβ

α(�k)
μ4(t)

}
ei �k �x ,

(4.25)

where μ1(t) and μ2(t) describe the temporal dependence of the potential modes, while μ3(t)
and μ4(t) characterize the vector and tensor perturbations, respectively. It is clear from
Eq. (4.25) that Spur(hβ

α(�k)
) = h = μ1(t)Qk is determined only by the function μ1(t) from the

expansion of hβ
α in scalar functions.

Likewise for the ‘vector’ part of perturbations of the metric tensor h0
α the corresponding

expansion in mode types will contain only the gradient part of the scalar mode ∼ Q;α and
explicitly the vector mode Sα ,

h0
α(�x, t) = {ν1(t)Sα + ikαν2(t)Q} ei�k �x , (4.26)



100 Primordial CMB and uniform model

where ν1(t) and ν2(t) − h0
α are the corresponding functions taking into account the evolution

of h0
α in time.

We need to emphasize especially that in what follows we are mostly interested in the
observational manifestations of scalar and tensor modes in the anisotropy and polarization
of the primordial CMB. The vector modes, whose role was discussed so widely at the end of
the 1970s and the beginning of the 1980s (see Zeldovich and Novikov (1983) do not comply
with the hypothesis of uniform and isotropic expansion of the Universe, at least during the
epoch of cosmological nuclear synthesis (see Zeldovich and Novikov (1983) and references
therein). However, the role of vortex (vector) perturbations is important at the non-linear
phase of the evolution of the perturbations. In fact, in view of the extreme smallness of space
scales for which the generation of the vortex component could be significant, they leave the
characteristics of anisotropy of the CMB radiation practically unaffected.

4.3 Gauge invariance
The choice of the class of reference frame plays a very important role in describing

the dynamics of evolution and spatial distribution of perturbations of metric, density and
velocity of matter (Landau and Lifshits, 1962). This problem of ‘choice’ is not anything
specific and inherent in perturbations per se in the expanding Universe. The root of the
problem may be traced back to the covariant formulation of the equations of general relativity
in which the form of equations is independent of the choice of reference frame whereas
the form of solutions does depend on it. This factor is of principal importance in analysing
the behaviour of perturbations in the expanding Universe because without a special analysis
the effects of coordinates can be easily mistaken for true physical effects. Following Hu
(1995), we will consider this aspect in more detail for a scalar mode of perturbations. The
most general form of presenting the perturbation metric for this type of perturbations has the
following form:

goo = −a2[1 + 2ϕG
(ξ ) Q

]
,

g0 j = −a2ψG
(ξ ) Q j ,

gαβ = a2[γαβ + 2H G
L(ξ )γαβ Q + 2H G

T (ξ )Qαβ

]
,

(4.27)

where Q j ≡ −k−1 Q; j and Qi j ≡ k−2 Q;i ; j + 1
3γi j Q, the index G is a mark that the corre-

sponding functions belong to a specific reference frame and ξ = ∫
dt/a is conformal time. Let

us consider a shift in spatial (xα) and temporal ξ variables in response to scalar perturbations
Q that also automatically perturb the reference frames:

ξ̃ = ξ + T Q̇, X̃α = Xα + L Q̇α. (4.28)

Here the tilde corresponds to the perturbed reference frame, and T and L are the corresponding
functions of time ξ . We now make use of the rule of transformation of the metric tensor gik

from one reference frame to another:

gik(ξ, xα) = ∂xm

∂ x̃ i

∂xn

∂ x̃ k
gmn(ξ − T Q; xα − L Qα). (4.29)

Then the metric perturbations hik = gik − g̃ik are related to perturbations of coordinates by
the following relation:

hik = g̃ik(ξ, xα) − gik(ξ, xα) = gnk(δx)n
,i + gni (δxn),k − gik,n(δx)n. (4.30)
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Substituting Eqs (4.28) and (4.29) into Eq. (4.30), we arrive at the following law for function
transformation:

ϕ̃G = ϕG − T ′ − a′

a
T, (4.31a)

ψ̃G = ψG + L ′ + kT, (4.31b)

H̃ G
L = H G

L − k

3
L − a′

a
T, (4.31c)

H̃ G
T = H G

T + kL , (4.31d)

where the prime (′) stands for the derivative with respect to time t .

4.3.1 The Newtonian gauge
Following Hu (1995), we define the Newtonian gauge by the condition ψ̃ =

H̃ G
T |G=N = 0. The reference frame with this gauge will be referred to as Newtonian. From

Eq. (4.31b) we obtain

T = −�G

k
− L ′

k
, (4.32)

and Eq. (4.31d) implies that

L = −1

k
H G

T . (4.33)

Substituting Eq. (4.33) into Eq. (4.32), we see that the transformation of perturbations from
an arbitrary reference frame to a Newtonian reference frame follows the law

T = −�G

k
+ H ′G

T

k2
; L = −1

k
H G

T . (4.34)

The components of the perturbation metric in the Newtonian reference frame are then given
by

� ≡ ϕN = ϕG + 1

ak

[
aξG

k
− aH ′G

k2

]′
,

(4.35)

� ≡ H N
L = H G

L + 1

3
H G

T + a′

a

(
ξG

k
− H ′G

T

k2

)
.

For the sake of completeness, we give the expressions for perturbations of density δx , pressure
δPx and velocity of matter vx in the Newtonian gauge (Hu, 1995):

δN
x = δG

x + 3(1 + ωx )
a′

a

[
− BG

k
+ H ′G

T

k2

]
,

δPN
x = δPG

x + 3(1 + ωx )C2
x

a′

a

[
− BG

k
+ H ′G

T

k2

]
, (4.36)

V N
x = V − xG − H ′G

T

k
,

where the index x stands for the matter component and ωx = Px/ρx . The relation between
the Newtonian gravitational potential and density perturbations is given by the following
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relation that follows from the Poisson equation:

� = 4πG(a2)ρT

[
δG

T + 3
a′

a
(1 + ωT )

(
vG

T − BG)
/k

]
. (4.37)

4.3.2 Synchronous gauge
The choice of a synchronous reference frame is one of the most widespread in

analysing the behaviour of perturbations in the expanding Universe. Formally it corresponds
to the conditions ϕ̃S = ξ̃S = 0. As we see from Eqs (4.27), the condition ϕS = 0 signifies that
perturbations of the g00 component of the metric tensor are absent and ξS = 0 automatically
turn the g0 j component to zero. Equations (4.31d) immediately imply that

T = 1

a

∫
aϕG dξ + C1

a
d, L = −

∫
(ξG + kT ) dξ + C2, (4.38)

where C1 and C2 are arbitrary constants determined by the initial conditions. It is then
straightforward to find from Eqs (4.38) the corresponding relations between H̃ S

L , H G
L and

H S
T , H G

N , by substituting Eq. (4.38) into Eqs (4.31d). To conclude this section we give the
relation between perturbations of the metric � and � given in the Newtonian reference frame,
and perturbations hS ≡ 6H S

L and ξS = −H S
L − 1

3 H S
T determined in the synchronous gauge:

� = 1

2k2a

[
a(h′

S + 6σξ ′
S)

]′
, � = −ξS + a′

2k2a
(h′

S + σξ ′
S). (4.39)

4.4 Multicomponent medium: classification of the types of scalar
perturbations
An important feature of the modern theory of the evolution of scalar perturbations

in the expanding Universe is that the theory takes into account the multicomponent nature of
the medium; it includes electromagnetic radiation, the baryonic fraction of matter, electrons,
muons, τ neutrinos and massive particles – carriers of cosmological hidden mass. Each of
the components listed above has its own history of interaction with other components which
inevitably modify the dynamics of evolution of scalar-type perturbations, both within each
subsystem and on the whole for matter density perturbations (including all its components)
and for metric perturbations related to them. The situation becomes even more complicated
if we assume that the ‘cold’ hidden mass that today constitutes practically 30% of the critical
matter density may itself have a more complicated composition; that is, it may include several
components, each of which is identified with its own massive carrier (particle, black hole,
etc.) that had its own history of evolution in the course of the expansion of the Universe.

In this section we concentrate mainly on what types of perturbations are possible in such
multicomponent media, by detailing the classification of perturbations types that typically
belong under the scalar mode (see Section 4.2).

4.4.1 Adiabatic (isentropic) modes
We begin by specifying the definition of the total density of matter in the Universe

εtot and the total pressure in the framework of the hydrodynamic approach:

εtot =
∑

i

εi , Ptot =
∑

i

Pi , (4.40)
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where i stands for the type of the corresponding component. We write εi in the form

εi = εi (t)(1 + δi (t, �r )), (4.41)

where δi (t, �r ) is the corresponding density perturbation in each component:

δi (�r , t) = εi − εi (t)

εi (t)
. (4.42)

By analogy to Eq. (4.42) we define the perturbations of partial pressures

δ
(P)
i (�r , t) = Pi − Pi (t)

Pi (t)
(4.43)

and partial entropy densities

δSi = Si − Si (t)

Si (t)
. (4.44)

One of the more important assumptions that we use to classify scalar types of perturbations
in a multicomponent medium is that the temperature of each component was the same at the
very earliest stages of cosmological expansion and equal to radiation temperature, and, as a
consequence, its perturbations can be expressed in terms of fluctuations of this temperature:

δS

S
= 3

δT

T
. (4.45)

Following Ma and Bertschinger (1995) and Zeldovich and Novikov (1983), we introduce the
specific entropy of radiation normalized to the density of the baryonic charge nbar, such that
Sγ b = Sγ /nbar. The fluctuations of this quantity are given by

δSγ b

Sγ b
= δSγ

Sγ

− δnbar

nbar
. (4.46)

First of all we define the standard adiabatic mode of perturbations by the condition δSγ b/Sγ b =
0 and the standard entropic mode by the condition δSγ b/Sγ b = const. (Zeldovich and Novikov,
1983). For the adiabatic mode we obtain, from Eqs (4.45) and (4.46),

3
δT

T
= 3

4

δεγ

εγ

= δεγ

εγ + Pγ

= δnbar

nbar
. (4.47)

Following Ma and Bertschinger (1995), we generalize the definition of Eq. (4.46) to the case
of multicomponent media, as follows:

δn j

n j
= δεγ

εγ + Pγ

, (4.48)

where the index j refers to all massive components, including baryons. Taking into account
that δn j/n j ≡ δ j and δγ = δεγ /εγ = 4(δT/T ), we obtain from Eq. (4.48) the following
equation that relates perturbations in each component to perturbations in electromagnetic
radiation:

δb = δx = . . . δy = 3

4
δγ = 3

4
δν = 3

4
δz . (4.49)

Here δb represents the baryonic fraction of matter, δx , . . . , δy corresponds to various fractions
of cold hidden mass, and δν and δz refer to massless neutrinos and hypothetical light particles,
respectively.



104 Primordial CMB and uniform model

4.4.2 ‘Isopotential’ modes
In the West, the term ‘isocurvature perturbations’ is usually used instead of ‘isopo-

tential modes’, indicating that this sort of perturbation does not perturb the spatial curvature.
In its turn, this means that the total density perturbation of the multicomponent medium is
zero – perturbations in each component have such phases that the combined perturbation
δεtot = 0. The condition δεtot = 0 leads to the following equation that relates perturbations
in each component:

∑
i

miδni + 4εγ (1 + Rνγ )
δT

T
= 0. (4.50)

Here mi is the mass of the i th non-relativistic fraction of matter (baryons, various types of
dark matter), Rνγ = εν/εγ and εν is the sum of energy densities of massless neutrinos.

Assume now that the adiabaticity condition, δi = δn j/n j = 3
4δγ , is violated for one of the

components of hidden mass, while it holds for all other components including the baryonic
fraction. In this case we have that for i 	= j δi = 3

4δγ and from Eq. (4.50) we obtain

εiδi +
[

3
∑
i 	= j

εi + 4εγ (1 + Rνγ )

]
δT

T
= 0. (4.51)

This result implies that the relation between temperature perturbations δT/T and δ j is as
follows:

δT

T
= − ε j

3
∑

i 	= j εi + 4εγ (1 + Rνγ )
δ j . (4.52)

As we see from Eq. (4.52), the condition of isopotentiality δεtot = 0 in a multicomponent
medium, including partial adiabaticity and non-adiabaticity of at least one non-relativistic
component, results in certain phasing of perturbations in electromagnetic radiation and mass-
less neutrinos in this ‘peculiar’ massive component (see Eq. (4.52)). The relation between
the perturbations δSγ j/Sγ j and δT/T ,

δSγ j

Sγ j
= 3

δT

T
− δ j = 3

δT

T

[
1 +

∑
i 	= j εi + 4

3εγ (1 + Rνγ )

ε j

]
, (4.53)

is easily obtained by using the expressions for the perturbations of specific entropy of radiation
for each j th kind of particle (see Eq. (4.46)). Now, Eq. (4.53) shows that isopotentiality of
the perturbation signifies at the same time the existence of non-zero specific perturbations of
entropy. However, in the general case this type of perturbation cannot be reduced to the purely
entropic mode, owing to the adiabaticity of perturbations in all massive components with the
exception of the j th component. This effect reflects the specificity of the multicomponent
media in addition to the properties of the baryon–photon ‘fluid’ discussed in Zeldovich and
Novikov (1983).

4.4.3 Entropic–isopotential mode
Let us turn again to Eq. (4.50) and consider a situation in which perturbations in

all massive components i do not satisfy the adiabatic relation δ j = 3
4δγ . We introduce the

specific entropy of radiation normalized to the concentration of particles of the species i ,
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assuming as before that neutrinos are massless. Consider the perturbations

σi = δSγ (tot)

Sγ (tot)
= δSγ

Sγ

− δni

ni
= 3

δT

T
− δi . (4.54)

We again assume that the condition of isopotentiality of perturbations in the form (4.40)
continues to hold. Substituting Eq. (4.54) into Eq. (4.50), we obtain

δT

T
=

∑
i εiσi

3εtot + 4εγ (1 + Rνγ )
, (4.55)

where εtot = ∑
i εi . It is clear from Eq. (4.55) that for this mode of perturbations, fluctuations

of specific entropy σi are the source of temperature fluctuations of CMB and massless neutri-
nos. The perturbations of the radiation energy density and radiation temperature at the early
stages of expansion, when εγ  εtot, are small but finite: δT/T = (

∑
i εiσi )/4εγ (1 + Rνγ ).

As the condition εi ∝ a−3 is satisfied for each non-relativistic component, and εγ ∼ a−4,
then δT/T ∝ a and tends to zero as a → 0. As the scale factor increases, the densities εtot

and εγ reach equality at a = aeq, and the asymptotic behaviour (for a  aeq) δT/T reaches
the maximum δT/T � 1

3

∑
xiσi , where xi = εi/εtot.

4.4.4 Isothermal mode
The multicomponent nature of the medium allows the emergence of new modes

that have no analogues in a simple baryon–phonon model of perturbation evolution in the
expanding Universe that was widely discussed in the middle of the 1960s to the end of
the 1970s (Zeldovich and Novikov, 1983). The most impressive example of these sorts of
differences is the isothermal mode in which δT/T ≡ 0 and the isopotentiality condition,
Eq. (4.11), is satisfied. The absence of perturbations in the relativistic component signi-
fies that the distribution of baryons and hidden mass is phased in some special manner as
follows: ∑

i

ρiδi = 0. (4.56)

As follows from Eq. (4.56), the positive density contrast in baryons is compensated for by
the negative contrast in all components of dark matter,

δb = − 1

ρb

∑
i

ρiδi , (4.57)

whereρb is the baryonic density and the sum is taken only over the sorts of particles comprising
the hidden mass. For i = 1 (i.e. in the model with only one species of particle that carry the
hidden mass) Eq. (4.57) is found to be especially simple: δb = −(ρx/ρb)δx , where ρx is the
density of these sorts of hidden mass carriers. Taking into account that ρx/ρb  1, we obtain
|δb|  |δx |. Formally, at the limit of applicability of the linear theory, perturbations in the
‘gas’ of hidden mass cannot be less than −1. This corresponds to the density contrast in the
baryonic gas:

δb � ρx

ρb
� 
x h2


bh2
, (4.58)

where 
x h2 and 
bh2 are the current values of the hidden mass and baryon densities in units of
critical density of matter. Assuming 
x h2 � 0.127 (
x ∼ 0.3; h = 0.65) and 
bh2 � 0.02,
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we obtain the upper bound on the density contrast in the baryonic component to be δb ≤ 6.3.
It should be emphasized again that this estimate goes beyond the linear approximation and
is used here only as an example. However, using the idea of isothermal isopotential modes
as a launching pad, we can pose a much more important problem: what are the properties of
the ground state of multicomponent matter that we previously assumed to be uniform and
isotropic? Section 4.4.5 deals with this aspect in more detail.

4.4.5 The origin of potential functions
This subsection deals with possible modifications of the model of the on-average

uniform isotropic Universe in the presence of various types of scalar perturbations, undoubt-
edly including non-linear configurations. In contrast to the preceding subsection where we
made no assumptions concerning the existence of characteristic perturbation scales, in what
follows we assume that a special scale λmax exists, such that isothermal perturbations can
develop in a non-linear mode if λ < λmax while the amplitude of these perturbations is zero
if λ > λmax. At first glance, assumptions made about some putative peculiar linear sizes
smaller than the physical scale of the current galaxies may appear artificial. A hypothesis that
no such peculiar scales exist, first formulated by Zeldovich (1970) and Harrison (1970) in
relation to the adiabatic mode appears more appealing. The corresponding spatial spectrum
of perturbations is known as the Harrison–Zeldovich spectrum. When discussing possible
types and characteristic scales of perturbations in a multicomponent cosmological plasma,
we should not forget that without specific implementation of the models of the origin of the
perturbations, it would be just as ‘dangerous’ to arrive at conclusions about the presence
of specific parameters as to suggest that no such parameters exist. It is widely recognized
that the most promising approach to explaining the source of the initial irregularity in the
Universe is through progress in the theory of the early inflationary stages of the expansion of
the Universe. Therefore, all possible characteristics of perturbations must be treated within
the framework of the inflation theory.

A considerable amount of work has covered the analysis of this approach, for example
Kolb and Turner (1989) and Linde (1990). We need to point out here that the first correct
derivation of the shape of the spectrum of small perturbations in terms of inflation theory
was obtained for tensor perturbations by Starobinsky (1979) and for scalar perturbations
by Guth (1981), Hawking (1982) and Starobinsky (1982). Important contributions to this
problem were made by Lukash (1980), Mukhanov and Chibisov (1981), Starobinsky (1980)
and Kompaneets, Lukash and Novikov (1982). We cannot for obvious reasons go into a
detailed discussion of these impressive achievements of current inflation theories in this
brief subsection, and therefore we refer the reader to the original papers cited above. As
in the preceding chapter, we act as consumers of information and consider as adequate
for the purposes of this subsection to make use of the fact that, in the framework of the
inflation scenario, the current irregularities on galactic and larger scales originate with the
quantum noise of the physical fields – precisely in the period of the inflational expansion
of the Universe. Furthermore, it is found to be sufficient for the generation of non-adiabatic
perturbation modes that there exist a mixture of various fields, for example scalar ϕ and χ

fields, whose evolution triggers the generation of both adiabatic and isopotential modes –
under a certain combination of parameters of the ϕ–χ interaction (Novikov, Schmalzing and
Mukhanov, 2000; Polarski and Starobinsky, 1994; Turok, 1996).
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The level of predicted fluctuations of both the adiabatic and isopotential types may be
different, depending on the specific choice of parameters in the inflationary mode, and may
reach extreme values, δρ/ρ ∼ 1. It is then natural that the spatial scales of such non-linear per-
turbations cannot reach the scale of clusters and superclusters of galaxies because they would
inevitably cause strong anisotropy of the primordial background radiation in the hydrogen
recombination epoch. To illustrate the possibility of the existence of adiabatic and isopo-
tential types of characteristic scales permitting the existence of well developed (δρ/ρ ∼ 1)
isopotential modes in the spectrum of perturbations, we turn to an analysis of the specific
models of early inflationary stages.

4.4.6 Peculiarities of the inflaton potential
In accordance with the general ideology of inflationary scenarios we assume that

the dynamics of the expansion of the Universe at the earliest stages of cosmological evolution
(t → 0) is dictated by the scalar field ϕ(�x, t) that simulates the vacuum state of matter. The
scalar field ϕ(�x, t) contains a classical part, ϕ(t), and quantum fluctuations, δϕ(�x, t), which
are functions of the spatial and temporal coordinates (Linde, 1990). The classical component
of the field ϕ in the uniform and isotropic Universe evolves in conformity with the standard
equation

∂2ϕc

∂t2
+ 3H

∂ϕc

∂t
= − ∂V

∂ϕc
, (4.59)

3H 2 = 8π

(
∂ϕ2

c

∂t
+ V (ϕc)

)
, (4.60)

where V (ϕ) is the potential of the scalar field ϕ, ϕ̇ ≡ dϕ/dt , and we use the system of units
h̄ = C = G = 1. For the adiabatic mode we use the gauge-invariant vk related to the quantum
component of the scalar field ϕ̂q (Linde, 1990):

ϕ̂q(x, t) = 1

2π3/2

∫ (
âkvk(t)e−ikx + â+

k v∗
k (t)e−ikx

)
d3k, (4.61)

where âk and â∗
k are the creation and annihilation operators, respectively. The dynamics of

vk(t) is described by the following equation:

v′′
k +

[
k2 − 2

ξ 2
+ ∂2V

∂ϕ2
a2

]
vk = 0, (4.62)

where v′′
k ≡ ∂2vk/∂ξ 2, ξ = ∫

(1/a) dt . We need to stress that the set of equations (4.59)–
(4.62), a basis for any inflationary model, relates the dynamics of evolution of the classical
component of the field ϕ and quantum noise ϕ̂q(�x, t). In the absence of singularities of the
potential V (ϕ), as for example in the model V (ϕ) � (λ/4)(ϕ)4 or a simpler model V (ϕ) �
m2ϕ2/2, the most important condition that allows us to calculate the spectrum of adiabatic
perturbations generated from the function vk(t) is the approximation of slow evolution of the
field ϕ at the very start of inflation:

∣∣∣∣∂
2ϕ

∂t2

∣∣∣∣ � 3H |ϕ̇|, ∂ϕ2

∂t
� 2V (ϕ). (4.63)
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In this approximation the theory predicts that the spectrum of fluctuations in the adiabatic-type
metric is given by (Linde, 1990)

P(k) ∼ k
V 3(ϕ)

(∂V/∂ϕ)2

∣∣
k=aH (ϕ) , (4.64)

where H (ϕ) is the value assumed by the Hubble parameter when the field ϕ reaches a certain
value ϕmin that corresponds to the termination of the inflationary mode. For monotone poten-
tials V (ϕ) that possess no singularities of the type ∂V/∂ϕ → 0 on some range (ϕ1; ϕ2), the
predictions of the inflation theory are quite specific. The spectrum of adiabatic perturbations
of density becomes

Pδ(k) � Ak, (4.65)

where A is the spectrum amplitude, which coincides in form with the Harrison–Zeldovich
spectrum. However, the situation changes radically if the inflaton potential contains an area
(ϕ1 ≤ ϕ1 ≤ ϕ2) where ∂V

∂ϕ
� 0 (Ivanov et al., 1994; Starobinsky, 1992a,b). In this case,

Eq. (4.64) formally implies that the amplitude of fluctuations becomes infinite. Obviously,
this singularity is non-physical. Its formal emergence indicates that the slow rolloff approxi-
mation at the plateau of the potential V (ϕ) is inapplicable. In view of this, Ivanov et al. (1994)
arrived at the following general form for the spectrum of adiabatic density perturbations in
the simple model of potential V (ϕ) discussed above:

P(k) = A2k D(k), (4.66)

where D(k) � 1 for k < k2 and

D(k) �
[

1 + A−
1

A+
2

γ 3

]2 [
1 + 3

sin(2k R2)

k R2

]
for k2 < k < k1; (4.67)

R2 is the characteristic scale of perturbations that intersect the horizon atγ = k1/k2  1, ki =
a(ti )H (ti ), i = 1, 2, ti is the moment of time when ϕ(t2) = ϕi , and A−

1 and A2
+ characterize

the step in the derivatives of the potential at ϕ = ϕ1 and ϕ = ϕ2.
As follows from Eq. (4.67), a region of sharp increase in fluctuation amplitude, reaching

the level D1/2(k) ∼ (A−
1 /A+

2 )γ 3, will form in the spectrum of adiabatic perturbations at
γ  1. Assuming, for the sake of evaluation, A−

1 /A+
2 ∼ 1 and γ � 20, we obtain that the

‘enhancement’ factor D1/2 may reach ∼104 or higher values, remaining nevertheless localized
in the zone of wave factors k2 < k < k1. Note that the position of the ‘plateau’ in the spectrum
of adiabatic perturbations is a naturally free parameter that depends on the positions of ϕ1

and ϕ2 on the potential V (ϕ). Note also that the effect of formation of the ‘plateau’ on the
spectrum of primary perturbations was used by Ivanov et al. (1994) to evaluate the fraction of
mass of the matter that was transferred to primary black holes at early, post-inflation, stages
of cosmological expansion. The parameters ϕ1 and ϕ2 were chosen in such a way that the
typical mass of the primary black hole was close to 1M�. The density of such objects today
was chosen to be equal to the density of MACHOs in our Galaxy.

It is clear therefore that the specifics of the epoch when primary fluctuations are formed
may have very important cosmological consequences. One of them, the formation of massive
primary black holes, is directly related to the excess of power in the short-wavelength part of
the spectrum of adiabatic perturbation modes.
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4.4.7 Multicomponent inflation and generation of isopotential modes
One of the non-trivial ideas of modern inflation theory is the explanation of the

possible causes of generation of isopotential modes by perturbations of isopotential type, in
addition to adiabatic perturbations. We know from Section 4.4.6 that if inflation is controlled
by a single scalar field, the emerging perturbations are always adiabatic. The quantum part
of the field always produces perturbations of the metric, and hence the initial irregularity
of the Universe is purely adiabatic. In this scenario, isopotential modes can only arise at
the decay phase of the field ϕ0 into particles at the end of inflation when reheating of the
Universe takes place. We discuss this aspect in detail in the following. Together with this
process, however, the isopotential mode can also be generated during the inflation itself if it is
sustained by another field χ (assumed to be scalar for simplification), in addition to the scalar
field ϕ (Kofman and Linde, 1987; Linde, 1984; Mukhanov and Chibisov, 1981; Mukhanov
and Steinhard, 1998). Let us consider the simplest model of the isopotential mode following
the ideas of Mukhanov and Steinhard (1998). We assume that the energy–momentum tensor
for the fields ϕ and χ is diagonal and we choose the Newtonian gauge � = −� in Eq. (4.35).
Then the equations describing the evolution in time of the non-perturbed fields ϕ and χ have
the following form (Mukhanov and Steinhard, 1998):

3H ν̇ = −2�; 3H μ̇ = −2�; � = 1

H
(V̇1 · ν + V̇2μ), (4.68)

where H is the Hubble parameter, V1(ϕ) and V2(χ ) are the two components of the potential
V (ϕ, χ ) = V1(ϕ) + V2(χ ), V ′

1 ≡ ∂V1(ϕ)/∂ϕ, and V ′
2 ≡ ∂V2(χ )/∂χ .

As in Section 4.4.6, we use the approximation of slow variation of the fields ϕ and χ

in the form (4.59). By analogy with the model with a single scalar field we introduce per-
turbations δϕ and δχ , assuming formally the wave factor to be zero, |�k| = 0. This means
that we have selected the long-wavelength approximation. Then, making the replacements
δϕ = V ′

1ν and δχ = V ′
2μ we obtain the set of equations for the perturbations ν and μ as

follows:

3H ν̇ = −2�; 3H μ̇ = −2�; � = 1

H
(V̇1 · ν + V̇2μ), (4.69)

where V̇ ≡ dV/dt . It is not difficult to see that in this set the difference between the pertur-
bations ν and μ reduces to a single constant,

μ = ν + g, (4.70)

where g = const. Then we have, for metric perturbations,

� = 1

H

[
(V̇1 + V̇2)ν + gV̇2

]
. (4.71)

Returning to Eqs (4.69), we immediately note that

ν̇ + V̇1 + V̇2

V1 + V2
ν = −g

V̇2

V1 + V2
. (4.72)

The solution of this equation has the following form (Mukhanov and Steinhard, 1998):

ν = C − gV2

V1 + V2
; μ = C + gV1

V1 + V2
, (4.73)
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where the integration constants C and g are found from the conditions

μ � αH |K=aH , ν = β H |K=aH , (4.74)

and α and β are coefficients ∼ 1:

g = 1

3H

(
ν

ϕ̇
− μ

χ̇

) ∣∣∣∣
K=aH

, (4.75)

C = −1

2
H

(
V1

V1 + V2

ν

ϕ̇
+ V2

V1 + V2

μ

χ̇

) ∣∣∣∣
K=aH

.

With this normalization of constants, the corresponding perturbation of the gravitational
potential is given by

� = 2C
Ḣ

H 2
+ g

1

H

V1V̇2 − V2V̇1

V1 + V2
. (4.76)

The first term in Eq. (5.18) (see Section 5.2) corresponds to the standard adiabatic mode that
is characteristic of the single-component model of inflation. The second term describes the
entropy mode (using the terminology of Mukhanov and Steinhard (1998)).

Let us consider the possibility of formation of the isothermal mode with � = 0 in the
framework of the two-field model of inflation. In view of Eqs (4.70) and (4.71), we obtain
for this mode of perturbations the following relations:

ν = −g
V̇2

V̇1 + V̇2
, μ = g

V̇1

V̇1 + V̇2
. (4.77)

It is not difficult to see that this solution is a particular case of the general solution of Eqs (4.73).
A comparison of Eqs (5.19) and (4.69) immediately yields that V̇2/(V̇1 + V̇2) = const. = A
and V̇1/(V̇1 + V̇2) = const. = B; that is, for the isothermal mode with zero perturbations of
the metric to exist, it is necessary that the potentials V1(ϕ) and V2(χ ) be linearly dependent
functions in at least one interval ϕ ∈ (ϕ1, ϕ2) and χ ∈ (χ1, χ2). Indeed, in view of the relations
V̇1 = V ′

1 · ϕ̇ and V̇2 = V ′
1 · χ̇ and Eqs (4.68), we arrive at the following relations:

(V ′
2)2

(V ′
1)2 + (V ′

2)2
= A,

(V ′
1)1

(V ′
1)2 + (V ′

2)2
= B, A + B = 1. (4.78)

Equation (5.20) immediately implies an equation that relates V1(ϕ) and V2(χ ) in the region
[ϕ1, ϕ2

⋃
[χ1, χ2] = 
:

∂V1

∂ϕ
= ±

√
B

A

∂V2

∂χ
. (4.79)

The simplest model of the potentials V1 and V2 in the domain 
 is the linear dependence
V1(ϕ) ∼ C1ϕ and V2(χ ) ∼ C2χ . Then, owing to Eq. (5.21), C1 and C2 must be related by

C1 = ±
√

B

A
C2. (4.80)

In this case the total potential of the system, Vtot(ϕ, χ ), is also a linear function in the fields
ϕ and χ :

Vtot(ϕ, χ ) = ±
√

B

A
C2ϕ + C2χ = C2

(
χ ±

√
B

A
ϕ

)
. (4.81)
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Note that, as in the preceding section, the localizations of singularity of the potential result
in a violation of the adiabaticity of fluctuations and in the emergence of new isopotential-
type modes localized within a specific interval of the perturbation spectrum. We need to
emphasize especially that the simplest model of two-scalar non-interacting fields could have
a much more complex generalization. It is important to know, however, that the conclusion
on the relation of these anomalies to the peculiarities of perturbations in the cosmological
plasma will obviously remain unchanged. This is the reason why the role of observational data
in the anisotropy and polarization of primordial radiation background becomes enormously
important when we finally try to answer the question of how was the Big Bang unfolding in
the framework of the inflation paradigm?

4.5 Newtonian theory of evolution of small perturbations
Beginning here and until the end of the chapter we will discuss various modes of

evolution of perturbations, both of adiabatic and isopotential type in a uniform and, on average,
isotropic Universe. Following the classical tradition, we begin this analysis with a discussion
of the model of the standard gravitating multicomponent medium, neglecting expansion.
The importance of, and necessity in, this analysis stem first of all from its simplicity, which
makes it possible to define the main parameters that dictate the pace of the evolution of
perturbations, and from the ease with which the main results can be generalized to the model
of the expanding Universe.

Note that the basics of the theory of gravitational instability of matter were developed in J.
Jeans’ classical paper (Jeans, 1902). A description of Jeans’ approach is given in Zeldovich
and Novikov (1983). We will follow the ideology of Jeans’ pioneering paper and the descrip-
tion in the Zeldovich–Novikov monograph practically without any changes. An important
assumption used in this section, one that allows us to reproduce correctly the general proper-
ties of the cosmological plasma, is the assumption of the existence of N mutually independent
components that evolve in a self-consistent gravitational potential. We also assume, in the
spirit of the Newtonian approach to describing gravitation, that the characteristic velocities
v of processes, v � c, and that any created gravitational fields are weak: ϕ � c2, where c
is the velocity of light in vacuum.2 Then the dynamics of the multicomponent medium is
described by hydrodynamic equations of the type (see Peebles (1993) and Zeldovich and
Novikov (1983))

∂ρi

∂t
+ ∇(ρi �Vi ) = 0, (4.82)

∂ �Vi

∂t
+ ( �Vi∇) �Vi + ∇ Pi

ρi
+ ∇ϕ = 0, (4.83)

∂Si

∂t
+ ( �Vi∇)Si = 0, (4.84)

�ϕ = 4πG
∑

i

ρi , (4.85)

where ρi is the density of the i th component of the medium, �Vi is its vector of velocity, Pi is
pressure and Si is entropy. Equations (4.82)–(4.85) show that there are no external sources

2 Further on in this section we assume that c = 1.
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of mass, momentum or entropy. Moreover, components with different ‘i’ interact with one
another only through gravitation. Later, when applying this description to specific situations,
we usually assume that pressure is significant in only one component and negligible in the
others. Following Jeans (1902), we assume the non-perturbed state of the medium to be at
rest (�vi = 0) and that the density and pressure of each component are constant:

ρ
(0)
i = const., S(0)

i = const., P (0)
i = P

(
ρ

(0)
i

) = const. (4.86)

Note, however, that this prescription of the initial non-perturbed state of the medium demands
that ∇ϕ vanish, which automatically contradicts the Poisson equation, Eq. (4.85). Neverthe-
less, the assumption of stationarity of the non-perturbed solution will allow us to find fairly
simply (and correctly!) the perturbation parameters that separate stable solutions from unsta-
ble ones, and to classify perturbations. The reasons why this is possible are analysed in great
detail in Zeldovich and Novikov (1975, 1983), so we need not go into that here. We therefore
assume

ϕ(0) = 0. (4.87)

As we mentioned before, this assumption leads to correct values of the parameters that deter-
mine the stability or instability. However, the law describing the evolution of perturbations
with time will have to be improved. The exact relativistic theory will be treated in Section 4.6.

Let us begin our analysis of the stability of small perturbations of uniform distribution
assuming that condition (4.87) holds. Following the standard method of investigating the
stability of a multicomponent scheme, we write the density, velocity, pressure, entropy and
gravitational potential in the following form:

{X} = { �X}0 + δX (t)ei�k �x , (4.88)

where { �X}0 is the ground state and δX (t)ei�k �x is the perturbed state, and we take into account
that pressure perturbations are related to density and entropy perturbations in each component:

δPi =
(

∂ Pi

∂ρi

)
S

δρi +
(

∂ Pi

∂Si

)
ρi

δSi . (4.89)

Introducing the notation C2
S = (∂ Pi/∂ρi)S and C2

ρ = (∂ Pi/∂Si)ρi
for the adiabatic and isother-

mal speed of sound, respectively, we obtain a set of linear equations, Eqs (4.82)–(4.89), for
perturbations of thermodynamic quantities, velocities and gravitational potential:

dδi

dt
+ i�k �ui = 0, (4.90a)

d�ui

dt
+ i�kϕ̃ + i�kC2

Sδi + i�kC2
ρσi

(
ρ

(0)
i

)(−1) = 0, (4.90b)

dσi

dt
= 0, (4.90c)

k2ϕ̃ = −4πG
∑

i

ρiδi , (4.90d)

where δ ≡ δρi/ρ
(0)
i is the relative density perturbation in the i th component, σi are pertur-

bations of entropy, ϕ̃ are perturbations of potential, and Cρ and CS are constants within the
linear approximation.
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The study of various types of behaviour of perturbations will be conducted in accordance
with the classifications of their types that we gave in the preceding sections of this chapter.

4.5.1 Adiabatic perturbations
For this type of perturbation we need to recall that σi = 0 and �ui = ui (�k/|�k|)

(Zeldovich and Novikov, 1983). As the coefficients in Eq. (4.90d) are time-independent,
we make use of the representation δi , ui and ϕ̃ as a Fourier integral in the variable t :⎛

⎝ δi

ui

ϕ̃

⎞
⎠ ∝

∫ ⎛
⎝ δi,ω

ui,ω

ϕ̃i,ω

⎞
⎠ e−iωt dω,

whence

−iωδi,ω + ikui,ω = 0,

−iω
�k
k

ui,ω + i�kϕ̃i,ω + i�kC2
S(i)δi,ω = 0, (4.91)

k2ϕ̃ω = −4πG
∑

i

ρ
(0)
i δi,ω.

A non-trivial solution for the perturbations in Eqs (4.91) is only possible if the determinant
of the system vanishes, resulting in the following dispersion equation:

4πG
∑

i

ρ
(0)
i

ω2 − k2C2
S(i)

= −1. (4.92)

For a single-component medium this equation has a standard form,

ω2 − k2C2
S = −4πGρ0, (4.93)

and its solutions depend on the relation between the terms k2C2
S and 4πGρ0. Assuming ω = 0

in Eqs (4.91), we obtain an expression for the critical scale k j = C−1
S (4πGρ(0))1/2 and the

corresponding wavelength λ j = 2π/k j = CS
(
π/Gρ(0)

)1/2
known as the Jeans wave vector

and the Jeans wavelength, respectively. As we see from the definition of k j , for k > k j the
term with ω2 is positive and the expression for frequency ω takes the following form:

ω = ±kCS

(
1 − k2

j

k2

)1/2

. (4.94)

We immediately see that this branch of the dispersion equation is stable and describes acoustic
oscillations of the medium. If k < k j the solution for ω has only an imaginary part:

ω = ±i4πGρ

(
1 − k2

k2
j

)1/2

. (4.95)

Note that the mode with ω = −i4πGρ(0)[1 − (k2/k2
j )] corresponds to the growing (unstable)

branch for which an increase in amplitude is exponential, ∼ e|ω|t .
We turn now to analysing particular cases of Eq. (4.95). In a medium with index 2, we use,

by analogy to a realistic model, the term ‘dark matter’; medium 1 will simulate a mixture of
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radiation and baryons. Let us consider the dispersion equation, Eq. (4.92). It is not difficult
to show that this equation has a solution

ω2
1,2 = A ± √

D

2
, (4.96)

where

A(k)
[
k2(C2

1 + C2
2

) − 4πGρtot
] /

2,

D(k) = [
k2(C2

1 − C2
2

) + 4πGρtot
]2 = 16πGk2ρ2

(
C2

1 + C2
2

)
, (4.97)

ρtot = ρ1 + ρ2.

The set of equations (4.97) shows that |A2| < D for ρ2 	= 0 and D(k) > 0 for any value of
the modules of the vector k. This means that for ω(k) there exist an increasing (ω+) branch
and a decaying (ω−) branch and two isolated branches ω1 and ω2:

ω+ = −i

(√
D(k) − A(k)

2

)1/2

, ω− = i

(√
D(k) − A(k)

2

)1/2

,

ω1,2 = ±
(√

D(k) + A(k)

2

)1/2

. (4.98)

When simulating the realistic situation that arose in the cosmological plasma long before
the recombination epoch, we assume the component i = 2 to be cold, C2 = 0. Therefore
we consider a special case of C2 = 0, k2C2

1 = 4πGρ1, which corresponds in the single-
component approximation to the condition k = ki for this medium. Furthermore we assume
that ρ2 � ρ1. We are going to be interested in the following question: what is the effect of
an insignificant-density admixture of cold (C2 = 0) matter on the behaviour of perturbations
on the scale k = k(i)

j ? In the limit ρ2 � ρ1 we obtain from Eqs (4.97) and (4.98)

ω+ = −i
√

4πGρ1

(
ρ2

2ρ1

)1/4

. (4.99)

We see from Eq. (4.99) that the presence of a dark matter component results in a biased Jeans
criterion for one component, which triggers an instability of the system.

Let us consider now the behaviour of the ω+ branch under the approximation k → ∞. In
this approximation,

ω+ = −i
(√

4πGρ2
)

(4.100)

and, as previously, a mixture of ‘cold’ and hot subsystems manifests an unstable branch of
perturbations for k → ∞.

4.5.2 Isopotential perturbations
Entropy-type perturbations in the set of equations (4.90d) will not evolve with time

as the condition dσi/dt = 0 would dictate. Note that Eq. (4.90da) implies that the peculiar
velocity ui automatically vanishes. The relation between density and gravitational potential
perturbations implied by Eq. (4.90dc) has the form

ϕ̃ = C2
S(i )̃δi + C2

ρσiρ
−1
0,i = 0. (4.101)
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Expressing δi from Eq. (4.101) and substituting the result into Eq. (4.90dd), we obtain

ϕ̃ =
4πG

∑
i

C2
ρ(i)

C2
S(i)

σi

k2 − 4πG
∑

i

ρ0,i

C2
S(i)

, (4.102)

δ̃i = − C2
ρ(i)

C2
S(i)

σi

ρ0,2
−

4πGσ j
C2

ρ(i)

C2
S(i)

σi

C2
S(i)

[
k2 − 4πG

∑
j

ρ0, j

C2
S( j)

] . (4.103)

Equations (4.102)–(4.104) imply for the single-component mode that

δ̃ = k2C2
ρσ

ρ0
(
C2k

S 2 − 4πGρ0
) . (4.104)

We remarked in the previous sections of this chapter that the isothermal mode, in which
there are no fluctuations of the gravitational potential, is a particular case of isopotential
perturbations. Assuming ϕ̃ = 0 in Eq. (4.101) we obtain for this mode

δ̃∗
i = −C2

ρ(i)

C2
S(i)

σi

ρ0,i
, (4.105)

and the condition ϕ̃ = 0 immediately implies a relation with entropy fluctuations in each
component:

∑
i

C2
ρ(i)

C2
S(i)

σi = 0. (4.106)

This signifies that the phases of entropy perturbations in each subsystem are such that they
completely cancel out the perturbations of the total matter density and the corresponding
perturbations of the gravitational potential. Note that, according to Eq. (4.106), this compen-
sation is stable and can be caused by the initial conditions under which fluctuations emerge
(see Section 4.4).

4.6 Relativistic theory of the evolution of perturbations in the
expanding Universe
The theory of gravitational instability in the Newtonian approximation that we

discussed in Section 4.5 does not take into account two very important factors that drastically
change the general concept of the evolution of perturbations. First of all, we should discuss the
incorporation of the effect of expansion of the Universe into the general scheme of analysing
the evolution of perturbations of metric, velocity and density of the multicomponent medium.
Moreover, ultrarelativistic matter, for which the speed of sound is close to the speed of light
in a vacuum, plays a most important role in the thermal history of the Universe. Therefore,
relativistic effects must be taken into account along with that of expansion. A second important
factor is the response of gravitation (metric perturbations) to density and velocity fluctuations
in the multicomponent medium. We have already discussed this factor in Section 4.5 in the
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Newtonian approximation. Since we need a relativistic generalization of the equations of
motion to find metric perturbations, it is clear that on the whole the theory of gravitational
instability must be based on the equations of general relativity.

We have already mentioned that the problem of the evolution of perturbations in single-
component matter characterized by the equation of state P = C2

S,ρ , where CS is the adiabatic
velocity of sound, was first formulated and solved by E. M. Lifshits (1946) practically at the
same time that work began on the creation of the theory of the ‘hot’ Universe. Note that the
title of Lifshits’ paper, ‘On gravitational stability. . . ’ seemed to indicate that the primordial
plasma must be stable relative to small perturbations of density, velocity of motion and
gravitational potential. The fact that the conclusion on the gravitational instability of matter
in specific cosmological conditions follows from Lifshits’ equations was first pointed out by
Novikov (1964). For details about the history of this idea, see Peebles (1971). In fact this work
offered a new promise that it would be possible to predict a scenario of transition of cosmic
matter from a structureless state with a very low fluctuation level to a highly structured mass
distribution within regions of δρ/ρ  1 identifiable with galaxies and their clusters. The
sequence of events in such a transition, and the rate at which perturbations grow, depends on
the composition of the matter. Let us consider this process in more detail using the Newtonian
gauge for metric perturbations. For simplicity we restrict the analysis to a flat space Universe,
for which the metric tensor is given by

gik = g(0)
ik + hik, (4.107)

(Zeldovich and Novikov, 1975), where g(0)
00 = −a2; g(0)

0α = 0; g(0)
αβ = a2γαβ ; γαβ is the

Minkowski space metric,

h00 = −2a2��k Q; h0α = 0; hαβ = 2a2��k Qγαβ.

Note that �(ξ )
�k and �

(ξ )
�k are metric perturbations in the Newtonian reference frame, Q denotes

scalar eigenfunctions of the Laplace operator (see Section 4.2), the index α runs from 1 to 3
and ξ = ∫

dt/a is the conformal time.
Following Peebles and Yu (1970) we describe perturbations of the CMB using the kinetic

approach (see Section 4.1); we use hydrodynamic equations for perturbations in the baryonic
fractions of matter, hidden mass and in other possible components.

When deriving equations describing the evolution of perturbations in a multicompo-
nent medium, we use a relativistic analogue of the set of equations (4.82)–(4.85) in
which the equations of motion for hydrodynamic components follow from the conservation
condition,

T k
i ;k = 0, (4.108)

and equations describing perturbations for the Einstein tensor play the role of the Poisson
equation,

Gk
i = Rk

i − 1

2
δk

i R, (4.109)

where T k
i is the energy tensor of matter, Rk

i is the Ricci tensor, R = Ri
i , i = 0, . . . , 3 and δk

i

are the Kronecker deltas. The components of the Einstein tensor’s perturbations in the chosen
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reference frame, Eq. (4.107), are given in terms of the potentials ��k and ��k (Hu, 1995):

δG0
0 = 2

a2

[
3

(
a′

a

)2

��k − 3
a′

a
��k − (k2 − 3E)��k

]
Q,

δG0
α = 2

a2

[
a′

a
k��k − k�′

�k

]
Qα,

δGβ
α = 2

a2

{[
2

a′′

a
−

(
a′

a

)2
]

��k +
(

a′

a

) [
� ′

�k − �′
�k
]

− k2

3
��k

−�′
�k − a′

a
��k − 1

3
(k2 − 3E)��k

}
δβ
α Q − 1

a2
k2(��k + ��k)Qβ

α.

(4.110)

The following notation was introduced in the set of equations (4.110): Q denotes the eigen-
functions of the Laplace operator in the metric, Eq. (4.107) (see also Section 4.2), and

Qα ≡ −1

k
Q;α, Qαβ ≡ k−2 Q;α;β + 1

3
γαβ Q.

The following relativistic analogue of the continuity equation for each component is obtained
from Eq. (4.108):

δ′
j = 3

a′

a
(δω j ) = −(1 + ω j )(kVj,�k + 3�′

�k). (4.111)

The index j in Eq. (4.111) enumerates the components, and

ω j = Pj

ρ j
; (δω j )�k =

(
δPj

δρ j
− ω j

)
δ j(k). (4.112)

Substituting Eqs (4.112) into Eq. (4.111) and introducing the notation � j = ((δPj/δρ j −
C2

S( j))δ j(�k), we obtain from Eq. (4.111)

d

dξ

[
δ j(�k)

1 + ω j

]
= −(kVj(�k) + 3�′

(�k)
) − 3

a′

a
ω j� j . (4.113)

As we see from the definition, � j characterizes the isopotential mode of perturbations for
which � j 	= 0. In the adiabatic mode, δPj/δρ j = C2

S( j) and � j = 0.
We turn now to analysing perturbations of hydrodynamic velocity for each component of

matter. To do this, we take into account Eq. (4.108) and define a perturbation for the vector

δ
(
T̃ k

i ;k − ui u
l T̃ p

l;p

) = 0, (4.114)

where T̃ k
i is the energy–momentum tensor of each component and ui is the four-dimensional

velocity. Applying standard techniques of perturbations theory in linear approximation we
find (Hu, 1995)

v′
j(�k)

+ a′

a
(1 − 3ω j )v j(�k) + ω′

j

1 + ω j
v j(�k)

= (δPj/δρ j )

1 + ω j
kδ j(�k) − 2

3

ω j

1 + ω j

(
1 − E

k2

)
k� j(�k) + k� j(�k), (4.115)
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where � j(�k) is the anisotropic part of the energy–momentum tensor perturbations,

δT β
α = Pj

(
δPj

Pj
δβ
α Q + � j(�k) Q

β
α

)
, (4.116)

and all other notation remains the same.
In a multicomponent medium, the relation between metric perturbations and per-

turbations of the energy–momentum tensor is realized through the perturbed Einstein
equations

δGk
i = 8πG

C4
δT k

i , (4.117)

where the tensor components δT k
i are obtained by summing over all types of matter using

the generalized density, pressure and momentum of matter:

ρtotδtot(�k) =
∑

i

ρi (ξ )δi(�k);

δPtot(�k) =
∑

i

δPi(�k);

(ρtot + Ptot)vtot(�k) =
∑

[ρi (ξ ) + Pi (ξ )]vi(�k);

Ptot�tot(�k) =
∑

i

Pi (ξ )�i(�k);

ρ ′
totC

2
tot =

∑
i

ρ ′′
i (ξ )C2

i (ξ ),

(4.118)

where the variables {xi (ξ )} stand for non-perturbed quantities. The set of equations (4.110),
(4.111), (4.115) and (4.118) thus exhausts the mathematical aspect of the relativistic formu-
lation of the problem of perturbations evolution in the expanding Universe in its most general
form.

The general formulation of the problem implies not only an analysis of complex systems
that involve several species of matter, including that of collisionless particles (for example
neutrinos), but also yields a number of important conclusions on the dynamics of the evolution
of perturbations in simple systems. Thus the optical depth of the plasma relative to the
Thomson scattering was very high (τ  102) long before the hydrogen recombination epoch,
that is at the radiation-dominated phase of the evolution of matter.

Ignoring the role of collisionless neutrinos and the massive gravitational component
implied by the non-relativistic dark mass, we can treat radiation and baryons as an ideal
liquid characterized by its adiabatic speed of sound, C2

S = 1
3 . We assume for simplicity that

in this kind of medium there are no isopotential modes and that perturbations in the radiation
and baryons mixture are adiabatic. If ργ  ρb, the presence of ‘strong binding’ between
electrons, protons and radiation results in the suppression of the anisotropic part of the
energy–momentum tensor of this compound liquid and automatically generates a relation
between the potentials, � = −�, in the Newtonian reference frame. Then we immediately
obtain from the component δ0

0 of Eq. (4.117) that

k2��k = 16

3
πGa2ρT �T (�k), (4.119)
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where �T (�k) = 3
4 (δ�k + 4 a′

a v�k) and the relation between �T and v�k is given by the following
equations (see Eqs (4.111), (4.115) and (4.117)):

�′
T (�k)

− a′

a
�T (�k) = −kv�k,

v′
�k + a′

a
v�k =

(
C2

Sk − 16

3
πGρT a2

)
�T (�k).

(4.120)

Non-perturbed Einstein equations yield the following relation for the early phases of expan-
sion of the Universe where matter obeys the equation of state P = ε/3 (C2

S = 1
3 ):

(
a′

a

)2

= 8

3
πGρa2, a′′ = 0. (4.121)

Then Eqs (4.119–(4.121) yield a simple equation for �T (�k),

�′′
T (�k)

+
(

k2

3
− 2

ξ 2

)
�T (�k) = 0, (4.122)

whose solution is given in the form

�T �k =
[

C1 J3/2

(
kξ√

3

)
+ C2Y3/2

(
kξ√

3

)] (
kξ√

3

)1/2

, (4.123)

where Jν(x) and Yν(x) are Bessel functions of the first and second kind, respectively, and C1

and C2 are integration constants.
Let us consider asymptotes of this solution in the long- and short-wavelength limits. In the

low-wavelength approximation, kξ/
√

3 � 1, the growing mode of perturbations is given by
the expression

�T (�k) � C1

(
kξ

2
√

3

)3/2 (
kξ√

3

)1/2

∝
(

kξ√
3

)2

. (4.124)

For short-wavelength waves, kξ/
√

3  1, the corresponding asymptotes of the Bessel func-
tions yield the following result:

�T (�k) ∝ C1 cos
kξ√

3
+ C2 sin

kξ√
3
. (4.125)

We need to stress that the oscillating solution of the form in Eq. (4.125) was investigated in a
number of papers (see, for example, Bisnovatiy-Kogan, Lukash and Novikov (1983)) and that
it undoubtedly played a major cosmological role for the physics of the cosmic microwave
background. In the next chapter we deal in more detail with improving the solution that
was used to describe the medium composed of the cosmological hydrogen–helium plasma
and radiation at a time very close to the moment of recombination. In what follows here
we consider an absolutely different approximation, when the speed of sound in the system
vanishes, CS = 0; that is, perturbations of density, velocity and gravitational potential evolve
in a ‘dusty’ medium. This approximation arises inevitably in the ‘baryonic’ model, which
is the basis for creating more complicated cosmological models, including various types
of primordial massive and massless particles. After hydrogen recombination, perturbations
evolve independently in baryons and in radiation, and since ρb  ργ (for 
bh2 > 0.1), the
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main dynamic component is the non-relativistic gas of baryons. Indeed, Eqs (4.111), (4.115)
and (4.117) imply that the evolution of perturbations in dust is described by equations of the
type

�′
T (�k)

= −kV�k ; V ′
�k + a′

a
V�k = k�; k2��k = 4πGρb�T (�k)a

2, (4.126)

whence an equation for �′
T (�k)

= δb + 3(a′/a)V�k :

�′′
T (�k)

+ a′

a
�′

T (�k)
− 4πGρba2�T (�k) = 0. (4.127)

In view of the

(
0
0

)
component of non-perturbed Einstein equations,

3

(
a′

a

)2

= 8πGρba2, (4.128)

and a ∝ ξ 2, we obtain for the growing and decay modes of density perturbations in
baryons

�′
T (�k)

= −kV�k ; V ′
�k + a′

a
V�k = k�, (4.129)

where C+
1 and C+

2 are integration constants. Therefore, the rate of growth in perturbations
in the baryonic (dusty) matter after the hydrogen recombination epoch differs in principle
from the Newtonian exponential mode discussed in Section 4.5. Nevertheless, the power-law
growth of the amplitude of density fluctuations is found to be of principal importance for
understanding the possible mechanism leading to formation of structures in the expanding
Universe (Novikov, 1964).

We need to emphasize that from the standpoint of modern cosmology based on the concept
of baryonic hidden mass, the formulation of the problem of gravitational instability in the
baryonic medium appears to be somewhat academic. We know that density perturbations in
dark matter evolve independently of whether hydrogen recombination has occurred or not.
At the same time, we are aiming at a very specific goal in reviving the classical baryonic
model.

An analysis of this model will allow us to describe in the simplest possible manner the
creation of systematic oscillations in the spectrum of density perturbations emerging after
hydrogen recombination. The mechanism of generation of these oscillations was discov-
ered by A. D. Sakharov (1965). For a description, see Zeldovich and Novikov (1983), in
which they were given the name ‘Sakharov oscillations’. Sakharov’s discovery proved to be
of immense importance for cosmology. This phenomenon determines the nature of modu-
lations of the angular spectrum of anisotropy and the polarization of primordial radiation
background that we are to describe in the subsequent sections. These modulations are also
known as the ‘Sakharov modulations’ (Jørgensen et al., 1995; Naselsky and Novikov, 1993).
They are related to the existence of acoustic modes in small perturbations of the cosmo-
logical medium prior to the recombination epoch. Obviously, acoustic modes of perturba-
tions exist not only in the baryonic model, but also in all currently considered cosmological
models.
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4.7 Sakharov modulations of the spectrum of density perturbations
in the baryonic Universe
‘We can choose a hypothesis that the matter at the early stages of the expansion of the

Universe was very nearly uniform and that the “primordial” astronomical objects appeared
as a result of gravitational instability. Even though this point of view meets with objections
from a number of astronomers and astrophysicists, an investigation of this aspect appears to
be necessary. For investigation of this hypothesis, it is very important to study the laws
governing the growth of small density inhomogeneities and to find statistical characteristics
of the initial inhomogeneities.’

We began this section with a quotation from the introduction to A. D. Sakharov’s paper
‘The initial stage in the expansion of the Universe and generation of inhomogeneities in the
distribution of matter’ (Sakharov, 1965). Incidentally, this publication is known to experts in
quantum gravitation because Andrei Dmitrievich attempted there to justify a relation between
classical pregalactic perturbations of matter and quantum noise; he used the framework of
the ‘cold’ model of the Universe, widely discussed at the time, and low initial temperatures
of the plasma and low specific entropy of radiation. Dmitrievich recalled his impressions of
this paper: ‘Using the “cold” model substantially undervalued my first work in cosmology.
The results relevant to the theory of gravitational instability are not devoid of certain interest,
among them (and especially) quantum instability, as well as the hypothesis of the equation
of state at superhigh densities. I treated the quantum case of instability using the exact self-
similar solution for the wave function of a harmonic oscillator with variable parameters: a
point of great difficulty there was to take into account the effects of pressure, but I was able
to overcome them (I refer the reader to this paper for details of how I achieved this; I still
remember on what day I was able to find the solution – on 22 April 1964).’ (see Sakharov
(1999).)

Three important moments in Sakharov’s paper and comments to it should be highlighted.

(1) Sakharov considered for the first time the evolution of perturbations in a medium with
a complicated equation of state, ε = A(n) · n4/3, that also includes possible zones of
negative pressure.

(2) For this medium he developed a method of analysing perturbations both for the classical
and the quantum approaches.

(3) He was the first to demonstrate that as the equation of state is changed from a more ‘rigid’
to a ‘dust’-type one (P � ε), the perturbation amplitudes at the final phase ‘inherit’ the
modulations due to the effect of a pressure gradient at the preceding ‘rigid’ phase (see
formula (38a) of Sakharov (1965)).3

We need to point out that Sakharov (1965) has one important specific feature: it uses
calculation techniques that sharply differ from the conventional ones. Moreover, the transition
of the plasma from the ionized to the neutral state in the course of hydrogen recombination
is, for formal reasons, included in the model of the equation of state; however, nowhere
does Sakharov speak specifically about this type of ‘phase transition’. It appears that the first
to give a clear and detailed interpretation of the Sakharov effect of perturbation amplitude

3 In today’s notation the function used by Sakharov (1965), namely F(N ) = �N/N , where �N is the mean
square deviation of the number of particles N in the selected volume V , is simply the density contrast
δρ/ρ = v�N/m N , where m is the particle mass.
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modulations in the course of hydrogen recombination were Ya. B. Zeldovich and I. D. Novikov
(1983), which was well known in Russia following the publication of the first Russian edition
in 1975. Later, in 1981, Peebles conducted a detailed investigation of the transition effects in
the baryon–photon gas in the hydrogen recombination epoch and was able to show how the
Sakharov oscillations can manifest themselves in the correlation function of galaxies (Peebles,
1981). Later on we follow the general ideology of describing the Sakharov oscillations in
the spectrum of adiabatic perturbations in the ‘baryonic’ Universe as suggested in Zeldovich
and Novikov (1983) (for an historical aspect, see Novikov (2001)).

First of all, we take into account that the oscillating mode of density and velocity fluctu-
ations in the photon–baryon ‘liquid’ is typical of high-frequency perturbation modes whose
size is much smaller than the cosmological horizon ∼ct in the pre-hydrogen recombination
epoch. Obviously, the effects of gravitational interaction between particles are not significant
in this case, and perturbations evolve in the acoustic-wave regime:4

δ′
b(�k)

� C1 cos
kξ√

3
+ C2 sin

kξ√
3
. (4.130)

The continuity equation for the mixture of baryons and photons immediately implies that the
velocity field is related to density perturbations by a simple expression, as follows:

vb(�k) = +ik−1δ′
b(�k)

, (4.131)

and is also oscillating in time:

vk(ξ ) = i√
3

[
C2 cos

kξ√
3

− C1 sin
kξ√

3

]
. (4.132)

Hydrogen undergoes recombination at the moment ξ = ξrec after which perturbations in
baryons and radiation evolve independently. We need to qualify this statement by saying that
perturbations in the dust component begin to grow after the moment of recombination. The
rate of growth, being a function of conformal time ξ , is a function of the ratio of baryon and
radiation densities. In deriving Eq. (4.132) we assume that ργ  ρm and the speed of sound in
the mixture is practically identical to C2

S = 1/3. If this ratio of speeds is maintained until the
moment ξ = ξrec, then immediately after recombination the rate of growth of perturbations
among baryons will be somewhat lower than given by Eq. (4.129), owing to the effect of
radiation density. In the following we are interested in the qualitative side of the effect and
therefore neglect the influence of radiation on the behaviour of δb(ξ > ξrec), referring the
reader to Peebles (1981), where these effects are described in detail. We thus simulate the
behaviour of perturbations in the baryonic fractions of matter immediately after the moment
of recombination using a solution of the type in Eq. (4.129). The corresponding expression
for the velocity field is given in the continuity equation (4.131), whence we obtain

vk(ξ )+ = i

k

[
2C+

1 ξ − 3C+
2

ξ 4

]
. (4.133)

Equation (4.129) continues to hold for δ+
b (ξ ). The ‘+’ index signifies that the corresponding

quantities refer to the moment ξ ≥ ξrec. Our task is to find the coefficient C+
1 that characterizes

4 Note that owing to viscosity the primary acoustic waves damp out over short scales. This is the so-called Silk
damping (Silk, 1968). This effect is of no major significance for the present discussion.



4.7 Sakharov’s modulations 123

the amplitude of the growing mode of perturbations δ+
b as a function of the coefficients C1

and C2 assigned to the acoustic phase of perturbation evolution. The principal idea of the
‘matching’ of solutions lies in that the field of velocities does not suffer ‘jumps’ in the
baryonic fraction at the moment ξ = ξrec of hydrogen recombination. This means that

i

k

[
2C+

1 ξrec − 3C+
2

ξ 4
rec

]
= i√

3

[
C2 cos

kξrec√
3

− C1 sin
kξrec√

3

]
. (4.134)

Likewise, for the field of density perturbations at the moment ξ = ξrec we have(
C1 cos

kξrec√
3

+ C2 sin
kξrec√

3

)
= C+

1 ξ 2
rec + C+

2 ξ−3
rec . (4.135)

For perturbations with kξrec/
√

3  1 we find from Eqs (4.134) and (4.135)

C+
1 � kξrec

5
√

3

(
C2 cos

kξrec√
3

− C1 sin
kξrec√

3

) (
ξ

ξrec

)2

, (4.136)

and therefore, the growing perturbations mode at ξ > ξrec has the form

δ+
b (ξ ) � kξrec

5
√

3

(
C2 cos

kξrec√
3

− C1 sin
kξrec√

3

) (
ξ

ξrec

)2

. (4.137)

Two very important conclusions follow from Eq. (4.137). First, the amplitude of perturbations
increases with decreasing wavelength (or, similarly, with increasing k) as kξrec/

√
3  1. This

‘jumping’ effect was first predicted by Sakharov (1965). Secondly, oscillations due to the
acoustic modulation of perturbations amplitude at the transition moment at ξ = ξrec are
formed both in the amplitude C+ and in the spectrum of perturbations:

〈∣∣δ(ξ )
b(�k)

∣∣2〉 � k2ξ 2
rec

75

(
ξ

ξrec

)4 {
〈|C2(�k)|2〉 cos2 kξrec√

3

+ 〈|C1(�k)|2〉 sin2 kξrec√
3

− 〈|C1(�k)C2(�k)|〉 sin
2kξrec√

3

}
.

(4.138)

In fact, this effect was also predicted by (1965). We need to emphasize that in the most
general case the modulational part in the spectrum (4.139) contains harmonic functions with
the phase doubled, ϕ = 2kξrec/

√
3,

V (k) = 1

A(k)
+ B(k)

A(k)
cos

2kξrec√
3

+ C (k)

A(k)
sin

2kξrec√
3

, (4.139)

where

A(k) = 1

2

[〈
C2

1(�k)

〉 + 〈
C2

2(�k)

〉]
; B(k) = 1

2

[〈
C2

2(�k)

〉 − 〈
C2

1(�k)

〉]
; C (k) = −〈

C2
1(�k)

C2
2(�k)

〉
.

As we mentioned above, a detailed analysis of the evolution of adiabatic perturbations in the
epoch of recombination of cosmological hydrogen was given in Peebles (1981), in which
Peebles approximated the results of numerical calculations using the modulation function

Mp(k) = cos2(� + W k + νk2), (4.140)
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where �, W and ν are numerical constants that are functions of the parameter 
bh2. Thus
Peebles (1981) gives the following values for these constants in a model with 
bh2 = 0.03:
� = 5.75 rad, W = 182.9 Mpc−1 and v = −18.3 Mpc−2. In order to make use of the results
of this paper, we specify the relation between the modulation functions M(k) and Mp(k).
We denote ξrec/

√
3 in Eq. (4.139) by rrec, which is the acoustic horizon of the recombination

epoch recalculated to the current moment z = 0. A comparison of Eqs (4.139) and (4.140)
shows that rrec = W . Now we drop the quadratic term in the modulus of the wave vector k
in the phase (4.140), which results in a corresponding constraint on non-uniformity scales:

1 � krrec �
∣∣∣∣W 2

ν

∣∣∣∣ � 1.8 × 103.

Now a comparison of Eqs (4.139) and (4.140) yields the following normalization of these
functions:

g(k) = B(k)

A(k)
= cos 2� = 0.98 � 1,

f (k) = f = C(k)

A(k)
= − sin 2� � −0.2.

(4.141)

Our question now is: how would the Sakharov oscillations manifest themselves, and,
most importantly, for what characteristics of baryonic matter distribution? At first glance, the
formulation of the question looks strange. We have already emphasized an academic nature of
this baryonic model which ignores the cosmological hidden mass, and therefore cannot even
pretend to provide predictions that could be seriously considered for comparing with modern
observational data. However, the specificity of manifestations of the Sakharov modulations
could offer an additional argument to support the putative existence of the cosmological
hidden mass, and even suggest that it is indeed of non-baryonic nature. Therefore, choosing
reductio ad absurdum we assume that there is no non-baryonic hidden mass in the Universe.
Then, as we saw a little earlier, the spectrum of density perturbations in matter immediately
after recombination must contain Sakharov modulations of the type in Eq. (4.140). The
temporal evolution of perturbations at the ξ  ξrec phase is readily identifiable: δb(ξ ) ∝ ξ 2

for the growing mode of perturbations in the flat-space model Universe. Following Peebles
(1981) we introduce a two-point correlation function

ξ (r, ξ ) = 〈ρ(�r + �s)ρ(�s)〉/〈ρ〉2 − 1 (4.142)

for density perturbations and rewrite its spatial part in the form

ξ (r ) =
∫

k2〈∣∣δ2
k

∣∣〉 sin kr

kr
dk, r = |�r |, (4.143)

where 〈|δk |2〉 is the spatial power spectrum of fluctuations. Equations (4.139) and (4.140)
imply that the spectrum 〈|δk |2〉 can be written in the form of a product of a monotonic and
an oscillating factor,

〈|δk |2〉 � C(k)[1 + g(k) cos 2krrec + f (k) sin 2krk], (4.144)

where C(k) corresponds to the non-modulated part of the spectrum. Substituting Eq. (4.144)
into Eq. (4.143) we obtain

ξ (r ) = ξ0(r ) + ξ1(r ) + ξ2(r ), (4.145)



4.7 Sakharov’s modulations 125

where

ξ0(r ) =
∫

k2C(k)
sin kr

kr
dk,

ξ1(r ) =
∫

k2C(k) · g(k)
sin kr

kr
cos 2krrec dk,

ξ2(r ) =
∫

k2C(k) · f (k)
sin kr

kr
sin 2krrec dk.

We make use of the fact that g(k) � 1; then, after elementary trigonometric manipulations,
we rewrite ξ1(r ) in terms of the function ξ0(r ):

ξ (r ) = 1

3

[
2rrec − r

r
ξ0(2rrec − r ) − 2rrec + r

r
ξ0(2rrec + r )

]
. (4.146)

We see from this formula that the behaviour of the function ξ1(r ) at r → 2rrec reveals a
number of specific features. First, as r → 2rrec, we can drop the second term on the right-
hand side of the Eq. (4.146) because ξ0(4rrec) → 0 at rrec  rc, where rc is the correlation
radius for the function ξ0(r ):

r2
c = − ξ0(0)

ξ ′′(0)
. (4.147)

The correlation function ξ0(r ) can be expanded in the vicinity of r → 2rrec into a Taylor series
in the small parameter r − 2rrec � |rc|. We now introduce a function y = (r − 2rrec)/rc. The
behaviour ξ0(r → 2rrec) in the vicinity y � 1 in terms of y is then given by the following
expression:

ξ1(y) = 1

6

rc

rrec
σ 2 · y

(
1 − y2

2
+ β

y4

4!

)
, (4.148)

where σ 2 ≡ ξ0(0), β = ξ (0)ξ IV
0 (0)/|ξ ′′0(0)|2, ξ IV

(0) is the fourth derivative of ξ0(y) with respect
to y, taken at a point y = 0. We turn now to analysing the behaviour of the function ξ2(r ) in
the vicinity of the point r = 2rrec,

ξ2(r → 2rrec) � f

2rrec

∫
kG(k)

[
1 − k2r2

c

2
y2 + k4r4

c

24
y4

]
dk. (4.149)

An important feature of the function ξ2(r ) is that its behaviour cannot be expressed in terms
of the moments ξ0, ξ ′′

0 and ξ IV
(0) . Thus the value ξ2(y = 0) is expressed via the integral of the

regular part of the spectrum,

ξ0(y = 0) = f

2rrec

∫
kC(k) dk, (4.150)

that differs from ξ0(0) by a factor k−1 in the integrand:

ξ0(k) �
∫

k2C(k) dk. (4.151)

We define now the mean value of the wave vector kn , weighed over the spectrum C(k) for
positive and negative values of n, as

〈kn〉 =
∫

k2knC(k) dk∫
k2C(k) dk

. (4.152)
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We assume that the monotonic part of the spectrum has the form

G(k) = Akm Tb(k), (4.153)

where km corresponds to the primary perturbation spectrum (for example P(k)Ak, the
Harrison–Zeldovich spectrum) and Tb(k) is the transfer function taking into account, in addi-
tion to the modulation part, the difference in behaviour of perturbations in the kξ  1 and
kξ � 1 modes. For a qualitative description of the effect, we simulate Tb(k) by an exponential
function of the form

Tb(k) = e−k2r2
α , (4.154)

where rα is the characteristic scale of the high-frequency cut-off of the spectrum. Then
Eq. (4.152) yields a simple estimate for 〈kn〉 in a class of spectra of type (4.153):

〈kn〉 � r−n
α

�
(

n+m+1
2 + 1

)
�

(
m+1

2 + 1
) , (4.155)

where �(x) is the gamma function. In terms of 〈kn〉, the expressions for the correlation scale
r2

c , the parameters β and ξ2(y → 0) are as follows:

r2
c = 3

2
〈k2〉−1; β = g

20

〈k4〉
〈k2〉2

;

ξ2(y) = f

2rrec
〈k−1〉σ 2

[
1 − 1

2

r2
c 〈k〉

〈k−1〉 y2 + r4
c

24
y4 〈k3〉

〈k−1〉
]

.

(4.156)

Since ξ0(r = 2rrec) is negligibly small, the behaviour of the function ξ (r ) as r → 2rrec is
determined by a superposition of the functions ξ1(r ) and ξ2(r ). In the most general form,
Eqs (4.148) and (4.156) yield that ξ (r ) � ξ1(y) + ξ2(y) is a fourth-order curve in parameter
y. In the most general case, the equation for determining the extrema of the function ξ (y) for
the corresponding y∗ will be of third order. Therefore, the structure of ξ (y) in the vicinity of
these points will either have two minima and one maximum between them, or two maxima
and a minimum in the case of three real roots. Peebles’ calculations show that the former
of these versions is implemented (Peebles, 1981). Therefore, the Sakharov modulations of
the spectrum are best pronounced on spatial scales r � 2rrec and not on small r , where
high-frequency modulations of the spectrum are averaged out and greatly smoothed. The
characteristic scale of peculiarities for the ‘baryonic’ model of the Universe is found to
be extremely large. When 
bh2 � 0.03 it is very close to 360 Mpc, which is far beyond
the technical possibilities of the current surveys of galaxies and clusters. At the same time,
detecting such an anomaly in the correlation function would be a powerful argument in favour
of the baryonic model of the Universe with primordial adiabatic perturbations.

Note another important specific feature of manifestation of the Sakharov modulations in
the correlation function of density perturbations, connected with isopotential models of per-
turbations. Such baryonic models were treated carefully in Kotok, Naselsky and Novikov
(1995), and the conclusions obtained can be regarded as complementary to the so-called PIB
model of the baryonic Universe (Peebles, 1983). The main difference between isopotential
(isocurvature) perturbations and adiabatic ones is that as the contribution of the baryonic
component to the rate of expansion of the Universe increases (ργ /ρb → 1), the initial pertur-
bations of entropic type generate secondary perturbations of adiabatic type. This aspect was
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investigated in detail in Chernin (2001). The emergence of a mixture of modes in an epoch
close to the moment of hydrogen recombination affects the form of the transfer function Tb(k)
that has the following form (Shandarin, Doroshkevich and Zeldovich, 1983):

T (k) � k4 R4

(1 + k2 R2)2

[
1 + exp

(
−krα

2

)
sin k R

]2

, (4.157)

where R ≡ rrec and rα is the characteristic scale of damping of secondary adiabatic pertur-
bations that results from friction of matter against the isotropic radiation background.

Along with modulations with phase � = 2k R, the specificity of the transfer function is
the emergence of the spectrum modulations �̃ = k R. These modulations reflect directly the
specifics of generation of the adiabatic mode from the primordial entropic one. This means,
however, that in contrast to the ‘pure’ adiabatic mode the peculiarities in the correlation
function, ξ (r ), should arise both as r → 2R and as r → R, which is even more remarkable
(Jørgensen et al., 1993). The behaviour of ξ (r ) in the vicinity of the point r → R was studied
in detail in Kotok et al. (1995). It is worthy of note that the manifestation of the Sakharov
oscillations in the correlation function of density perturbations of matter for the initial entropy
fluctuations and in the related correlation function of galaxies produced a much stronger effect
than it does for the adiabatic mode. The corresponding amplitude of anomalies reaches ∼10%
for the normalization ξ0(r = 0) = 1. The reason for such a considerable modulation amplitude
ξ (r ) is crystal clear. In contrast to the adiabatic mode for which the characteristic scale of
anomaly ξ (r ) is very nearly twice the scale of the acoustic horizon rrec at the recombination
moment, in the entropic mode the modulations ξ (r ) arise very close to r = rrec. Since the
scale r = rrec is closer to the correlation scale rc, it is clear that the correlation level, including
the effect of the Sakharov modulations, is found to be higher for the entropic mode than for
the adiabatic one (Jorgensen et al., 1993).

4.8 Sakharov oscillations: observation of correlations
We have seen that the presence of the Sakharov modulations in the spectrum results

in anomalously high correlations in a ‘baryonic’ Universe in the distribution of density per-
turbations on the scales r = rrec and r = 2rrec for the entropic and adiabatic fluctuations,
respectively. However, at some level they may be observed even in the CDM cosmological
models, including the dark energy (see Eisenstein et al. (2005) for references). The recom-
bination horizon rrec depends on the parameter 
bh2 and varies between 100 and 200 Mpc
as recalculated to the moment z = 0. It is natural to assume that there must be a linear rela-
tion between the correlation function of density perturbations and the observed correlation
function of galactic distribution density at least on very large spatial scales.

The reader will recall that we are now trying to find in modern observations an answer to a
fundamental question: is it possible to detect Sakharov modulations in the galaxy distribution
and thereby gain another independent argument in favour of the existence of the cosmological
(non-baryonic) hidden mass and the dark energy? The key role in the implementation of this
approach is played by choosing the objects which, in our opinion, delineate the distribution
of correlations in the field of matter density fluctuations. Galaxies are most often chosen.
Let us turn to the analysis of the observational data for galaxy distribution catalogues that
fix the position of these objects in the sky and their stellar magnitudes. Recently, Eisenstein
et al. (2005) presented the large-scale correlation function measured from a spectroscopic
sample of about 47 000 luminous red galaxies from the Sloan Digital Sky Survey (SDSS). This
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Figure 4.1 The large-scale redshift–space correlation function s2ξ (s) of the SDSS LRG
sample. The lines from top to the bottom correspond to 
mh2 = 0.12, 
mh2 = 0.13 and

mh2 = 0.14. The pure CDM model (� = 0) is shown as the lowest line. Adapted from
Eisenstein et al. (2005).

survey covers 0.72h−3Gpc3 over 3816 square degrees and corresponds to redshifts of galaxies
0.16 < z < 0.47. The result of the analysis is presented using the Landy–Szalay estimator
(Landy and Szalay, 1993) for the redshift–space correlation function ξ (s). In Fig. 4.1 we
plot the correlation function ξ (s) from Eisenstein et al. (2005) and corresponding theoretical
curves for different �CDM cosmological models and adiabatic initial perturbations.

As we see from Fig. 4.1, the peculiarity ξ (s) related to the Sakharov modulations of the
spectrum of adiabatic perturbations falls within the error zone of determining ξ (s), so that it is
extremely difficult to make any conclusions about the presence or absence of this effect. We
can only state in the most general case that the theoretical behaviour of ξ does not contradict
the data of the SDSS survey. However, it is practically very difficult to exclude or confirm
the presence of the Sakharov oscillations in the spectrum of perturbations.

There is hope, however, that progress in the observational tools of astronomers will allow
us within several years to move significantly closer to reliable measurements of correlations
on spatial scales of r ∼ 100–200 Mpc and thereby confirm or reject in an independent way the
hypothesis of the baryonic nature of hidden mass; the Sakharov modulations of the spectrum
of primordial density perturbations are a part of this hypothesis.



5

Primary anisotropy of the cosmic

microwave background

5.1 Introduction
The subject of this chapter is an analysis of one of the most impressive predictions

of the modern theory of the structure and evolution of the Universe: the prediction of angular

anisotropy in the temperature distribution of the cosmic microwave background on the celes-

tial sphere; we will also analyse observations of this phenomenon. This anisotropy results

from the interaction of the primordial radiation background with perturbations of density and

velocity of the baryonic matter and with perturbations of the metric; these make an insep-

arable part of any scenario of structure formation in the expanding Universe. We also use

this introductory section to share our personal recollections of the period when the theory of

anisotropy of the CMB was being created and the first attempts were being made to detect

it by observations. These notes are quite subjective and do not attempt to provide historical

analysis. We hope nevertheless that the reader will find them interesting. We wish to point

out first of all that while the microwave background itself was discovered by accident, its

anisotropy was discovered as a result of well-planned observational searches based on a

carefully developed theory.

One of the present authors (I. Novikov) was there at the moment of inception of this

field of astrophysics – nowadays a fully-fledged field – and remembers well the history of

conception of the theory and the drama of the experimental attempts to detect the anisotropy

of primordial radiation at the end of the 1960s and the beginning of the 1970s. We should

recall that the cosmology of this period was securely based on the ‘baryonic’ model of the hot

universe (the CMB had already been discovered by Penzias and Wilson) and that the pioneer

paper of Sachs and Wolfe had already been published (Sachs and Wolfe, 1967). Furthermore,

the theory of cosmological recombination of hydrogen had already been created (Peebles,

1968; Zeldovich, Kurt, Sunyaev, 1969) and the role of this process in the thermal history of

cosmic plasma and in the kinetics of electromagnetic radiation was already clear. To make

the picture complete, we also mention the pioneering work on the gravitational instability

of matter (Lifshits, 1946; Lifshits and Khalatnikov, 1960; Novikov, 1964) which was further

extended to the ‘pancake’ theory of structure formation in the universe (Zeldovich, 1970).

In fact, the theoretical basis ‘around’ the prediction of the anticipated anisotropy of the

microwave background radiation was quite ready, and hot Universe theory was ‘pregnant’

with this anticipation. The ‘birth of the baby’ did not disappoint. In 1968, Silk published a

paper on the evolution of perturbations in the hydrogen recombination epoch and predicted

the effect of remnant fluctuations �T/T due to the adiabatic compression of matter (Silk,

1968). Just two years later, Peebles and Yu (1970) and Sunyaev and Zeldovich (1970a,b)

published their papers in which they predicted the characteristics of remnant fluctuations

129
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�T/T generated by macroscopic movements of matter that take place during the period of

hydrogen recombination. It immediately became clear that the variance of �T/T must be

extremely small (�10−2–10−3), even though it looks enormous from our standpoint today.

However, any attempt to measure the anisotropy of the CMB at this low level seemed at best

a fantasy. To pay history its due, it must be said that precisely at this period (in the 1970s),

unique conditions arose in the Soviet Union (as it was then known) both for theoretical (Ya. B.

Zeldovich’s group) and experimental (Yu. N. Pariisky’s group, RATAN-600) research on the

anisotropy of the CMB. It seemed that everything was ready for a successful experiment.

The theory has provided excellent predictions, the 600 m radio telescope (still the largest in

the world) began operation and the first observations were accumulated, but there was still

no signal that would indicate anisotropy of primordial radiation background. It was absent in

intensity recordings of the radio sky fluctuations on the RATAN-600, and was just as absent

from recordings on the most powerful radio telescopes abroad.

This situation was reminiscent of a game of hide-and-seek. Theoreticians tried to explain

why the anisotropy of the CMB was unobservable at the level achieved in observations (it was

at that moment that the possibility of reheating and reionization of hydrogen at large redshifts

z > 10 was first seriously discussed) while experimenters continued to reduce methodically

the observational threshold of signal fluctuation detection down to 10−3 and, by the beginning

of the 1980s, down to 10−4 (Berlin et al., 1983).

We believe that a qualitative step in the minds of both theoreticians and experimenters

occurred at the beginning of the 1980s when Yu. N. Lyubimov’s group at the Institute of

Theoretical and Experimental Physics in Moscow reported a putative discovery of a non-zero

(at the level of 30 eV!) mass of the electron neutrino (Lyubimov et al., 1980). The bomb went

off! A hidden mass – possibly in the form of neutrinos and later in the form of other hypothet-

ical particles – announced its existence. Discussions of the cosmological consequences of

this phenomenon and the term ‘neutrino’ could be heard not only at the famous Colloquium

of Vitaly L. Ginzburg (at the P. N. Lebedev Institute of Physics) and the Joint Astrophysics

Colloquium at the Shternberg Astronomical Institute, but also on buses or metro trains. Each

generation of scientists retains their own reminiscences of the fascination of this era.

While Igor Novikov was living through this period as a mature scientist (see Bisnovatiy-

Kogan and Novikov (1980) and the earlier works by Doroshkevich, Lukash and Novikov

(1974), Doroshkevish, Novikov and Polnarev (1977) and Novirov (1968)), another author

of this book, Pavel Naselsky, had just submitted and defended his Ph.D. thesis, and the

third author, Dmitri Novikov, was still in the sixth form of high school and could hardly

think that fate would bring him into astrophysics or, even more specifically, the physics of

primordial radiation. It is natural therefore that our impressions of the beginning of the 1980s,

which heralded the arrival of massive neutrinos, are quite different. One of us (Naselsky)

remembers as a curiosity that immediately after Yu. Lubimov’s experiment he had, together

with N. Zabotin, calculated the anticipated anisotropy of the primordial radiation in a model

with massive neutrinos, and was very surprised to find it to be on the same (�10−4) level as in

a number of baryonic models (Zabotin and Naselsky, 1982b). It was therefore too large and

in contradiction with the experimental data. These results were then discussed – in a sauna –

among the then young V. Lukash, D. Kompaneets, P. Naselsky and (also still young) A. Melott

who was then visiting Moscow; Melott realised that the sauna was not the best place for jotting

notes on paper, so he ordered for the occasion a t-shirt printed with a number of formulas. In

a spectacular way, the early and mid 1980s everywhere smelled of an inevitable discovery. It

was clear that theoretical models had reached saturation point and that the CMB anisotropy
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would be discovered in the very near future. Indeed, a special satellite ‘Relikt’ was launched

in the USSR in 1983 in order to detect the large-scale anisotropy �T on the angular scale

θ � 1◦ in which the effect of plasma recombination became insignificant and the distribution

of intensity fluctuations of this radiation on the sky retained its pristine state, regardless of

the possible peculiarity of the ionization history of the Universe (Klypin et al., 1987; Strukov

and Skulachev, 1984). Using the metaphor of the times, the ‘entire scientific community’

participated in discussing the results of this experiment. No anisotropy was detected at the

(2–3) ×10−5 level, and the only chance of somehow bringing together the predictions of the

theory and the observations was to suggest that the ‘hidden mass’ was not ‘hot’ as were,

for instance, massive neutrinos, but ‘cold’! Or, if one believed in the hot hidden mass, then

the spectrum of density perturbations should differ from the Harrison–Zeldovich spectrum

and decrease with increasing spatial scale of fluctuations; this would also be a bad result.

Matching the observations of the ‘Relikt’ project with theoretical predictions meant that the

fall-off of the spectrum towards the region of k → 0 automatically announced its increase in

the short-wavelength range, the closest to the scales of galaxies and galaxy clusters. However,

the level of fluctuations �T on the angular scale θ ∝ k−1 ∼ 5–10′ must be even higher than

for the Harrison–Zeldovich spectrum, and the problem with observational constraints on �T
would be even more complicated at these angles.

The cold hidden mass (CDM) was indeed a lifeline for the theory, even though its emergence

on the podium of CMB physics did not augur well for the future. It seemed that not only

details of the large-scale structure distribution in the Universe, but even the fact of its existence

could not survive in the framework of CDM models. Metaphorically speaking, the formation

sequence in the ‘hot’ hidden mass model (a ‘downwards’ structure formation, from massive

pancakes to less massive galaxies) in CDM models was reversed: from smaller to larger

scales. And it was absolutely unclear how the flat conurations and filaments, so typical of the

large-scale distribution of matter in the Universe, could arise in this clustering. Fortunately,

this problem was successfully resolved in the early and mid 1980s, even though we are still not

completely sure how cold the cosmological hidden mass is (see Dolgov and Sommer-Larsen

(2001)).

After this very brief exposition of the history of the discovery of the cosmological role of

CDM models, we find ourselves facing one of the most important chapters in the physics of

primordial radiation, dealing with predicting the main mechanisms of generating �T during

the epoch of the cosmological hydrogen recombination. To be fair to the history of our subject,

we begin the discussion of the mechanisms of generation of primordial radiation anisotropy

with the analysis of the Sachs–Wolfe effect (Sachs and Wolfe, 1967) which played the key

role in raising the current status of observational cosmology – indeed, it was the anisotropy

involved in this effect that was the first to be detected.

5.2 The Sachs–Wolfe effect
Let us consider the process of anisotropy formation on the scale λ � rrec where rrec

is the scale of the recombination horizon, neglecting the scattering of quanta by electrons and

taking into account only the metric perturbation as a source of �T . In this approximation,

Eq. (4.10) immediately implies that temperature fluctuations θ = �T/T are related to metric

perturbations hαβ in a simple manner:

∂θ

∂t
+ γα

a

∂θ

∂xα
+ γ̇α

∂θ

∂γ α
− 1

2
γ αγ β ḣαβ = 0, (5.1)
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where γα is the direction of arrival of the quanta.

In the Newton gauge, metric perturbations hαβ are given in terms of the functions 	(	x, t)
and 
(	x, t) (Hu, 1995; Hu and Sugiyama, 1994). Transforming Eq. (5.1) to a variable ξ =∫

dt/a and taking into account 
 and 	, we obtain an equation for temperature perturbations

as follows:

θ ′ + γ α ∂(θ + 	)

∂xα
+ γ ′

α

∂θ

∂γ α
+ 
 = 0. (5.2)

For the sake of simplicity, we limit the analysis to a flat-space-model Universe. Despite

the simple form, searching for solutions of Eq. (5.2) while taking into account the spatial

curvature of the universe E 
= 0 remains a fairly complicated problem. In the general case,

we choose a system of coordinates in an arbitrary manner, with the origin at the observation

point, and we can rewrite the perturbation distribution θ (ξ, 	x, 	γ ) as a series (Wilson, 1983):

θ (ξ, 	x, 	γ ) =
∞∑

l=0

θl(ξ )M−1/2
l Gl(	x, 	γ ), (5.3)

where Ml was defined in Section 4.2, and the functions Gl(	x, 	γ ) are a set of eigenfunctions that

satisfy a certain set of conditions. We assume that the CMB temperature and perturbations of

the metric originate with the potential modes. A vector Qα and a tensor Qi j can be constructed

from the potential function Q according to the following definitions:

Qα ≡ − 1
k Q|α,

Qαβ ≡ k−2 Q|αβ + 1
3
γαβ Q,

(5.4)

and Q|α stands for the covariant derivative in the spatial metric γαβ . The following scalars can

be constructed using the vectors Qα and γ α: G1 = γ α Qα and G2 = 3
2
γ αγ β Qαβ . Obviously,

the sequence Gl can be readily extended by increasing the order of differentiation of the

scalar Q and by projecting the result to γ α . Wilson (1983) suggested using this method to

generalize the expansion of an arbitrary function of coordinates 	x and direction 	γ in the

metric γαβ ,

f (	x, 	γ ) =
∑

	k

∞∑
l=0

fl(	k)gl(	x, 	γ , 	k), (5.5)

where

gl(	x, 	γ , 	k) = (−k)−l Q|α1α2 . . . αl(	x, 	k) × Pα1α2...αl
l (	x, 	γ ) (5.6)

and

P0 = 1; Pα
1 = γ α; Pαβ

2 = 1

2
(3γ αγ β − γ αβ) . . .

(5.7)

Pα1α2...αl+1

l+1 = 2l + 1

l + 1
γ (α1 Pα2...αl+1)

l − l

l + 1
γ (α1α2 Pα3...αl+1)

l−1 .

The round brackets used in Eqs (5.7) indicate a symmetry operation with respect to the

corresponding indices. In a flat-space Universe with E = 0, Eqs (5.6) and (5.7) transform

into a simple combination of a plane wave and Legendre polynomials of index l, as follows:

gl(	x, 	γ , 	k) = (−i)lei	k 	x Pl(	k · 	γ ) (5.8)
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and are a recognizable combination of the Fourier expansion in spatial coordinates 	x and an

expansion in Legendre polynomials in the angular coordinate 	k · 	γ = cos θk , where θk is the

angle between the direction of arrival of quanta and the wave vector of perturbations 	k. For

models with an arbitrary topology of spatial cross-section the transition from the functions

Gl(	x, 	γ ) to the functions gl(	x, 	γ , 	k) is carried out directly from Eq. (5.5):

Gl(	x, 	γ ) =
∑

	k
al(	k)gl(	x, 	γ , 	k), (5.9)

where al(k) = M−1/2
l . An important feature of the functions Gl(	x, 	γ ) is the recurrence relation

γ αGl|α = d

dξ
G[	x(ξ ), 	γ (ξ )] ≡ ẋα ∂Gl

∂xα
+ γ̇ α ∂Gl

∂xα

= k

{
l

2l + 1
kl Gl−1 − l + 1

2l + 1
Gl+1

}
, (5.10)

where kl = 1 − (l2 − 1)(E/k2), l ≥ 1, k0 = 1 and dG/dξ stands for the complete

(Lagrangian) derivative of the function Gl . With these qualifications we can return to Eq. (5.2).

In the most general case, (E > 0 and E < 0), the equations for the components θl(ξ ) have

the following form (Hu, 1995):

θ ′
0 = −k

3
θ1 − 
′, (5.11a)

θ ′
1 = −k

[
θ0 + 	 − 2

5
k1/2

2 θ2

]
, (5.11b)

θ ′
l = −k

[
l

2l − 1
k1/2

l θl−1 − l + 1

2l + 3
k1/2

l+1θl+1

]
. (5.11c)

It is clear from these equations that all kl in the flat-space model of the Universe (E = 0) for

l ≥ 0 are identically equal to unity. In the approximation kξ � 1, the main components in

Eq. (5.11ca) are θ0 and 
, while the dipole term with θ1 on the right-hand side of Eq. (5.11ca)

can be ignored. Consequently,

θ ′
0 = −
′. (5.12)

In the long-wavelength limit we can ignore the effect of pressure on the gravitational potential

and assume 
 = −	. Then Eq. (5.12) yields

(θ0 + 	)(ξ ) = θ0(0) + 2	(ξ ) − 	(0). (5.13)

Equation (5.13) implies that the temperature fluctuations at the moment of the last scattering

ξ = ξrec are given by

� = (θ0 + 	)|ξ=ξrec
= θ0(0) + 	0(0) + 2[	(ξrec) − 	(0)]. (5.14)

The relation between θ0(0) and 	(0) for adiabatic perturbations has the following form:

θ0(0) = − 1
2
	(0) (Hu, 1995). Taking then into account how 	 changes from the radiation-

dominated epoch to the epoch when ‘hidden mass’ dominates, we obtain

[θ0 + 	] =
{

1
2
	 for z > zeq

1
3
	 for z < zeq,

(5.15)
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where zeq is the value of the redshift that corresponds to the moment when the densities of

the relativistic and non-relativistic subsystems become equal. The reader will recall that the

solution for θ0 was obtained in the long-wavelength approximation with kξ � 1 and one

could neglect in Eqs (5.11ca–c) all multipoles with l > 0. However, for an arbitrary Fourier

harmonic with scale kξnow � 1, where ξnow is today’s horizon, there is always a moment of

time ξk such that the corresponding wavelength of inhomogeneity first becomes equal to the

horizon of particles (kξk � 1), and then at ξ � ξk diminishes below the horizon (kξ � 1 for

ξ � ξk). The solution of Eqs (5.11ca–c) for such Fourier modes has the form

θl(ξ, k)

2l + 1
= [θ0 + 	](ξrec, k) jl [k(ξ − ξrec)] , (5.16)

where jl(x) are the spherical Bessel functions. By virtue of the relation between θ0 and θl(ξ, k)

and the perturbations of the gravitational potential it is clear that the statistical properties of

the distribution of fluctuation temperature on the celestial sphere are dictated by the properties

of the potential perturbations distribution and will reflect specific features of its formation.

Assume now that the spatial distribution of potentials 
(	x, ξ ) and 	(	x, ξ ) is a realization of

a random Gaussian process. Owing to the linearity of the transfer equation (5.3), the angular

distribution of temperature fluctuations is also a realization of a random Gaussian process

with the following correlation function (Bond and Efstathiou, 1987):

〈θ∗(ξ, 	x, 	γ )θ (ξ, 	x, 	γ )〉 = V

2π2

∫ ∞

0

∞∑
l=0

k3

2l + 1
|θl(ξ, k)|2 × Pl( 	γ ′ · 	γ ) dk, (5.17)

where Pl(cos θ ) are Legendre polynomials, cos θ = 	γ ′ · 	γ , and θ is the angle between the

directions of arrival of the quanta 	γ ′ and 	γ . One specific feature of a Gaussian random

process is that its statistical characteristics are dictated by its spectrum (see, for example,

Adler (1981). Then the power spectrum has the form

2l + 1

4π
C(l) = V

2π2

∫ ∞

0

k2 |θl(ξ, k)|2
2l + 1

dk. (5.18)

Substituting Eq. (5.15) into Eq. (5.17), we finally obtain

C(l)SW = 9

200
√

π
Bξ 1−n

0


(

3−n
2

)


(
l + n−1

2

)


(
4−n

2

)


(
l + 5−n

2

) , (5.19)

where ξ0 = 2(�tot H 2
0 )−1/2(1 + ln �0.085

tot ) is today’s horizon, �tot is the total density of all

forms of matter in units of critical density, n is the exponent of the spectrum of primary density

perturbations and B is the spectrum amplitude. Note that n = 1 for the Harrison–Zeldovich

spectrum, which is the most attractive one from the theory standpoint. Equation (5.19) then

immediately implies

C(l)SW ∝ 1

l(l + 1)
, (5.20)

and most of the power �T of fluctuations due to the Sachs–Wolfe effect concentrates on

small multipoles l � 0, 1, 2. The mode with l = 0 corresponds to uniform distribution of

�T , independent of angle, and must therefore be eliminated by an ordinary change of the

datum line for �T . The mode with l = 1 corresponds to the mean value of the dipole

component and may in principle be observable. However, a similar anisotropy is also created



5.2 The Sachs–Wolfe effect 135

by the local motion of our Galaxy relative to the CMB. Therefore, the cosmological dipole

anisotropy is considerably distorted by this effect. Finally, the mode with l = 2 corresponds

to the contribution from the quadrupole anisotropy to the variance of the CMB temperature

perturbations. In fact, this mode is powerwise one of the largest contributors to the angular

distribution of �T . It was for these reasons that the first experiments on searching for large-

scale anisotropy �T were specifically focused on achieving the maximum possible precision

in measurements of the quadrupole component; this is also true for the Cosmic Background

Explorer (COBE) project.

Concluding this subsection we need to remark that the Sachs–Wolfe effect is sometimes

additionally split in two: into the ‘local’ and the ‘global’ effects. The details can be found in,

for example, Hu, Sugiyama and Silk (1997) and Hu et al. (1995a,b).

5.2.1 Dipole anisotropy
Let us look in greater detail at the properties of the dipole anisotropy of the CMB

revealed in careful measurements made by the COBE satellite. We shall assume that the

observer moves at a speed 	v in a certain direction relative to the CMB. The angular distribution

of the intensity of quanta that is observed, recalculated to the blackbody temperature, is given

by the following well known formula (Landau and Lifshits, 1984):

Tobs(θ ) = T0

(1 − β2)1/2

(1 − β cos θ )
, (5.21)

where θ is the angle between the vector 	v and the direction of observation. We assume that

β = |	v/c| � 1; that is, that the movement proceeds at a non-relativistic speed. We expand

Eq. (5.21) in a Taylor series in a small perimeter β � 1. The temperature distortions are then

equal, up to terms ∼β2, to

�T (θ )

T0

� β cos θ + β2

2
cos 2θ + O(β3). (5.22)

As we see from Eq. (5.22), the motion of an observer relative to the CMB generates a

dipole component ∼β and a quadrupole component ∼β2. The same equation shows that

higher multipoles are generated in higher orders in v/c. Consider first the highest-amplitude

term v/c in Eq. (5.22). For this term the mean-square perturbations amplitude 〈(�T (θ )/T 2)〉
is of the order β2/2. For the sake of evaluation we assume 〈(�T/T 2)〉dip ∼β2/2 ∼ 10−6

and evaluate the level of quadrupole anisotropy generated by local movements of matter.

Eq. (5.22) implies that

�T (θ )

T0

∣∣∣
q

� 2

3
β2 P2(cos θ ), (5.23)

where P2(cos θ ) is the Legendre polynomial of index l = 2. The order of magnitude of the

level of the quadrupole component due to the local speed of the observer is close to 10−6

(∼β2). Let us now analyse the observational data on the dipole anisotropy of the primordial

radiation. The best precision in measuring the amplitude and orientation of (�T/T )|dip was

achieved in the COBE project, with not only the quantity �T |dip = 3.35 ± 0.024 mK, but

also the temperature T0 = 2.725 ± 0.020 K measured successfully (Kogut et al., 1996a).

In dimensionless units, therefore, (�T/T )|dip � 1.23 × 10−3, and its orientation in galactic

coordinates (l, b) corresponds to l = 264.26◦ ± 0.33◦; b = 48.22◦ ± 0.13◦.
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Figure 5.1 Large-scale (θ > 7◦) CMB anisotropy (the COBE data are from Bennett et al.,
1996). The aggregate radio sky maps were obtained by combining three frequencies: 31, 53
and 90 GHz. The grey band across the middle represents the smoothed emission of the
Galaxy.

In equatorial coordinates (α, δ) this results in the values α = 11h12m.2 ± 0.8m and δ =
−7.06◦ ± 0.16◦ (the 2000◦ epoch). Figure 5.1 maps the distribution of anisotropy measured

by the COBE satellite (Bennett et al., 1996). In galactic coordinates, the distribution of dipole

anisotropy is characterized by not one but three quantities, namely �Tx , �Ty and �Tz , in

correspondence with the work of Kogut et al. (1996a):

�T (l, b) = �Tx cos(l) cos(b) + �Ty sin(l) cos(b) + �Tz sin(b). (5.24)

The corresponding amplitudes �Tx , �Ty and �Tz measured in the COBE project are listed

in Table 5.1 for the frequency ranges 31, 53 and 90 GHz; these data ignore the correction for

the galactic emission. Tables 5.2 and 5.3 represent contributions from the galactic component

(the synchrotron and free–free emission and the emission by dust) and the amplitude of the

observer’s velocity relative to the CMB radiation.
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Table 5.1. The observed parameters of dipole anisotropy �T (l, b) = �Tx cos(l) cos(b)+
�Ty sin(l) sin(b) + �Tz sin(b)

All parameters were renormalized to the antenna temperature. Correction due to the contribution of
the Galaxy is not included.

�Tx �Tx �Tz Amplitude l II bII

Channel Type (mK) (mK) (mK) mK (deg) (deg)

31A mean −200 −2216 2406 3277 264.82 47.25

noise 21 31 23 27 0.56 0.49

gain 5 55 60 57 0.00 0.00

systematics 16 22 14 18 0.43 0.34

total error 27 67 66 66 0.71 0.60

31B mean −190 −2180 2396 3245 265.00 47.60

noise 24 35 26 31 0.65 0.56

gain 4 50 55 52 0.00 0.00

systematics 21 29 27 28 0.56 0.50

total error 32 68 67 67 0.86 0.75

53A mean −198 −2082 2314 3120 264.56 47.89

noise 7 10 8 9 0.21 0.18

gain 1 14 16 15 0.00 0.00

systematics 9 17 10 13 0.25 0.27

total error 11 24 21 22 0.33 0.32

53B mean −199 −2067 2353 3139 264.48 48.56

noise 8 12 9 10 0.23 0.20

gain 1 14 16 15 0.00 0.00

systematics 7 11 10 10 0.22 0.20

total error 11 22 21 21 0.31 0.29

90A mean −180 −1820 2058 2753 264.33 48.37

noise 13 19 15 17 0.42 0.37

gain 3 36 41 39 0.00 0.00

systematics 8 17 11 14 0.27 0.32

total error 16 44 45 45 0.50 0.49

90B mean −174 −1830 2029 2738 264.56 47.82

noise 9 13 10 12 0.29 0.26

gain 2 23 26 25 0.00 0.00

systematics 6 13 11 12 0.20 0.26

total error 11 30 30 30 0.35 0.37

Converting to the system of coordinates with an angle θ between the vector 	v and the

direction of arrival of quanta, we can transform the COBE data to the form of Eq. (5.22).

Figure 5.2 plots the antenna temperature obtained by processing the experimental data (Kogut

et al., 1996a) as a function of angle θ . We see from Fig. 5.2 that the behaviour of TA(θ ) agrees

perfectly well with theoretical predictions.

Figure 5.3 illustrates the accuracy of measuring the amplitude and orientation of the dipole

component, with a correction for the galactic emission in all frequency ranges of the COBE.

For comparison, the data obtained by other observational groups in a number of frequen-

cies are also shown. Note that the COBE results correspond with high accuracy to �Tdip,
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Table 5.2. Contribution of the radiation from the galaxy to the dipole component

�Tx �Ty �Tz Amplitude l II bII

Type of radiation (μK) (μK) (μK) (μK) (deg) (deg)

Synchrotron 3.8 ± 1.2 1.2 ± 0.4 −1.5 ± 0.5 4.3 ± 1.1 18 ± 8 −21 ± 8

Free–free −1.3 ± 8.7 −8.1 ± 21.0 −11.6 ± 20.8 14.2 ± 20.8 261 ± 64 −55 ± 84

Dust 0.3 ± 0.1 0.3 ± 0.1 −0.2 ± 0.1 0.5 ± 0.1 45 ± 13 −25 ± 9

Combined 2.8 ± 8.8 −6.6 ± 21.0 −13.3 ± 20.8 15.1 ± 20.5 293 ± 92 −62 ± 75

Table 5.3. Relative motion velocities

Velocity l II bII

Type (km/s) (deg) (deg) Reference

Sun–CMB 369.5 ± 3.0 264.4 ± 0.3 48.4 ± 0.5 Kogut et al. (1993)

Sun–LSR 20.0 ± 1.4 57 ± 4 23 ± 4 Kerr and Lynden-Bell (1986)

LSR–GC 222.0 ± 5.0 91.1 ± 0.4 0 Fich, Blitz and Stark (1989)

GC–CMD 552.2 ± 5.5 266.5 ± 0.3 29.1 ± 0.4

Sun–LG 308 ± 23 105 ± 5 −7 ± 4 Yahil, Tammann and Sandage (1977)

LG–CMB 627 ± 22 276 ± 3 30 ± 3

Note: LSR: local system of coordinates; GC: galactic centre; LG: local group.

not depending on frequency, as should be the case for the Planck blackbody radiation. Fig-

ure 5.3(b) indicates the direction of motion of the observer relative to the CMB on the diagram

(l, b). As we see from this diagram, the COBE data have the smallest errors and fall within the

error intervals of the earlier experiments. However, dipole localizations obtained using the

differential radiometer (DMR) and FIRAS – a COBE instrument – are different at the 68%

confidence level. At the 95% confidence level this difference lies within the measurement

error range.

We need to emphasize again that the CMB anisotropy is related to the observer’s motion

in the local group relative to the CMB. This motion is caused by local inhomogeneities

of the gravitational potential. The dipole anisotropy for non-perturbed CMB temperature

T0 = 2.73 K corresponds to the parameter β = (1.23 ± 0.01) × 10−3, which is equivalent to

the velocity modulus v � 370 ± 3 km s−1. Using this value of velocity combined with the

measured dipole orientation makes possible the evaluation of the velocity and the direction

of motion of the local group: vLG � 627 ± 22 (l II, bII) = (276◦ ± 3◦, 30◦ ± 3◦).

Note, nevertheless, that owing to large errors this prediction is rather difficult to

compare with the dipole anisotropy data obtained by other techniques, for instance the

anisotropy of the x-ray background measured by the HEAO-1 satellite: vα � 475 ± 165 and

(l II, bII) � (280◦, 30◦). Furthermore, it is very difficult to separate the contribution of each

component in view of the interference between the cosmological dipole component and local

inhomogeneities of the gravitational potential. This is the reason why the principal informa-

tion on the behaviour and distribution of inhomogeneities in the Universe on a scale above

102–3 × 102 Mpc is carried by the harmonics l ≥ 2; we analyse these harmonics in the

following.
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Figure 5.2 (a) True antenna temperature as a function of angle θ . (b) Deviations from the
dipole distribution from the data of Kogut et al. (1993, 1996a). Adapted from Kogut et al.
(1993).

5.2.2 Quadrupole anisotropy of the CMB and higher harmonics
In the quadrupole anisotropy mode of the CMB the contribution from our Galaxy

is found to be comparable with the amplitude of the primordial (cosmological) component

(Bennet et al., 1996). If we use the COBE results, the corresponding root-mean-square

value of the quadrupole component is found to be Qrms = 10.0+7
−4 μK (68% confidence

level).

At the 95% significance level the quadrupole amplitude lies within the interval 4 μK ≤
Qrms ≤ 28 μm (Kogut et al., 1996a) and can be easily matched by any realistic model of

the adiabatic perturbations spectrum. We wish to emphasize that the idea of comparing the
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Figure 5.3 Amplitude orientation of the dipole. Adapted from Kogut et al. (1993).

amplitude of each specific multipole with theoretical predictions is fraught with an evident

internal contradiction. In principle, the source of CMB anisotropy on angular scales above

1–3◦ could be any type of perturbations (adiabatic or isopotential), including gravitational

waves. The free parameters that implement the ‘matching’ of the perturbation spectrum P(k)

and the corresponding characteristics �T (θ, ϕ) are, in a natural way, the amplitude and shape
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of the spectrum P(k). One could fix the type of perturbations or their superposition, and aim

at bringing together as close as possible the theoretically predicted behaviour of the correla-

tion function ξth(θ ) and its experimentally determined value ξex(θ ), taken, for instance, from

the COBE data. If we assume that the spectrum shape for the potential perturbations and

gravitational waves is a free parameter, then this problem of minimizing the deviations ξth(θ )

and ξex(θ ) is always solvable. However, this solution would be practically useless because the

experimental values Cl(ex) for each l may incorporate unequal error levels, including system-

atic effects that would be immediately transformed into errors of spectrum reconstruction.

Furthermore, we remind the reader that the large-scale anisotropy �T (θ, ϕ) corresponds

to the scales of spatial perturbations rLS > 100–300 Mpc (depending on the values of the

parameters h, �tot, �b, �dm, ��, etc.). For these scales we have no reliable observational

techniques that would allow us immediately to test the spectra P(k) using the data on the

large-scale distribution of matter. Consequently, the cosmological value of this ‘technique’

of minimizing ξth(θ ) and ξex(θ ) would be very nearly zero because its results could not be

verified to an acceptable degree. We believe that a more constructive, and hence preferable,

approach is one in which the bridge between typical galactic scales (∼1 Mpc) and rLS is

imposed by the spectral model P(k), whose parameters are verifiable by using the data on

the spatial distribution both in the range r � rLS and with the data on the CMB anisotropy

(r ≥ rLS). One of the most successful models of this type is the power law P(k) = Akn already

discussed for the adiabatic mode of perturbations density, preset over the entire domain of

the modulus of 	k.

The CDM model with �tot = 1, �� = 0 and the exponents of adiabatic perturbations

n = 1 is the simplest model for an analytic investigation of the large-scale anisotropy of the

CMB.

With this model, it is possible to monitor analytically the behaviour of the function ξth(θ ),

and then easily generalize the results to more complex cosmological models that include

a non-zero cosmological constant or non-adiabatic perturbation modes. Following Kofman

and Starobinsky (1985), we rewrite the correlation function ξth(θ ) for the ‘standard’ CDM

model in the form

ξth(θ ) = A
∞∑

l=2

2l + 1

l(l + 1)
Pl(cos θ ), (5.25)

where A is a normalization constant proportional to the amplitude of the Harrison–Zeldovich

spectrum for adiabatic inhomogeneities (n = 1). The monopole and dipole components

were subtracted from Eq. (5.25). The expression for the correlation function (5.25) can

be transformed to a combination of trigonometric functions (Kofman and Starobinsky,

1985):

ξth(θ ) = A

{
−3

2
cos θ − 1 − 2 ln

(
sin

θ

2

)}
. (5.26)

Formally this expression has a singularity at θ → 0, of clearly understood nature. Summation

in Eq. (5.25), no matter how large l is, falls beyond the limits of applicability of the theory

based on the Sachs–Wolfe effect. Formally we need to use lrec corresponding to the condition

lrecθrec � 1 (where θrec is the angular measure of the recombination horizon recalculated to

the current age of the Universe) as the upper bound on the sum in Eq. (5.25).
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Figure 5.4 Auto- and cross-correlation of the signal on COBE maps. (a) Autocorrelation
functions. The solid curve is the contribution of the quadrupole component.
(b) Cross-correlation of the DMR × FIRAS data. (c) The difference (FIRAS × DMR) −
(DMR × DMR). Adapted from Fixsen et al. (1997).

Another factor that must also be remembered when comparing theoretical predictions

with observations is the angular resolution of the antenna of the receiving equipment, which

can be worse than θrec. One illustration of this situation is the COBE experiment, in which

θA ∼ 10◦ � θrec (see Fig. 5.4). With this correction of theoretical predictions taken into

account, the correlation function of fluctuations of �T (θ ) on angular scales imposed by
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the Sachs–Wolfe effect has an extremely simple structure, Eq. (5.26), that reflects two most

important factors: selection of a flat-space model of the Universe and the scale-invariant

spectrum of metric perturbations Pg(k) related to the spectrum of density perturbations by a

simple formula Pg(k) = k−4 P(k) ∼ k−3. Note that the variance of the perturbations metric

in the interval k–k +�k,

〈h2〉 ∼
∫ k+�k

k
dk · k2 Pg(k) ∼

∫ k+�k

k

dk

k
, (5.27)

is practically independent of the choice of the interval width.

Making use now of the results of the analysis of the spectrum C(l) and the correlation

function ξth(θ ) in the framework of the standard CDM model, it is not difficult to interpret

what causes changes in these characteristics in more complex cosmological models. When

we were discussing the observational status of the hidden mass problem in Chapter 1, we

mentioned several times the importance of taking the cosmological constant into account for

the dynamics of expansion of the Universe. The emergence of the vacuum density �� in the

anisotropy distribution of the CMB is characterized by two main effects.

First, the law dictating the growth of perturbations at the post- hydrogen-recombination

stage changes, especially as z → 0 (Peebles, 1983). Secondly, owing to the effect of vacuum

density changes, the Universe expands faster than in models with �� = 0. This results in

the renormalization of angular scales that correspond to the spatial scales of inhomogeneities

�T (Kofman and Starobinsky, 1985; Zabotin and Naselsky, 1983). Taken together, these fac-

tors result in the following modification of the spectrum of large- scale modes of �T (θ )

(Kofman and Starobinsky, 1985) for adiabatic metric perturbations with the Harrison–

Zeldovich spectrum:

C(l) = A

l(l + 1)
K 2

l (��), (5.28)

where

K 2
l (��) = 1 + Dl

[(
��

1 − ��

)1/6

− d

]
, l ≥ 5, (5.29)

d � 1.04, D2 = 1.58, D3 = 1.31, D4 = 1.12. If l ≥ 5, the approximation for the spectrum

transformation coefficients Kl changes as follows:

K 2
l (��) = 1 + B(��)

l + 1/2
, (5.30)

so the corresponding coefficients B for the preferable values of the parameter �� = 0.7–0.9

are: 1.53, 2.707 and 5.325. The behaviour of the function al related to the spectrum C(l) by

the condition al = C1/2(l) for various �CDM models was investigated in detail by Gorski,

Silk and Vittorio (1992). The condition common to these models is �tot = 1 = �0 + ��.

The general feature of �CDM cosmological models is an increase in the level of large-

scale CMB anisotropy as �� increases. This result has a fairly simple explanation. The

higher the vacuum energy density, the earlier the moment of equality of cold matter densities
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ρdm = �dmρcr(1 + z)3 and ρ� = ��ρcr:

1 + z∗
eq =

(
��

�dm

)1/3

=
(

��

1 − ��

)1/3

. (5.31)

Note that the increase in adiabatic perturbations terminates at the stage of vacuum density

domination (Peebles, 1983). Therefore, for non-linear structures to form in matter distribution

in a �CDM model, it is necessary for the initial amplitudes to be the higher, the higher z∗ and

with it the higher �� are. Owing to the weak dependence of z∗ on �� this effect becomes

automatically small in amplitude but is nevertheless substantial if we consider temperature

fluctuations of the CMB.

Note that adiabatic perturbations are not the only source of large-scale CMB anisotropy.

Primordial isopotential perturbations or gravitational waves would result in an anisotropy of

the CMB intensity distribution on the celestial sphere as a consequence of perturbations of the

gravitational potential that they produce and the ensuing gravitational shift in the frequency

of quanta. The role of gravitational waves in the formation of large-scale angular variations

of �T will be discussed in detail in Section 5.2.3.

5.2.3 Gravitational waves as sources of large-scale anisotropy of the CMB
One of the most important predictions of today’s theories of the early stages of

evolution of the Universe based on inflation models is the prediction of the background

of gravitational waves that are generated in the process of restructuring of the vacuum of

physical fields (Starobinsky, 1979). The qualitative differences between the characteristics

of anisotropy generated by adiabatic perturbations in the epochs prior to and after hydrogen

recombination and by gravitational waves can be understood by analysing specifics of their

evolution. First of all, gravitational waves differ from adiabatic perturbations of the metric

independent from the mass distribution as a result of the tensor nature of the former: low-

amplitude gravitational waves do not cause redistribution of density and velocity of matter

and undergo independent evolution. This feature was pointed out in the pioneering paper

Lifshits (1946). Owing to the expansion of the Universe, the gravitational wave amplitude is

a function of time (Grischuk, 1974):

hβ
α(ξ, 	x) =

∑
	k

μ	k(ξ )

a(ξ )
Gβ

α(	k, 	x) + k · c. (5.32)

For simplicity, we consider a flat-space model of the Universe in which the evolution of the

amplitude μ	k ≡ μ	k(ξ ) is described by a familiar equation (Grischuk, 1974):

μ′′
	k +

(
k2 − a′′

a

)
μ	k(ξ ) = 0. (5.33)

Asymptotics of the function μ	k(ξ ) in the limit of long (kξ � 1) and short (kξ � 1) grav-

itational waves follow from Eq. (5.33). In the former case (kξ � 1) the function μk(ξ ) is

implied by a well known solution (Grischuk, 1974):

μ	k � C1 · a + C2 · a
∫

dξ

a2
. (5.34)
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In the short-wavelength limit the equation for amplitudes μ	k(ξ ) corresponds to the equation

for the harmonic oscillator and has a simple analytic solution,

μ	k � C̃1 sin kξ + C̃2 cos kξ. (5.35)

Note that if the equation of state of the matter in the early Universe corresponds to the

ultrarelativistic limit P = ε/3, a′′/a ≡ 0 implies that the high-frequency approximation,

Eq. (5.35), corresponds to the exact solution, Eq. (5.33) (Grischuk, 1974).

We now make use of Eqs (5.34) and (5.35) and trace the changes in the metric perturbation

amplitude in each mode k, depending on the ratio of the gravitational wavelength and the scale

of the cosmological horizon. We assume that ξ � ξrec and that the dynamics of expansion of

the Universe is dictated by the hidden mass with �tot = 1 and �� = 0. The corresponding

generalization to models with �� 
= 0 can be constructed by analogy with the adiabatic

modes discussed in the preceding section.

Consequently, if kξ � 1 then in view of Eq. (5.34) the growing mode is given by the expres-

sion μ	k ∝ C1(	k) · ξ 2 � g	k · k2ξ 2, while the decreasing mode can be ignored. The function μ	k
reaches a maximum μ	k � g	k at kξ ∼ 1 and switches from the evolution regime in Eq. (5.34)

to the oscillation regime in Eq. (5.35). These oscillations are of constant amplitude that does

not exceed g	k :

C̃1(	k) = g	kk2ξ 2
∗

(
sin kξ∗ + 2

cos kξ∗
kξ∗

)
, (5.36)

C̃2(	k) = g	kk2ξ 2
∗

(
cos kξ∗ − 2

sin kξ∗
kξ∗

)
,

where kξ∗ � 2π corresponds to the condition of equality of the gravitational wavelength

and the horizon size. The metric perturbations created by the gravitational wave are of

order hk ∼ μk/a ∼ gk/ξ
2 and fall off as the conformal time ξ increases. Therefore, the

main contribution to gravitational potential perturbations, and hence to CMB anisotropy,

comes from gravitational waves with kξ∗ � 2π when nk reaches a maximum. As is the case

with adiabatic modes, the CMB angular anisotropy distribution is completely determined

by choosing the spectrum of gravitational waves 
g(k). In the simplest models of inflation

that predict a scale-invariant spectrum of metric perturbations 
g ∼ k−3, the spectrum of

gravitational waves is also scale-invariant: 
g(k) ∝ k−3 (Starobinsky, 1985a,b). This means

that for angular scales θ � θrec, where θrec is the angular scale of the recombination horizon,

the multipole structure C(l)gw should not be very different from the structure C(l) for adiabatic

modes. A detailed numerical analysis of the transfer equation for quanta in the presence of

gravitational waves leads to a dependence of C(l)gw on l as shown in Fig. 5.5. As we see from

this figure, the peculiarity of gravitational waves is pronounced when l = 2 (the quadrupole

component) and when l > 102, where the contribution of gravitational waves (gw) to the

CMB anisotropy is suppressed.

Note that any inflationary model that uses the condition of slow variation of the inflaton

potential and the relation between the contributions of the gravitational waves and scalar

(adiabatic) perturbations to the CMB anisotropy is conveniently characterized in terms of the

so-called T/S relation (Polarski and Starobinsky, 1994):

T

S
= C(l)gw

C(l)A
= 	kl |nT|; nT < 0, (5.37)
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Figure 5.5 (a) Anisotropy spectrum generated by gravitational waves in the two CDM open
models with h = 0.7, �bh2 = 0.00125 and �0 = 0.1 (dotted line), and �0 = 0.4 (dashed
line). The solid line corresponds to the standard CDM model without cosmological
constant. Adapted from Challinor (2000). (b) CMB anisotropy power spectrum for �CDM
cosmological models with corresponding background of the gravitational waves from
inflation; A is the amplitude of the CMB anisotropy power spectrum normalized on the
amplitude of the COBE correlation function at l = 10, R = T/S. Adapted from Melchiori
et al. (1999).

where nT = d(log k3
2
g(k))/d(log k) is the deviation of the power spectrum of gravitational

waves from the scale-invariant spectrum

	kl = 6.2 for l � 1 and |nT| � 1 (5.38)

and 	k2 = 6.93, 	k3 = 5.45, 	k5 = 6.10, 	k10 � 5.3 for |nT| � 1 (Polarski and Starobinsky,

1994).

As we see from Eqs (5.37) and (5.38), it is most likely that the contribution of gravitational

waves does not exceed that of adiabatic perturbations. We should not dismiss the fact, however,

that for special inflationary models it may be comparable to, and even greater than, the

contribution of adiabatic modes (for details, see Lukash and Mikheeva (1998)).
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5.3 The Silk and Doppler effects and the Sakharov oscillations
of the CMB spectrum
When discussing the mechanisms of generation of the primordial CMB anisotropy

in Section 5.2, we emphasized that it is related to three most important physical processes:

the gravitational shift in the frequency of quanta (the Sachs–Wolfe effect), the adiabatic

confinement of radiation before the hydrogen recombination epoch in the zones of elevated

and reduced density (the Silk effect) and the scattering of quanta by free electrons moving in

adiabatic perturbations both before and during recombination (the Doppler effect).

It has become fashionable to split each of the above mechanisms into ‘subclasses’ depend-

ing on which part of the fluctuations spectrum C(l) is to be described and what physical

processes in combination provide the main contribution to C(l) for a given value of l. This

may be correct in principle when we deal with a detailed theory of formation of CMB

anisotropy (we can also add of CMB polarization formation) based on a serious mathemat-

ical foundation. From the aesthetics standpoint, however, and paying its due to the history

of CMB research, we consider it natural to retain the older classification. On one hand, it

has already nearly ‘celebrated’ its 35th anniversary, and on the other hand it is a visual

reflection of the nature of the fundamental sources of generation of the CMB anisotropy that

we find on the right-hand side of Eq. (2.10). As before (see Sections 5.1 and 5.2), we use

the Newton gauge for metric perturbations, as proposed in Ma and Bertshinger (1995) and

Mukhanov, Feldman and Branderberger (1992); the spatial interval of this gauge is given

by Eq. (4.2).

A distinctive feature of the high-frequency approximation to be analysed in this section is

that it takes into account the effect of induced transparency (a change in optical depth, τ , in

the course of hydrogen recombination). Comparing this approximation with long-wavelength

asymptotics of the equation of transfer of quanta in a weakly non-uniform medium, we

can state that the high-frequency approximation describes the angular distribution of the

CMB anisotropy on scales that are smaller than or of the order of magnitude of the angular

scale of the cosmological horizon rrec (taken at the moment of hydrogen recombination and

recalculated to the current moment, taking into account the expansion of the Universe).

Using the same method of expanding temperature perturbations θ = �T/T as used in

analysing the Sachs–Wolfe effect (see Section 5.2), we give the corresponding generalization

of the set of equations for the multipole components θl , taking into account the variation

of the optical depth of plasma in (conformal) time. For convenience we first consider, as

before, the flat-space cosmological model (E = 0) and then generalize these results to more

complicated models with E 
= 0. The corresponding modification of transfer equations for

each l mode, θl , is as follows (Hu and White, 1996):

θ ′
0 = −k

3
θ1 − 
′,

θ ′
1 = k

[
θ0 + 	 − 2

5
θ2

]
− τ ′(θ1 − vb),

θ ′
2 = k

[
2

3
θ1 − 3

7
θ3

]
− τ ′

(
3

4
θ2

)
,

θ ′
2 = k

[
l

2l − 1
θl−1 − l + 1

2l + 3
θl+3

]
− τ ′θl), l > 2.

(5.39)
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The reader will remember that, as before, the relation between the kth temperature fluctuation

mode in the direction of arrival of quanta 	γ and θ (ξ, 	k, 	γ ) is given by the expression

θ (ξ, 	k, 	γ ) =
∑

l

(−i)lθl Pl(	k · 	γ ), (5.40)

where vb denotes the kth harmonic in the expansion of the velocity field perturbations in

matter (see Eqs (5.39)) and τ ′ = neσTa is the derivative of the optical depth of plasma with

respect to time, ξ = ∫
dt/a, where a is the scale factor, ne is the concentration of free electrons

and σT is the Thomson cross-section. The set of equations (5.39) needs to be complemented

with an equation for Vb (see Hu and White (1996)). Furthermore, Eqs (5.39) were derived

making an important assumption, namely that polarization effects in the scattering of quanta

by electrons do not play any significant role in the formation of the CMB anisotropy. The

validity of this assumption is confirmed a posteriori (see Chapter 6 for details).

Starting with hydrodynamics equations for baryonic fractions of matter, we write the

corresponding relation between density and velocity perturbations in the following form (Hu

and White, 1996):

δ′
b = −kvb − 3
′; v′

b = −a′

a
vb + k	 + τ ′

R
(θ1 − Vb), (5.41)

where R = (3ρb)/(4ργ ). As before, θ0 ≡ �T/T = 1
4
(δργ /ργ ), where ργ is the density of

CMB quanta. Furthermore, the relation between metric perturbations and density and velocity

perturbations in multicomponent matter is given by the following relations (Bardeen, 1980):

k2
 = 4πGa2
∑

i

[
ρiδi + 3

a′

a
(ρi + Pi )

Vi

k

]
;

k2(	 + 
) = −8πGa2
∑

Pi�i ,

(5.42)

where the index i provides correspondence to each species of matter in the Universe (including

the hidden mass, massive and massless neutrinos, the baryonic fraction and the CMB), and

�i is the anisotropic part of the pressure.

The set of equations (5.39)–(5.42) fully describes the process of generation of primary

anisotropy of the CMB in the expanding Universe in the epoch before and after hydrogen

recombination. Obviously, it does not take into account the possible distortions of the charac-

teristics θ (	k, 	γ , ξ ) at the later stages of evolution when the first galaxies and quasars, capable

of changing the ionization balance in the plasma and causing additional scattering of quanta

by electrons, had formed. This aspect of the problem will be discussed in detail in Chapter 6.

We need to emphasize in particular that an analysis of the solutions of Eqs (5.39)–(5.42) is a

rather complicated mathematical problem. We have already mentioned that if the primordial

adiabatic perturbations of the metric, velocity and density of the plasma emerged from quan-

tum fluctuations of the vacuum during the inflation stage, it is only natural to expect that the

random quantities �l , Vb, δi , 
 and 	 have the normal (Gaussian) distribution. In this case,

all statistical properties of random Gaussian fields are fully determined by the appropriate

power spectra.

We have already introduced a definition of the spectrum C(l) for the CMB anisotropy. It

is therefore clear that if we are interested in the behaviour of the function C(l) at l � 5000,

then to find C(l) from Eqs (5.39)–(5.42) we need to take into account roughly 5000 equations

that belong to the class of ‘rigid’ systems which involve ‘rapid’ variables, such as the optical
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plasma depth or the quantities �l(ξ ) at l � 102, along with slowly varying variables (for

example the scale factor a(t) or CMB temperature). In the general case, a correct analysis

of Eqs (5.39)–(5.42) for various cosmological models is possible only in the framework of a

numerical simulation which constitutes a sufficiently complex mathematical problem. At the

same time, it is possible to generate analytically a number of asymptotes that agree perfectly

well with the results of numerical experiments, and thereby reveal the main factors that dictate

the formation of the primordial CMB anisotropy and its relation to the perturbations of the

metric, velocity and density of matter. This relation is unique in that the corresponding scales

of perturbations that generate �T are found to be quite close to the spatial scales of today’s

structures. Therefore, we can look at the very beginning of the process of gravitational growth

of perturbations that spawned structure in the cosmos by analysing the angular distribution of

�T in the sky. And since the modern stage of structure evolution in the Universe is strongly

non-linear, there is no need to justify in detail to what extent it is important for us to know the

initial conditions of this process in order to understand the laws dictating how it progresses.

These ‘initial’ conditions can (and must!) be obtained by analysing the CMB anisotropy.

A substantial simplification of the analytical investigation of the solutions of Eqs (5.39)–

(5.42) is connected with analysing the so-called high-frequency approximation in which the

parameter k/τ ′ is assumed to be large: k/τ ′ � 1. This approximation was first used to analyse

the process of generating �T in a baryonic model of the Universe (Peebles and Yu, 1970;

Zeldovich and Sunyaev, 1970). When the plasma is highly opaque, τ � 1 (but τ/τ ′ ∼ ξ ),

the high-frequency approximation k/τ ′ � 1 is equivalent to the condition kξ � τ . In this

approximation, following Peebles and Yu (1970), we can retain only the multipole (θ0) and

dipole (θ1) components, with which Eqs (5.39) transform to the following form:

θ ′
0 = −k

3
θ1 − 
′; θ ′

1 = − R

1 + R

a′

a
θ1 + k

1 + R
θ0 + k	. (5.43)

The set of equations (5.43) has an important property. We see that the characteristics of the

CMB anisotropy (θ0) and (θ1) depend on the behaviour of the gravitational potentials 
 and

	. In the standard baryonic model that was carefully investigated at the beginning of the

1970s, the contribution of 
 and 	 to the set of equations can be neglected for the following

reason. Let us take a look at the set of equations (5.42). It immediately implies that both

potentials, 
 and 	, are related to CMB temperature perturbations via the expressions


, 	 ∼ 4πργ Gθ0a2

k2
� θ0(k2ξ 2)−1 � θ0.

The reason why the generated metric perturbations are small is very simple. High-frequency

density perturbations of the CMB and the baryonic matter create perturbations whose ampli-

tude decreases with wavelength. Formally, this signifies that one can neglect the terms 
′ and

	 Eqs (5.43) for the baryonic Universe (with the hidden mass not taken into account); after

this, seeking the solution becomes trivial. Substituting θ1 from the first equation of (5.43)

into the second, we obtain

d

dξ
[(1 + R)θ ′

0] + k2

3
θ0 = 0. (5.44)

Obviously, solutions of this equation are oscillatory in nature and describe sound waves in

the baryon–photon gas.
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In models that take into account the cosmological role of non-baryonic matter that mani-

fests itself as hidden mass, the situation with metric perturbations becomes somewhat more

complicated compared with the one described above. The point is that along with perturba-

tions of the density of the CMB and baryons, perturbations of the hidden mass density also

take part in the formation of perturbations of the gravitational potential. Formally, compared

with the preceding estimate of the perturbation level of 
 and 	, a new parameter emerges

in the theory, namely δx , which corresponds to density perturbations in the hidden mass, and

a parameter ρx/ρb � 1, which is a measure of the extent to which the hidden mass density

exceeds the density of the baryonic fraction of matter. This means that the formation of both


 and 	 is driven by perturbations in dark matter and, hence, that they act as external sources

of anisotropy in the set of equations (5.43). With this factor taken into account, Eq. (5.44)

generalizes to

d

dξ
[(1 + R)θ ′

0] + k2

3
θ0 = −k2

3
(1 + R)	 − d

dξ
[(1 + R)
′]. (5.45)

We need to point out that further analysis of Eq. (5.45) depends on the accuracy of approxi-

mation that we aim to achieve. As the zero approximation illustrating the qualitative aspect

of the problem, we can ignore (as we described above) the effect of perturbations in the

baryon–photon gas on the gravitational potential, assuming it to be responding only to hid-

den mass perturbations.1 In the general case, which also covers the effect of CMB temperature

perturbations and perturbations of matter density on the potentials 
 and 	, Eqs (5.45) and

(5.41)–(5.42) imply the well known equation for the combination of the zero-order and first

momenta (Hu and White, 1996), namely

� = θ ′
0 + a′

ak
θ1, (5.46)

of the following type:

[
1 + 6

y2
(1 + R)

][
�′ − y′�

y(1 + R)

]
+ 1

3

[
1 − 3

y′′

y
+ 6

(
y′

y

)2
]

θ1 = y′′

y
	S − 
′

S,

(5.47a)

θ ′
1 + y′

y
θ1 −

[
1 − 6

y2
(1 + R)2

]
�

(1 + R)
= 	S. (5.47b)

Here an apostrophe indicates a derivative with respect to the variable x = kξ with k fixed,

y = (�γ H 2
0 )1/2ak, �γ is today’s density of CMB quanta in units of critical density, and 	S

and 
S correspond to the potentials 	 and 
 that depend only on density and perturbations

in hidden matter.

Let us consider the behaviour of θ1 and � in the limit z � 103 when we can ignore the

role of the baryonic component in comparison with the density of the electromagnetic radi-

ation. Formally, this corresponds to the parameter R tending to zero and, since a(ξ ) ∝ ξ , the

parameter y becoming proportional to x . In this approximation we obtain from Eqs (5.47) that

�′ − 1

x
� + θ ′

3
= x2

x2 + 6

[
	S

x
− 	 ′

S

]
; θ ′ + θ1

x
−

[
1 − 6

x2

]
� = 	S. (5.48)

Equations (5.48) imply that (Hu and White, 1996)

1 Simultaneously, we assume that the contribution due to neutrinos is also negligible.
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�′′ + 1

3

[
1 − 6

x2

]
� = S(x), (5.49)

where

S(x) = −
[

1

3
− 12

(x2 + 6)2

]
	S − x2(x2 + 18)

(x2 + 6)2

′

S + x

x2 + 6
	 ′ − x2

x2 + 6

′′

S.

(5.50)

Note that in the limit of small x the gravitational influence on the behaviour of radiation

and baryons in the gas by the hidden mass becomes small, so that formally we can assume

S(x) � 0 in Eq. (5.49). In this approximation the equation for � becomes the Bessel equation

and its solutions can be obtained in terms of trigonometric functions (Doroshkevich, 1985;

Kodama and Sasaki, 1984; Naselsky and Novikov, 1993; Starobinsky, 1988):

� = A�+ + B�−,

�+ = − cos

(
x√
3

)
+

√
3

x
sin

(
x√
3

)
,

�− = − sin

(
x√
3

)
−

√
3

x
cos

(
x√
3

)
,

(5.51)

where A and B are constants. Using Eq. (5.51) as a fundamental solution, Hu and White

suggested using the Green’s functions method for finding a solution in the case of an external

source S(x) (Hu and White, 1996). The main idea boils down to the assumption that the

constants A and B in Eq. (5.51) are now regarded as functions of the parameter x , as follows:

�(x) = A(x)�+(x) + B(x)�−(x),

where

A(x) = A(xin) −
√

3

∫ x

xin

�−(x ′)S(x ′) dx ′,

B(x) = B(xin) −
√

3

∫ x

xin

�+(x ′)S(x ′) dx ′,
(5.52)

where xin corresponds to the moment of time for which the amplitude of the initial fluctuations

A(xin) and B(xin) is prescribed.

This approach makes it possible to simplify greatly the mathematical investigation of the

problem, even though numerical analytical techniques are still required. Note that once we

switch over to numerical analysis of solutions, the preferable approach in our opinion is to

discuss the behaviour modes of temperature perturbations of the CMB in the framework of

the rigorously formulated problem, which naturally cover the asymptotics (5.49)–(5.52) as a

particular case.

At the same time, the interpretation of a simple analytical solution for eigenmodes of

perturbations � in the form of Eq. (5.51) is perfectly transparent. It describes the evolution of

acoustic waves in the cosmological plasma long before the onset of hydrogen recombination.

As the derivation of Eq. (5.51) immediately assumed the smallness of the parameter R =
3
4
(ρb/ργ ), it is clear that the speed of sound in the baryon–photon gas is 1/

√
3 of the speed of

light in vacuum and that the corresponding perturbations evolve in the acoustic wave mode.

As the age of the Universe increases and its temperature decreases, the parameter R ∼ a
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becomes gradually more and more important. This means that the speed of sound in the

medium changes with time – the factor that must be taken into account in analysing the

high-frequency approximation of temperature perturbations in the CMB. This approach can

be illustrated using as an example the set of equations (5.47) and limiting the analysis to the

‘crudest’ high-frequency approximation x � 1. In this approximation Eq. (5.47a) yields

�′ + 1

3
θ1 = 0 (5.53)

and Eq. (5.47b) implies

θ ′
1 − �

1 + R
= 0. (5.54)

Substituting �1 from Eq. (5.53) into Eq. (5.54), we finally obtain

�′′ + 1

3(1 + R)
� = 0. (5.55)

We see that Eq. (5.55) describes acoustic waves in the baryon–photon gas; the wave velocity

is CS = 1/
√

3(1 + R) of the speed of light in vacuum. The baryonic matter enters equations

through the parameter R = 3
4
(ρb/ργ ), which increases as the process approaches the moment

of hydrogen recombination, z � 103. We can evaluate this parameter assuming �bh2 � 0.02,

�x ∼ 0.25, zrec � 103, as follows:

R � 3

4

�b

�x

zeq

zrec

� 0.37, (5.56)

where zeq � 1.2 × 104�x h2 is the redshift in the epoch when the densities of radiation and

hidden mass were equal.

We see from Eq. (5.56) that the effect of the baryonic component on the speed of sound at

the moment when the plasma becomes transparent is fairly strong (∼40%).

Furthermore, this variation of the speed of sound results in variations of wavelength for

acoustic perturbations in the plasma; hence, at the onset of plasma transparency, the low- and

high-multipole parts of the spectrum are sensitive to acoustic modes with unequal wave-

lengths. However, one of the most important processes for the formation of primordial

anisotropy of the CMB is obviously the process of transparency onset in the course of recom-

bination of the cosmological hydrogen. In this period, which timewise constitutes a relatively

small fraction (∼3%–10%) of the age of the Universe at the moment z = 103, a sharp drop

in the concentration of free electrons destroys the connection between radiation and baryons;

after this, CMB quanta propagate freely from the surface of ‘last scattering’ (z = 103) to

an observer whose position corresponds to z = 0. In fact, it is at the moment of hydrogen

recombination that the phase transition takes place in the radiation–baryonic matter system

and the elasticity of the medium drops sharply (by almost 4.5 orders of magnitude). We have

already discussed this situation in Chapter 4 in connection with the Sakharov oscillations

in the distribution of baryonic matter immediately after the plasma becomes transparent.

We remarked then that the Sakharov modulations of perturbation amplitude in the baryonic

component will be smoothed in models where the dark matter density sharply dominates

that of the baryonic fraction. However, they survive intact in the primordial electromagnetic

radiation, which takes the role of a unique probe of the properties of the cosmic plasma and

of the pregalactic inhomogeneity of the matter!
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Figure 5.6 Spectrum of anisotropy generated by adiabatic perturbations in the �CDM
model. Different curves indicate different mechanisms of formation of the CMB anisotropy
and point to the ranges l for which these mechanisms prove to be the most efficient. Arrows
indicate the direction of change in the appropriate scales as the values of the cosmological
parameters increase. Filled circles mark independence of scales from the corresponding
parameters. Adapted from Hu, Sugiyama and Silk (1996).

Figure 5.6 plots the qualitative dependence of the spectrum of primordial anisotropy of

the CMB as a function of multipole number, l, for different values of the parameters �k ≡
(1 − �� − �0), ��, �0h2, �bh2, where �k denotes curvature, �� is the density of the

vacuum, �0 is the density of the hidden mass tied up in the structural elements of matter

(galaxies and galaxies clusters) and �b is the density of baryons.

The parameters l�k , leq, lA and lD denote the ranges for the appropriate multipoles where

the effects of curvature and vacuum are significant (l�k), the Sachs–Wolfe effect (leq), the

acoustic Sakharov oscillations (lA), and dissipative damping and non-instantaneous onset

of transparency of the plasma for the electromagnetic radiation (lD). Incidentally, there

is a relatively narrow stretch in the range l ≤ leq where the Doppler scattering of quanta

by electrons contributes significantly to the formation of C(l) as compared with the effect

of adiabatic clustering of radiation (the Silk effect; see Silk (1968)). If l ≥ lA and l ∼ lA,

the Silk effect is predominant and both effects (the Doppler effect and the Silk effect) are

observed jointly in a number of zones within the range l > lA. As could be expected, the

C(l) spectrum generated by the Doppler mechanism is phase-shifted relative to the Silk

effect. This is the familiar phase shift between density and velocity perturbations in acoustic

waves.

As we see from Fig. 5.6, the anisotropy spectrum amplitude drops considerably beginning

with the multipoles l ≥ lD. This effect is caused by dissipative processes influencing the

dynamics of evolution of perturbations in the baryon–photon gas. We will concentrate on the

details of this phenomenon in Section 5.3.1.
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5.3.1 Dissipation of perturbations in the hydrogen recombination epoch
To analyse the CMB anisotropy spectrum in the limit l > lD, we turn to the set of

equations (5.42) that takes into account explicitly the anisotropy of the energy–momentum

tensor �i . Obviously, the electromagnetic radiation acts as one of the sources of this

anisotropy (Chibisov, 1972a,b; Hu and Sugiyama, 1995; Weinberg, 1972). Thus follow-

ing Hu and White (1996) we choose the following expression for estimating the anisotropic

part of the energy–momenum tensor:

�γ � 8

5

(
k

τ ′

)
f −1
2 θ1. (5.57)

Here f2 � 1 for non-polarized radiation (Chibisov, 1972a,b; Weinberg, 1972). Using

Eq. (5.57), which relates the hydrodynamic peculiar velocity of baryons and the θ1 com-

ponents of perturbations, we can rewrite the expression for the temperature of the CMB in

the following form (see Eq. (5.42) and Hu and White (1996)):

Vb − θ1 = −(τ ′)−1 R [Iωθ1 − k	] − (τ ′)−2 R2ω2θ1. (5.58)

Our derivation of Eq. (5.58) used the high-frequency approximation for acoustic waves both

for the �1 and the � components (see Eq. (5.46)) in the form exp(i
∫

ω dξ ). Then Eqs (5.42),

(5.57) and (5.58) yield a dispersion equation in the following form (Hu and White, 1996):

ω = ±kc + ik2(τ ′)−1

6

[
R2

(1 + R)2
+ 4

5
f −1
2 (1 + R)−1

]
. (5.59)

As we see from Eqs (5.52), the imaginary part of the acoustic wave frequency describes the

damping of oscillations in the course of scattering of quanta by electrons, with the damping

decrement equal to (Hu and White, 1996)

k−2
D � 1

6

∫
dξ

τ ′
R2 + 4

5
f −1
2 (1 + R)

(1 + R)2
. (5.60)

The decrement kD from Eq. (5.60) corresponds to the damping factor of the amplitude of

acoustic oscillations of the type exp(−k2/k2
D) that describes the diffusion-related attenuation

of acoustic waves. We need to underline the fact that the dissipative scale kD depends on

the ionization history of the cosmic plasma. Equation (5.60) shows that in the hydrogen

recombination epoch the degree of ionization2 diminishes rapidly and the optical depth

relative to the Thomson scattering falls off rather steeply from τ ∼ 10–102 at the start of

recombination (z ∼ 3 × 103) to τ � 1 at z � 800–900.

Formally, a decrease in the optical depth τ is accompanied with a reduction in the rate of

change of τ ′, and hence the characteristic diffusion scale λD ∼ k−1
D grows sharply. Does this

mean that all peculiarities in the distribution of the CMB anisotropy on the surface of last

scattering will be smoothed to the scale of the acoustic horizon? The answer is obvious: no,

it does not, since the diffusion approximation itself is constrained by quite specific bounds

on applicability.

We already mentioned at the beginning of this subsection that the approximation of ‘strong

bonding’ between photons and electrons is valid only for waves whose wave vector modulus

satisfies the relation τ ′/k � 1. Since τ falls off sharply in the course of hydrogen recom-

bination, it is clear that for each k we can find a moment of time ξ∗ at which the diffusion

approximation becomes invalid (τ ′/k � 1).

2 Note that the ionization history meant here is the standard one, ignoring the effects of reionization at small z.
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It is only natural that with this numerical computation approach the modes switch automat-

ically; there is no need to go into details of this process. However, in the case of an analytical

investigation of the situation, it is very useful to propose a simple algorithm to evaluate the

effect that offers the means for checking the predictions of numerical approaches and to

analyse in greater detail the dependence of the dissipation scale on the parameters of the

cosmological model. We therefore introduce a parameter �ηrec/ηrec = ξrec that characterizes

the length of time required for the plasma to become transparent to the CMB at the time when

τ (ηrec) � 1. The equation

τ ′/k = 1 (5.61)

determines, within an order of magnitude, the moment ξrec at which the diffusion approxi-

mation becomes invalid, that is

kηk � τ (ηk)

(
�ηk

ηk

)−1

, (5.62)

where �ηk/ηk = τ (ηk)/ηk . Equation (5.62) shows that the moment ηk is inversely propor-

tional to k. In the vicinity of the transparency onset, �ηk/ηk ∼ ηrec and τ (ηk) ∼ τ (ηrec) ∼ 1.

This means that ηk ∼ k−1ξ−1
rec . We substitute this estimate of ηk into the upper limit of the

integral (5.60) to obtain

k−2
D ∼

∫ ηk

0

dη

τ ′ ∼ �ηrec

k
= ξrec

ηr

k
. (5.63)

As we see from this estimate, the characteristic scale of dissipation of acoustic modes now

depends on k and the corresponding decrement D = k2/k2
D is now a linear function of k

(Doroshkevich et al., 1978):

D(k) � kξrecηrec. (5.64)

This means that for acoustic modes with kξrecηrec ≤ 1, the influence of dissipative pro-

cesses can be ignored while the modes with kξrecηrec ∼ 1 will first decay exponentially in k,

but will follow the laws of diffusion as k keeps growing. Quantitatively the decrement is an

explicit function of the length of the period of hydrogen recombination, �ηrec. Therefore,

any ‘delays’ in recombination that are accompanied by an increase in �ηrec should weaken

the high-multipole part of the spectrum, C(l). At the same time, any ‘delays’ in recombi-

nation will result in shifting ηrec to smaller z and will also shift the spectrum C(l) towards

smaller l. Consequently, an analysis of the CMB anisotropy spectrum helps to extract unique

information on the parameters of the cosmological model and on the ionization history of the

Universe that are based on the characteristic features of C(l). It may also provide answers to

the questions on the meaning of these features and with what accuracy the modern theory of

generation of primordial anisotropy can predict their numerical characteristics. Section 5.4

is devoted to answering these questions.

5.4 C(l) as a function of the parameters of the cosmological model
One of the most important predictions of today’s theory of generation of the CMB

anisotropy is based on the understanding that perturbations of density, velocity and metric

that evolve in the sound wave mode existed at the time of hydrogen recombination. The

CMB perturbation amplitude after recombination is modulated by acoustic modes before the

recombination phase, in exact accordance with the effect predicted by Sakharov (1965). One
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Figure 5.7 Anisotropy spectrum C(l) as a function of the parameter �0h2 assuming
�bh2 = 0.015. The curves correspond to the following values of the parameter �0h2: solid
curve, 0.25 with h = 0.5; long-dash curve, 0.09 with h = 0.3; short-dash curve, 0.64 with
h = 0.8. Adapted from a figure by W. Hu, whose website may be found at
http://background.uchicago/edu/whu/metaanim.html.

of the most important characteristics of the CMB anisotropy is the �T spectrum in the space of

multipoles that was studied analytically in Hu and Sugiyama (1995), Jørgensen et al. (1995),

Peebles (1980) and Starobinsky (1983), and numerically in Bond and Efstathiou (1984),

Silk and Wilson (1981), Vittorio and Silk (1984), Wilson and Silk (1981) and Zaldarriaga,

Seljak and Bertshinger (1998), amongest other papers. It is logical that when analysing

the dynamics of perturbations, one has to choose concrete parameters of the cosmological

model that serve as a scene on which plays out the evolution of small perturbations that lead

both to the formation of galaxies and to the anisotropy of the CMB. We will attempt here

to classify the main parameters of the cosmological model, evaluating the extent of their

influence on various perturbations; we follow the approach of Hu and Sugiyama (1995) (see

also Mukhanov (2003) and Weinberg (2001a,b)).

5.4.1 Dark matter density in galaxies and galaxy clusters
The role played by the dark matter density is characterized by the parameter �dmh2; it

makes itself felt mainly in the following three aspects. First, the density of dark matter dictated

directly the dynamics of expansion of the Universe during hydrogen recombination. Secondly,

the potential perturbations in dark matter interact with the electron–photon–baryon plasma

only through gravitation. Hence, they are not subject to damping in the process of plasma

becoming transparent for the primordial radiation and thus play the role of ‘generator’ of the

anisotropy. At the same time, they are responsible for the behaviour of the degree of ionization

of the plasma through their influencing the rate of expansion. Thirdly, by ‘surviving’ till today

they affect the current scale of particles’ horizons and determine the relation between spatial

dimensions of fluctuations at the moment of recombination and their current angular size.

Figure 5.7 plots the spectrum C(l) as a function of the multipole number l for a number

of values of the parameter �0 ≡ �dm. The figure demonstrates that as the value of �0h2

decreases, the amplitude of the first Sakharov peak (l ∼ 200) increases and at the same time

its position undergoes a shift. The Harrison–Zeldovich spectrum of primordial adiabatic

perturbations was used to plot Fig. 5.9. The density of the baryonic fraction of matter was

not varied and is assumed equal to �bh2 = 0.015.
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Figure 5.8 C(l) as a function of the parameter �bh2 assuming that �0 = 1 and h = 0.5.
The curves correspond to the following values of the parameter �bh2: solid curve, 0.025;
dotted curve, 0.0075; long-dash curve, 0.0025; short-dash curve, 0.015. Adapted from a
figure by W. Hu, whose website may be found at http://background.uchicago/edu/whu/
metaanim.html.

5.4.2 Density of the baryonic fraction of matter
The density of the baryonic fraction of matter is, along with that of dark matter,

one of the most important parameters of the thermal and ionization history of the cosmic

plasma. It also determines, although to a lesser degree (in view of the smallness of the

ratio �b/�0 ∼ 10−1) the dynamics of the expansion of the Universe, but it affects much

more strongly the kinetics of recombination and especially the amplitudes and positions of

the Sakharov peaks. To illustrate the dependence of the anisotropy spectrum C(l) on the

parameter �bh2, we plot in Fig. 5.8 the distribution of C(l) over multipoles in a flat-space

cosmological CDM model with adiabatic perturbations (the Harrison–Zeldovich spectrum).

We see in this figure that as the density of the baryonic fraction of matter decreases, the

spectrum C(l) undergoes considerable restructuring. The position of the first peak (l ∼ 200)

is practically independent of the parameter �bh2, even though its amplitude changes signifi-

cantly. Other peaks with l � 200 both shift their positions and change their amplitudes. Note

also that as the parameter �bh2 decreases, the damping decrement of acoustic waves grows

sharply, which is accompanied by a faster fall-off of the spectrum in the range (≥300–500).

Incidentally, the differences between C(l) amplitudes in the high-multipole part of the spec-

trum for different values of the parameter �bh2 reach one to two orders of magnitude, and

sometimes higher. This part of the spectrum is thus an excellent indicator of the value of the

parameter �bh2.

5.4.3 The cosmological constant
As we remarked at the very beginning of this book, attention to possible observa-

tional manifestations of the cosmological constant is stimulated not only by the current

observational data on the CMB anisotropy spectrum, but also in connection with cos-

mological SNIa supernovas. The effect of the vacuum energy density that reveals itself

in the cosmological constant in Einstein’s equations results in a corrected calculated age

of the Universe and, hence, a change in the angular dimension of the recombination

horizon.
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Figure 5.9 The anisotropy spectrum generated in a �CDM cosmological model C(l) as a
function of ��h2 assuming that �0h2 = 0.25 and �bh2 = 0.0125. The curves correspond
to the following values of the parameter ��: solid curve, 0 for �0 = 1; long-dash curve, 0.9
for �0 = 0.1; short-dash curve, 0 for �0 = 0.1. Thin solid lines correspond to
�K = 1 − �� − �0 CDM models. Adapted from a figure by W. Hu, whose website may be
found at http://background.uchicago/edu/whu/metaanim.html.

In its turn, this leads to angular redistribution of the anisotropy power spectrum and, hence,

to redistribution in the space of multipoles l. This factor was pointed out in Hu and White

(1996), Kofman and Starobinsky (1985) and Zabotin and Naselsky (1982a,b).

Figure 5.9 plots C(l) as a function of l for a number of values of the parameter ��. For

the sake of comparison, this figure also shows the distribution C(l) in an open model with

�0 = 0.1 and a flat-space model with �� = 0 and �0 = 1. It is remarkable that the presence

of the cosmological constant firstly modifies the behaviour of the power spectrum for l ≤ 10.

We have discussed this effect in Section 5.1.

Secondly, it essentially modifies the position of the first Sakharov peak owing to the effect

of ��, for instance in comparison with the standard CDM model or the open CDM model.

Thirdly, the general distribution of peaks over l is considerably shifted – as a result of

renormalization of angular scales and of the corresponding l. This shift is one of the most

significant factors that transform the spectrum C(l) in �CDM cosmological models.

5.4.4 The exponent of the spectrum of adiabatic perturbations
When analysing C(l) as a function of cosmological parameters in Sections 5.4.1–

5.4.3, we assumed that the spectrum of primordial adiabatic perturbations agrees with the

scale-invariant Harrison–Zeldovich spectrum.

Regarding matter density perturbations, this spectrum is characterized by the power

law Pδ(k) ∝ kn , with n = 1. Note that this form of the spectrum is predicted, to within

logarithmic factors, by the simplest inflation models (Linde, 1990), although the spectral
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Figure 5.10 C(l) as a function of the parameter n for the CDM model. Adapted from a
figure by W. Hu, whose website may be found at http://Background.uchicago/edu/whu/
metaanim.html.

exponent in more complex models may be a function of k, at least in a certain range of wave

vectors (see, for example, Ivanov et al. (1994) and Starobinsky (1992a,b)). Assuming that

n(k) hardly change in the range of Sakharov peaks on the spectrum C(l), we make use of the

data of Hu et al. (1997) in order to answer the question to what extent the anisotropy spectrum

C(l) is sensitive to the exponent n. Figure 5.10 plots the ratio C(l)(n)/C(l)(n = 1) in the

standard CDM cosmological model, which gives a qualitatively and quantitatively correct

representation of the trend of the process for any model. A change of slope in the spectrum

from n = 1 to n = 0.85 results in increasing the level of fluctuations on the large-scale seg-

ment (l < 102) of the spectrum. Note from Fig. 5.10 that as n decreases, the power spectrum

in the zone of the first Sakharov peak increases, after which the power of C(l) decreases

systematically in the region of l > 200. The nature of this effect is obvious. The fall-off

in the spectrum’s exponent results in power concentration in the region of small l (large

spatial scales), which clearly weakens the high-multipole range of the spectrum. Obviously,

the behaviour of C(l)(n) at n > 1 should be the absolute opposite. Most of the power will

concentrate at high l, while the low-multipole segment of the spectrum will be weakened.

5.4.5 Isopotential (isocurvature) initial perturbations
The initial perturbations in matter, generated in the course of inflation, could in

principle be not of adiabatic but of isopotential type. Furthermore, it cannot be ruled out

that, along with ‘pure’ cases, mixed modes could also be formed in which, for instance,

an adiabatic mode could be mixed with an isopotential one. Let us turn to analysing the

difference in the spectra C(l) for the adiabatic and isopotential primordial inhomogeneity in

the Universe using the axion hidden mass as an example (Hu and White, 1996).
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Figure 5.11 A comparison of C(l) for adiabatic and isopotential (isocurvature)
perturbations. The curves correspond to the following models: solid curve, inflationary
CDM model; dashed curve, isopotential (isocurvature) perturbations. Adapted from White
and Hu (1996).

If the initial irregularity of matter on spatial scales covering galaxies and their clusters

up to r ∼ 103 Mpc was of isopotential type, then the spectrum Ciso(l) for this mode would

be radically different from the spectrum of an adiabatic irregularity (see Fig. 5.11). First,

the structure of the signal changes drastically. The first Sakharov peak, which is clearly

pronounced in Ca(l), is almost totally smoothed out in the isopotential mode. Also, the first

maximum of Ciso(l) is found not at l = 200 but at l � 300–350. Furthermore, all other peaks

are rigorously in antiphase with respect to the adiabatic mode.

5.4.6 Role played by massless neutrinos
The main effect of massless neutrinos reduces to shifting the moment of equilibration

of the hidden mass density and that of the CMB plus neutrinos towards smaller redshifts.

Since the neutrino density is proportional to the number of neutrino flavours Nν , it is clear that

an increase in Nν must result in increased amplitude of C(l). The higher the value of Nν , the

lower the redshifts in the epoch of equal densities of the non-relativistic and ultrarelativistic

matter and the higher are the amplitudes of the primordial fluctuations required for the

formation of structures by the time z = 0. This tendency is clearly pronounced in Fig. 5.12,

where two model spectra with Nν = 2 and Nν = 4 are plotted, especially in the region of

the first Sakharov peak. At the same time, massless neutrinos are a source of anisotropy of

the energy–momentum tensor by changing the structure of peaks in the high-multipole part

of the spectrum C(l). Figure 5.12 demonstrates that if we are interested in determining the

shape of the spectrum with accuracy ∼5–10% or better, the role of this component in the

formation of C(l) becomes very significant.
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Figure 5.12 (a) Spectra C(l) for adiabatic perturbations for different flavours of massless
neutrinos. Solid curve corresponds to Nν = 3. (b) Ratio of the spectra C(Nν/C(Nν = 3)) as
a function of l for Nν = 4 (dashed curve) and Nν = 2 (dotted curve). Adapted from Hu
et al. (1995a,b).

5.4.7 Massive neutrinos
We mentioned at the very beginning of this chapter the role played by the idea

of non-zero mass of the neutrino in shaping the current status of the theory of generation

of the CMB anisotropy. Unfortunately, the first (alas erroneous) estimates of the neutrino

mass are by now mere small print in physics history. There is an impression, nevertheless,

that the concept of massive neutrinos will gain its rightful place in modern cosmology, if

not now then in the near future. Our optimism is based on the observational data of the

flux of atmospheric neutrinos recorded at the Super-Kamiokande (Fukuda et al., 1998) and

MACRO (Ambrosio et al., 1998, 2001) detectors. According to these data, it seems to be

very probable that neutrino oscillations νμ ↔ ντ , first discussed by Bruno Pontekorvo, are

a reality. Two characteristics of νμ and ντ are of principal importance for describing the

effects of νμ ↔ ντ oscillations. First of all, we point to the mean-square shift in the masses of

these particles. The data of the above experiments for �m2 yield very definite observational

constraints: 5 × 10−4eV2 ≤ �m2 ≤ 6 × 10−3 eV2. The second important characteristic is

the mixing angle, which is found to be close to 40–45◦ or, more precisely, sin2 2θ ≥ 0.82.

The experimental data of LSND (Athanassopoulos et al., 1998), �m2 ≤ 0.2 eV2, and solar

neutrino data (Bahcall, Kravtsov and Smirnov, 1998) confirm the conclusions. of the Super-

Kamiokande and MACRO collaborations. If we accept the hypothesis that all three flavours

of neutrino (the electron, muon and τ neutrinos) are massive, then their effect on the dynamics

of expansion of the Universe in the hydrogen recombination epoch is found to be the same

as in the case of mν = 0, provided
∑

i mνi � 1 eV.
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Figure 5.13 The spectra C(l) for a model with neutrino oscillations. (a) CDM + HDM
models; (b) �CHDM models. In (a) from the top to the bottom (at the first peak)
σ8 = 0.2, 0.3, 0.5; (b) shows the same as (a), but for the �CHDM models. (c), (d)
Likelihood dependence on σ8. Adapted from Popa et al. (2000).

Unfortunately, neutrino oscillations experiments place limits only on the squared difference

between the masses of different particles, and reveal practically nothing about the masses

themselves. We can conclude with a degree of caution that m2
νi

≥ �m2 ≥ 5 × 10−4 eV2 at

least for one flavour of neutrinos and hence that mνi ≥ 2.2 × 10−2 eV. Clearly, these particles

did affect the acoustic horizon in the hydrogen recombination epoch by influencing the rate of

expansion of the Universe and thereby changed the position and amplitude of Sakharov peaks

in the C(l) spectrum. Figure 5.13 shows the results of calculations of the C(l) spectrum in a

model with massive neutrinos taken from Popa, Burigana and Mandolesi (2000). This figure

shows that the effect of massive neutrinos proves to be sufficiently strong after taking this

factor into account when processing experimental data in the search for the CMB anisotropy.



6

Primordial polarization of the cosmic

microwave background

6.1 Introduction
The primordial density perturbations result not only in the variation of tempera-

ture of the primordial radiation background, but also in its polarization (Basko and Polnarev,

1979; Crittenden, Coulson and Turok, 1995; Hu, 2003; Hu and White, 1997a,b; Kaiser, 1983;

Kosowsky, 1999; Naselsky and Polnarev, 1987; Ng and Ng, 1995, 1996; Polnarev, 1985; Rees,

1968; Zaldarriaga, 2004, Zaldarriaga and Harari, 1995). Measurements of the CMB polariza-

tion make it possible to extract additional information, which helps in avoiding ambiguities

in reconstructing cosmological parameters from the observational data (see Readhead et al.
(2004)).

For instance, polarization is very sensitive to the presence of tensor perturbations (grav-

itational waves) and, as shown in Zaldarriaga and Harari (1995), deviations from zero of

the so-called pseudo-scalar or ‘magnetic’ component of polarization would be an irrefutable

indication of the presence of gravitational waves.

Let us consider the properties of the polarization field generated on the surface of the

last scattering of quanta by electrons. In the general case, we can introduce, for elliptically

polarized waves, an expansion of the electric field vector into two orthogonal components

(see Fig. 6.1) (Hu and White, 1997a,b). We denote them by Eξ and Eτ , assuming that the

reference frame system has been chosen. We denote the corresponding components of the

vector �E after a quantum is scattered by an electron by ES
ξ and ES

τ . The components before

the scattering, Eξ and Eτ , depend on time as follows:

Eξ = E0
ξ sin(ωt − e1),

Eτ = E0
τ sin(ωt − e2),

(6.1)

where E0
ξ is the wave amplitude, ω is the wave frequency, and e1 and e2 are the initial phases.

Starting with Eqs (6.1), we introduce the characteristics of the radiation field known as the

Stokes parameters as follows:

I = (
E0

ξ

)2 + (
E0

τ

)2 ≡ Iξ + Iτ ,

Q = E2
0ξ − E2

0τ ≡ Iξ − Iτ ,

U = 2E0ξ E0τ cos(e1 − e2),

V = 2E0ξ E0τ sin(e1 − e2),

(6.2)

where Iξ and Iτ are the intensities of the ξ and τ components. The definitions in Eqs (6.2)

imply an obvious inequality, I 2 ≥ Q2 + U 2 + V 2. The question arises as to how the Stokes
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Figure 6.1 Scattering of a quantum by an electron, where θ is the scattering angle. Adapted
from Hu and White (1997a,b).

parameters are transformed when the coordinate system is rotated by an angle α. By virtue of

definitions (6.2) the I and V components do not change in response to clockwise rotation of

the coordinate system by this angle while the Q and U components are transformed according

to the law that is defined as the effect produced by the rotation operator:

L̃(α) =

⎛
⎜⎜⎝

cos2 α sin2 α 1
2

sin 2α 0

sin2 α cos2 α − 1
2

sin 2α 0

− sin 2α sin 2α cos 2α 0

0 0 0 1

⎞
⎟⎟⎠ (6.3)

on the vector �I = (Iξ , Iτ , U, V ).

Let us consider how the Stokes parameters change after a scattering of a quantum by an

electron. In a single-collision event (see Fig. 6.1) the relation between the vector components
�I S and �I is given by

�I S = σT R̂ × �I , (6.4)

where

R̂ = 3

2

⎛
⎜⎜⎝

cos2 θ 0 0 0

0 1 0 0

0 0 cos θ 0

0 0 0 cos θ

⎞
⎟⎟⎠ .

To analyse the changes in the Stokes parameters in the course of scattering of a quantum by an

electron, we choose the laboratory coordinate system as shown in Fig. 6.2. In this reference

frame, the Stokes vector after scattering is expressed via the pre-scattering components of the
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Figure 6.2 Polarization in laboratory reference frame. For notation of angles, see text.
Adapted from Melchiori and Vittorio (1996).

vector �I (θ ′, ϕ′) (Balbi et al., 2002; Hu and White, 1997a,b; Melchiori and Vittorio, 1996):

�I S(θ, ϕ) = 1

4π

∫
4π

[
P̂(θ, ϕ, θ ′, ϕ′) × �I (θ ′, ϕ′)

]
d
′, (6.5)

where

P̂ = Q̂ ×
[
P̂0(μ, μ′)+

√
(1 − μ2)

√
(1 − μ′2)P̂1(μ, ϕ, μ′, ϕ′)+ P̂2(μ, ϕ, μ′, ϕ′)

]
,

(6.6a)

Q̂ = 3

2

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 2

⎞
⎟⎟⎠ , (6.6b)

P̂0 = 3

4

⎛
⎜⎜⎝

2(1 − μ2)(1 − μ′2) + μ2μ′2 μ2 0 0

μ′2 1 0 0

0 0 0 0

0 0 0 μμ′

⎞
⎟⎟⎠ , (6.6c)

P̂1 = 3

4

⎛
⎜⎜⎝

4μμ′ cos(ϕ − ϕ′) 0 2μ sin(ϕ − ϕ) 0

0 0 0 0

−2μ′ sin(ϕ − ϕ′) 0 cos(ϕ − ϕ′) 0

0 0 0 cos(ϕ − ϕ′)

⎞
⎟⎟⎠ , (6.6d)

P̂2 = 3

4

⎛
⎜⎜⎝

μ2μ′2 cos 2(ϕ′ − ϕ) μ2 cos 2(ϕ′ − ϕ) μ2μ′ sin 2(ϕ′ − ϕ) 0

−μ′2 cos 2(ϕ′ − ϕ) cos 2(ϕ′ − ϕ) −μ′ sin 2(ϕ′ − ϕ) 0

−μ′2μ sin 2(ϕ − ϕ′) μ sin 2(ϕ − ϕ′) μμ′ cos 2(ϕ′ − ϕ) 0

0 0 0 0

⎞
⎟⎟⎠ ,

(6.6e)

where μ = cos θ and μ′ = cos θ ′.
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We need to point out an important property of polarization, namely that it is generated

beginning only with quadrupole modes for I (θ ′, ϕ) in Eq. (6.5). This is due to the prop-

erty of the polarization operator P̂ for quantum scattering by electrons. Furthermore, it is

important to emphasize that the ‘last’ scattering does not in itself result in the generation

of polarization unless there were peculiar motions of plasma and perturbations of density

and gravitational potential in the epoch of hydrogen recombination: the primordially non-

polarized CMB radiation remains non-polarized after electromagnetic radiation separates

from electrons. However, the situation changes drastically in the presence of small fluctu-

ations of density, velocity and metric during the hydrogen recombination epoch. We have

already mentioned that weak anisotropy of the CMB is the source of formation of the angular

distribution of polarization whose properties depend directly on the characteristics of the

‘source’.

Following Peebles and Yu (1970) (see also Peebles (1980)) we introduce fluctuations of

Stokes parameters,⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠ = ργ (t)

4π

⎛
⎜⎜⎝

1 + i
q
u
v

⎞
⎟⎟⎠, (6.7)

and make use of the kinetic Boltzmann equations to find the angular dependence of these

parameters. Solutions of these equations in general form were studied both analytically and

numerically in Peebles and Yu (1970) and later in Crittenden et al. (1995); those readers inter-

ested in details are referred to these original publications. The most important characteristic

of the CMB polarization is, as in the case of anisotropy, the power spectrum of fluctuations

arising in the space of multiples l. In contrast to the anisotropy power spectrum, the determi-

nation of the spectrum in the case of polarization requires the knowledge of certain details.

As we saw at the beginning of this section (see Eqs (6.2)), the Stokes parameters Q and U are

transformed into each other by rotating the reference frame by an angle α in the polarization

plane.

Following Crittenden et al. (1995), we find the correlation function of the Q component as1

〈
Q( �γ1)Q( �γ2)

T 2
0

〉
= A(θ ) + B(θ, ϕ), (6.8)

where

A(θ ) = Pl(cos θ ), (6.9)

B(θ, ϕ) = 1

4π

∑
l

(2l + 1)Bl cos(4ϕ) · Pl(cos θ ), (6.10)

C(l)Q is the multipole spectrum of the Q component and Bl is the so-called spectrum of

the U Q correlations (Crittenden et al., 1995). Note that the spectra for the U component

and gravitational waves are found in a similar way. A new element of the theory arises

when we take into account the cross-correlation between anisotropy and polarization of

the primordial radiation. According to Crittenden et al. (1995) and Zaldarriaga and Seljak

1 We give the expression for A(θ ) and B(θ, ϕ) in the approximation of small angles θ and ϕ.



6.1 Introduction 167

10 100 1000

0

2.0 × 10−1

4.0 × 10−1

6.0 × 10−1

8.0 × 10−1

l

0

5.0 × 103

1.0 × 104

1.5 × 104

2.0 × 104

l(
l+

l)
C

(l
)T

 (μ
K

2 )
l(

l+
l)

C
(l

)Q
 (μ

K
2 )

10 100 1000

0

2.0 × 101

4.0 × 101

6.0 × 101

8.0 × 101

1.0 × 102

l

0

1.0 × 103

2.0 × 103

3.0 × 103

4.0 × 103

TensorScalar 

Figure 6.3 The spectral distribution of anisotropy (above) and polarization (below) for
scalar and tensor modes. Adapted from Melchiori and Vittorio (1996).
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Figure 6.4 Cross-correlation function for anisotropy and polarization as a function of angle
θ . Adapted from Melchiori and Vittorio (1996).

(1997), the corresponding cross-correlation function is given by the expression〈
δT ( �γ1)Q( �γ2)

T 2
0

〉
= 1

4π

∑
l

(2l + 1)C(l)QT cos(2ϕ)P2
l (cos θ ), (6.11)

where P2
l (cos θ ) are associated Legendre polynomials.

Figure 6.3 gives the results of numerical simulation of anisotropy and polarization spec-

tra generated in the cosmological SCDM model by adiabatic perturbations of gravitational

waves. The parameters of the model were chosen as follows: 
b = 0.05; 
� = 0; 
0 = 0.95;

ns = 1 (the Harrison–Zeldovich spectrum), h = 0.5 and the hydrogen recombination is stan-

dard. Note that purely tensor modes (gravitational waves) illustrate the tendency to modify

the structure of anisotropy and polarization spectra. As we see from comparing the polar-

ization spectra for adiabatic modes and gravitational waves, the latter generate extremely

small polarization. Figure 6.4 illustrates the behaviour of the cross-correlation function of

anisotropy and polarization in the adiabatic mode of perturbations as functions of the angle θ .

We see that appreciable correlations are found in the range 0.1–1◦ while there are practically

no correlations outside of this range.
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6.2 Electric and magnetic components of the polarization field
As we stressed in Section 6.1, the Stokes Q and U parameters are transformed into

each other, by virtue of the nature of the polarization field, by a rotation of the coordinate

system through an angle α in the plane perpendicular to the vector �n pointing in the direction

of the arrival of quanta.

We introduce a simplification by assuming that the angular scale we investigate for polar-

ization is so small that the corresponding area of the sky can be regarded as flat. Under this

approximation the polarization field in the sky can be treated as a two-dimensional field in

the (x, y) plane. The photon polarization is described by a tensor of ai j of rank 2 in a plane

perpendicular to the trajectory of photons. The trace of this tensor is, by definition, zero,

which corresponds to zero polarization and can be included in the total radiation intensity.

It is convenient to express this term through the Pauli matrices σα , α = 1, 2, 3, that form a

complete set of the 2 × 2 traceless matrix space:

a = ξασα. (6.12)

The parameter ξ2 equals the amplitude of circular polarization, which does not arise under

Thomson scattering. We assume therefore that ξ2 = 0. In this case the matrix a is symmetrical

and formed by two functions:

a =
(

Q U
U −Q

)
. (6.13)

The functions Q and U depend on the coordinate system. They are components of the tensor

ai j and obey the corresponding rule of tensor transformation

a′
i j = T k

i T l
j akl , (6.14)

where transformation coefficients are given by the formula xi = T k
i xk . Thus a rotation of the

coordinate system gives

T =
(

c s
−s c

)
, (6.15)

where c = cos ϕ, s = sin ϕ, and ϕ is the angle of rotation. The parameters Q and U transform

as follows:

Q′ = Q cos 2ϕ + U sin 2ϕ; U ′ = −Q sin 2ϕ + U cos 2ϕ. (6.16)

In many cases it is more convenient to work with invariant quantities or at least with vectors

whose directions are clearly recognizable on polarization maps. The following invariants (or

scalars, which are the same) exist that can be constructed of tensors of rank 2. The first invariant

is obviously the trace of the matrix: Tr a = ∑
aii ; it vanishes in the case we consider here.

The second invariant is the determinant of the matrix a,

det a = Q2 + U 2. (6.17)

The maximum value of polarization is given by the expression
√

Q2 + U 2. The direction of

maximum polarization is determined by one of the eigenvectors of the matrix ai j (see Dolgov

et al. (1999)).

These are well known algebraic invariants that exist in the space of arbitrary dimensionality.

Using the vector differentiation operator we can construct two more invariants. We can choose
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them as follows:

S = ∂i∂ j ai j ; P = εk j∂k∂i ai j , (6.18)

where j = 1, 2 and ∂ j = ∂/∂x j . These invariants can be expressed in terms of Q and U as

follows:

S = (
∂2

1 − ∂2
2

)
Q + 2∂1∂2 U ; P = (

∂2
1 − ∂2

2

)
U − 2∂1∂2 Q. (6.19)

The first scalar invariant exists in the space of any dimensionality while the second pseudo-

scalar exists only in two-dimensional space, owing to the presence of the antisymmetric

pseudotensor εr j (a similar antisymmetric tensor in D-dimensional space has D indices).

The values taken by S and P coincide up to a scalar factor with the corresponding val-

ues E and B introduced in Seljak (1996a,b) and Zaldarriaga and Seljak (1997). This E
is, to use the terminology of those authors, an analogue of the electric field component of

the electromagnetic wave, and B is, correspondingly, an analogue of the magnetic com-

ponent. From our standpoint, it would be more natural to denote them by S and P in

order to emphasize their scalar and pseudo-scalar nature, rather than the electric and mag-

netic parts of polarization, since these quantities have no relation to vectors. Therefore

we use the terminology from Stebbins (1996) (see also Kamionkowski, Kosowsky and

Stebbins (1997a,b)).

An important property of the pseudo-scalar P is that it vanishes if polarization is caused

only by scalar density perturbations. In this case the Stokes matrix can be expressed in terms

of derivatives of one scalar function:

ai j = (2∂i∂ j − δi j∂k∂k) �. (6.20)

It can be readily confirmed that in this case P is indeed zero. We do not share the opinion

and terminology chosen in Kamionkowski and Kosowsky (1998), where it is stated that the

corresponding field has zero vorticity. It was pointed out in Dolgov et al. (1999) that this

is not so, and that in the general case the eigenvectors of the Stokes matrix are not of zero

vorticity. The correctness of this general attitude may be tested in simple situations. This

means, among other things, that the flux of maximum polarization direction lines may have

non-zero vorticity.

If tensor perturbations (gravitational waves) are present, then the polarization matrix has

a general form determined by two independent functions. It is well known that an arbitrary

three-dimensional vector can be written in terms of scalar and vector potentials:

�V = grad � + curl �A. (6.21)

In the case of two dimensions, an arbitrary vector can be defined via derivatives of a scalar

and a pseudo-scalar:

Vj = ∂ j�1 + ε jk∂k�2. (6.22)

In direct analogy to this, an arbitrary traceless symmetric 2 × 2 matrix can be expressed

through scalar and pseudo-scalar potentials:

ai j = (
2∂i∂ j − δi j∂

2
)
� + (

εik∂k∂ j + ε jk∂k∂i
)
�. (6.23)

Now the scalar P described by Eq. (6.18) does not vanish, and this property makes it possible

to study possible tensor perturbations by measuring CMB polarization. If � = 0 then the
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Figure 6.5 The spectra of the E component of polarization in a CDM model (thick solid
curve), �CDM (thin solid curve) and �CDM with 
b = 0.02 (dashed curve). For the
parameters of the models, see text. Adapted from Melchiori and Vittorio (1996).

scalar S vanishes. Unfortunately, this does not signify that tensor perturbations dominate:

they contribute both to � and to �.

Let us ask ourselves how high is the sensitivity of the E component of polarization field to

the parameters of the cosmological model and type of primordial perturbations that generate

both the anisotropy and polarization of the primordial radiation. We have already seen in

Chapter 5, devoted to analyzing the CMB anisotropy, that for C(l) the dependence on the

factors listed above is quite well pronounced. This conclusion is also applicable fully to the

polarization field, for which Fig. 6.5 plots the spectra for the E component of polarization

generated by adiabatic perturbations in the SCDM model (
b = 0.05; 
tot = 0.95; h = 0.5),

in a �CDM model (
b = 0.05; 
dm = 0.3; 
α = 0.65; h = 0.5) and in the CDM model

with low baryonic fraction density (
dm = 0.2), but with 
α = 0.98 so that 
tot = 1. As we

see from this figure, the polarization spectrum is found to be very sensitive to the choice of

parameters of the cosmological model.

6.3 Local and non-local descriptions of polarization
Establishing which of the components of the polarization field would be easier to

measure – the local or the global (averaged over a certain area of the sky) – would be an

interesting observational problem.

We believe that a solution would strongly depend on the properties of noise. For instance,

if the noise of the polarization field in measurements of the CMB originates from randomly

distributed pointlike sources with average separation on the sky greater than the antenna

resolution, the less labour-consuming (and hence less difficult) would be the measurements

of local quantities; that is, direct measurements of S and P using Eq. (6.18). However, it may

be the case that it is easier to suppress sources of noise than to measure quantities averaged

over that part of the sky. To go into details, we introduce expressions for averaged values of

S and P (or E and B) (Seljak and Zaldarriaga, 1998). First we find the Fourier transforms of

the fields Q and U , as follows:

Q̃(�l) =
∫

y e−i�l �y Q(�y) dy2 (6.24)
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and similarly for U . The Fourier transforms for the scalar and pseudo-scalar fields can be

written as follows (ϕl is the polar angle in the Fourier space of coordinates �l):

S̃N (�l) = N (l2)

∫
e−i�l �y [

Q(�y) cos 2ϕl + U (�y) sin 2ϕl
]

d2 y,

P̃N (�l) = N (l2)

∫
e−i�l �y [

U (�y) cos 2ϕl − Q(�y) sin 2ϕl
]

d2 y.

(6.25)

The scalar function N (l2) is arbitrary; it conserves the scalar and pseudo-scalar properties

of S and P . So that Eqs (6.25) and (6.18) are equivalent, we choose the function N (l) in

the form N (l2) = l2. The definition used in Seljak and Zaldarriaga (1998) corresponds to

choosing N (l2) = 1. This means that non-locality is introduced into the coordinate space

by the inverse Laplace operator 1/∂2, that is, by the Green’s function for the Laplacian. To

obtain the functions SN and PN we apply the inverse Fourier transform:

SN (�x) =
∫

d2l

(2π )2
N (l2)

∫
ei �l (�x−�y)

[
Q(�y) cos 2ϕl + U (�y) sin 2ϕl

]
d2 y,

PN (�x) =
∫

d2l

(2π )2
N (l2)

∫
ei �l (�x−�y)

[−Q(�y) sin 2ϕl + U (�y) cos 2ϕl
]

d2 y,

(6.26)

where ϕl is the angle between the vector �l and a certain fixed direction which is conveniently

assumed to be the direction of the vector �x , that is, ϕl = ϕxl .

Now we can carry out complete integration over all directions of the vector �l. To simplify

notation, we introduce the vector

�ρ = �x − �y (6.27)

and three angles, ϕlp, ϕpx and ϕxl between the directions �ρ, �x and �y. Obviously,

ϕlρ + ϕρx + ϕxl = 0. (6.28)

The integral over angular variables reduces to

∫ 2π

0

eilρ cos ϕlρ
(

A cos 2ϕlρ + B sin 2ϕlρ
)

dϕlρ, (6.29)

where the functions A and B are independent of ϕlp. The second term vanishes and the first

yields

∫ 2π

0

eilρ cos ϕlρ cos 2ϕlρ dϕlρ = −2π J2 (lρ) , (6.30)

where J2(z) is the Bessel function (see Gradstein and Ryzhik (1994)).

Integration over l depends on the type of the function N (l2), and the result of this integration

is a function of the modulus of the vector �p:∫ ∞

0

l N (l2)J2 (lρ) dl = FN (ρ) . (6.31)

In a particular case of N (l2) = 1 chosen in Seljak and Zaldarriaga (1998) the integral can be

taken in the following manner. Formally it diverges and a regularization procedure is required.

This can be achieved by adding a small imaginary part to l in order to ensure convergence (in

other words, we need to shift the integration contour to the upper half of the l plane). Using
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the relation

z J2(z) = J1(z) − z J ′
1(z) (6.32)

and integrating by parts, we obtain

F1(ρ) = 1

ρ2

∫ ∞

0

z J2(z) dz = 1

ρ2

[
2

∫ ∞

0

J1(z) − z J1|∞0 dz

]
= 2

ρ2
, (6.33)

and finally, gathering together all contributions, we obtain

SN (�x) = 1

2

∫ ∞

0

ρFN (ρ) dρ

∫ 2π

0

[
Q

(�x − �ρ)
cos 2ϕ + U

(�x − �ρ)
sin 2ϕ

]
dϕ,

PN (�x) = 1

2

∫ ∞

0

ρFN (ρ) dρ

∫ 2π

0

[−Q
(�x − �ρ)

sin 2ϕ + U
(�x − �ρ)

cos 2ϕ
]

dϕ.

(6.34)

In the particular case of FN (ρ) = F1(ρ) = 2/ρ2 chosen in Seljak and Zaldarriaga (1998)

we arrive at almost the same result as in this reference but with one difference: we see no

reason to consider the window-function F1(ρ) = 2/ρ2 equal to zero at ρ = 0. In any case

this is a measure-zero difference and does not affect the value of the integral in Eq. (7.23).

Therefore we can ignore the difference. We are of the opinion that the conclusion made in

Seljak and Zaldarriaga (1998) is more significant; it states that in order to avoid a difficult

(or even impossible) integration of data over the entire sky, we can use a modified smoothing

function

F(ρ) = −g(ρ) + 2

ρ2

∫ ρ

0

ρ ′g(ρ ′) dρ ′, (6.35)

where the function g(ρ) obeys the condition∫
ρg(ρ) dρ = 0, (6.36)

and where the last integral is taken over the entire sky.

We believe that any smoothing function can be used legitimately and that no additional

conditions must be imposed that would constrain its structure. In order to demonstrate this,

we calculate the functions SN (�x) and PN (�x) for a particular case of scalar perturbations when

a Stokes matrix is given by Eq. (6.9). The calculation of derivatives in polar coordinates is

simple, and after straightforward algebraic manipulations we obtain

SN (�x) = 1

2π

∫ ∞

0

ρW (ρ) dρ

∫ 2π

0

(
�ρ,ρ

(�x − �ρ) − �ρ(�x − �ρ)

ρ

)
dϕ,

PN (�x) = 1

2π

∫ ∞

0

ρW (ρ) dρ

∫ 2π

0

(
2�ρ,ϕ

(�x − �ρ)
ρ

− 2�ϕ(�x − �ρ)

ρ2

)
dϕ,

(6.37)

where the lower indices p or ϕ denote differentiation over the corresponding variable and

W (ρ) is an arbitrary smoothing function. The second expression in Eqs (6.26) shows that

P does indeed vanish for any smoothing function. Therefore, in order to prove the absence

of tensor perturbations, one needs either to make sure that the local value of P(�x) given by

Eq. (6.8) does vanish, or that the non-local quantity yielded by Eqs (6.26), with an arbitrary
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function W (ρ), does vanish. It depends on the properties of noise which of the methods

proves more efficient.

6.4 Geometric representation of the polarization field
To study the properties of the CMB polarization field, and in particular the distri-

bution of this polarization over the celestial sphere, it is necessary to develop a technique

(or techniques) of its visualization (mapping). Mapping causes no difficulties for anisotropy

distribution because the values of �T (θ, ϕ) on the sphere are characterized by a scalar

function and are radially visualized using a linear or colour scale that puts a value of �T in

correspondence with a certain colour. This method obviously fails for the CBM polarization as

it is definitely not a linear function. Moreover, it is clear that several methods can be suggested

that would represent the fundamental properties of a polarized signal. For instance, to map

the polarization field, Bond and Efstathiou (1987) used the ‘vector’ �P(θ, ϕ) whose length | �P|
equals | �P| = P =

√
Q2 + U 2 and whose direction is given by the condition tan 2ϕ = U/Q.

Zaldarriaga and Seljak (1997) used the maps E(θ, ϕ) and B(θ, ϕ) of the components of the

polarization fields.

Dolgov et al. (1999) suggested using a ‘vector’ field �n, corresponding to eigenvectors of

the Stokes matrix for visualizing the peculiarities of the polarization field. Note that any

transformation of the quantities Q and U can (and must) reflect specifics of their distribu-

tion on the celestial sphere. Since the magnitude of the polarization vector P =
√

Q2 + U 2

is invariant under rotations of the polarization plane, its properties will inevitably affect

any transformation of the type L̃(θ, ϕ). Particular interest is connected with the field struc-

ture in the neighbourhood of the so-called singularities of the polarization field at which

P = 0 by virtue of the vanishing of the Q and U components at the same point of

space.

Of course, the measurement of the CMB polarization in the neighbourhood of points where

polarization vanishes is an extremely difficult observational problem. However, there is no

need to approach Q2 + U 2 = 0 very closely. The type of singularity can be identified from a

visualization of the flux line pattern in the region where polarization has not yet completely

vanished.

An analysis of singularities of such fields is given in Dolgov et al. (1999) and Naselsky

and Novikov (1998). Dolgov et al. (1999) discovered that the types of singularities are not

described by the familiar classification of singularities of vector fields in the standard theory

of dynamic systems. Because of the non-analytical behaviour of vectors in the neighbourhood

of zero points Q2 + U 2 = 0, the separatrixes terminate at a singularity, while in the ordinary

case they continue smoothly through these points. This unusual behaviour is clearly traceable

on polarization maps computed in Seljak and Zaldarriaga (1997, 1998). Following Naselsky

and Novikov (1998) and Dolgov et al. (1999), we consider the problem of singularities of

the polarization field in more detail. We will use the eigenvectors of the Stokes matrix found

in Dolgov et al. (1999) as characteristics of the angular distribution of polarization on the

celestial sphere.

The eigenvectors of the matrix (6.13) are expressed in terms of the Stokes parameters Q
and U as follows:

�n + ∼ {U, λ − Q},
�n − ∼ {−U, λ + Q}, (6.38)
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where λ =
√

Q2 + U 2 is the eigenvalue and �n± correspond to the positive and negative

eigenvalues ±λ. The vector �n+ is parallel to the direction of polarization maximum, while

the vector �n− points along the polarization minimum. This is also evident in the base of

eigenvectors that diagonalizes the polarization matrix, a =diag(λ, −λ). The total intensity

of light polarized along �n± is given by I± = I0 ± λ. Consequently, the intensity along the

direction �n+ is found to be higher than that along the direction of �n−.

To avoid ambiguity, we choose to consider the field of directions of the vector �n+ and the

singular points of this field. We are looking at the problem of singular points of the vector

field in the case when the direction of the components [x(t), y(t)] of this two-dimensional

vector field obeys the following equation:

dy

dx
= F1(x, y)

F2(x, y)
. (6.39)

Singularities may arise when both functions F1,2(x, y) vanish. In this case the condition of

unicity of the solution of the differential equation is not met, and more than one integral

curve can be traced through the same point. The standard theory is valid when the functions

F1,2(x, y) are analytical in the neighbourhood of the zeros, and the first order of the Taylor

expansion for them has the form

Fj = a j (x − x0) + b j (y − y0). (6.40)

In this situation there exist three types of singularities: nodes, saddles and foci (see Bronshtein

and Semendyaev (1955)). The separatrixes of these solutions are three intersecting lines that

degenerate to straight lines in the linear approximation. However, in the case of the vector

polarization field, the main equations change to

dy

dx
= n+

y

n+
x

= λ − Q

U
. (6.41)

As before, the singular points may arise if both the numerator and the denominator vanish.

This is equivalent to the condition Q = U = 0. The main difference from the standard case

is that the numerator is not analytical in the vicinity of zero. This fact leads to a very different

behaviour of the integral curves close to such points. In this case the standard theory does not

work. In what follows we investigate the structure of solutions in the neighbourhood of these

points directly. Assume now that the functions Q and U are analytical close to Q = U = 0

and can be described by the equations

Q 	 q1x + q2 y, U 	 u1x + u2 y. (6.42)

For brevity we assume that Q and U vanish for x = y = 0. For convenience we introduce

new coordinates:

ξ = q1x + q2 y; η = u1x + u2 y. (6.43)

Since a transformation of these coordinates consists of rotation and a change of scale, the type

of singularities remains unchanged. We introduce polar coordinates on a plane as follows:

ξ = r cos ϕ; η = r sin ϕ. (6.44)
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In these coordinates, Eq. (6.41) becomes

d ln r

dφ
= N

D
≡ q2t3 + (q1 − 2u2)t2 − (q2 + 2u1)t − q1

u2t3 + (u1 + 2q2)t2 + (2q1 − u2)t − u1

, (6.45)

where t = tan(ϕ/2).

In the general case, the denominator D has three roots t j , j = 1, 2, 3. With no loss of

generality we can assume that u2 = 1, so that these roots meet the following conditions:

t1t2t3 = u1, t1t2 + t2t3 + t3t1 = 2q1 − 1, t1 + t2 + t3 = −(u1 + 2q2). (6.46)

The integration of Eq. (6.45) is simplified if we expand the right-hand side into elementary

factors,

d ln r

dϕ
= q1 +

3∑
j

B j

t − t j
, (6.47)

where we immediately see that none of the indices D j = N (t j )/(t j − tk)(t j tl) in j, k, l is

equal to another. It can be easily confirmed that

B1 = − (1 + t2t3)
(
1 + t2

1

)2

2(t1 − t2)(t1 − t3)
. (6.48)

The remaining parameters B2 and B3 are found by using the cyclic permutation of indices in

Eq. (6.48). Since d ln r/dϕ = (d ln r/dt)(1 + t2)/2, the equation can finally be rewritten in

the form

d ln r

dt
= 2

1 + t2

(
q1 +

3∑
j

B j

t − t j

)
, (6.49)

and this makes integration a simple operation. The corresponding solution has the form

r = r0(1 + t2)
3∏
j

(t − t j )
2ν j , (6.50)

where r0 is an arbitrary constant and ν j (the power-law exponents) are given by

ν j = B j

1 + t2
j

, (6.51)

with constants B j obtained from Eq. (6.48). It is not difficult to confirm that the ν j satisfy

the conditions

3∑
l

ν j = −1, (6.52)

3∑
j

ν j t j = −1

2

(
3∑
j

t j +
3∏
j

t j

)
= q1, (6.53)

3∏
j

ν j =
(
1 + t2

1

)(
1 + t2

2

)
(1 + t3)

8(t1 − t2)2(t2 − t3)2(t3 − t1)2
(1 + t1t2)(1 + t2t3)(1 + t3t1). (6.54)
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(a) (b) (c)

Figure 6.6 Line flux for three different types of singularity: (a) saddles, (b) beaks and (c)
comets. Dashed curves correspond to singular solutions (separatrixes). Adapted from
Dolgov et al. (1999).

The last three factors in Eq. (6.54) are proportional to the determinant D = q1u2 − q2u1, and

(1 + t1t2)(1 + t2t3)(1 + t3t1) = 2(q1u2 − u1q2)/u2
2 ≡ 2d/u2

2. (6.55)

If all roots t j are real, then the sign of the product
∏3

j ν j coincides with that of the determinant

D. However, if one of the roots t1 is real while the other two are complex conjugate, then the

determinant and the product have opposite signs.

Now we can start to classify the points of singularity. Following Dolgov et al. (1999) we

first consider the case of three real roots t j . The behaviour of the solutions is dictated by

the signs of the power-law exponents ν j . As follows from Eq. (6.52), at least one of these

exponents must be negative. In order to find which other sign combinations are possible, we

assume (without loss of generality) that

t1 > t2 > t3. (6.56)

In this case the following relations hold:

sign[ν1] = sign [−(1 + t2t3)] ,

sign[ν2] = sign [(1 + t1t3)] ,

sign[ν3] = sign [−(1 + t1t2)] .

(6.57)

Therefore, if t3 > 0 then the following signs arise for ν j : (−, +, −). If t3 < 0 and t2 > 0,

then ν3 < 0 and one or both of ν1 and ν2 are negative. They cannot both be positive because

if (1 + t1t3) > 0 then at the same time (1 + t2t3) > 0 and ν1 < 0. The situation is similar in

the case of t1 > 0 and t2 < 0, in which case the sign sequence (−, +, +) is impossible. If

all t j < 0, the sign sequence becomes (−, −, +). Therefore only two combinations of signs

are allowed for ν j : these are (−, −, −) and (−, −, +). The former combination is realized

in the case d < 0 in correspondence with Eqs (6.54) and (6.55). If, however, the determinant

is positive then the sign combination for ν j is (−, −, +).

If d < 0, the solution does not pass through zero in the neighbourhood of the point of

singularity, and its behaviour resembles the behaviour of a conventional saddle point; the only

difference is that in this case we have three linear asymptotes, not four as in the conventional

case (see Fig. 6.6(a)). Following Dolgov et al. (1999), we also refer to these points as ‘saddle’

points.
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Figure 6.7 Transformation of the flux lines of the ‘vector’ �V near the beak (upper panel)
and the comet (lower panel) singularities of �n+ plotted in Figs 6.6(b) and (c), respectively.
The maps from left to right correspond to rotation by 45 and 90◦, respectively, with respect
to the first one. Adapted from Dolgov et al. (1999).

The fact that in our case, in contrast to ordinary singularities, the separatrixes do not pass

through points of singularity corresponds to a non-analytical behaviour of Eq. (6.41) by

virtue of the square root. If d > 0, the sign combination becomes (−, −, +) and the solution

vanishes along one of the directions while it tends to infinity along the other two. The form

of the solution greatly differs from the standard one. The field lines cannot be continuous

from ϕ = ϕ1 to ϕ = ϕ1 + π , which is possible in the ordinary case. We refer to this type of

singularity as a ‘beak’ (see Fig. 6.6(b)). If only one of the roots t j is real and the other two

are complex conjugate, the solution has the form

r

r0

= (t2 + 1) | t − t2 |4Re ν2 exp (4β Im ν2) (t − t1)2ν1 , (6.58)

where β = tan−1[
t2/(t − �t2)]. The real root is negative, ν1 < 0, as we see from Eq. (6.58),

and therefore r does not vanish in the neighbourhood of this singularity. The flux of lines

of the polarization field is shown for this case in Fig. 6.6(c). This type of singularity can be

referred to as a ‘comet’. This situation occurs for d > 0.

Note that the first classification of singular points of the CMB polarization map was

performed by Naselsky and Novikov (1998), in which the equation dy/dx = Q/U was

used to describe the behaviour of flux lines of the ‘vector’ �V = [U, Q]. However, under a

coordinate transformation (for example, rotation) U and Q are not transformed as components

of a vector. For a detailed comparison of the two methods, see Dolgov et al. (1999). Here

we would like to note that, in accordance with the standard classification, there can be three

possible types of singular points of the ‘vector’ �V in a fixed reference frame: knots, foci and

saddles (see Figs 6.6 and 6.7).

The probability of realization of the various types of singularity was calculated in the

following manner. Obviously, the probability of a ‘saddle’ point forming is 50%, since the

saddle arises only for d < 0. The probability that ‘comets’ and ‘beaks’ arise was calculated

numerically provided d > 0 and there is one real root of the equation D = 0 (for comets) or

three real roots for beaks. Here D is the denominator in Eq. (6.45) (see Dolgov et al. (1999)).
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The probabilities of the formation of saddles, beaks and comets with randomly chosen q1,

q2, u1 and u2 equal Ws = 0.5, Wb 	 0.116 and Wc 	 0.384, respectively.

We can also evaluate the density of singularities on the map (see Bond and Efstathiou

(1987) and Naselsky and Novikov (1998)). All points of singularity arise when Q = 0 and

U = 0. The density of these points is proportional to

d Q dU = |d| dx dy (6.59)

and therefore the density is defined in terms of the mean values of the determinant d = q1u2 +
q2u1. It can be shown that saddles are responsible for 50% of all singularities 〈ns〉 = 0.5n,

where n is the concentration of all singular points (Dolgov et al., 1999). The calculation of

the concentration of beaks and comets is more complicated and is necessarily numerical.

According to our estimates, the surface densities of beaks and comets are given by 〈nb〉 	
0.052n and 〈ns〉 	 0.448n, respectively. Deviations from this and the above-found values for

Ws,b,c may indicate that perturbations deviate from the Gaussian type.

Such deviations can be caused by various factors. For instance, this could be the presence on

CMB polarization maps of various types of noise due to the synchrotron radiation of galaxies,

the background of discrete sources, etc. An important disturbing factor for the primordial

signal is also the noise of receiver electronics, which is inevitable in all observational data. All

these sources distorted the general properties of the polarization field in the neighbourhood

of the singularity points where the Q and U components vanish. At first glance, the situation

corresponding to the study of the properties of the signal in the zones surrounding such

peculiar points looks extremely unpromising. Indeed, the Q and U components are formally

a realization of a random Gaussian process (with a natural assumption that the perturbations

we seek are also Gaussian), and therefore the behaviour of the fields Q and U in the vicinity

of the points Q = 0, U = 0 is also random. Furthermore, the local properties of the field must

be measured at high angular resolution, which is quite a difficult task in most experiments.

At the same time, we need to note that a point that plays an important part in analysing the

properties of the polarization field is that the characteristic correlation scale of both the Q
and U components, θc, is close to 10–15 minutes of arc for the most realistic cosmological

models. This means that the zones of peculiarity around the points Q = 0, U = 0 will have

practically the same characteristic size, to within an order of magnitude. If this is true, any

noise, for instance the measurement electronics noise with correlation scale below θc, will

result in distortion (destruction) of field behaviour in the neighbourhood of the singularity

points; that is it will reduce their concentration and change the signal structure within that

neighbourhood. Consequently, owing to the random nature of this noise, this manifestation

can be identified. We will take up this aspect in detail in the following chapter.
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Statistical properties of random fields of

anisotropy and polarization in the CMB

7.1 Introduction
In this chapter we concentrate on testing the statistical properties of anisotropy and

polarization fields generated by primary perturbations of density, velocity and gravitational

potential in the hydrogen recombination epoch. The main working hypothesis on which both

the modern theory of structure formation in the Universe and the theory of generation of

primordial anisotropy and polarization are based is the assumption of the random nature of

the distribution of values of amplitude and phase of the primordial perturbations.

We need to emphasize that the idea of the random nature of primordial perturbations was

introduced into cosmology long before it was ultimately explained in terms of inflationary

models. In a certain sense, this idea reflects the fact that the distribution of matter in the

Universe on spatial scales exceeding 102 Mpc is on average uniform and isotropic. If the

formation of structures in different parts of the Universe separated by distances greater than

102–103 Mpc occurred independently of one another, it is then only natural to assume that

the primordial distributions of the density, velocity and gravitational potential perturbations

were once equally independent. Moreover, we know that non-linear in amplitude perturbations

of density resulting from condensation of matter on smaller scales also evolved from small

fluctuations. If there is no primordially favoured separation line between the scales of galaxies

and clusters on the one hand, and the scale of uniformity in the Universe on the other, then

it is natural to assume that primordial perturbations had a random distribution of amplitudes

and phases and amplitudes on the entire scale of spatial scales.

The randomness of the spatial distribution of perturbations – provided they are small – is

automatically transferred to the Fourier amplitudes. In the simplest case, two more assump-

tions remain: the form of the distribution function of Fourier amplitudes, which is assumed

to be Gaussian, and the equidistribution of metric perturbation amplitudes over the values

of the wave vector. After this we arrive at the scale-invariant Harrison–Zeldovich spectrum,

which is well known in cosmology and widely used to process observational data on the CMB

anisotropy. It is the Harrison–Zeldovich spectrum that corresponds to the spectrum of primor-

dial metric perturbations that are, according to most theories of inflationary expansion of the

early Universe, a consequence of quantum fluctuations of the vacuum of physical fields (see,

for example, Linde (1990)). Nevertheless, we should mention that the progress in inflation

models and, among other things, the inclusion of several fields that model more complicated

properties of the vacuum led to the prediction of, along with the possibility of generation of

primary Gaussian metric perturbations, more complicated non-Gaussian statistical properties

of fluctuations. By virtue of the linear relation between the perturbations of metric, veloc-

ity and plasma density during the hydrogen recombination epoch, the statistical properties

179
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of the CMB anisotropy and polarization distributions on the sky is in complete agreement

with the statistics of primordial perturbations. Therefore, by analysing these specifics of the

CMB anisotropy and polarization, we analyse also the properties of inflationary models that

describe the birth of the Universe.

Note that along with this fundamental problem there exist a number of important ‘applica-

tions’ problems that require a knowledge of the characteristics of distribution of anisotropy

and polarization on the celestial sphere. We again stress the dependence of multiple anisotropy

and polarization spectra on the most important cosmological parameters that are discussed

in detail in this chapter. However, Gaussian random processes are the only ones for which

the knowledge of all spectral parameters completely determines all statistical properties. For

non-Gaussian statistics the situation is more complicated (see, for example, Coles and Barrow

(1987)). We remind the reader that observations of the CMB anisotropy and polarization are

inevitably made in the presence of a number of non-Gaussian sources of radio background.

For instance, the radiation of our Galaxy is clearly visible on CMB anisotropy maps

obtained by the COBE mission. Non-Gaussian signals that manifest themselves as additional

sources of noise against the background of the useful signal include radio emission of active

galactic nuclei, pulsars, dust and hot gas clouds, and synchrotron radiation. Therefore, it is

most important to subtract the contributions of these components from the primary signal;

knowledge of the statistical nature of the primordial anisotropy and the polarization of the

CMB is crucial in solving this problem. Moreover, an insufficient or incorrect account of the

factors listed above results in a false structure of anisotropy and polarization power spectra

and hence in erroneous determination of parameters of the cosmological model. Finally, the

non-Gaussian character of the observed signal of anisotropy and polarization may ‘arise’

during the experiment as a result of specific properties of the antenna of the radio telescope,

of the strategy of observations, insufficient accuracy of establishing the directivity of the

antenna, delays in bolometer response, etc.

All these ‘instrument’ factors require detailed analysis focused on a single goal: the min-

imization of the level of systematic errors introduced by the experiment into the structure

and amplitude of the signal. The study of these specifics is inseparable from studying the

characteristics of the primordial signal itself – they are the features that are distorted in the

course of the experiment.

The list of problems arising in connection with studying the statistical nature of anisotropy

and polarization signals can be continued almost ad infinitum, but even the examples given

above are sufficient to illustrate the importance and urgency of this type of work. This chapter

concentrates on analysing the most important results obtained by modern cosmology since the

1980s of theoretical and experimental studies of statistical properties of the CMB anisotropy

and polarization. Several new statistical methods for the study of the CMB anisotropy will

be described in chapter 8 in connection with the analysis of the WMAP observational

data.

7.2 Spectral parameters of the Gaussian anisotropy field
In this section we introduce the main characteristics of the random Gaussian field of

anisotropy, leaving the statistical properties of the polarization field to the subsequent sections

of this chapter. Our analysis is based on the generalization of Rice’s idea (Rice, 1944, 1945)

of describing the properties of one-dimensional noise to three-dimensional noise (developed
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in Bardeen et al. (1986)) and to two-dimensional Gaussian fields (developed in Bond and

Efstathiou (1987)).

To facilitate the reading of this section, we begin with a summary of the main definitions

and properties of Gaussian statistics of the CMB anisotropy that we used in part earlier.

Following Bond and Efstathiou (1987), we consider the temperature distribution of the CMB

radiation of the celestial sphere. Let us assume that this field is a random, two-dimensional

Gaussian field on a sphere. This field is completely described by the power spectrum C(l).
Using this description, we can choose the familiar expression for the CMB temperature,

T (�q) = 〈T (�q)〉 +
∞∑

l=1

l∑
m=−l

am
l C(l)

1
2 Y m

l (�q), (7.1)

where q is a unit vector tangential to the direction of propagation of photons, am
l are inde-

pendent random Gaussian numbers, 〈T (�q)〉 is the mean temperature of the CMB radiation

such that 〈T (�q)〉 = (1/4π )
∫

T (�q) d�, and Y m
l are spherical harmonics. We introduce the

following expression for the CMB anisotropy: �T (�q) = (T (�q) − 〈T (�q)〉)/〈T (�q)〉. The two-

point correlation function, C(θ ), can be found by averaging T (�q) × T (�q ′) over the entire sky,

provided the angle between the directions �q and �q ′ remains constant:

Cobs(θ ) = 〈�T (�q) · �T (�q ′)〉, �q · �q ′ = cos θ. (7.2)

Taking into account Eq. (7.2) and also the equality 〈am
l am ′

l ′ 〉 = δll ′δmm ′ , we obtain

Cobs(θ ) = 1

4π

∞∑
l=2

l∑
m=−l

(
am

l

)2
C(l)Pl(cos θ ). (7.3)

The mean value of the observational correlation function is given by

C(θ ) = Cobs(θ ) = 1

4π

∞∑
l=2

(2l + 1)C(l)Pl(cos θ ) . (7.4)

Along with an analysis of properties of the �T signal on the celestial sphere, a crucial factor

in studying the CMB anisotropy is the so-called ‘flat-sky’ approximation, in which a small

area of the sphere is considered to be flat. This approximation makes it possible to apply the

Fourier analysis technique on the plane, which greatly simplifies the mathematical aspect of

the problem. However, the flat-sky approximation introduces certain errors into the statistical

characteristics of the signal which must be taken into account, even if there is no external

noise.

Following Abbott and Wise (1984), we will consider the effect of the final size of an area of

the sky on the properties of the correlation function under observation. We take into account

that this correlation function deviates from its mean value over the ensemble approximately

by the value of variance, due to the ‘cosmic variance’:1

D0(θ ) = C2
obs(θ ) − Cobs

2 =
(

1

4π

)2 ∑
l

(2l + 1)C2
l P2

l (cos θ ). (7.5)

1 This term reflects the fact that when analysing the statistical properties of the �T signal, we only have a single

realization on the celestial sphere but cannot carry out averaging over the ensemble of realizations.
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The zero subscript 0 on D indicates that this value was obtained by averaging over the entire

sky. The solution D0(θ ) is sufficiently small if θ ∼ 1o, but if we consider only a small part

of the sky this quantity increases to

D�(θ ) ∼
√

4π

�
D0(θ ), (7.6)

where � is the area of this small region in units of 4π . We see from Eq. (7.6) that as [�] → 0

the uncertainty in the behaviour of C(l) increases as �1/2, which automatically leads to

the error δC(l)/C(l) 	 (�l)−1/2 (Abbott and Wise, 1984; Knox, 1995). Threfore, the flat-

sky approximation describes the general characteristics of the spectrum C(l) with an error

δC(l)/C(l) 
 1 only for multipoles with numbers l� � 1.

If we investigate only a small patch of the sky, then its geometry is very nearly flat and we

can introduce Cartesian coordinates (x, y) and rewrite �T (x, y) as the sum of the Fourier

series (Bond and Efstathiou, 1987)

�T (x, y) =
∑

i j

ai j C
1
2 (k) cos

(
2π

i x + j y

L
+ ϕi j

)
, (7.7)

where C(k) is the power spectrum, k = 2π
L

√
i2 + j2, ai j are independent random Gaussian

quantities, ϕi j are random phases equidistributed in the interval (0, 2π ), and L 	 �1/2 is the

angular size of the investigated region.

The correlation function Cobs(r ) = 〈�T (x, y) · �T (x ′, y′)〉 can be obtained by averaging

over the square L × L similarly to Eq. (7.2):

Cobs(r ) = 1

2

∑
i j

a2
i j C(k)J0(kr ), (7.8)

where r =
√

(x − x ′)2 + (y − y′)2. Formally, we average over the ensemble of realizations

to obtain

C(r ) = Cobs(r ) = 1

2

∑
i j

C(k)J0(kr ), (7.9)

where k was defined earlier as a function of i and j . Equation (7.9) is in good argeement with

Eq. (7.4) since if θ 
 π , then Pl(cos θ ) 	 J0(lθ ) and lθ 	 kr .

Consequently, perturbations �T can be described by Eq. (7.7), where C(k) 	 C(l), k ∼
l/ξn (ξn is the current horizon for z = 0). Obviously the observational correlation function

deviates from the mean value over the ensemble by the value of variance:

D(r ) = C2
obs(r ) − (Cobs(r ))2 = 1

2

∑
i j

C2(k)J 2
0 (kr ). (7.10)

The correlation function for r 
 L and its variance can be written in the following

form:

C(r ) = π
∫

kC(k)J0(kr ) dk,

D(r ) = π
∫

kC2(k)J 2
0 (kr ) dk,

Cobs(r ) ∼ C(r ) ± √
D(r ).

(7.11)
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We now use Eqs (7.11) and introduce spectral parameters, as in Bond and Efstathiou (1987):

σ 2
0 = π

∫
kC(k) dk,

σ 2
1 = π

∫
k3C(k) dk,

σ 2
2 = π

∫
k5C(k) dk,

R∗ = σ1/σ2, rc = σ0/σ1, γ = σ 2
1 /(σ0σ2).

(7.12)

It is clear from Eqs (7.12) that the spectral parameters are completely defined by the values

of the correlation function and of its second and fourth derivatives with respect to r evaluated

at a point r = 0:

σ 2
i = (−1)i (i!)22i di C(ω)

dωi

∣∣∣∣
ω=0

. (7.13)

Therefore, the spectral parameters σ 2
i are moments of the spectrum C(l) and completely

describe, as shown in Bardeen et al. (1986) and Bond and Efstathiou (1987), the local

topology of the CMB anisotropy maps. Let us take a closer look at this aspect of the problem.

7.3 Local topology of the random Gaussian anisotropy field: peak statistics
We remind the reader that a Gaussian random field is a field whose joint Gaussian

probability of distribution of random variables xi is given by the expression

P(x1, . . . , xn) dx1 . . . dxn = e−Q

((2π )n det M)1/2
dx1 . . . dxn,

2Q =
∑

i j

�xi (M−1)i j�x j .
(7.14)

To determine the covariant matrix Mi j in Eqs (7.14) we require only the mean values of

random variables 〈xi 〉 and their variances, as follows:

Mi j = 〈�xi�x j 〉, �xi = xi − 〈xi 〉. (7.15)

Let us assume now that a random Gaussian process has already been realized on a sphere

as it occurs in data on the CMB anisotropy measured by COBE. On the whole, an anisotropy

realization appears as a sequence of light and dark zones corresponding to maxima (light

zones) and minima (dark zones) of the signal �T/T . How is the number of these zones related

to the properties of the spectrum of the Gaussian distribution �T/T ? What are the largest

(positive) and smallest (negative) values of �T/T on the map? What is the structure of

the signal in the neighbourhood of the points of maxima and minima of �T/T ? These

and other questions constitute the gist of the problem of studying the local topology of the

anisotropy field, and the modern theory of random fields provides quite definite answers to

these questions. Why is it so important to study the local topology of the signal? Obviously,

testing its topological features can confirm or reject the hypothesis of the normal (Gaussian)

distribution of anisotropy. Furthermore, it could be possible in some cases to classify the

sources of non-Gaussian distortions of the signal and eliminate some of them (effects of

systematics, manifestations of galactic and extragalactic noise, etc.), thus coming very close

to solving the problem of determining the statistical nature of primordial non-uniformity of

the metric, density and velocity of matter calculated from the data on the CMB anisotropy.
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A new question arises: why not make use of, say, the analysis of the three-point correlation

function, or bispectrum, or higher-order moments which are standard tests of detecting that

a signal is non-Gaussian?2 The answer is surprisingly simple. It is not only possible but also

necessary to make use of these standard tests when studying the statistical properties of the

realization of random fields. In practice, however, the negative and positive results of applying

these tests can hardly be considered final, since a hypothesis of the Gaussian nature of the

signal can be confirmed only by using an infinite number of n-point correlation functions.

A distribution may look Gaussian up to very high moments but then reveal its non-Gaussian

side. Examples of this type of anomaly are well known (see, for example, Kendall and Stuart

(1977)). For this reason, any additional statistics and tests that prove to be sensitive to various

properties of a Gaussian process mutually complement one another and make it possible to

come very close to solving the problem.

As a first important step in studying the local structure of anisotropy maps of the CMB,

we consider the statistics of �T/T peaks; this was first suggested as one of the critical tests

for the Gaussian nature of the primordial signal in Sazin (1985) and Zabotin and Naselsky

(1985). A detailed theory of peaks in the �(T θ, ϕ) distribution (for a Gaussian signal) was

perfected in Bond and Efstathiou (1987) and generalized to specific non-Gaussian fields in

Coles and Barrow (1987). Following Bardeen et al. (1986) and Bond and Efstathiou (1987)

we treat the peak distribution �T/T on a sphere as a random pointlike process characterized

by the probability density

npk =
∑

p

δ(�q − �qp), (7.16)

where �q are the coordinates of an arbitrary point on a sphere, �qp are the positions of extreme

points of the distribution �T (�q ): �∇(�T (�q ) = 0; �∇ is the gradient operator on a sphere.

Let us consider the behaviour of the anisotropy fields in the neighbourhood of an extreme

point. Following Bardeen et al. (1986) we introduce the notation ξ (�q ) ≡ ∇(�T (�q )) and

expand (�T (�q ) into a Taylor series:

�T (�q ) = �T (�qp) + 1

2

∑
i j

ξi j (�q − �qp)i (�q − �qp) j . (7.17)

Now we carry out similar operations for the field gradient,

η(�q ) 	
∑

i j

ξi j (�q − �qp) j , (7.18)

where ξi j is the matrix of second derivatives of�T (�q ) with respect to the variable �q. Assuming

the matrix ξi j to be non-singular at a point �q = �qp we find the components of the vector

(�q − �qp) from Eq. (7.18) to be given by

(�q − �qp)i 	 ξ−1(�qp)ηi (�q ), (7.19)

where ξ−1(�qp) is a matrix inverted with respect to the matrix ξi j . Combining Eqs (7.16) and

(7.19) and taking into account the properties of the δ function, we obtain

〈npk(�q )〉 = 〈| det ξ−1(�q )|δ(2)[�η(�q )]〉 =
∫

d(dT ) d6ξ | det ξ−1(�q )|P(�T ; �ξ = 0; ξ ),

(7.20)

2 A detailed analysis of these techniques is given in Heavens and Sheth (1999) and Peebles (1983).
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where P(�T, �ξ = 0, ξ ) is a joint distribution function of anisotropy �T and of its first

and second derivatives evaluated at a point �ξ = {ξi } = 0. The uniformity and isotropy of the

field �T signifies on average that the mean number of peaks is independent of coordinates

on a sphere. Following Bond and Efstathiou (1987) we introduce a dimensionless variable

ν ≡ �T/σ0, where σ0 is defined in Eqs (7.12)–(7.13), and equals the square root of the

variance �T .

We define the functions Nmax(ν) dν and Nmin(ν) dν as the density of �T maxima and

minima, respectively, on the anisotropy map, whose amplitude lies within the interval ν ÷
(ν + dν). We refer the reader interested in details of calculations to the original publications,

Bardeen et al. (1986) and Bond and Efstathiou (1987), and give the final expressions for

Nmax(ν) dν and Nmin(ν) dν (Novikov and Jørgensen, 1996a,b) as follows:

Nmax(ν) dν = 1

2πθ2∗
exp

(
−ν2

2

)
dν

(2π )1/2
G(γ, γ ν), (7.21a)

G(γ, x∗) ≡ (x2
∗ − γ 2)

[
1 − 1

2
erfc

{
x∗

[2(1 − γ 2)]1/2

}]
+ x∗(1 − γ 2)

exp{−x2
∗/[2(1 − γ 2)]}

[2π (1 − γ 2)]1/2

+ exp[−x2
∗/(3 − 2γ 2)]

(3 − 2γ 2)1/2

[
1 − 1

2
erfc

{
x∗

[2(1 − γ 2)(3 − 2γ 2)]1/2

}]
, (7.21b)

where erfc(x) = (1 − (2/
√

π ))
∫ x

o dt e−t2

, θ∗ = √
2σ1/σ2, and σ1, σ2 and γ are defined in

Eqs (7.12) and (7.13). So,

(Nmax + Nmin)(ν) dν = γ 2

2πθ2∗

exp(−ν2/2)

(2π )1/2

{
ν2 − 1 + exp[−x2

∗/(3 − 2γ 2)]

γ 2(3 − 2γ 2)1/2

}
.

(7.22)

Integration of Eqs (7.21) and (7.22) from νt to ∞, where ν = νt is an arbitrarily chosen level,

gives the mean number of maxima and minima whose amplitude is above the threshold νt

(Bardeen et al., 1986; Bond and Efstathiou, 1987):

nmax(νt) + nmin(νt) = γ 2

(2π )3/2θ2∗
νte

−ν2
t /2 + 1

4π
√

3θ2∗
erfc

{
νt

[2(1 − 2γ 2/3)]1/2

}
.

(7.23)

If νt → −∞ then the total number of extrema on the anisotropy map is given by (Bond and

Efstathiou, 1987) as

npk(−∞) = 1

4π
√

3
θ−2
∗ (ster−1). (7.24)

Equations (7.21)–(7.24) open up the study of the Gaussin nature of the signal, based on calcu-

lating the concentration of maxima and minima on anisotropy maps in different cosmological

models.

At the same time, Eqs (7.21)–(7.24) need a slight modification that should take into account

the actual parameters of the experiment. In the ‘simple’ case, when the properties of the signal

are dictated by the primordial anisotropy of the CMB radiation smoothed by the receiving

antenna and instrument noise, the spectrum parameters change. We assume that the trans-

mission function of the antenna has a Gaussian profile with a characteristic angular scale θA,

and that the instrument noise is a ‘white’ noise whose spectrum Cl(noise) is independent of
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Table 7.1.

FWHM θc θ∗ θc θ∗ θc θ∗
(arcmin) � (arcmin) γ (arcmin) (arcmin) γ (arcmin) (arcmin) γ (arcmin)

5 0.1 8.6 0.53 4.5 5.7 0.44 2.5 3.6 0.61 2.2

5 0.3 11.1 0.45 5.0 5.9 0.40 2.3 3.5 0.61 2.2

5 1.0 15.0 0.40 6.1 6.1 0.37 2.3 3.6 0.60 2.1

10 0.1 15.0 0.49 7.4 12.8 0.45 5.7 8.4 0.54 4.5

10 0.3 17.0 0.52 8.9 13.7 0.42 5.8 8.5 0.53 4.5

10 1.0 22.0 0.43 9.4 16.0 0.34 5.5 8.9 0.50 4.4

20 0.1 32.3 0.44 14.2 29.7 0.42 12.3 21.1 0.45 9.6

20 0.3 30.2 0.48 14.6 28.0 0.45 12.7 20.5 0.48 9.7

20 1.0 35.9 0.49 17.5 32.9 0.42 13.9 23.0 0.43 9.9

l. Following Barreiro et al. (1997), we define the total correlation function for a mixture of

primordial anisotropy and noise as follows:

C(α, σ ) = 1

4π

∑
l

(2l + 1)
[
C(l) e−l(l+1)θ2

A + Cnoise

]
Pl(cos θ ). (7.25)

Then, in view of the definition in Eq. (7.13), all spectral parameters of the random Gaussian

CMB anisotropy field are functions of θA and Cnoise, including also the external instrument

noise. Again following Barreiro et al. (1997), we introduce the noise amplitude Anoise(10′)
that characterizes the level of noise smoothed on a scale 10′ using a Gaussian filter. Without

discussing the specifics of the experiments, we choose three values,3 Anoise(10′) = (0, 1, 3) ×
10−5. The case of Anoise(10′) = 0 is that of an ‘ideal’ experiment that does not distort the

properties of the primordial signal on scales of 10′ and higher. Two other values simulate the

effect of noise on a map at levels close to the amplitudes of the primordial signal. We now

fix three models of the Universe with �tot = 1, �tot = 0.3 and �tot = 0.1 with the baryonic

density �b = 0.05 and the Hubble constant h = 0.5. We consider the hidden mass to be ‘cold’

and assume that initial perturbations are adiabatic and have the Harrison–Zeldovich spectrum.

What is the behaviour of the concentration of anisotropy field maxima Nmax(νt) for these

three cosmological models? Table 7.1 (Barreiro et al., 1997) summarizes the spectral param-

eters for various values of θA and Anoise(10′). The relation between θA and the width of

the directivity diagram of the antenna at half-amplitude (FWHM) is given by θA = 0.425

(FWHM).

We need to emphasize that as the resolving power of the antenna decreases (the FWHM

increases), the number of peaks on the sphere increases by almost three orders of magnitude

(Table 7.2). At the same time, the statistical spread in the number of peaks, �n ∼ √
N ,

for FWHM = 5′ is found to be unimportant for an ‘ideal’ experiment (Anoise(10′) = 0) but

becomes decisive if Anoise(10′) = 10−5 and Anoise(10′) = 3 × 10−5. Note that the parameters

of the PLANCK space mission will be very close to the parameters of an ‘ideal’ experiment.

In other models the signal properties are determined by the noise, which in fact results in an

approximate equality of the number of peaks on the sphere.

3 Note that the parameter Anoise(10′) characterizes the level of fluctuations �T/T and is therefore dimensionless.
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Table 7.2.

FWHM

(arcmin) ν � = 0.1 � = 0.3 � = 1 � = 0.1 � = 0.3 � = 1 � = 0.1 � = 0.3 � = 1

5 3 4541 2912 1657 11 019 10 965 10 459 25 147 25 883 25 962

5 3.5 1011 636 357 2401 2362 2228 5674 5842 5794

5 4 174 108 60 407 397 271 986 1016 1007

10 3 1518 1106 753 2192 1953 1615 4727 4660 4295

10 3.5 335 258 164 479 423 341 1055 1038 949

10 4 57 44 28 81 72 56 182 179 163

20 3 335 379 267 419 452 339 795 832 690

20 3.5 74 84 59 91 99 73 174 183 150

20 4 13 14 10 15 17 12 30 31 25

Table 7.2 summarizes the results in these models as a function of νt, FWHM and the noise

level (Barreiro et al., 1997).

7.4 Signal structure in the neighbourhood of minima and maxima of the
CMB anisotropy
The theory makes it possible not only to predict the average number of extrema of

the random Gaussian anisotropy field, but also to calculate the most probable structure of the

field �T in the neighbourhood of a maximum or a minimum (Bardeen et al., 1986; Bond

and Efstathiou, 1987). Following Bond and Efstathiou (1987), we choose a polar system of

coordinates (ω = 2 sin θ/2; ϕ) with origin at the point of maximum of the field �T (qi ) and

resort to the flat-sky approximation to describe the structure of �T in the neighbourhood

of this point. We assume that the peak height equals ν. Then the field distribution in a

neighbourhood of the maximum is elliptical, as follows:

�t(ω) = σ0

{
ν − 1

2
γ x

(
ω

θc

)2

[1 + 2e1 cos(2ϕ)]

}
, (7.26)

where x = ∇2(�T )/σ2 is the radial curvature, e1 is the symmetry, and the coordinate system

is oriented along the major and minor axes of the ellipsoid. The radial curvature x and the

asymmetry e in Eq. (7.26) are random parameters that change from one realization to another.

Using the results from Bond and Efstathiou (1987), we can compare the characteristic sizes of

zones covered by these peaks at half-maximum. In the former case (ν = 1) the corresponding

zone radius is found to be close to θ∗, while for the ν = 3 peak it exceeds θ∗ by a factor of 3

to 4. At the same time, the mean area of the zone at the level νt in the peak neighbourhoods

of height ν > νt is approximately equal to

S(νt) 	 2π

(
θ∗
γ νt

)2 (
1 − 1

ν2
t

)
; νt � 1 (7.27)

and decreases as the level νt is increased. As a result, the high peaks of the Gaussian field

�T have sharp tops and sufficiently extended pedestals. Their shape approaches elliptical,

at least for high (ν > 2) peaks, but the pedestals of each peak are of random shape.
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Figure 7.1 (a) The CMB anisotropy spectrum obtained in the MAXIMA-1 experiment
(Hanany et al., 2000a,b) (top), as compared to (b) the BOOMERANG data (de Bernardis
et al., 2000). Adapted from Hanany et al. (2000a,b).

Taking into account the above-listed properties of peak statistics in the random Gaussian

field �T , we can turn to possible practical uses of them. The next section mostly deals with

analysing peaks on �T maps obtained in the BOOMERANG (De Bernardis et al., 2000) and

MAXIMA-1 (Hanany et al., 2000a,b) experiments.

7.5 Peak statistics on anisotropy maps
We mentioned in Section 7.1 that the observational data obtained by the

BOOMERANG and MAXIMA-1 missions (De Bernardis et al., 2000; Hanany et al., 2000a,b)

marked the advent of a new era in studying the spectra of the CMB radiation. The measured

angular spectrum (see Fig. 7.1) clearly shows a peak on an angular scale corresponding to

the spectral harmonic with the multipole number l 	 200. This is a Sakharov peak. However,

the structure of the CMB anisotropy spectrum for l > 400 is not yet clear, and a new series

of experiments is required, such as MAP and PLANCK missions.

There are several factors of major importance for future experiments. For instance, the

PLANCK experiments will cover a much greater area of the sky than BOOMERANG and

MAXIMA-1. Moreover, PLANCK works on two HFI channels with ν 	 545 GHz and ν 	
857 GHz, which provide the resolution FWHR= 5′.

In this section we analyse peak statistics (statistics of maxima and minima) on the CMB

anisotropy map. We compare these statistics using maps obtained by BOOMERANG and

MAXIMA-1 with those of future observations by PLANCK and we predict certain properties

and shapes of peaks.

Let us consider a model, very nearly realistic, obtained by virtue of successful observations

by MAXIMA-1. According to Hanany et al. (2000), the map obtained on the basis of these

observations shows a high-amplitude peak on the �T/T distribution (Fig. 7.2). The coor-

dinates of this peak are: declination 	 58.6o, right ascension 15h35m. The amplitude of this

peak on a map filtered with the Wiener filter is �T ∼ 2.3–2.5σ , and the value of anisotropy

decreases monotonously to the level of 1σ at 15.2h < α ≤ 15.4h and 58.5o < δ < 60o.

In the following, we examine the salient features in the structure of the peaks in terms of the

measurements of the CMB achievable with the PLANCK experiment; these measurements

will have better resolution than those currently available. A similar prediction was made in

Bunn, Hoffman and Silk (1996) for the experiment conducted on Tenerife (in the canary

Islands) in which the COBE DMR data were used, although the technique was somewhat
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Figure 7.2 Map of an area of the sky obtained by the MAXIMA-1 mission (the Wiener
filter was applied). The map accumulates three 150 GHz channels and one 240 GHz
channel. Adapted from Hanany et al. (2000a,b).

different. For instance, we show that more accurate measurements do not resolve the internal

structure (new high peaks >1.5σ ) inside the area mentioned above.

In an actual experiment, an antenna resolution is finite and the spectral parameters depend

on the antenna diagram θA and hence on the number of Sakharov peaks that can be resolved

by this antenna. This means that the structure of high peaks of �T/T of future PLANCK

maps may differ from the corresponding structure of peaks on the maps generated using

BOOMERANG and MAXIMA-1 data.

On all cosmological models, the CMB anisotropy spectrum C(l) can be described as a sum

of Gaussian peaks with centres at the points of maxima ln (l ≥ 30) (Kotok et al., 2001),

l(l + 1)C(l)

2Nπ
=

{∑
n

An exp

[
− (l − ln)2

2d2
n

]
+ 1

}
e−l2s2

, (7.28)

where n is the number of peaks, dn is the peak width, ln is its location and N is the normalizing

factor for low multipoles (for example normalization based on the COBE data). The last term

of Eq. (7.28) takes into account the Silk attenuation on the angular scale s. Note that we have

not introduced into Eq. (7.28) any low- or high-multipole filters (transmission factors and the

antenna). This means that Eq. (7.28) describes the initial spectrum of perturbations on the

sky without any smoothing. Indeed, the last two factors are very important and their effect

on �T/T maps is decisive. A spectrum of the type (7.28) provides information on the effect

of each Sakharov peak on the topology of �T/T maps. Therefore, by using the Eq. (7.28)

approximation, we can study the effect of the first, second and subsequent Sakharov peaks

on the spectral parameters of future maps obtained using the WMAP, PLANCK and other

missions.

The next question concerns the transmission function, W (l), of a given experiment. We

simulate the basic properties of the function W (l) in the approximation of small angular size

of the map:

G(l) = W (l)

l
= exp

[ − l(l + 1)θ2
A

] {
lm for l 
 30,

l−1 for l � 30,
(7.29)
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(m = 2 for a two-beam and m = 3 for a three-beam circuit of low-multipole filtration).

The exponential in Eq. (7.29) describes an antenna with θA 	 7.45 × 10−3 (θFWHM/1o). To

describe the asymptotes of the cofactor in Eq. (7.29) we introduce a function which corre-

sponds to both limits, as follows:

G(l) 	 (l R)m+1

l[1 + (l R)m+1]
, (7.30)

where R is a characteristic angular scale (see Eq. (7.29)) for low-multipole filtration. There-

fore, the spectral parameters for this model are given by the relation

σ 2
i =

∫ ∞

0

dl l2i g(l)

[
1 +

∑
n

An exp

(
− (l − ln)2

2d2
n

)]
e−l2(s2+θ2

A); i = 0, 1, 2.

(7.31)

Note that for the second and higher Sakharov peaks l2
n/d2

n � 1, and for the first peak

only we have l2
n/d2

1 	 5. For the analytical approximation of the integral in Eq. (7.31) the

asymptotic behaviour l2
n/d2

n � 1 is required for all peaks of the spectrum (7.28). Using this

approximation, we arrive at the formulas for the spectrum parameters σ 2
i , as follows:

σ 2
0 = 1

2

[
2 ln

r

ξ
− C +

√
π

2

∑
n

An
dn

ln
exp

( −l2
nξ

2

1 + 2d2
nξ 2

)
· (

1 + 2d2
n

)1/2

]
,

(7.32)

σ 2
1 = 1

2ξ 2
+

√
π

2

∑
n

Anlndn exp
( −l2

nξ 2

1+2d2
n ξ 2

)
(
1 + 2d2

nξ 2
)3/2

⎡
⎣1 + �

⎛
⎝ ln

dn

√
2
(
1 + 2d2

nξ 2
)
⎞
⎠

⎤
⎦ ,

(7.33)

σ 2
2 = 1

2ξ 4
+

√
π

2

∑
n

Anl3
ndn exp

( −l2
nξ 2

1+2d2
n ξ 2

)
(
1 + 2d2

nξ 2
)7/2

⎡
⎣1 + �

⎛
⎝ ln

dn

√
2
(
1 + 2d2

nξ 2
)
⎞
⎠

⎤
⎦ ,

(7.34)

where C is the Euler constant, ξ 2 = θ2
A + s2, and �(x) = 2/

√
π

∫ x
0

dx e−x2

is the probability

integral. We see from Eq. (7.32) that only the first Sakharov peak is important in the calculation

of the variance σ 2
0 . The effects of the second and subsequent peaks are practically negligible

because of the drop in the amplitude An and due to the relation dn/ ln . However, these peaks

dictate the topological structure of the maps �T/T (see Eqs (7.35) and (7.36)) – for example,

the number of maxima and minima for different thresholds νnσ0 = �T/T . Equations (7.33)

and (7.34) describe a realistic model with d2
nξ 2 
 1 and l2

nξ
2 ≤ 1. In this model the density

of all peaks for ν(−∞, ∞) is given by an especially simple expression,

N+
pk = N−

pk = 1

8π
√

3

σ 2
2

σ 2
1

ster−1, (7.35)

where N+
pk and N+

pk are the densities of all maxima and all minima, respectively.
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Figure 7.3 (a) γ (x, y) and (b) Npk(x, y) as functions of the parameters x = 102 A2/A1

(horizontal axes) and y = 102 A3/A1 (vertical axes). The numbers on the curves correspond
to the values γ (x, y) and Npk(x, y). Note that the point x = 26, y = 46 corresponds to the
amplitudes of the first and two subsequent accoustic peaks according to the MAXIMA-1
and BOOMERANG experiments.

Let us now consider a model situation in which all Sakharov peaks are smoothed (An = 0).

For this model, the spectral parameters θ∗ and γ have the following form:

θ2
∗ = 2ξ 2; γ =

(
2 ln

R

ξ
− C

)−1/2

, (7.36)

and the densities of all maxima and minima of arbitrary height are given by N+
pk = N−

pk =
(1/8π

√
3)ξ−3. If we denote the degree of sky coverage in a certain �T/T experiment as fsky

(for example, fsky 	 0.3% for the MAXIMA-1 experiment), then the number of maxima (or

minima) on the observational map will be given by

Nmax 	 16

(
fsky

0.003

) (
θFWHM

1o

)−2

. (7.37)

According to De Bernardis et al. (2000) and Hanany et al. (2000a,b) the antennas of the

MAXIMA-1 and BOOMERANG experiments have the equivalent FWHM of 	 10′. This

means that in the absence of Sakharov peaks in the spectrum we could detect 576 maxima on

the appropriate maps. However, Eqs (7.32)–(7.34) imply that the presence of Sakharov peaks

in the primordial spectrum decreases the number of peaks on the map to 271. Therefore we

must add to our analysis the understanding that the effect of the Sakharov peaks is to reduce

the number of hot and cold spots on the map by a factor of approximately 2.

The next question of interest is: to what extent is the topology of the �T/T map sensitive

to the amplitudes of the second, A2, and the third, A3, peaks if we assume that the amplitude

and position of the first peak are known? In order to answer this question, we compare

γ (A2, A3) and Npk(A2, A3) for the following models. In model 1 we choose the amplitude A1

corresponding to the data of Hanany et al. (2000a,b), and we assume the coordinates and

widths of the peaks to be as follows: l1 = 210 for width d1 = 95, l2 = 580 for d2 = 110 and

l3 = 950 for d3 = 130. The corresponding plots are shown in Fig. 7.3.

The next model (Fig.7.4) corresponds to a hypothetical situation when the amplitude of

the first Doppler peak is only half of that in the case above. As we see from Eqs (7.32)–(7.34)

and Figs 7.3 and 7.4, the structure of the spectral parameters γ (A2, A3) and Npk(A2, A3) in

this second (‘toy’) model changes dramatically. The number of maxima increases to above
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Figure 7.4 Same as in Fig. 7.3 but for a toy model with the first Sakharov peak amplitude
one-half that in Fig. 7.3.

420, while the parameter γ retains almost the same value γ 	 0.4–0.47. This result is also

important for analysing the global and local map topology. The position and amplitude of the

first Sakharov peak in the C(l) spectrum in the BOOMERANG and MAXIMA-1 experiments

were measured to an accuracy of 10%. Because of this 10% error, the theoretically predicted

number of CMB peaks on the observation maps can vary from 263 to 279. This difference of

16 peaks corresponds to a statistical fluctuation δN/N ∼ N 1/2 of the number of peaks, N ,

on a map, with hardly any changes in the parameter γ . On the whole, starting with the results

given above, we can state that the peak distribution on MAXIMA-1 maps corresponds to the

hypothesis of the Gaussian nature of the signal.

However, another question arises: how will the local topology on a CMB map change if

the resolving power of the receiving instrument increases and the noise level decreases? Will

the future measurements be capable of revealing the internal structure of the peaks that were

identified using the BOOMERANG and MAXIMA-1 experimental data? For example, will

they be able to detect new peaks in the fine structure within the area 0 ≤ ν ≤ 2? If the answer

is yes, what will the typical height of these peaks be? Answers to these questions depend

on the peak-to-peak correlation on high-resolution maps. The spread of the number of peaks

from one realization to another on an �p pixel grid is related to the peak-to-peak correlation

function Cpk−pk by the following formula:

〈(�N+
pk)2〉/〈N+

pk〉2 = 〈N+
pk〉−1 +

∫
d�q d�q ′

�2
p

Cpk−pk(q − q ′), (7.38)

where 〈N+
pk〉 = n+

pk(νt)�p, n+
pk(νt) is the concentration of maxima having height ν above a

certain threshold νt. Note that the first term in Eq. (7.38) corresponds to the Poisson peak

distribution. Heavens and Sheth (1999) have recently conducted analytical and numerical

calculations of the peak-to-peak correlation function and showed that Cpk−pk tends to zero

for θ < θ∗ and reaches a negative value Cpk−pk = −1 for θ = 0. This result reflects the fact

that various high peaks cannot be located close to one another. For instance, two high peaks

with amplitudes ν1 ∼ ν2 ∼ 2–2.5σ must be separated by a distance θ � θ∗. According to

Heavens and Sheth (1999), a typical angular scale θ∗ for the favourite cosmological �CDM

model is close to 20′. This scale is twice as large as the FWHM in the BOOMERANG

and MAXIMA-1 experiments and four times as large as it is in the PLANCK experiment.

It is useful to remark, nevertheless, that about ten low-amplitude ν ≤ 1 peaks can exist
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around a high peak in the above-mentioned region on a high resolution map. Therefore,

we can conclude that isolated 2–2.5σ peaks found on poorly resolved BOOMERANG and

MAXIMA-1 maps manifest themselves as isolated peaks on PLANCK maps.

Let us return to considering a high peak with δ = 58.6o, R A = 15h35′ on the MAXIMA-1

map. The location of this peak is almost independent of high angular resolution of the future

PLANCK experiment, and its amplitude can be described as follows. Imagine that the ideal

experiment with a δ-function antenna revealed the highest peak with coordinates δ and R A.

The amplitude of this peak, measured in units of variance, can be written as

νin = �T/σ0(in), (7.39)

where σ0(in) corresponds to Eq. (7.33) for θ = 0 and ξ = s. We assume for simplicity that the

distribution �(x, y) around the point of maximum is Gaussian, with characteristic scales a
and b = ka, k a constant, such that

�T (x, y) = νinσ0(in) exp

(
− x2

2a2
− y2

2b2

)
, (7.40)

and the parameter a is proportional to a typical correlational scale of the primary signal.

Following Bond and Efstathiou (1987), we can describe the local shape of the peak of height

ν by measuring the radial curvature � and ‘ellipticity’ ε in polar coordinates θ and ϕ:

δ(θ, ϕ) = σ0(in)

⎡
⎣νin − 1

2
γ�

(
θ

θc

)2

(1 + 2e1 cos 2ϕ)

⎤
⎦ . (7.41)

Let θ2 = x2 + y2 and cos 2ϕ = (x2 − y2)/(x2 + y2). We now find

a2 = νinθ
2
c

(1 + 2e)γ�
; b2 = νinθ

2
c

(1 − 2e)γ�
; κ2 = 1 + 2e1

1 − 2e1

. (7.42)

Taking the eccentricity into account, we rewrite this last relation in the following form:

κ2 = 1/(1 − ε2). (7.43)

We will compare two experiments that would investigate the same part of the sky in the

neighbourhood of the peak but with different resolutions θ1 and θ2. We assume that θ1

corresponds to the MAXIMA-1 experiment and θ2 to the PLANCK experiment (θ1 	 2θ2).

We denote the amplitude of the maximum in the poor-resolution experiment by νMAXIMA and

that in the high-resolution experiment by νPLANCK. In such models, the amplitude is given by

the equation

�̃T j (x, y) = 1

2πθ2
j

∫
dx ′dy′�T (x ′, y′) exp

[
− (�r − �r ′)2

2θ2
j

]
, (7.44)

where the index j = 1, 2 corresponds to θ1 and θ2, and �r (x, y) and �r (x ′, y′) are vectors in a

Cartesian reference frame, with the origin at the central point of the maximum. The form of the

function �̃T j (x, y) of Eq. (7.40) is described for the poor- and high-resolution experiments

by the equation

�̃T j (x, y) = νinσ0(in)ab[(
a2 + θ2

j

)(
b2 + θ2

j

)]1/2
exp

[
− x2

2
(
a2 + θ2

j

) − y2

2
(
b2 + θ2

j

)
]
. (7.45)
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This curve determines the parameter ξ 2 = (b2 + θ2)/(a2 + θ2), which can be measured in

the neighbourhood of the peak at a certain threshold νtσ
(1)
0 , where σ

(1)
0 is the variance of

perturbations in the poor-resolution experiment. As a result, Eq. (7.41) yields the following

peak amplitude:

νMAXIMAσ
(1)
0 = νinσ

(in)
0 κ

ξ1

(
1 + θ2

1 /a2
) . (7.46)

In high-resolution experiments, Eq. (7.45) yields

νPLANCKσ
(2)
0 	 νinσ

(in)
0 κ[(

1 + θ2
2 /a2

)(
κ2 + θ2

2 /a2
)]1/2

, (7.47)

and since the quantities σ (in), σ (1) and σ (2) differ only logarithmically, we obtain

νPLANCK 	 νMAXIMA

ξ1(1 + 4μ2)

[(1 + μ2)(κ2 + μ2)]1/2
. (7.48)

For instance, this ratio for the peak of MAXIMA-1 with coordinates δ = 58.6o, R A = 15h35m

is ∼ 1.2–1.4. Taking this result into account, we can transform the peak with ν1 	 2–3 on a

map based on MAXIMA-1 into a peak on the anticipated future map provided by PLANCK.

This means that the peak we consider, given by δ 	 58.6o and RA=15h35m, corresponds to a

maximum in the distribution of the primordial signal at the level ν 	 4. It is quite clear that

a similar prediction can also be made regarding the high-amplitude peaks on the map of the

radio skies obtained by BOOMERANG.

7.6 Clusterization of peaks on anisotropy maps
When analysing the structure of �T in the neighbourhood of extrema, we used the

results of the theory of clusterization of peaks in random Gaussian fields whose astrophysical

applications were studied in detail in Bardeen et al. (1986), Bond and Efstathiou (1987),

Heavens and Sheth (1999) and Novikov and Jørgensen (1996a,b). Obviously, an analysis of

peak clusterization, added to peak statistics depending on peak height, is an additional test

of the Gaussian nature of the signal or of possible deviations of its characteristics from the

normal distribution.

First, we need to give a definition of what we call a cluster of peaks. A map of anisotropy

�T obtained in the framework of the MAXIMA-1 project clearly shows lighter and darker

zones corresponding to isolated regions with enormously high (compared to the mean level)

signal and enormously low values of the field �T . Obviously, this separation into zones is

purely relative and depends on the height at which the section is made of the field �T (x, y)

by a plane �T ∗ = νt · σ0. If �T ∗(x, y) = νtσ0, then the formal solution of this equation

implies a set of points {x, y} that form the level ‘contour’ L{x, y}. To be precise, this level

contour is also a random function for a random field whose properties obviously depend on the

spectral parameters σi . For high-level sections νt � 3–5, the corresponding lines resemble

a set of close contours at a considerable distance from one another. This effect has a very

simple explanation that is totally based on the statistics of high peaks of Gaussian fields.

As we saw in Section 7.2, the concentration of peaks for high νt decreases as νt increases.

Correspondingly, the mean distance between peaks increases as well. Then the corresponding

level contours for each isolated peak of �T automatically approaches elliptical shape (see
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Section 7.3). The ellipticity of level contours in the neighbourhood of a point of extremum

is therefore a sign of it being isolated from other peaks.

Let us take a closer look at the mathematical aspect of the problem of peak clusterization

in the approximation of small size of the region to be analysed in comparison with the entire

sphere. Assume now that we cut the surface �T (x, y) by a plane �T ∗(x, y) = νtσ0 and

calculate the number of clusters Nk ,

∞∑
k=1

Nk · k = nmax(νt), (7.49)

which corresponds to the total number of maxima above the level νt on the map in question.

We need to point out that in addition to �T peaks (the maxima) each cluster may also contain

minima and saddle points. If, for instance, a cluster of dimension k contains k = kmax maxima

and kmin minima, it as a rule contains ks saddle points, such that ks = kmax + kmin − 1.

Following Novikov and Jørgensen (1996a,b), we introduce normalization of the concen-

tration of clusters of dimension k, as follows:∑
k=1

nk = nmax(νt) + nmin(νt) − ns(νt), (7.50)

where ns(νt) is the total number of saddle points above the section νt. Then, making use of

Eqs (7.49) and (7.50), we can determine the mean cluster length at the level νt:

〈k〉 =
∑

k Nk∑
Nk

= nmax(νt)

nmax(νt) + nmin(νt) − ns(νt)
. (7.51)

We described in Section 7.3 the general properties of extrema and we have used the expression

for nmax(νt) and nmin(νt) in Eqs (7.23) and (7.24). For the concentration of saddle points, we

will use the expression obtained by Novikov and Jørgensen (1996a,b):

ns(νt) = 1

8π
√

3

σ 2
2

σ 2
1

{
1 − �

[ √
3νt√

2(3 − 2γ 2)

]}
, (7.52)

where �(x) is the probability integral (Gradstein and Ryzhik, 1994). Equation (7.51) shows

that the mean cluster length at the level νt is a function of a single parameter γ . In its turn, this

parameter is determined by a combination of spectral parameters and characterizes the general

topology of anisotropy maps. As γ → 1, the clusterization of peaks is largely suppressed

and the signal on a map looks like an ensemble of a large number of isolated peaks. In the

opposite asymptotics, when γ → 0, the clusterization of maxima is extremely high and the

�T map should look very fuzzy.

As for any type of statistics of Gaussian fields, the distribution and clusterization of maxima

depending on the section height νt can be used to test the potential non-Gaussian noises on

the map �T (x, y). Let us consider as a noise of this sort, the background of non-resolved

pointlike sources that create an excess signal �Tps > 0 at points {xps, yps}. On the whole, the

presence of this noise results in biasing the level �TCMB(x, y) + �Tps = 0, where �TCMB

is the primordial anisotropy. What will the qualitative change be in the rate of the peak

clusterization in the presence of this type of noise? The answer to this question will be

easily obtained by analysing the behaviour of the function 〈k〉(νt, γ ) for a ‘bare’ signal or a

‘signal+pointlike source’ combination.
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On a map of infinite size, the function 〈k〉(νt, γ ) formally tends to infinity, whereas on a

finite map the value of 〈k〉(νt, γ ) is high but finite. This sharp increase in the mean cluster

dimension results from the percolation effect investigated by Naselsky and Novikov (1995).

The effect consists in the following: as νt → 0 ‘from above’, i.e. while νt ≥ 0, the zones

with ν > νt gather into clusters of higher dimensionality but are nevertheless separated from

one another by regions with negative values of �T . A similar pattern is observed when we

move in the direction of νt = 0 from the zone of νt < 0. In this case the pattern is absolutely

symmetric, as it is for νt > 0, but now for minima of the field �T . The surface νt = 0 is

therefore peculiar. To be precise, any deviation upwards (νt > 0) or downwards (νt < 0)

immediately transforms the ‘maxima–minima’ system to one of the two states listed above.

We have already remarked that the presence of noise on a map shifts the percolation level

to the region νt < 0 and breaks the symmetry in the distribution of maxima and minima of

the field �T .

To conclude this section, we look in more detail at the field distribution �T (x, y) in

the neighbourhood of two peaks that form a cluster of dimension 2 at the section level

νt. We invite the reader to pay attention again to the fact that different statistics of the

Gaussian field respond in a different way to the presence of non-Gaussian noises or to

the non-Gaussian nature of the signal itself. In this sense, the distribution of the field in a

dimension-2 cluster is, literally, a local characteristic of the signal topology, and this test can

be used to single out localized noises that manifest themselves in the shape of additional �T
peaks.

A detailed analysis of the structure of field distribution in dimension-2 clusters as applied

to the Gaussian field �T was given in Novikov and Jørgensen (1996a,b). For isolated peaks

the structure of the signal in the vicinity of each peak was investigated in Bond and Efstathiou

(1987) (see Section 7.3). The main conclusion is that the shape of the signal in the neigh-

bourhood of a peak is elliptical, with the ellipticity parameters depending on the peak height

ν and section level νt. For clusters of dimension 2, this condition will naturally remain valid

as the section height νt is increased because a dimension-2 cluster then automatically splits

into two clusters of dimension k = 1. However, as the height νt decreases, peak-to-peak

correlation results in phasing of the orientation of ellipses corresponding to any section ν∗
t ,

νt ≥ ν∗
t < νmax, where νmax is the height of the lowest of the peaks and νt is the level of the

section that singles out the cluster with k = 2.

It is also quite interesting that the ellipses corresponding to the field distribution around

each peak lose their shape in response to peak-to-peak correlations in the direction of the major

semi-axes.4 Therefore, if a �T (x, y) map reveals dimension-2 clusters within which the field

level contours intersect along the minor semi-axes of the ellipses, this would signify that one

of the peaks in the cluster is definitely of a noise origin and is not related to the Gaussian

signal. Another important feature of the local signal topology in the neighbourhood of a

k = 2 cluster must be pointed out. This topology is stable and independent of the spectrum of

primordial perturbations. Therefore, any disruptions would point to a non-Gaussian nature

of the signal.

4 The corresponding analytical expressions for the field distribution probabilities in dimension-2 clusters are given

in Novikov and Jørgensen (1996a). These expressions are quite cumbersome, so we refer the reader to the

original publication.
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To conclude this section, note that the methods of analysing the clusters of anisotropy fields

as described above are readily generalizable to the polarization field. A detailed analysis of

clusterization of the Q and U components of the Stokes vector is given in Arbuzov et al.
(1997a,b).

7.7 Minkowski functionals
‘In reality’, that is in the context of the differential and integral geometry, the

Minkowski functionals (MFs) (Minkowski, 1903) were introduced into cosmology (Mecke,

Buchert and Wagner, 1994) as three-dimensional statistics for distributions of objects in the

Universe, and then for the isodensity contours of continuous random fields (Schmalzing and

Buchert, 1997).

The idea of testing the statistical nature of the signal on the CMB anisotropy maps using

the geometrical characteristics was developed in Doroshkevich (1970), Gott et al. (1990),

Naselsky and Novikov (1995), Novikov et al. (2001), Schmalzing and Gorski (1998) and

Winitzki and Kosowsky (1997). An analysis of this approach, and especially of its applications

oriented aspect, to CMB anisotropy maps for the already implemented experiments (COBE,

MAXIMA-1, BOOMERANG) demonstrated the high efficiency of the Minkowski functional

techniques for verifying the Gaussian nature of a signal. This progress is largely caused by

the accumulation in Minkowski functionals of a number of characteristics that were already

discussed when studying the statistics of the CMB peaks. Following Novikov et al. (2001),

we single out the global Minkowski functionals: A = ∑
ai is the entire investigated area

within the isotherms, L is the total length of the contour that encompasses the area at the

section level νt, and G is the genus for the number of isolated maxima minus the number

of isolated minima at a given level νt that are identifiable on the entire �T map. We also

construct local (partial) Minkowski functionals that are used for one or several selected parts

of the map. The need for this separation is obvious. If one of the regions on the map �T
of area S contains a clearly pronounced non-Gaussian noise but its area remains small, it is

clear that the distortion of global Minkowski functionals will be of the order S/Smap 
 1,

where Smap is the area of the entire map.

We therefore consider a simply connected region Ri of the anisotropy map with ν(θ, ϕ) ≡
�T (θ, ϕ)/σ0 > νt. To characterize its topology, we consider three parameters: area ai of

the region, the contour length li and the number of holes nhi in it. These are exactly the three

Minkowski functionals. In order to generate the global Minkowski functionals, we calculate

the numerical values of all these quantities for all separated regions of the map; that is,

we generate the sums A = ∑
ai and L = ∑

li; G = ∑
gi is the number of isolated regions

with ν > νt minus the number of isolated areas with ν < νt. Clearly the total area A(νt) is

proportional to the cumulative distribution function of the random field.

Minkowski functionals possess mathematical properties which make them rather unique

among all other geometric characteristics. They are translationally and rotationally invari-

ant, are additive5 and have a simple (and intuitive) geometrical representation. Moreover, as

was shown in Hadwiger (1957), all global morphological properties (that satisfy the prop-

erty of invariance under movements and the additivity) of any D-dimensional space can be

completely described using D + 1 Minkowski functionals.

5 ‘Additivity’ means, among other things, that the MFs of a conglomerate of several disconnected regions can be

easily obtained if we know the MFs for each individual region.
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The global Minkowski functionals of a Gaussian field are known analytically; in two-

dimensional space they take the following form:

A(ν) = 1

2
− 1

2
�

(
ν√
2

)
,

L(ν) = 1

8θc

exp

(
−ν2

2

)
,

G(ν) = 1

(2π )3/2

1

θ2
c

ν exp

(
−ν2

2

)
,

(7.53)

where �(x) = (2/
√

π )
∫ x

0
e−x2

dx is the error function. The way these functionals depend on

the spectrum can be expressed via the field correlation length θc = σ0/σ1, where σ0 and σ1

can be calculated using the spectrum C(l):

σ 2
0 = 1/4π

∑
l

(2l + 1)C(l),

σ 2
1 = 1/4π

∑
l

(2l + 1)(l + 1)lC(l).
(7.54)

Unfortunately, there are no analytical formulae for partial Minkowski functionals even for

Gaussian fields. However, this is not an insurmountable obstacle to their application because

they can be obtained by numerical calculations. We need to emphasize that to apply them in

practical work, one has to know not only the mean value of a quantity, but also its variance.

In most cases the variance cannot be found analytically, even if it is possible to find its mean

value. For example, it is possible to calculate analytically the mean value of hot/cold spots,

but the variance of this value can only be evaluated numerically.

Let us discuss the application of Minkowski functionals to two-dimensional maps. We refer

to all unconnected areas above the threshold (ν > νt) as positive peaks and to those below

the threshold (ν < νt) as negative ones. In each region Ri we can calculate three Minkowski

functionals: area vi
1 = ai, perimeter vi

2 = li (that is, the length of the boundary), the number of

holes (an equivalent of genus) vi
3 = gi, and the number of maxima within the area vi

4 = nmi.

Now we need to analyse the cumulative function F(νt, v
k)(k = 1, 2, 3, 4) for these quantities.

As an example of a CMB map, we can look at COBE data from which all the radiation of

the Galaxy (the entire galactic background) has been removed. This removal of the galactic

background from the cosmic signal was achieved by using two independent techniques. The

construction of the maps was described in detail in Bennet et al. (1992, 1994), published

in COBE DMR ASDS. We will describe both techniques. The first of them is the so-called

combination method (map 1 given in Fig. 7.5(a)). Here the galactic background was removed

by a linear combination of all DMR maps followed by removing the free–free radiation,

and then by normalizing the cosmic signal to the thermodynamical temperature.

The second technique is that of subtraction (map 2, Fig. 7.5(b)). In this case one constructs

a map of synchrotron radiation and one of emission by dust, which is then subtracted from

the DMR data. Then the galactic free–free emission is subtracted. In Section 7.7.1 we fol-

low Novikov, Feldman and Shandarin (1999) and analyse both maps. We also describe the

numerical algorithm required to calculate the distribution of partial Minkowski functionals

on a sphere and the application of this algorithm to the COBE data.
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Figure 7.5 (a) COBE map 1 constructed using the combination technique (see text). Thick
solid curves correspond to 0σ , 1σ and 2σ thresholds (areas in black are those within the 2σ
contour), thin solid curves correspond to 1σ and 2σ (areas within the contour lines 2σ are
shaded). (b) COBE map 2 constructed by the subtraction technique. The notation is the
same as in (a). (c) Example of a Gaussian map with the same amplitudes as in (a).

7.7.1 Computation of maps
For a fixed position of pixels on a sphere, we choose a spherical system of coordi-

nates. We consider the temperature distribution on a pixel map as a function of two variables

in the following reference frame: −π/2 < θ < π/2 and −π < ϕ < π . This function is in

fact defined only at points (θk, ϕk) so that

νk1,k2
= ν(θk1

, ϕk2
), θk1

= k1kθ , ϕk2
= k1kϕ. (7.55)

We also assume that hθ = hϕ = h = 2π/M , where M is the number of pixels on the ϕ

coordinate axis. Then the total number of pixels equals M2/2. The original COBE maps

were recalculated according to this pixelization as

�Tdata(θ, ϕ) = B
∫

�TCOBE(θ ′, ϕ′) e
− γ 2

2γ 2
0 d cos(θ ′) dϕ′, (7.56)

where �TCOBE and �Tdata are the temperature at the points of COBE pixels and at the points

defined by Eqs (7.55), respectively, γ is the angle between pixels, γ = 7o is the angle of

smoothing and B is the normalization coefficient. Temperature perturbations are completely

described by the coefficients of the spectrum Cm
k . Using this description, we can write an

expression for the CMB temperature as follows:

�Tdata(θ, ϕ) = ∑∞
l=2

∑m=l
m=−1 Cm

l Y m
l (θ, ϕ),

νdata(θ, ϕ) = �Tdata(θ, ϕ)/
(
�T 2

data

)1/2
,

(7.57)

where Y m
l are spherical harmonics. The summation in Eqs (7.57) begins with l = 2.
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Figure 7.6 Area bounded by the level contour. Closed polygons are approximations for the
boundaries based on a linear interpolation. Stars and circles are two rows of internal
boundary pixels corresponding to boundaries. The dashed line corresponds to a possible
path on a grid, connecting a pair of internal pixels which may belong to one and the same
area or two different areas. If this path intersects both boundaries (i.e. the boundaries
corresponding to pixels) an even number of times, then both pixels belong to the same
(simply connected) region; otherwise they belong to different regions. In this particular case
both numbers are zeros (i.e. are even) and the pixels belong to the same area.

Novikov et al. (1999) numerically calculated 1000 different Gaussian realizations of tem-

perature distribution on a sphere and compared the distribution of partial Minkowski func-

tionals in observational data with a random Gaussian field. Following this paper, we introduce

a section of the map at a height νt. Each isolated hot spot (region with ν > νt) can be regarded

as a cluster that can be described using the area, length of boundary and the Euler charac-

teristic (this last is equivalent to the genus and both are related directly to the number of

non-connected boundaries). For instance, the total area of a map for which ν > νt is the sum

of areas of all isolated hot spots with ν > νt. The global Minkowski functionals, that is the

total area, the total boundary length and the total genus, can be found by summing up their

partial values over all clusters of a map. A calculation of partial Minkowski functionals for

a pixelized map requires that the algorithm satisfies the convergence properties(
vi

k

∣∣
p
− vi

k

)
vi

k

∼ O(hm), k = 1, 2, (7.58)

where vi
k |p is the kth MF in the i th cluster calculated over a pixelized map, vi

k is the exact

value of this functional on the continuous field and m is the interpolation index. Further on

we will use for our algorithm a linear interpolation with m = 1.

The pixels (k1, k2) inside an area of ν > νt satisfy the condition νk1k2
> νt. Let us define

a pixel (k1, k2) inside this area as an inner boundary pixel if the value of the field is below

the threshold νt in at least one of its four neighbours, ((k1 + 1, k2), (k1 − 1, k2), (k1, k2 + 1),

(k1, k2 − 1)); that is, νk1+1,k2
< νt. We now approximate the smooth boundary curve by a

broken line using a linear interpolation of the field between the inner and outer boundary

pixels (Fig. 7.6). After this we find the intersection of the boundary curve by the lines of the

grid, as follows:

θb = k1h + h
νt − νk1,k2

νk1+1,k2 − νk1k2

, ϕb = k2h, (7.59)
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for the lines of the ϕ grid and

θb = k1h, ϕb = k2h + h
νt − νk1,k2

νk1+1,k2 − νk1k2

, (7.60)

for the lines of the θ grid. Here θb and ϕb are the coordinates of the boundary points on the

broken line �Xm = (θb, ϕb)′. Obviously this broken line converges to the smooth boundary

curve as h → 0. Now the cluster analysis algorithm consists of two steps. We describe these

steps below.

Determination of the boundaries and calculation of their length
First closed boundary curves are sought at a height ν = νt. Then each row of bound-

ary points is ordered under the assumption that �Xm+1 is the boundary point closest to the

point �Xm . The length of the closest boundary is then given by

ln =
m=Mn+1∑

m=1

∣∣ �Xn
m+1 − �Xn

m

∣∣, (7.61)

where Mn is the total number of boundary points on the nth closed line at a height �Xn
Mm+1

= �Xn
1

and the norm is given by

∣∣ �Xn
m+1 − �Xn

m

∣∣ =
[

(θm+1 − θm)2 + sin

(
θm+1 + θm

2

)
(ϕm+1 − ϕm)2

]1/2

.

The first point, X1, is arbitrary. Different boundary curves on the map correspond to arrays

of boundary points �Xn
Xm

and to inner boundary pixels �Y n
Xm

. The total boundary of isolated

regions with ν > νt can consist of a set of closed lines (two lines in Fig. 7.6).

Determination of cluster boundaries and calculation of the total boundary
and genus
Let us combine all closed lines that form boundaries of the same cluster, using the

arrays of inner boundary pixels �Y n
m . We assume that we need to test whether two different

lines are boundaries of the same cluster. These lines correspond to two rows of inner boundary

pixels �Y n1
m and �Y n2

m . If we take two arbitrary inner pixels, one from each row, and connect

them by a segment along the grid lines (see Fig. 7.6), then this segment may intersect the

boundaries N i
int times (i = 1, 2), where N i

int ≥ 0. If two numbers N 1
int and N 2

int are even, then

inner boundary pixels belong to the same cluster; otherwise they belong to two different

clusters. Consequently, all boundary lines belonging to one cluster form its boundary, whose

total length equals the sum of the lengths of each line. The number of closed lines for each

cluster is equivalent to the genus of this cluster. Therefore, we find the total number of clusters

and two partial MFs for each one of them: the length and the genus.

7.7.2 Calculation of the cluster area
All pixels located between the inner boundaries of the cluster belong to this cluster.

The area of a cluster can be crudely approximated by the total area of all these pixels, including

the inner boundary pixels. After this we can calculate total and partial Minkowski functionals.

Figures 7.7 and 7.8 show cumulative distribution functions F(νt, nuk) (from Novikov

et al. (1999), where nνt = �i nνi
t for two COBE maps described above. The mean value

and variance were obtained from 1000 random realizations of the Gaussian field, having

the same amplitudes as the one shown but with different phases. Both Figs 7.7 and 7.8
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Figure 7.7 Joint distribution function of global Minkowski functionals and the number of
maxima/minima as a function of temperature threshold (in units of σ for the COBE map in
Fig.7.5(a)). Circles and triangles mark the values of the positive and negative thresholds,
respectively. Measurement errors correspond to σ calculated over 1000 Gaussian
realizations.

reveal considerable deviation from the Gaussian behaviour. It is interesting to point out

that each set of statistics demonstrates small deviations from the Gaussian behaviour for

different thresholds F(A) at νt = 0.5, F(L) at νt = −1, F(G) at νt = ±1 and F(Nmax) at

νt = 0, 0.5, −1. Roughly speaking, these deviations are identical for both maps and are based

on the assumption that each of the four statistics carries its own specific statistical information.

It can be expected that partial Minkowski functionals will provide more detailed infor-

mation. Figures 7.9–7.13 present partial Minkowski functionals for ten thresholds6 νt =
±2, ±1.5, ±1, ±0.5 and ±0. Plotted in each figure are two curves, one for the positive thresh-

old ν > νt (solid curve) and another for the negative threshold, −ν < νt (dashed curve). The

threshold νt has the same absolute value |νt| for each map. Thick and thin solid curves cor-

respond to the COBE maps 1 and 2, respectively (see Figs 7.5(a),(b)). The mean Gaussian

curve independent of the sign of the threshold is plotted by a dotted curve. The hatched region

is the Gaussian variance 1σ .

The main features implied by Figs 7.9–7.13 are as follows.

Figure 7.9: νt = 2; the functions F(a) and F(b) show strong non-Gaussian signal while

the functions F(g) and F(Nmax) are roughly in agreement with the Gaussian behaviour.

6 The thresholds νt = +0 and νt = −0 correspond to regions with ν > 0 and ν < 0, respectively.
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Figure 7.8 Same as in Fig. 7.7 but for the COBE map in Fig. 7.5(b).

Figure 7.10: νt = 1.5; all statistics point to non-Gaussian behaviour.

Figure 7.11: νt = 1; the strongest non-Gaussian signal gives the distribution of maxima

F(Nmax), and other statistics are roughly in agreement with the Gaussian behaviour.

Figure 7.12: νt = 0.5; all statistics point to strong deviations from the Gaussian

behaviour.

Figure 7.13: νt = 0; all statistics are roughly in agreement with the Gaussian behaviour.

What are the conclusions we can draw from these results? First of all, we note that owing

to low angular resolution, the spectrum C(l) for COBE data stretches to 30–40 multipoles;

furthermore, which is very important, we are dealing here with a single realization of a

random process on a sphere. Moreover, we see that the main source of a non-Gaussian signal

is the emission of the Galaxy. The various methods of eliminating this signal, given above,

demonstrate that despite the subtraction of the galactic background, the result nevertheless

contains a remnant non-Gaussian component. To a certain extent this conclusion is confirmed

by an analysis of statistical features of the signal in near-polar zones that are free of the

influence of the galactic emission. For example, Colley, Gott and Park (1996) studied the genus

curve and failed to detect substantial deviations from the Gaussian behaviour. Schmalzing

and Gorski (1998) arrived at similar conclusions and so did Ferreira, Magueijo and Gorski

(1998), who also analysed the properties of the COBE signal in near-polar regions. Note

nevertheless that this method proved to be adequately efficient for the COBE data with their

characteristic low resolution and low signal-to-noise ratio, ∼1.
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Figure 7.9 The joint distribution functions, Ncl, of partial Minkowski functionals for both
COBE maps (Figs 7.5(a),(b)). The hatched areas are the (±σ regions of the Gaussian
realizations. Solid lines represent the cumulative distribution function for positive (ν > νt)
thresholds and the dashed lines that for negative thresholds. Thick solid lines correspond to
the COBE map 1 and thin solid lines to the COBE map 2. Threshold νt = 2σ .

The problem of extracting the Galaxy’s contribution will be very acute in future high-

resolution experiments, not only for the central region of the map where it dominates, but

also in other areas. This effect is largely created by the ‘leaking’ of the galactic signal through

side lobes of the antenna diagrams. Therefore, an analysis of the statistical properties of

the COBE data again highlights the importance of developing methods to eliminate the

strong non-Gaussian character of the CMB anisotropy maps caused by various types of

non-cosmological noise.

7.8 Statistical nature of the signal in the BOOMERANG and
MAXIMA-1 data
We need to point out that along with the COBE experiment that covers the entire area

of the sky, an important role for testing the Gaussian nature of primordial anisotropy of the

CMB radiation is played by the analysis of the statistical nature of the signal in experiments

with low coverage of the sky, for example BOOMERANG and MAXIMA-1. We have already

mentioned that these experiments are special in that they cover a relatively small area of the
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Figure 7.10 Same as in Fig. 7.9 but for the threshold νt = 1.5σ .

sky. However, in contrast to COBE, an analysis of the properties of the CMB anisotropy

selects those areas of the sky that contain no contribution from the emission of the Galaxy.

In analysing the properties of the signal obtained by the BOOMERANG mission, we follow

Polenta et al. (2002) who made use of the following tests:

(a) skewness and kurtosis (third and fourth moments of the distribution function);

(b) three Minkowski functionals – the area, length and genus.

The area of the sky that contains the signal occupies 1.19% of the entire area of the sphere

and covers a zone with coordinates 70o < RA < 105o, −55o < δ < −35o, where no defects

are present on the map and the time of signal gathering is maximal. We will now give the

main characteristics of the signal in the B150A frequency channel of the BOOMERANG

mission (Polenta et al., 2002).

The third moment of the distribution function S3 (skewness) and the fourth moment S4

(kurtosis) are defined in a standard manner, as follows:

σ 2
0 = ∑

i (Ti − 〈T 〉)2/(N − 1),

μ3 = ∑
i (Ti − 〈T 〉)3/N ,

μ4 = ∑
i (Ti − 〈T 〉)4/N ,

(7.62)
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Figure 7.11 Same as in Fig. 7.9 but for the threshold νt = σ .

and are based on local values of Ti and 〈T 〉 = 1
N = ∑

i Ti , where N is the number of pixels

on the map.

The normalized values of the third and fourth moments, S3 = μ3/σ
3
0 and S4 = μ4/σ

4
0 , after

data processing are correspondingly given by S3 = −0.03 and S4 = 0.19. Owing to the effect

of noise and effects of systematics, these values are, of course, non-vanishing. When testing

the hypothesis of the Gaussian nature of the signal, Polenta et al. (2002) analysed the model

maps of CMB anisotropy, simulated for a given type of spectrum C(l) that was obtained by

analysing the actual maps of the BOOMERANG experiment. The difference between the

models S3 and S4 and those obtained directly from the map do not go beyond the errors of

simulation. Similar conclusions follow also for the Minkowski functionals calculated for the

maps far from the galactic plane. These conclusions are identical to those reported by the

MAXIMA-1 collaboration (Wu et al., 2001a,b).

Figure 7.14 plots three Minkowski functionals for two variants of map filtration. As we

see from this figure, all Minkowski functionals are in perfect agreement with the Gaussian

statistics.

Does this mean that we can be completely sure of the statistical (Gaussian) nature of the

�T signal, or is the jury still out and does the problem need more detailed experimental and

theoretical investigation? We make an attempt to analyse the possible pitfalls of the Gaussian
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Figure 7.12 Same as in Fig. 7.9 but for the threshold νt = 0.5σ .

test using a simple model suggested by Novikov et al. (2000); this work forms the basis of

the following section.

7.9 Simplest model of a non-Gaussian signal and its manifestation in
Minkowski functionals
Following one of the most important predictions of the inflation theory, we have

considered in the preceding sections of this chapter the primordial perturbations of the metric,

density and velocity of the plasma as driven by quantum fluctuations of the vacuum physical

fields at the earliest stages in the expansion of the Universe. In the framework of this paradigm,

the Gaussian nature of quantum noise is transferred automatically to the angular distribution

of the CMB anisotropy in view of the linear mechanism of its generation. By virtue of this

paradigm, all possible deviations from the normal distribution of �T were interpreted as

manifestations either of non-cosmological noise or of systematic errors of the experiment.

However, the following question arises: could there be a ‘fallacy’ in this logic of analysis? Can

the experiment itself, possessing certain peculiar characteristics (for example finite resolution,

characteristic relaxation time of receiving electronics, etc.) destroy the initial non-Gaussian

behaviour of the signal and transform it into a ‘Gaussian look-alike’ signal? In other words,

what is hiding within the error limits that characterize, for instance, Minkowski functionals

in the real and the smoothed MAXIMA-1 maps?
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Figure 7.13 Same as in Fig. 7.9 but for the threshold νt = 0.

Answers to these questions were recently given in Novikov et al. (2001), where one of the

simplest models of inflation was analysed; it predicted the so-called χ2 distribution instead

of the normal law of fluctuation distribution. Obviously, this model can be used as one of the

possible models for the global non-Gaussian behaviour of the signal.

We will consider a temperature perturbation of the CMB radiation �T/T on the sky in

spherical coordinates ϑ and ϕ. Normalizing �T/T to the variance σ = 〈(�T /T )2〉1/2, we

obtain a random field u(ϑ, ϕ) with zero mean value 〈u〉 = 0 and unit variance 〈u2〉 = 1. In

what follows we consider two models of the random field that are postulated as normalized

temperature perturbations on the sky.

The standard approach is to simulate u as a random Gaussian field. The properties of this

random Gaussian field are well known (see, for example, Adler (1981)); we have discussed

it in the preceding sections of this chapter. Furthermore, we use the field �2 with a single

degree of freedom, as suggested by Linde and Mukhanov (1997). To retain the zero mean

value and unit variance, we use the expression

ψ = 1 − �2

√
2

. (7.63)

Therefore, the two fields u and ψ simulate the Gaussian and non-Gaussian distributions �T
(Novikov et al., 2001).
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Figure 7.14 Minkowski functionals of the MAXIMA-1 maps. (a) Minkowski functionals
for the original signal maps. (b) MFs on a Wiener-filtered map. Adapted from Wu et al.
(2001a,b).

We simulate the non-Gaussian component of �T by a field ψ2, which is a quadratic

function of the Gaussian field �. Thus, in the expansion of the anisotropy field in spherical

harmonics,

�T =
∑

l

l∑
l=0

almC(l)Ylm,

of the field u, the distribution alm is Gaussian, but alm for the field ψ are distributed according

to the χ2
2l+1 law. Note that the variance of alm both for Gaussian and non-Gaussian fields is

normalized to unity and C(l) is chosen to be identical for the two fields. For the Gaussian

field, these functions were given earlier in the chapter and for the χ2 distribution of alm they

are given in Table 7.3.

Obviously the properties both of the Minkowski functionals and of the distribution of

extrema for the Gaussian and non-Gaussian fields differ drastically. On the whole, the situation

appears to be fairly predictable: the differences in properties of the fields generate differences

in statistics, and this is confirmed by calculation results. Assume that the properties of the

receiving instruments are not ideal. For instance, that an antenna characterized by quite

specific angular resolution possesses nonideal properties. How can this affect the properties

of the signal? It is quite clear that the answer depends on the relation between the characteristic
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Table 7.3.

Gaussian field ψ field

Area ν0
1
2

(
1 − �0

νt√
2

)
�

(√
1
2

− νt√
2

)

Length ν1

√
τ

8
exp(−ν2

t /2)
√

τ

4
√

2
exp

(
− 1

2
+ νt√

2

)

Genus ν2
τ√
8π3

νt exp(−ν2
t /2) τ

4π3/2

√
1
2

− νt√
2

exp
(
− 1

2
+ νt√

2

)

angular scales of the signal in which the non-Gaussian component is concentrated (if it is

concentrated) and the angular resolution of the antenna. We will transform the problem from

a qualitative to a quantitative one by modelling the effect of the antenna as a linear filter that

acts on the transform of the original signal.

We concentrate our attention on a one-point field distribution function and introduce a

smoothing filter g(x, t), where t is the smoothing scale and g(x, 0) = δ(x); then the smoothed

field u(x, t) is defined as

u(x, t) = N (t)
∫

d2 y g(x − y, t)u(y), (7.64)

where the constant N (t) is chosen in such a way that the smoothed field remains normalized

to unit variance. If the filter g is Gaussian,7 it satisfies the diffusion equation:

∂g(x, t)

∂t
= t�g(x, t), (7.65)

where � is the Laplacian in the space of the angular variables �x . By combining Eqs (7.64)

and (7.65), we can obtain an ‘equation of evolution’ for the field u in response to changing

the scale t :

∂u(x, t)

∂t
= t

(
� + r−2

corr

)
u(x, t). (7.66)

The second term r−2
corr in Eq. (7.66) appears because of the scale dependence on the normalizing

factor N (t). This equation makes it possible to study the one-point probability, P(u, t), of

the distribution of the smoothed field u(x, t) in response to a changed smoothing scale. By

writing this probability density as

P(u, t) = 〈δ(u(x, t − u))〉, (7.67)

and taking the partial derivative with respect to t , we obtain

∂(u, t)

∂t
= −t

∂

∂u

[(
〈�u〉u + u

r2
corr

)
P(u, t)

]
. (7.68)

The quantity 〈�u〉u is the averaged value of the field Laplacian u(x, t), provided the value

7 Note that the Gaussian approximation of the antenna diagram is widely used for processing the observational

data of CMB anisotropy.
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of the field u is fixed. Incidentally, this equation is written in a conservative form, that is its

integral over du vanishes.

The conditional mean of the Laplacian for the set of random fields can be calculated

analytically. The most interesting relation for the two fields, the Gaussian field and the χ2

field, is 〈�u〉u = −(u/r2
corr). In such cases the right-hand side of Eq. (7.68) simply vanishes.

Note that P(u) ∝ exp(−u2) is a stationary solution of Eq. (7.68). This is a reflection of the

well known fact that a Gaussian random field remains random and Gaussian after smoothing,

as it does after any linear filtration. However, the probability distribution for the χ2 field

differs from zero only if u 
 1/
√

2 (see Eq. (7.1)) and is not differentiable at the outer field

boundary. Consequently, smoothing makes the field evolve away from the χ2 distribution

so it ultimately approaches a distribution close to the stationary Gaussian solution for large

smoothing lengths.

Therefore, the effect of the antenna (acting as a Gaussian filter) may result in the fact

that the primary non-Gaussian signal, localized on scales smaller than the antenna diagram

width, will test as a Gaussian signal. This is why experiments with the highest possible

angular resolution, which makes it feasible (in principle) to restrict the angular scale θ∗ of

the possible initial non-Gaussian system, become especially important.

7.10 Topological features of the polarization field
In contrast to the analysis of the statistical properties of the anisotropy field, proce-

dures needed to test the nature of the CMB polarization are not as well elaborated. This is

mostly caused by a greater complexity of the properties of the polarization field, which in con-

trast to anisotropy is not scalar. Moreover, as we saw in Chapter 6, polarization is described

by using both local and non-local approaches, and the choice between the two is dictated, in

our opinion, by the properties of the noise present in polarization maps alongside the primary

signal. The first question to which we want to attract attention is: which of the characteristics

of polarization carry information on the statistical nature of perturbations on the surface of

the last scattering of quanta? We have already discussed the geometric characteristics of

CMB polarization in Section 3.5, and, among other things, pointed to the emergence of field

anomalies in the neighbourhood of the points Q, where both the U and Q Stokes components

vanish simultaneously. In what follows we analyse the results of statistical calculations of the

genus of p = |P|/σ0, where σ 2
0 is the variance and |P| is the polarization vector magnitude

(Naselsky and Novikov, 1998).

Let us split the CMB polarization map up into two types of regions: regions with relatively

strong polarization p > p0 (‘strongly polarized zones’) and regions with relatively weak

polarization p < p0 (‘weakly polarized zones’) (Figs 7.15 and 7.16). Assume now that we

can measure the signal of polarization p ≥ pt, where pt is the threshold which reflects the

instrument sensitivity. If it is possible to measure only the ‘strongly polarized’ signal pt > 0,

then only some polarized spots will be observed and no percolation between spots will

be possible. Therefore, percolation via polarized zones is only possible if the instrument

sensitivity pt ≤ p0.

The value of p0 can be found analytically. We assume that |P| is a random two-dimensional

scalar field with the Rayleigh distribution (Coles and Barrow, 1987). This field can be

presented as a two-dimensional surface in three-dimensional space. This surface contains

extremal points: minima, maxima, saddle points and singular points. The densities of maxima,
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Figure 7.15 A 10o × 10o map of the CMB polarization field for the CDM model. The
dotted area corresponds to regions with polarization degree p > pt. Solid curves plot the
boundaries between the regions of p > pt and p < pt. Circles, triangles and stars mark the
foci, nodes and saddle points, respectively. This map comprises 13 foci, 6 nodes and 19
saddles.

minima and saddle points for the Rayleigh field P are found as follows:

Nmax(p) =
∫ ∞

p
nmax(p′) dp′,

Nmin(p) =
∫ ∞

p
nmin(p′) dp′, (7.69)

Nsad(p) =
∫ ∞

p
nsad(p′) dp′.

Here nmax(p), nmin(p) and nsad(p) are the concentrations of maxima, minima and saddle

points, respectively, inside a certain interval (p, p + dp), and Nmax(p), Nmin(p) and Nsad(p)

are the concentrations of maxima, minima and saddle points above a certain level p. Note

that in this case saddle points are saddle points on the two-dimensional surface p(x, y). As

in the case of the anisotropy field, we define the genus for the polarization field by

g(p) = nmax(p) + nmin(p) − nsad(p). (7.70)
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Figure 7.16 A 2o × 2o map of the CMB polarization field for the scale-invariant adiabatic
model of cold dark matter with �b = 0.03 and h = 0.75, with the smoothing angle of 5′

(FWHM). Calculation techniques for small regions of the sky and the spectrum were
borrowed from Bond and Efstathiou (1987). The length of each vector is proportional to the
degree of polarization and the orientation represents the polarization direction. To simplify
the visual perception, only 50 vectors were used. Only the orientation of the polarization in
the neighbourhood of non-polarized points has been marked (solid curves). This map
contains seven non-polarized points: two foci, one node and four saddle points.

Integrating Eq.(7.70) from a certain section height P to ∞, we obtain

G(p) = Nmax(p) + Nmin(p) − Nsad(p) =
∫ ∞

p
g(p′) dp′. (7.71)

First of all, we find the percolation height for the polarization field using the condition

G(p0) = 0 and taking into account the definition (7.70). Note that this condition does not

mean that p0 is automatically the percolation level for any scalar field. It is well known that

the level of percolation for the random Gaussian field corresponds to the level at which the

genus curve intersects the zero. In the case of the Rayleigh approximation, this condition also

signifies that the level p0 corresponds to the percolation contour.

As for the anisotropy field, we introduce a combination of independent random quantities

q and u and their first and second derivatives qi , ui , qi j , ui j , (qi j = Qi j/σ2, ui j = Ui j/σ2,

i = 1, 2), where σ2 is the spectral parameter defined as σ 2
2 = 〈Q2

i i 〉 = 〈U 2
i i 〉. These quantities
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obey the following conditions:

p2 = q2 + u2,

pi = qqi + uui ,

γ pi p j + pi j = γ (qi q j + ui u j ) + qqi j + uui j ,

〈qu〉 = 〈qi u j 〉 = 〈qi j ukl〉 = 〈qui 〉 − 〈qi u〉 = 0,

〈qqi j 〉 = 〈uui j 〉 = −γ

2
δi j ,

〈qi q j 〉 = 〈ui u j 〉 = −1

2
δi j ,

〈qi j ukl〉 = 1

8
(δikδ jl + δilδ jk + δi jδkl),

γ = σ 2
l

σ0σ2

.

(7.72)

The joint distribution function F for the quantities q, qi , qi j , u, ui , ui j is chosen to be

Gaussian in accordance with the hypothesis of the normal distribution of perturbations of

metric, velocity and density of matter, as follows:

Fdq du dqi dui dqi j dui j = 1√
(2π )12 det M

e− A
2 dq du dqi dui dqi j dui j , (7.73)

A = v × m−1 × vT,

where M is the covariant matrix and A is a quadratic form of the 12-dimensional vector

v(q, qi , qi j , u, ui , ui j ). A substitution of p, pi , pi j into Eq. (7.73) from Eqs (7.72) and inte-

gration over six variables yields the joint probability f dp dpi dpi j of the quantities p, pi ,

pi j falling within the interval from p, pi , pi j to p + dp, pi + dpi , pi j + dpi j .

By analogy to Bond and Efstathiou (1987), the differential density of extremal points obeys

the following equation:

next(p) = σ 2
2

σ 2
1

∫
| det(pi j )| f δ(p1)δ(p2) dpi j , (7.74)

where next is the density of extrema. An extremum may be a maximum, a minimum or a

saddle point, depending on the limits of integration over dui j . These limits are dictated by

the quantities tr(pi j ) and det(pi j ) of the matrix of second derivatives (pi j ).

We find from the definitions (7.71) and (7.74) that the genus curve is described by the

following equation:

g(p) = nmax(p) + nmin(p) − nsad(p) = σ 2
2

σ 2
1

∫
det(pi j ) f (p, pi = 0, pi j ) dpi j .

(7.75)

Integrating this equation, we obtain

g(p) = 1

4π

(
σ 2

1

σ 2
0

)2

(p2 − 3)e− p2

2 . (7.76)
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Then the genus curve has the form

G(p) = 1

4πr2
c

(p2 − 1)e− p2

2 . (7.77)

The condition G(p) = 0 yields the value p0:

p0 = 1. (7.78)

Therefore, the principal and most important difference between the field of polarization

modulus and the anisotropy field is the bias of the percolation level from p0 = 0 (typical

of a Gaussian field) to p0 = 1, which reflects specific features of the Rayleigh distribution.

We turn now to analysing Minkowski functionals for maps of the modulus of polarization

‘vector’.

A geometrical interpretation of Minkowski functionals on a two-dimensional map is very

simple. We consider the polarization intensity as a two-dimensional surface in the three-

dimensional space, as we did in the preceding section. If we cut this surface at a certain

height pt, then the map area splits into two parts: one where polarization is above a cer-

tain threshold pt, and the other where polarization is below this threshold, p < pt. The

Minkowski functionals in the case of a two-dimensional distribution correspond to the fol-

lowing quantities.

(1) A is the part of the map area where p > pt.

(2) L is the length of the boundary between the parts where p < pt and p > pt, per unit

area.

(3) G = Nmax + Nmin − Nsad are the Euler characteristics per unit area (an equivalent of

genus).

The threshold is therefore an independent variable on which all these functionals depend. In

fact, the third functional has already been discussed above where we analysed the percolation

level. The first functional is exp(−ν/2)2. The second functional has the following form

(Naselsky and Novikov, 1998):

L = 1

rc

pt e− ν2
t
2 . (7.79)

Functionals for the Rayleigh distribution are zero at pt < 0. These functionals can be used to

describe the morphology of the CMB polarization field in the same manner as they are used

for the CMB anisotropy (Winitzki and Kosowsky, 1997).
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The Wilkinson Microwave Anisotropy

Probe (WMAP)

8.1 Mission and instrument
The successful launch of the WMAP1 (Wilkinson Microwave Anisotropy Probe)

mission in June 2001 signalled a new epoch in the investigation of the cosmic microwave

background. This experiment differs from all previous satellite-, balloon- and ground-based

experiments by unprecedented precision and sensitivity.

The WMAP mission has been designed to determine the power spectrum of the CMB

anisotropy and polarization and subsequently to estimate such cosmological parameters as

the Hubble constant H0, the baryonic fraction of dark matter �b, the geometry �K of the

Universe, etc. These observations provide an independent check on the COBE results, deter-

mine whether the anisotropy obeys Gaussian statistics, and verify whether the predicted

temperature–polarization correlation is present.

The high-level features of the WMAP mission can be briefly described as follows. The

mission is designed to produce an almost full (>95% of the entire sky) map of the CMB

temperature fluctuations with �0.2◦ angular resolution, accuracy on all angular scales >0.2◦,

accurate calibration (<0.5% uncertainty), an overall sensitivity level of �Trms < 20 μK per

pixel (for 393 216 sky pixels, 3.2 × 10−5 ster per pixel) and systematic errors limited to <5%

of the random variance on all angular scales.

We have taken information from Page (2000) to describe the instrument. The instrument

measures temperature differences from two regions of the sky separated by ∼140◦. It is com-

posed of ten symmetric, passively cooled, dual-polarization differential microwave receivers.

There are four receivers in W band, two receivers in V band, two in Q band, one in Ka band and

one in K band. The receivers are fed by two back-to-back Gregorian telescopes. The primary

mirrors are 1.4 m ×1.6 m. The secondaries are roughly one metre across. For computing the

CMB angular spectrum it is very important to have precise knowledge of the antenna beams.

Using Jupiter as a source, the satellite team measured the beam to less than 30 dB of its peak

value. The beams are not symmetric, neither are they Gaussian. Fortunately, the scan strategy

symmetrizes the beam, greatly facilitating the analysis.

The instrument is passively cooled. There are no cryogenic or mechanical refrigerators and

thus no inboard sources of thermal variation. The WMAP spins around its axis with a period

of 2 min and precesses around a 22◦.5 cone every hour. Consequently, ∼30% of the sky is

covered in one hour. The axis of this combined rotation–precession approximately sweeps

1 WMAP was proposed in 1995, building work began in 1996, and the major push started in 1997 after the

confirmation review.
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out a great circle as the Earth orbits the Sun. In six months the whole sky is mapped. With

this scan, the WMAP is continuously calibrated on the CMB dipole.

Systematic errors in the sky maps can originate from several different sources: external

emission sources, calibration errors, internal emission sources, onboard electronics, striping

and map-making errors and uncertainty in the beam shape. In order to reduce the systematic

errors, WMAP has a symmetric differential design, rapid large-sky-area scans, a highly

interconnected and redundant set of differential observations, an L2 (the second Lagrangian

point of the Sun–Earth system) orbit to minimize contamination from the Sun, Earth and

Moon emission, and to allow for thermal stability, and five independent frequency channels

to enable a separation of galactic and cosmic signals.

8.2 Scientific results
The scientific result of the mission is a set of maps of the microwave sky at different

frequency bands. These maps may be used both to analyse Galactic and extragalactic emission

and to analyse the CMB cosmological anisotropy to address the most basic cosmological

questions and extract information on fundamental cosmological parameters.

Here we will focus on the cosmological results. Special regions of the sky have been

selected for cosmological analysis. The regions on the sky which are significantly contam-

inated by diffuse emission from our Galaxy and by pointlike source emission have been

masked (Bennett et al., 1996). After applying the diffuse and point source masks followed

by additional cleaning up (Finkbeiner, 2003), the residual signal was assumed to represent

the cosmological CMB signal and became the subject of the subsequent analysis. If the

fluctuations in the CMB are Gaussian, then all the information in the CMB is contained in

the angular power spectrum. We will discuss the possible non-Gaussianity at the end of this

chapter.

Under the assumption of Gaussianity of the primordial cosmological signal, the best-fit

parameters can be determined from the peak of the N-dimensional likelihood surface. For this

purpose, Spergel et al. (2003a,b) used a basic cosmological model, which is a flat Universe

with radiation, baryons, cold dark matter, cosmological constant, and a power-law spectrum of

adiabatic primordial fluctuations. Such a model describes both TT (temperature–temperature)

and TE (temperature–E-component of polarization) CMB power spectra with the following

parameters: the Hubble constant h (in units of 100 km s−1 Mpc−1), the physical matter and

baryon densities wm ≡ �mh2 and wb ≡ �bh2, the optical depth to the decoupling surface τ ,

and the scalar spectral index ns.

This simple model provides an acceptable fit to both the WMAP TT and TE data (see

Figs 8.1 and 8.2).

Table 8.1 summarizes the results obtained by Spergel et al. (2003a,b).

It is essential to compare the best-fit power law �CDM model with other cosmological

observations and produce the best-fit model to the full data set. In particular, Spergel et al.
(2003a,b) considered determinations of the local expansion rate (i.e. the Hubble constant),

the amplitude of fluctuations on galaxy scales, the baryon abundance, ages of the oldest stars,

large-scale structure data and supernova Ia data.

8.2.1 Hubble constant
The Hubble Key Project (Freedman et al., 2001) used Cepheids to calibrate sev-

eral secondary distance indicators (Type Ia supernovae, Tully–Fisher, Type II supernovae,
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Figure 8.1 This figure compares the best-fit power law �CDM model to the WMAP
temperature angular power spectrum. The grey dots are the unbinned data. Adapted from
Spergel et al. (2003a,b).

Figure 8.2 This figure compares the best-fit power law �CDM model to the WMAP TE
angular power spectrum. Adapted from Spergel et al. (2003a,b).

and surface brightness fluctuations). Their estimate for the Hubble constant is H0 = 72 ±
3(statistical) ± 7(systematic) km s−1 Mpc−1 (see Chapter 1). The agreement between this

estimated value and the value h = 0.72 ± 0.05 given by WMAP, is very impressive, taking

into account the complete independence of these two approaches.
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Table 8.1. Derived cosmological parameters

Parameter Mean (68% confidence range)

Amplitude of density/fluctuations σ8 = 0.9 ± 0.1

Characteristic amplitude of velocity fluctuations σ8�
0.6
m = 0.44 ± 0.10

Baryon density/critical density �b = 0.047 ± 0.006

Matter density/critical density �m = 0.29 ± 0.07

Age of the Universe t0 = 13.4 ± 0.3 Gyr

Redshift of reionization zr = 17 ± 5

Redshift at decoupling zdec = 1088+1
−2

Age of the Universe at decoupling tdec = 372 ± 14 kyr

Thickness of surface of last scatter �zdec = 194 ± 2

Age of Universe at Last Scatter �tdec = 115 ± 5 kyr

Redshift at matter/radiation equality zeq = 3454+385
−392

Sound horizon at decoupling rs = 144 ± 4 Mpc

Angular diameter distance to the decoupling surface dA = 13.7 ± 0.5 Gpc

Acoustic angular scale �A = 299 ± 2

Current density of baryons nb = (2.7 ± 0.1) × 10−7 cm−3

Baryon/photon ratio η = (
6.5+0.4

−0.3

) × 10−10

8.2.2 Weak lensing and galaxy velocity fields
Weak lensing and galaxy velocity fields are potentially powerful tools for measuring

mass fluctuations. These techniques directly probe density fluctuations of dark matter, and

therefore can be compared with the CMB model predictions. Several groups have reported

different measurements within the past years. There is still a significant scatter in the reported

amplitude of fluctuations (0.72–0.98), but the best-fit model to the WMAP data lies in the

middle of the reported range: 0.9 ± 0.1, where σ8 measurements have been normalized to

�m = 0.283 (the best fit for WMAP data). Improvement in the measurements of weak lensing

and the CMB can usefully complement these independent observations.

8.2.3 Cluster number counts
Detection of the contribution of the Sunyaev–Zeldovich effect to the CMB power

spectrum on small scales is in fact a probe of the number density of high-redshift clusters.

The recent cosmic background image (CBI) detection (Mason, Myers and Readhead, 2001,

Bond et al., 2002) at � > 1500 gives σ8 = 1.04 ± 0.12 (Komatsu and Seljak, 2002).

The result of the Bahcall and Bode (2003) analysis of the abundance of massive clusters

at z = 0.5−0.8 yields σ8 = 0.95 ± 0.1 for �m = 0.25. Other cluster analyses yield different

values; for example, the Borgani et al. (2001) best-fit values for a large sample of x-ray clusters

are σ8 = 0.66+0.05
−0.05 and �m = 0.35+0.13

−0.10. On the other hand, Reiprich and Böhringer (2002)

find very different values: σ8 = 0.96+0.15
−0.12 and �m = 0.12+0.06

−0.04. Pierpaoli et al. (2003) discuss

the wide range of values that different x-ray analyses find for σ8. With the larger REFLEX

sample, Schuecker et al. (2003) find σ8 = 0.711+0.039
−0.031

+0.120
−0.162 and �m = 0.341+0.031

−0.029
+0.087
−0.071,

where the second set of errors includes the systematic uncertainties.

One can see that the best-fit WMAP value lies in the middle of the relevant range.
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8.2.4 Baryon abundance
Acoustic peaks in the spectrum of CMB are a natural manifestation of the evolution

of the baryonic dark matter during recombination. At the same time, primordial abundance of

deuterium (Boesgaard and Steigman, 1985) is a very sensitive function of the cosmological

density of baryons. The best-fit baryon abundance based on WMAP is �bh2 = 0.024 ±
0.001; it gives us a baryon/photon ratio of η = (6.5+0.4

−0.3) × 10−10. For this abundance, standard

Big Bang nucleosynthesis (Burles, Nollett and Turner, 2001) implies a primordial deuterium

abundance relative to hydrogen of [D]/[H] = 2.37+0.19
−0.21 × 10−5.

The Kirkman et al. (2003) analysis of QSO HS 243+3057 yields a D/H ratio of 2.42+0.35
−0.25 ×

10−5. They combine this measurement with four other D/H measurements (Q0130 − 4021:

D/H < 6.8 × 10−5, Q1009 + 2956: 3.98 ± 0.70 × 10−5, PKS 1937 − 1009: 3.25 ± 0.28 ×
10−5, and QSO HS0105+1619: 2.5 ± 0.25 × 10−5), to obtain their current best D/H ratio of

2.78+0.44
−0.38 × 10−5, implying �bh2 = 0.0214 ± 0.0020. D’Odorico, Dessauges-Zavadsky and

Molaro (2001) find 2.24 ± 0.67 × 10−5 from their observations of Q0347 − 3819 (although

a reanalysis of the system by Levshakov et al. (2003) reports a higher D/H value of 3.75 ±
0.25). Pettini and Bowen (2001) report a D/H abundance of 1.65 ± 0.35 × 10−5 from STIS

measurements of QSO 2206 − 199, a low metallicity (Z ∼ 1/200) damped Lyman α system.

The WMAP value lies between this estimate, �bh2 = 0.025 ± 0.001, and that by Kirkman

et al. (2003), �bh2 = 0.0214 ± 0.0020.

It is worth noting that such good agreement between independent measurements of

the D/H ratio from different physical aspects is important for the basic Big Bang

model.

8.2.5 Large-scale structure and supernova data
The large-scale structure observations, the Ly-α forest data and CMB measurements

deal with similar physical scales during completely different epochs and therefore can be

considered independent and complementary to each other. According to an analysis conducted

by the Anglo-Australian Telescope Two Degree Field Galaxy Redshift Survey (2dFGRS)

(Colless et al., 2001) and the Sloan Digital Sky Survey2 (SDSS) large-scale structure data,

one can conclude that the �CDM model obtained from the WMAP data alone provides a

fairly good fit to the 2dFGRS power spectrum. The best fit has β = 0.45, consistent with the

(Peacock et al. (2001) measured value of β = 0.43 ± 0.07.

Systematic studies by the Supernova Cosmology Project (Perlmutter et al. 1999) and by

the High z Supernova Search Team (Riess et al., 1998) provide evidence for an accelerating

Universe. The combination of the large-scale structure and the CMB and supernova data pro-

vide strong evidence for a flat Universe dominated by a cosmological constant (Bahcall et al.,
1999). Since the supernova data probes the luminosity distance versus redshift relationship at

moderate redshift z < 2, and the CMB data probes the angular diameter distance relationship

to high redshift (z ∼ 1089), the two data sets are complementary. The supernova constraint

on the cosmological parameters (Knop et al., 2003; Melchiori et al., 2003; Tonry et al., 2003)

are consistent with the �CDM WMAP model. The SNIa likelihood surface in the �m−��

and in the �m−w planes provides useful additional constraints on cosmological parameters

(Spergel et al., 2003b).

2 See www.sdss.org.
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Table 8.2. Basic and derived cosmological parameters: Running spectral index model

Amplitude of fluctuations A = 0.83+0.09
−0.08

Spectral index at k = 0.05 Mpc−1 ns = 0.93 ± 0.03

Derivative of spectral index dns/d ln k = −0.031+0.016
−0.018

Hubble constant h = 0.71+0.04
−0.03

Baryon density �bh2 = 0.0224 ± 0.0009

Matter density �mh2 = 0.135+0.008
−0.009

Optical depth τ = 0.17 ± 0.06

Matter power spectrum normalization σ8 = 0.84 ± 0.04

Characteristic amplitude of velocity fluctuations σ8�
0.6
m = 0.38+0.04

−0.05

Baryon density/critical density �b = 0.044 ± 0.004

Matter density/critical density �m = 0.27 ± 0.04

Age of the Universe t0 = 13.7 ± 0.2 Gyr

Reionization redshift zr = 17 ± 4

Decoupling redshift zdec = 1089 ± 1

Age of the Universe at decoupling tdec = 379+8
−7 kyr

Thickness of surface of last scatter �zdec = 195 ± 2

Age of Universe at last scatter �tdec = 118+3
−2 kyr

Redshift of matter/radiation equality zeq = 3233+194
−210

Sound horizon at decoupling rs = 147 ± 2 Mpc

Angular size distance to the decoupling surface dA = 14.0+0.2
−0.3 Gpc

Acoustic angular scale �A = 301 ± 1

Current density of baryons nb = (2.5 ± 0.1) × 10−7 cm−3

Baryon/photon ratio η = (6.1+0.3
−0.2) × 10−10

8.2.6 Basic results of WMAP data analysis
The WMAP mission has provided cosmology with a standard model: a flat Universe

composed of matter, baryons and vacuum energy with a nearly scale-invariant spectrum of

primordial fluctuations. This cosmological model is a result of best possible fitting to many

observational data that include star formation, small-scale CMB data, large-scale structure

data and supernova data. This model is also consistent with the baryon/photon ratio inferred

from observations of D/H in distant quasars, the HST Key Project measurement of the Hubble

constant, stellar ages and the amplitude of mass fluctuations inferred from clusters and from

gravitational lensing. Table 8.2 (Spergel et al., 2003a) lists the best-fit parameters for this

model.

While there have been a host of papers on cosmological parameters, WMAP has brought

this program to a new stage: WMAP’s more accurate determination of the angular power

spectrum has significantly reduced parameter uncertainties, its detection of TE fluctuations

has confirmed the basic model, and its detection of the reionization signature has reduced the

ns−τ degeneracy. Most importantly, the rigorous propagation of errors and uncertainties in

the WMAP data has strengthened the significance of the inferred parameter values.

In spite of the great success of the WMAP experiment, there are still some uncertainties

to be solved and explained. Many different investigations have been performed to estab-

lish Gaussianity or non-Gaussianity of the WMAP data (Komatsu et al., 2003). Since the

inflation predicts a Gaussian random distribution of initial perturbations in the Universe,
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the expectation of the Gaussian CMB temperature fluctuations on the sky seems to be well

justified. This is a directly testable prediction since WMAP’s high-resolution, all-sky data

set of the has become available.

The sophisticated non-Gaussianity test by Chiang et al. (2003) on derived maps from the

first-year WMAP data by Tegmark, de Oliveria-Costa and Hamilton (2003) shows significant

non-Gaussianity features. This test was based on a phase (of the spherical harmonic coeffi-

cients) mapping technique, which has the advantage of testing non-Gaussianity in separate

multipole bands. It has been shown that the foreground-cleaned WMAP map contradicts the

random-phase hypothesis in all four multipole bands, which points to non-Gaussianity. The

evidence of non-Gaussianity for l > 350 has been discovered and is yet to be explained.

Explanation of such a deviation from Gaussianity is crucial because most of the data analysis

technique used for the analysis of the WMAP data has been adopted only for the primordial

Gaussianity of the cosmological signal.

To detect Gaussianity or non-Gaussianity, Larson and Wandelt (2005) performed an anal-

ysis of one- and two-point statistics of the hot and cold spots in the CMB data obtained by

WMAP. Investigating the pattern of cold and hot spots on the sky, they found an anomaly

in the full-sky minima–minima temperature–temperature two-point correlation function in

the form of an excessively large fluctuation, which is unlikely at the 3 sigma level. To obtain

this result they approached the problem numerically: they found some way to reduce the

entire CMB sky to a single number – a single statistic computed on the hot and cold spots.

They compared the statistic for the measured CMB sky to the distribution of statistics for the

simulated CMB skies. If the measured statistic falls significantly above or below the others,

then large statistical fluctuations were assumed to exist, which they quantified. It is then, to

paraphrase Larson and Wandelt, up to the reader to determine if this should be interpreted

as merely an unlikely statistical fluctuation, an indication of non-Gaussianity of a cosmolog-

ical CMB signal, a residual foreground, or a systematic effect. It should be mentioned that

Larson and Wandelt observed the anomaly in the minima–minima temperature–temperature

two-point function in the form of over large fluctuations only on the full sky. This suggests

that this effect is distinct from those that led to recent claims of global anisotropy in the CMB

(see the following).

Eriksen et al. (2004) also investigated the three Minkowski functionals (see Chapter 7) and

the so-called skeleton of the two-dimensional WMAP data in order to check for Gaussianity

or non-Gaussianity. The skeleton length was introduced as a diagnostic for Gaussianity by

Novikov, Colombi and Dore (2003). The skeleton of the field is a set of lines that extend

from extremum to extremum along the lines of maximum or minimum gradient. The results

of statistics of the WMAP data are compared with 5000 Monte Carlo simulations, based on

Gaussian fluctuations with the a priori best-fit running-index power-spectrum and WMAP-

like beam and noise properties. Several power-spectrum-dependent quantities, such as the

number of stationary points, the total length of the skeleton and the spectral parameter, γ ,

are also estimated. While the area and length of the Minkowski functionals and the length

of the skeleton show no evidence of departure from the Gaussian hypothesis, the northern

hemisphere genus has a χ2 that is large at the 95% level for all scales. For the particular

smoothing scale of 3.40 degrees FWHM it is larger than that found in 99.5% of the simulations.

In addition, the WMAP genus for negative thresholds in the northern hemisphere has an

amplitude that is larger than in the simulations with a significance of more than 3 sigma. On

the smallest angular scales considered, the number of extrema in the WMAP data is high at the
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3 sigma level. However, this can probably be attributed to the effect of point sources. Finally,

the spectral parameter γ is high at the 99% level in the northern Galactic hemisphere, while

perfectly acceptable in the southern hemisphere. The results provide strong evidence for the

presence of both non-Gaussian behaviour and an unexpected power asymmetry between the

northern and southern hemispheres in the WMAP data.

Land and Magueijo (2005) made an analysis of the WMAP data based on an orthonormal

frame for each multipole and on a set of invariants to investigate the statistical isotropy and

Gaussianity of the WMAP data. This sophisticated analysis did not show any evidence of

non-Gaussianity and also showed that the signal is statistically isotropic. However, as the

authors emphasize, their method is very limited by noise and overlooks subtle features in the

data.

Another new method for analysing non-Gaussianity of CMB maps has been presented

by Naselsky et al. (2005). The purpose of this paper was to show that any correlations of

phases of the spherical harmonic coefficients of the CMB signal determine the morphology

in the space of phases. The authors generalize the method of phase correlations of Naselsky,

Doroshkevich and Verkhodanov (2003) for testing the phase coupling in the CMB maps. In

particular, they introduce the mean angle l for each multipole l, averaged over all m-modes

in order to check whether the distribution of l is uniform (as it should be for Gaussian

signals); if it is not, they check the possible preferred directions for each multipole.

To illustrate the sensitivity of the method, Naselsky et al. (2003) use the foreground-cleaned

map (FCM) and the Wiener filtered map (WFM) derived by Tegmark et al. (2003), the ILC

map derived by the WMAP science team3 and the ILC map reproduced by Eriksen et al.
(2004). All these maps contain some features of the foreground residues, non-uniformity

of the noise, Galactic plane substraction, etc. The main task is to show how any detected

non-Gaussian features relate to known properties of the non-Gaussian components of the

signal. All these maps include Galactic plane contamination, which is excluded by different

types of masking in order to estimate the power spectrum of CMB anisotropies.

Naselsky et al. (2003) apply these analyses to the CMB maps derived from one-year WMAP

data. These CMB maps are generated using different foreground cleaning methods; hence

their morphologies are somewhat different. As phases are closely related to morphology,

the analysis of phases not only demonstrates the existence of non-Gaussian residuals among

these CMB maps, but also reveals the differences between morphologies of these maps.

It is worth mentioning that application of different statistical methods to the investigation of

the temperature fluctuations on the sky can sometimes lead to completely different results that

can ‘contradict’ each other. But this contradiction occurs only because different techniques

and different methods are sensitive to different non-Gaussian properties of the signal. Another

problem is related to anomalies in the low-multipole range of the WMAP CMB anisotropy

(Hinshaw, Barnes and Bennett, 2003; Spergel et al., 2003b, Tegmark et al., 2003). The

deficit of power for quadrupole, planarity of octupole and alignment between the quadrupole

and octupole were discussed in numerous papers, but questions about their nature are still

unanswered.

At the time of writing (2006) the WMAP mission continues to gather information and

send data. Many important questions on the structure and the evolution of the Universe

are yet to be investigated. In the meantime, we are waiting for a new space mission, the

3 http://lambda.gsfc.nasa.gov/product/map/m products.cfm.
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PLANCK mission, with its higher sensitivity, greater angular resolution and larger frequency

range.

Measurement of the polarization in the CMB by PLANCK opens a new window onto an

exciting future for the study of the CMB. This new coming era in cosmology will be discussed

in Chapter 9.4

4 More information about WMAP and the data are available at http:// lambda.gsfc.nasa.gov/
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The ‘Planckian era’ in the study of

anisotropy and polarization of the CMB

9.1 Introduction
The completion of the recent balloon experiments BOOMERANG, MAXIMA-1,

TOP-HAT and ground-based experiments DASI, CBI and VSA ushered in a new phase

in the experimental investigation of anisotropy and polarization of the cosmic microwave

background. The satellite WMAP, launched successfully in June 2001, opened a new era in

the study of the CMB anisotropy and polarization, which differs from previous experiments

in its greater accuracy of finding the characteristics of the cosmological signal, and hence of

the cosmological parameters. We mean here the Hubble constant H0, the density �b of the

baryonic fraction of matter in the Universe, the hidden mass density �dm, the dark energy

density �� (the vacuum?), the exponent n in the spectrum of adiabatic perturbations, and a

number of others.

An international satellite, PLANCK, whose aim is to measure anisotropy and polarization

of the primordial radiation with unprecedented accuracy is scheduled for launch in 2007.

The accepted opinion is that PLANCK will summarize more than 35 years of progress in the

theoretical and experimental study of polarization and anisotropy of the CMB and will allow

us to come very close to building a realistic model of the Universe.

Before discussing the main features contributed by WMAP and PLANCK, we briefly sum

up the results achieved by radioastronomy and cosmology in studying the CMB anisotropy.

Figure 9.1 brings together the the main results of observing the anisotropy spectra of the CMB,

indicating measurement errors (for references and descriptions of experiments, see Wang,

Tegmark and Zaldarriaga (2001) and http://space.mit.edu/home/tegmark/index.html) and a

comparison of the results of BOOMERANG, MAXIMA-1,WMAP, VSA, DASI, ACBAR and

CBI data. As we see from Fig. 9.1, the spectra C(l) obtained in the above experiments are all

in quite satisfactory agreement. On the basis of this data, Efstathiou (2002, 2003a,b) obtained

parameters of the CDM model that best describe the available set of observational data (see

Fig. 9.2). According to Efstathiou (2003a,b), the best agreement between the predictions

of the theory and experimental data is obtained in the standard CDM model with adiabatic

perturbations and the following set of parameters: �bh2 � 0.021, �dmh2 = 0.12, �� = 0.7,

�K = 1 − �� − �b − �dm = 0 (curvature parameter) and ns = 1 (the Harrison–Zeldovich

spectrum).

First, we can be quite certain that the detected small-scale anisotropy (for angles θ < 1◦)

proved to be in complete agreement with the theoretical predictions. The first Sakharov

peak (l ∼ 200) is clearly seen in both Figs 9.1 and 9.2, and theoretical predictions and

experimental results appear to be in good agreement in the area of the second, and possibly

the third, peaks. This agreement in the shape of the theoretical curve and experimental data

225
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Figure 9.1 δT (l) as a function of multipole number using the data of seven experiments
completed by mid 2004. Adapted from http://space.mit.edu/home/tegmark/index.html.

Figure 9.2 Anisotropy spectrum for the CDM model with the set of parameters
ωb = 0.022, �dm = 0.12, �K = 0, �� = 0.7 (Efstathiou, 2003a,b). Full circles: data of
observations; solid curve: most suitable CDM model; thin solid lines: models listed in
Table 9.1. These models have identical values of ωb and ωc fixed to the best-fit values from
WMAP. Adapted from Efstathiou (2003a,b).
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Table 9.1. Parameters for degenerate models in Fig. 9.2

�k �b �c �� h

0.00 0.0463 0.2237 0.73 0.720

−0.05 0.0806 0.3894 0.58 0.546

−0.10 0.1114 0.5386 0.45 0.446

−0.20 0.1714 0.8286 0.20 0.374

indicates that our understanding of the dynamics of the processes that were taking place in

the pre-galactic plasma in the epoch of redshifts z ≤ 103 is clearly correct. Less obvious is

the answer to this question: which of the cosmological models is the best one? The answer is

obviously dependent on what we use as a criterion of a ‘good’ or ‘bad’ model. We intuitively

feel that the smaller the deviation of the theoretical anisotropy spectrum C(l)t from the

experimental spectrum C(l)exp, the better the chosen theoretical model is in comparison

with models not providing this minimum. However, current and future experiments cannot

measure the spectrum C(l)exp without errors, �C(l). Therefore, two most important tasks

arise: to minimize the error (increase the accuracy of the theoretical prediction of C(l)t and

reduce theoretical �C(l)) and at the same time to analyse the nature of the experimental

error �C(l) (systematics+random spread of values). As an illustration of the most important

role played by systematic and random errors, we invite the reader to look at Fig. 9.2. As we

see from this figure, the entire range of large-scale anisotropy measured by COBE (l < 30)

happens to lie outside the optimal curve that mostly approximates the data of BOOMERANG,

MAXIMA-1, DASI, CBI, WMAP, etc. that we discussed in the preceding chapters. This

means that the array of observational data selected for processing contains systematic errors

of various experiments; this may affect the value of the principal cosmological parameters.

Following the generally accepted terminology for most important cosmological parameters,

we will keep to the following notation:

(a) ωb = �bh2 is the density of the baryonic fraction of matter in units of critical density

ρcr;

(b) ωc = �dmh2 is the density of the CDM fraction in units of ρcr;

(c) Q10 is the amplitude of the adiabatic mode normalized to C(10)1/2 for l = 10 relative

to the COBE data;

(d) ns and nt are the exponents of the spectra of adiabatic perturbations and gravitational

waves, respectively;

(e) r2 = C(2)t/C(2)s is the ratio of the spectra of gravitational waves and adiabatic pertur-

bations for l = 2;

(f) �k = 1 − �b − �c − �� is the curvature parameter of the Universe.

We assume that systematic experimental errors are completely eliminated1 and that the

errors �C(l) are statistical in nature.

1 Naturally, this assumption is far from being realistic. Presumably, the role of ‘systematics’ will be decisive in

evaluating the noise level both in the WMAP and in the PLANCK experiments. At the same time, this

simplification makes it possible to compare errors of various experiments in determining C(l) at least at an

academic level.
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Table 9.2.

WMAP PLANCK

Parameter no const. r2 = −7nt r2 = 0 no const. r2 = −7nt r2 = 0

δωb/ωb 0.052 0.028 0.030 0.0064 0.0056 0.0056

δωc/ωc 0.097 0.028 0.031 0.0042 0.0042 0.0039

δQ 0.0066 0.0047 0.0050 0.0013 0.0010 0.0011

δr 0.49 0.043 — 0.33 0.023 —

δns 0.030 0.0061 0.0098 0.0049 0.0032 0.0042

δnt 0.56 0.0061 — 0.40 0.0032 —

δh/h 0.082 0.020 0.028 0.0045 0.0045 0.0041

δ�� 0.16 0.049 0.068 0.012 0.012 0.011

Which of the ongoing WMAP or future PLANCK experiments, given a chosen model of

random �C(l), will be able to determine the cosmological parameters with higher accuracy,

corresponding best to the observational data? To answer this, we see from Table 9.2 that

the expected level of systematic and statistical errors for the PLANCK instruments must be

almost five times lower than for WMAP.

In other words, PLANCK will open up new possibilities for both theoretical and experi-

mental studies of anisotropy and polarization of the CMB radiation, thus creating for scientists

new problems that lie beyond the sensitivity at the level of several per cent. We will briefly

outline the scope of this quest. We assume, as before, that the level of systematic noise does

not exceed the level of random errors. Then the uncertainty in the values of the main cos-

mological parameters are as in Table 9.2. In this table, column r2 = 0 corresponds to the

situation of no gravitational waves, column r2 = −7nt corresponds to the inflation model

discussed in Chapter 5 based on the slow roll approximation, and the column ‘no const.’

corresponds to the ability of the experiment to measure cosmological parameters without any

additional assumptions concerning the characteristics of gravitational waves. The potential

results of PLANCK compared to those of WMAP, let alone those of balloon experiments, are

impressive, even taking due account of the importance of correcting for systematic errors.

The logical question now is: what factors are responsible for this high sensitivity of the

PLANCK instruments and what methods will be used to achieve it? To answer this, we

give below the formal description of the project; the details can be found on the PLANCK

web page.2 First of all, the unique capabilities of the PLANCK mission are based on two

instruments (low-(LFI) and high-(HFI) frequency instruments) that comprise 54 detectors in

the range 30–70 GHz and 56 detectors in the range 100–857 GHz, respectively. The choice

of ten frequency channels is predicated on the need for multifrequency filtration of galactic

and extragalactic noise. Table 9.3 shows the variance of the CMB anisotropy, the variance

of the pixel noise, σnoise, and the size of the pixels and half-widths of the antenna diagram

for all PLANCK’s frequency channels (see Vielva et al. (2001) for reference). The three HFI

channels, 143, 217 and 545 GHz, will measure the CMB polarization. It is expected that the

level of galactic and extragalactic noise in the first two ranges will be minimal compared with

other ranges (see the following section).

2 http://astro.estee.esa.nl/PLANCK
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Table 9.3.

Frequency σCMB σnoise FWHM Pixel size

(GHz) (10−5) (10−5) (arcmin) (arcmin)

857 4.47 2221.11 5.0 1.5

545 4.47 48.951 5.0 1.5

353 4.48 4.795 5.0 1.5

217 4.43 1.578 5.5 1.5

143 4.27 1.066 8.0 1.5

100(HFI) 4.07 0.607 10.7 3.0

100(LFI) 4.10 1.432 10.0 3.0

70 3.88 1.681 14.0 3.0

44 3.43 0.679 23.0 6.0

30 3.03 0.880 33.0 6.0

Launch of the PLANCK mission is planned for February 2007; it is intended that the

satellite should be placed in orbit around the second Lagrange point L2. The observation of

the radio sky is to begin in July 2007. The preliminary scenario of the strategy for scanning

the sky is shown schematically in Fig. 9.3. The general rotation of the satellite is maintained

in the plane of the ecliptic, at constant Sun–Earth–satellite orientation. The rotation axis of

the satellite remains constant in the selected coordinate system for an hour, during which time

the optical axis performs 60 or 120 revolutions (with fixed orientation of the rotation axis).3

Then the orientation of the rotation axis is changed by 2.5 arcmin; this operation is repeated

once every hour. As the satellite changes its position relative to L2 and its rotation, the orbit

slowly deviates from the plane of the ecliptic by an angle ≤10◦. It is anticipated that the

entire radio sky will be covered during the first year of observation. The special distinction

of the PLANCK project from those already implemented in measuring the anisotropy and

polarization of primordial radiation lies in a detailed preliminary analysis, simulation and

development of techniques for eliminating systematical effects that include the calibration

of antenna’s profile and elimination of low-frequency noise (the 1/ f noise), etc. (for details

see the PLANCK web page given in the footnote on p. 228).

Even though the problem of the elimination of systematics is extremely important and

timely, it is natural that maximum interest is concentrated on the new horizons of the physics

of primordial radiation; we will explore this in more detail in the following sections.

9.2 Secondary anisotropy and polarization of the CMB during the
reionization epoch
This section presents one of the new concepts in CMB physics devised by the scien-

tific community in recent decades in response to the impressive achievements of experimental

research. As recently as the 1980s the hypothesis of a more complicated ionization history

of the cosmic plasma than that predicted by the standard model of recombination (Peebles,

1968; Zeldovich et al., 1969) was discussed in the literature with reference to the problem of

the absence of anisotropy in primordial radiation at the level �T/T ∼ 10−2–10−3. It is very

3 Precisely these two options are discussed in various versions of the scanning strategy.
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unlikely that anyone at the beginning of the 1980s could seriously foresee that progress in

optical and radio astronomy would virtually overturn our concepts concerning the structure

and evolution of the Universe and open not only theoretical, but also (more importantly)

experimental possibilities of studying the process of the birth of structures in the Universe.

Nevertheless, after the discovery of objects with redshifts of z ≥ 6 and of large- and small-

scale anisotropy of primordial radiation, the time has come to analyse the new possibilities in

the structure and evolution of the Universe, in which the physics plays a very important role.

The immensity of the problem dictates that certain requirements should be imposed on both

theory and experiment, but also that it should stimulate progress in both. In the CMB field,

this makes us reexamine the processes of formation of the CMB anisotropy and polarization,

taking into account the fact that this radiation propagates toward us not through vacuum but

through space filled with mature galaxies or galaxies and clusters in the process of formation.

The evolution of these objects transforms the gravitational energy of matter into radia-

tion, acting as a gigantic reactor. This radiation lies in various ranges of the spectrum and

affects the properties of the medium through which the primordial radiation reaches the ‘last

scattering’ surface (at z ∼ 103) as quanta propagate toward the observer (z = 0). The term

‘last scattering’ must now be used quite justifiably in quotes since the quanta of the CMB do

undergo some – fortunately slight – scattering on the way.

A reservation must be made here: the moment we ‘move’ to the level of signals gener-

ated in the epoch of the secondary plasma ionization, we come very close to the limit of

sensitivity and angular resolution of today’s experiments and of those planned for the future.

Therefore, a reasonable lower bound on the level of the signal must be introduced into the

theoretical studies of the effects of secondary anisotropy generation that would automati-

cally put constraints on the types of processes that result in the formation of anisotropy and

polarization above the prescribed limit. For such a reasonable threshold, it is natural to set

the limit �T ∼ 1–3 μK on the area 1.5′ × 1.5′ that corresponds to the sensitivity limit both

in amplitude and in the angular scale of the PLANCK experiment. Then we automatically

narrow the scope of physical processes that we consider to be responsible for the formation

of the CMB anisotropy to the following sequence: the effect of attenuation of primordial

anisotropy, the linear and quadratic Doppler effects, and lensing effects.

These effects reflect the emergence of both the gravitational influence of the evolving

perturbation of CMB and the effects of additional scattering that arises at relatively small

redshifts, z ≤ 1–20.

9.2.1 Attenuation of primordial anisotropy and generation of polarization
In this subsection we wish most of all to emphasize the fact that the main role in

the formation of the secondary anisotropy of the CMB in the reionization epoch is played

by the background of the cosmological hidden mass, whose particles do not interact elec-

tromagnetically with the photons of the primordial radiation. As a result, perturbations in

the hidden mass evolve independently from the CMB. The second most important conclu-

sion that follows from the comparison of theoretical predictions and the BOOMERANG and

MAXIMA-1 data, and having the most important predictive power for WMAP and PLANCK,

is that the reionization of cosmic plasma was not accompanied by any significant increase of

the optical depth τT relative to the Thomson scattering; the most probable constraints on τT

give τT ≤ 0.1–0.3 (Tegmark and Zaldarriaga, 2000).
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1

Figure 9.3 Anisotropy spectrum for a number of models. The solid curve corresponds to
the standard model (see Fig. 9.2). Long-dash curves correspond to the model with delayed
recombination; short-dash curves to the spectrum with n = 0.95, and the dotted curve
represents the standard model with the optical depth of reionization, τ = 0.1.

A point of principal importance for analysing the secondary anisotropy of primordial

radiation generated by scattering of quanta by electrons in the reionization epoch is the

emergence of this ‘secondary contact’ which is immediately followed by a Doppler scattering.

This additional scattering at relatively late stages of evolution results first of all in attenuation

of the level of primary anisotropy by a factor e−τ which does not exceed 10% at τ ∼ 0.1

and 40% at τ � 0.3. At the same time, if we take into account the expected sensitivity of

the PLANCK mission, this attenuation should be detectable, especially as far as polarization

effects are concerned (Naselsky et al., 2001). To illustrate this argument, we consider several

modifications of the extensively used cosmological model �CDM with the following set of

parameters: ωc = 0.127, ωb = 0.019, �� = 0.7, h = 0.65, �K = �c = 0.

Figure 9.4 compares the results of the simulation of the CMB anisotropy spectrum with

the data of the BOOMERANG, MAXIMA-1 and CBI experiments for various modifications

of the initial cosmological model. The value zrec = 15 was chosen as the redshift of the

reionization epoch, providing the optical depth τT � 0.2. For comparison, Fig. 9.3 gives the

spectra of the CMB anisotropy in models that are close to the standard one and include grav-

itational waves (r2 = 0.15), a slight slope of the power spectrum for adiabatic modes relative

to the Harrison–Zeldovich spectrum (n = 0.95), and a model with ‘delayed’ recombination

(εα = 7).

We see from Fig. 9.3 that these models are practically indistinguishable if we stay within

the observational data array. However, they will all be significantly different from one another

at the sensitivity level of the PLANCK mission (see Table 9.2).

A point of special interest is the response of the spectrum of the E mode of CMB polariza-

tion to the secondary ionization epoch. In contrast to anisotropy, which is mostly decreasing

in the range l ≤ 103–2 × 103, substantial anomalies arise in the power spectrum of polar-

ization that reflect specific features of the ionization history in this period (see Figs 9.4 and

9.5).

The physics of generation of these anomalies was studied in detail (for references, see

Zaldarriaga (1997)). The hypothesis that underlies this analysis is that hydrogen reionization

in the epoch of redshift zrec completes over a characteristic time �z � zrec. In fact, we
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Figure 9.4 As Fig. 9.3, but for polarization. The notation is the same as in Fig. 9.3.

Figure 9.5 Cross-correlation of anisotropy and polarization. The notation is the same as in
Fig. 9.3.

can assume as a zeroth approximation that the degree of ionization of hydrogen xH = 0 for

z > zrec while xH = 1 at z < zrec; that is, hydrogen becomes completely ionized. The level of

the additionally generated polarization can then be readily evaluated as follows. We remarked

in Chapter 6 that the main source of polarization of the background radiation is the scattering

of quanta by electrons that move in the field of this radiation. The important factor for the

generation of polarization in scattering is the quadrupole component �T/T ∝ vb, where

vb is the peculiar velocity of electrons. Therefore, the level of the effect is on the order of

�p(k) ∝ kτT�T , where k is the wave factor and �p(k) is the polarization amplitude at each
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Figure 9.6 The spectrum of the polarization E component in the standard CDM model with
the optical depth of reionization τ = 0.1 (dashed curve). The solid curve corresponds to the
SCDM model. Adapted from Zaldarriaga (1996).

point k (Zaldarriaga, 1997). A detailed numerical analysis of the dynamics of polarization

generation can be carried out using the previously mentioned software package CMBFAST.

Figure 9.6 illustrates the behaviour of the CMB polarization in the standard CDM model

with reionization taken into account (τ � 0.1) (Zaldarriaga, 1997). We see from this figure

that the main specific feature of the spectrum is the emergence of a peak in the l ≤ 10 area

and the practically unchanged shape of the spectrum in the l > 40 range, as we had in the

model with τT = 0. Note that the generation of such peaks in the polarization power spectra is

typical of the cosmological models that include a virtually instantaneous change in the degree

of ionization in hydrogen in the zrec epoch. The question arises of how the predictions of the

theory are changed if hydrogen reionization occurs not jumpwise but gradually, beginning

with redshifts z 
 102 up to z ∼ 5–10. One of the possible versions of this ionization solution

was analysed in Doroshkevich and Naselsky (2002) for the case of the model of decay of

supermassive particles that generate the flux of superhigh-energy cosmic rays at the surface

of the Earth. Decays of these particles, from the hydrogen recombination epoch and up to

the present time, result in gradual ionization of hydrogen, the dynamics of which is plotted

in Fig. 9.8 (for notation, see Section 3.11).

Figure 9.9 plots the power spectrum of polarization for ionizer models shown in Fig. 9.8.

We see from this power spectrum that no peak is formed in this case; however, a considerable
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Figure 9.7 The fraction of ionized hydrogen in different models of ionizer power. The
dotted curve corresponds to εi = 1/(1 + z); the short-dashed curve corresponds to
εi = 2/(1 + z); the long-dashed curve corresponds to εi = 3/(1 + z); and the solid curve
corresponds to the standard model.

Figure 9.8 Polarization power Cp(l) corresponding to the regimes shown in Fig. 9.7. Solid
curve: standard model; short-dashed curve: εi = 3/(1 + z); long-dashed curve:
εi = 3/(1 + z) (see the text).

rise in power takes place by more than an order of magnitude in the range l ≤ 20. A legitimate

question is: are the WMAP and PLANCK missions capable of detecting these sort of pecu-

liarities of the ionization history that reveal themselves in the polarization spectrum? Leaving

aside the role played by galactic and extragalactic noise in polarization experiments till the

following section, we give in Fig. 9.9 the comparative sensitivity of polarization measure-

ments in WMAP and PLANCK. This figure clearly shows that the sensitivity of PLANCK at

20 < l < 100 greatly exceeds the potential of WMAP and is mostly limited by the presence
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Figure 9.9 A comparison of the possibility for PLANCK to measure the polarization
components E and B. Adapted from Delabruille (2004).

of galactic and extragalactic noise and the previously mentioned ‘cosmic variance’ effect (see

Chapter 5). For this effect, the error level �C(l)/C(l) ∼ (l · fsky)−1/2 at l ≤ 200 is found to

be on the order of 10%, (l/100)−1/2, with total sky coverage ( fsky = 1).

We see that even if l ∼ 10%, with the relative accuracy of measuring C(l) expected to be

about several tens of per cent, PLANCK’s instruments will safely detect the signal. Therefore,

one of the most important elements of the CMB physics involved in launching this mission

is a unique possibility of testing the z < 103 epoch. Hence, polarization measurements may

bring us closer to the current age of the Universe.

9.2.2 Linear and quadratic Doppler effects
In addition to attenuating the primordial anisotropy in the course of reionization,

scattering of quanta by free electrons generated secondary anisotropy both in the v/c-linear

and in the non-linear approximations. The physics of the linear Doppler effect does not differ

from the case of generation of primary anisotropy but possesses a number of specific features.

First, we need to take into account the gravitational growth of perturbations of density and

peculiar velocities of dark matter whose distribution correlates with that of the baryonic

fraction of matter, at least on scales accessible to PLANCK observations. Secondly, the

growth of perturbations in the baryonic fraction of matter results in an additional modulation

of electronic density ne = ne(1 + δb). This modulation produces fluctuations of optical depth

�τT ∼ δb and hence the anisotropy response to the velocity field of electrons contains a non-

linear term ∼ δb · vb. Taking this term into account in the generation of anisotropy reproduces

excess power in high multipoles, which is known as the Vishniak effect (Vishniak, 1987).

Figure 9.10 presents the aggregate picture of anticipated spectra for the linear Doppler

effect in comparison with the primordial anisotropy and the instrumental noise level in the
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WMAP and PLANCK experiments (Cooray and Hu, 2000). Note that both these effects are

sensitive to the rate of plasma reionization (see Haiman and Knox (1999) and references

therein). At the same time, we need to emphasize that both the linear and the quadratic

Doppler effects in the range l < 2000 are lower than the primordial anisotropy by almost 2–3

orders of magnitude, and their experimental investigation constitutes a serious problem for

the PLANCK experiment.

Figure 9.10 (taken from Cooray and Hu (2000)) also shows contributions from the

Zeldovich–Sunyaev effect described in detail in Chapter 3, with the spatial distribution of

galaxy clusters in the epoch of their formation taken into account. As we saw for the Doppler

effect, the contribution of the Zeldovich–Sunyaev effect is found to be 1 to 2 orders of mag-

nitude lower than both the level of primordial anisotropy and that of the instrument noise in

the l < 2000 range. In the l > 2000 range, the role played by the Zeldovich–Sunyaev effect

becomes better pronounced. Moreover, the frequency dependence of C(l) warrants the hope

that this effect will be studied in detail in the framework of the PLANCK project. Our opti-

mism is based to a large extent on the recent results of the land-based CBI experiment (Bond

et al., 2002; Mason et al., 2003) in which the first indications of the presence of the signal

in the range l � 2000–3500 were obtained. We would like to point out that the statistical

reliability of this result at high l is not large; nevertheless, the attempt to ‘peek’ into the part

of the spectrum where secondary anisotropy effects predominate is of great importance, both

for progress in the theory and for future experiments.
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9.3 Secondary anisotropy generated by gravitational effects
In this section we wish to take a closer look at the analysis of gravitational effects

that distort the spectrum of primordial CMB anisotropy. We must immediately make the

reservation that the possibility of detecting these effects is predicated on the unique parameters

of the PLANCK mission.

Gravitational effects include the previously discussed Sachs–Wolfe effect (Sachs and

Wolfe, 1967) for that part of the perturbation spectrum which is still evolving in the linear

mode, and the effect of ‘scattering’ of quanta on perturbations of the gravitational potential

produced by non-linear structures (Rees and Sciama, 1968). This latter effect, known as

the Rees–Sciama effect, is found to be extremely small for the CDM model with adiabatic

inhomogeneities – for clearly understood reasons. Even if the density contrast δ 
 1 on

the inhomogeneity scale λ � ct , non-linear additions to the potential cannot be larger than

δϕ ∼ (λ/ct)2 δ. For typical scales of structures λ ≥ 1 Mpc and ct ∼ 104 Mpc, potential per-

turbations will be �ϕ ∼ 10−8δ. Even if on these scales δ ∼ 10–102, �ϕ should not exceed

the 106 level, and density perturbations for realistic values of the mean-square level should

be even smaller (Seljak, 1996a,b).

One of the most important and non-trivial gravitational effects capable of significantly

distorting the spectra of primordial anisotropy and polarization is the effect of lensing of the

primordial radiation background in the course of propagation through space. The gravitational

lensing of quanta on objects ‘clustered’ into large-scale structures results in distortion of the

spectra of CMB anisotropy and polarization. Obviously, if there is no primordial anisotropy,

the lensing effect cannot generate it all by itself. At the same time, primordial anisotropy

may be significantly distorted in the process of propagation of quanta from the surface of last

scattering (z = 103) toward the observer or owing to additional scattering if reionization is

taken into account (z ∼ 10–20).

In the approximation of weak lensing, the angle by which rays are deflected is related to

the projection of the gravitational potential by the following formula (Kaiser, 1992):

��L(m) = −2

∫ r0

0

dr
dA(r0 − r )

dA(r )dA(r0)
�(r, m̂r ), (9.1)

where r (z) = ∫ z
0

dz′/H (z′); H (z′) is the Hubble parameter, r0 = r (z = ∞), dA(r ) =
H−1

0 �
−1/2
K sinh(H0�

1/2
K r ) is the angular diameter, �k = 1 − ∑

i �i , �i is the density of

the i th component in units of critical density, and � is the gravitational potential. As we see

from Eq. (9.1), the angle ��L is related to the projection of the gravitational potential gradient

on the direction �m as follows:

��L( �m) = ∇�( �m).

As a result of the deflection of rays from the initial direction in the course of lensing, the

biased value of the the CMB anisotropy in the �n direction is now related to the initial values

(without lensing) by

�TL(�n) = �T (�n + ��L). (9.2)

Owing to the non-Gaussian type of potential distribution, the distribution of ��L around

�n will also be non-Gaussian, and therefore the statistical properties of the lensed signal

�TL will be different from the properties of the pre-lensing signal. The lensing effect then
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Figure 9.11 The role played by lensing in distorting the spectra of the CMB anisotropy and
polarization. (a) CT l is the anisotropy spectrum, CEl and CCl are the spectra of lensed E
component and T − E correlations. Solid curves correspond to models without lensing,
dashed curves trace distortions when lensing is taken into account. The difference between
the lensed and non-lensed spectra are shown for temperature (E) and polarization (c).
Dotted curve: corresponds to the contribution of the B mode, and C ten

Bl corresponds to the
contribution of gravitational waves. Adapted from Zaldarriaga and Seljak (1998).

perturbs the spectrum of the CMB anisotropy and polarization (see, for example, Hu (2002)

and Zaldarriaga and Seljak (1998)).

Figure 9.11 plots the anticipated levels of distortion of the CMB anisotropy and polariza-

tion spectra caused by lensing (Zaldarriaga and Seljak, 1998). As expected, this effect leaves

the anisotropy spectrum practically undistorted around the first three peaks and becomes

significant (at the level δC(l)/C(l) ∼ 5%) only with l ≥ 1200 (see Fig. 9.11(b)). For polar-

ization, the same effect results in 5% deviations at l ∼ 200, which increase to 10–20% at

l > 1000.

As a result, taking lensing effects into account acquires maximum importance for the

analysis of future experimental data of the PLANCK mission because, on the one hand,

lensing distorts the anisotropy and polarization spectra and, on the other hand, it makes the

signal non-Gaussian. Both manifestations of lensing may lead to incorrect values of the most

important cosmological parameters (listed in the introduction to this chapter) if they are

extracted from the PLANCK data ignoring lensing. What we face here is another extension

of the horizon of applications of the primordial background radiation as a kind of probe of
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the state of matter in the Universe; we can achieve this due to the unique characteristics of

the PLANCK mission.

9.4 Galactic and extragalactic noise
When we discussed the data that were potentially achievable from the PLANCK

mission and compared them with the sensitivity of ongoing experiments earlier in this chapter,

we emphasized that observational data are not free from noise. It was often sufficient for a

theoretical simulation of various effects to use the simplest model of instrumental noise,

considering it not to be correlated with either the signal or with itself. This model of ‘white

noise’ is frequently sufficient for halting the flight of imagination at a reasonable level (as far

as experimenters are concerned) and to narrow down the set of effects that need to be taken

into account in analysing observational data. However, in addition to instrumental errors that

include the effects of systematics, there exists another class of noise, one that cannot be

eliminated in principle and which reflects the simple fact that together with the Earth and the

Sun we exist on the periphery of the Galaxy and are surrounded by magnetic fields, cosmic

rays, clouds of dust and gas, etc., and also stars, whose radiation activates the components

mentioned above. In other words, the experimental conditions are far from ideal, especially

if we take into account that if other galaxies differ from ours, they are typically even worse

as far as noise is concerned.

The factors given above are usually separated into galactic and extragalactic sources of

noise; their radiation covers a broad range of wavelength bands from the long-wavelength

radio background (λ ≥ 0.5 m) up to superhigh-energy cosmic rays (see Chapter 1). From the

practical point of view, we will now concentrate on that range of radiation frequencies that are

generated by galactic and extragalactic sources of noise and stretches from 30 to 900 GHz, in

correspondence with the possibilities of the LFI+HFI instruments of the PLANCK mission.

Note that this frequency range covers all bands – including the current ground-based experi-

ments and balloon missions – and in this sense is the most general for analysing various sorts

of noise.

Therefore, to predict the contribution of galactic and extragalactic noise to CMB anisotropy

and polarization maps, one inevitably has to extrapolate the known results obtained in other

experiments or those belonging to adjacent frequency ranges. The same is true in the case of

high uncertainty of spectral characteristics of the noise. In this connection the results of the

WMAP and PLANCK missions appear to be also important in the context of studying the

radio background of the Universe, including its cosmological component.
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Conclusion

This book is devoted to a systematic discussion of the physics of the cosmic microwave
background. This field of physics is very complex and involves an enormous diversity of
processes that occur in the course of expansion of the Universe. The CMB proved to be a
true ‘goldmine’ for extracting scientific information on these processes; it has in fact grown
into the central branch of modern cosmology. Comparing this highly perfected theory with
observational data makes it possible to obtain essential information on the early Universe
and on the physical parameters of the Universe as a whole.

Combining these results with results from other branches of astrophysics, such as the
large-scale structure of the Universe, supernovae, etc., provides a robust basis of modern
cosmology.

Results from BOOMERANG, MAXIMA-1, ARCHEOPS, CBI, DASI and WMAP were
so important that they have taken the field into the era of ‘precision cosmology’. As we
have discussed, these studies have produced impressive constraints on many fundamental
cosmic parameters and have led to a very definite picture of the structure and evolution of the
Universe. As a result, one could become overexcited and declare that almost everything in
cosmology is now known. However, we want to emphasize that even after those remarkable
projects, the study of CMB physics is not coming to an end. There are still many unsolved
problems in cosmology, and another generation of satellite experiments, as well as ground-
based and balloon-borne experiments, is needed. The deeper science penetrates and the more
mysteries it solves, the more problems it discovers, each more daunting and less predictable
than the last.

Among the fundamental problems which arose after the recent success of cosmology, we
mention the following.

(a) What is the nature and origin of ‘dark energy’? How did it evolve?
(b) Why does �� � 0.73 in the current state of the Universe?
(c) What is the nature of ‘dark matter’?
(d) Why does �dm � 0.3? What theory could provide this value?

These problems present a tremendous challenge. Thus, serious work on these and other
cosmological problems continues.

There are also problems and uncertainties directly related to the interpretation of recent
observational data. Recent experiments focused much attention on the separation of the
primordial cosmological signal from noise and the foreground and on the statistical properties
of the signal.
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As we discussed in Chapter 8, sophisticated non-Gaussianity testing on derived maps from
first-year WMAP data shows significant non-Gaussian features. What are these features?

(a) Could they be foreground residuals? If yes, then what is wrong with the methods of
separating the primordial signal and the models of the foreground?

(b) Could they be systematic effects? If yes, then what kind?
(c) Or could they exhibit primordial non-Gaussianity? If yes, then this is a fact of great

importance. The physics of their origin would probably be related to the origins of ‘dark
energy’ and ‘dark matter’.

In addition, we want to emphasize that the assumption that the statistical properties of the
primordial CMB signal are Gaussian is the crucial requirement for deriving cosmological
parameters from temperature and polarization power spectra.

Should the primordial CMB signal possess a non-Gaussian origin in the form of a quadratic
non-linearity in the gravitational potential, the connection between CT(l), Cp(l) and the cos-
mological parameters would need additional, probably non-trivial, investigation. The impor-
tance of the non-Gaussianity of the CMB signal can be illustrated by assuming that at some
range of multipoles, say l ∼ 200, the al coefficients of the spherical harmonics expansion of
the anisotropy �T are highly correlated. Without comprehensive testing for non-Gaussianity
in the map, these correlations can easily mimic the first acoustic peak of the CT(l), leading
to the wrong conclusions about the properties of the CMB and cosmological parameters.
Preparation and implementation of sensitive non-Gaussianity tests on the anisotropy and
polarization maps is therefore pivotal for the PLANCK mission.

Another important problem scientists are working on now is the ionization history of the
Universe. We discussed this problem in Chapters 3 and 9. Here we want to emphasize that
the study of the reionization process is a crucial test of the correctness of our knowledge
of the processes of the formation of structure in the Universe. It also tests our knowledge of
the possible nature of the hypothetical unstable particles, the decays of which influenced the
kinetics of hydrogen recombination.

We also want to mention the following important problems, which are related to CMB
science and are under active study by cosmologists.

First of all, there is an open question regarding primordial gravitational waves. Polarization
measurements of the CMB can serve as a detector of stochastic background of the primordial
gravitational waves. As we discussed in Chapters 6 and 7, the pattern of polarization directions
in the sky will be different if a stochastic primordial gravitational radiation exists. In this case
the so-called pseudoscalar or ‘magnetic’ part of the polarization would not be equal to zero.
It should be emphasized that the inflation model predicts the existence of such radiation.
These measurements, then, with better precision than those of DASI and WMAP, will open
a window on the early Universe.

These investigations are especially important because there is a huge project, the Laser
Interferometer Space Antenna (LISA), which may allow direct detection of a continuous
spectrum of primordial gravitational radiation. Comparison of the PLANCK and LISA results,
obtained by these absolutely different methods of observation, is extremely important.

It should be mentioned that the possible existence of a primordial magnetic field can also
be tested using CMB observations (Naselsky et al., 2004). Another fundamental problem of
modern cosmology is the possibility of other types of primordial perturbations in the early
Universe, different from the adiabatic ones (for example, isocurvature perturbations).
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We should remember that the impressive constraints on many fundamental cosmic param-
eters, produced by WMAP and other projects, reside within the framework of a definite
cosmological model. If we take into account the possibility of a wider class of cosmologi-
cal models, it may be that the actual uncertainty is much greater. We will have to wait for
forthcoming observations to reduce the current uncertainties.

After the beginning of the era of ‘precision cosmology’, the number of questions affect-
ing the basic fundamentals of cosmology increased significantly. And the show goes on!
Both cosmological and physical communities are now working on future projects such as
PLANCK, ALMA, LISA, etc., and there remains plenty of room for surprises.
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