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1. Introduction
The mathematical formulation of the physical phenomenon
is
Problem vc" Find a pair U,s defined in T x v , v with
(1.1) I=(-1,1), += (0,T)
according to
st . - :MQ in (-1,8) x v ,
ch«uﬁ in (s,1) x = ,
(1.3) W 2L = E in 1 ,
(1.%) U(.,0) =g in T
together with
(1.5) U(s(t) ,t) = U(s(t)*,t) in +
(1.6) -8(t) = U (s(0)7,0) = U (s(t)x) 1n ¢,
(1.7) s(0) =0 .

With respect to the physical interpretation as well as
the question of existence and unicity we refer to [1] - [4] .
The moving of the interface s(t) together with the transient

conditions cause special difficulties.

In [8] - [11] we analyzed a finite element method for
another class of free boundary problems which covers the

three problems discussed in ﬁmu . On the one hand this



approach gives a tool for the numerical solution. On the
other hand 1t can be used in order to derive existence and

regularity results in an elementary way.

The main features of the method are: (1) The free
boundary problem is transformed to a (nonlinear) boundary
problem with fixed boundary. (ii) The solution u 1is
characterized by a variational equation of the type (H beling

an appropriate Hilbert-space)

Problem P: Find u = uf.,t) ¢ H according to

(1.8) a(i,v) + blu,v) = N(u,v) + L(v)
for all v € H and t ¢ v with u(.,,0) given.

Here & respective b denote positive definite respective
semi-definite bilinear forms and the bounded, Frechet

differentiable nonlinearity N admits an estimate
(1.9) N(v,v) =8 b(v,v) + ¢ alv,v)Y

with &6 <1 and some y > 0 . The finite element method
m: defines for a given approximation space m: an
approximation u, €8, via (1.8) with v restricted to
ms . By more or less standard arguments the existence of
a time interval r can be proved such that problems P

and ww admit unioue soclutions in ¢ .,

The difference e between the solutions u and Uy s
i.e. the error of the method, Solves an equation of the

form

(1.10) ale,x) + ble,X) = Nile,x) + Qle,x) for x ¢ Sy,

with € Ybelng at least quadratic in e . The error analysis
. o
is obvious provided a Garding type inequality

(1.:31) _zmﬁ<u<q_ < b(v,v) + A a(v,v)

for some A € ® holds.

In this paper we develop such & method for problem vc o

The error analysis and the application to an existence

proof etc. will be given elsewhere.



5.
2. A Weak Formulation Here and in the following u,  ete. means
The linear transformations (2.9) u, = c+hdv _ www+ il i
v o= -1 + (1+8) (14x) | )
(2.1) and u,u' will denote the derivatives with respect to time
B y= 1 - (1-8Y(1-x)
. and space.
intervals I = (-1,0) resp. I = (0,1) onto (-1,8)
e the i - ) * In the case of a 'classieal solution' all the functions
resp. (s,1) . We introduce the new unknown u by
entering P, @&re contlnuous. Obviously w: remains meaning-
(2.2) u(x,t) = Uly,t) . ' ful if u and s

have the reduced regularity

Then wc leads to

1) uw e (r,H,) with
Problem P : Find a pair u,s defined in I x 7, +

u Hy = B (D) n {Hy(1) v By(1))

according to

(2.10) RR
AH+m,-mcxx + Aw+mdlpﬁw+x“ s uy, in IT_xr1 , »mu uerL (v, mHAHJV R
(2.3 u, =
t =
o) -1 T
(1-8)""u__. + (1-8)" " {1-x) s u_ in X T
$ xx X * 1) s ewl(r) .
(2.1 ulFi,e) = £,.(6) in
- - Remark: Condition um could be lowered but this is
the adeguate one for our purposes.
(2.5) ulx,0) = glx) in T ,
. We will reformulate condition (2.7). Let us introduce
ith

Tage thier W the functionals

y u =u in  , -
(2.6) o P M) = alsu) =z {a(1-8)"tuy - (1) Tat)

1 (2.11)

(2.7} 5= ()M = e(1-8)" ! tnoor o,

wu) = p(s;u) = ﬁnﬁptmduuch + ﬁu+m¢|~c_w

noj—

(2.8) s(0) = 0 .



Then (2.7) can be splitted into

A(s;u) 0 ,

(2.12)

s

-u(szu) ;

Multiplication of (2.3) by w" with w € mm and

integration over I, lead to

Au+mv|mﬁ::.z=v + mﬁw+mduwﬁﬂw+xvz.‘s=v

(G, w")

(2.13)
=aw' |0 - @,
(,w") . = a(1-8)"2 (", w") . + $(1-8) 1 ((1-x)u',w")
+ + +
(2.18)
. H a
= cz._o = A:_.s_v+ .

Here (.,.), are the bm;HDSmu products with respect to
I, . The contribution of u in the terms uw' at the points

x = 1 is given by the data (2.4), The continuity condition

(2.6) implies

+H$|H.SO .

.

(2.15)

w' resp. -u_w'

Therefore in (2.13) resp. (2.14) the terms u 5¥i

o]
enter. The variational formulation will be won by a linear

combination of (2.1%) and (2.14). For reasons which will

become evident below we want to have a contribution mo A(ssw) .

Thus we have to multiply (2.13) by ~H+muuw and (2.14) by

1

a(l-s)”" and to add both equations. Then we get the relations

taking into account Am.HmmJ

(2.16) a(u,w) + blu,w) = t?un?E?.yo»?v+h?u

with

(2.17) a(v,z) alsiv,z) := ﬁw+mgnuﬂ<_.u.v + ﬂﬁuxmvuwﬁ<_.m.u

- +

(2.18) b(v,z) = b(siv,z) = (148) 2 (v",2") + o2(1-8)"2(v",2")

a(v,z) = q(s;v,z) := ﬁH+mu|maaH+xJ<._N=v +
(2.19) - -
+a(l-8) 2 (v,
- s e -1 p -1 2 T
(2.20) L(z) = L(s;z) := q(1-s) £y zhH - (1+8)77 f_ w!y p

In order to get the needed coerclveness properties we

have to replace u, - For the sake of symmetry we take the

arithmetic mean of the right hand sides of (2.3), Using

the fact A =0 and S = -y we come to

(2.21) o M(u) = M(s;u) := (1+s)"“u" 4+ pﬁp-mv-mﬁu -

- o 1ea) Py .

o
=
i

Finally we may add a term
(2.22) v A(u) x(w)
since this vanishes anyway. Now we are ready to define

A pair wu,s having the reduced regularity RR

is a weak solution if for all w ¢ mm and almost all

t €T

+
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3. The Finite Element Method
a(u,w) + blu,w) + v 2(u) ra(w) = ulu) qlu,w) -

(2.23) Let for h < 1
- M(u) rx(w) + L{w)

(3.1) mot *xu_lu =X €X, € ... <X_ = Hw

o] 1 n

i ddition for almost all t € r
and dn e ne be a subdivision of I such that x = 0 1is one of the knots

(2.24) § = -u(u) and with some x » 0 fixed
together with the initial conditions ' (3.2) w h = inf AxH+Hiva = sup Ax»+H|NHu =h .
(2.25) u(.,0) = g in T " The approximation spaces we will work with consist of all
splines of a fixed degree r continuous in T , continuously
1 = v
201 ale differentiable in H+ and T_ and with a possible jump of
A straight forward analysis shows for v # O : the first derivative at x = 0 . The finite element approxima-

tion is defined by
Lemma 1: Let u,s be a weak solution and both functions

sufficiently smooth then they solve P _ . Problem P : Find a pair Uy s Sy, with CUA..dV €8,

c h
according to

a(sysip,x) + Dsu,x) + vy A(s5w) A(s %) =
(3.3) = ulspsuy) alssup,x) = Misgsu) (s ;%) + Lisy; %)

for X € mwm‘u and tern »
(3.4) S, = -u(szu ) for t er
ﬂu-wd f—jﬁ-uov = m:m £

(3.6) sp,(0) =0

with w: being the hm;deQmoﬁuo: onto m: .
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Remark:

the

The formulae are somewhat lengthy. But besides

point evaluations i,u and M only ﬁm:momwmﬂl

products are to be computed. Also a time stepping

procedure does not cause difficulties.

Tn general, i.e. in the space mm , no coerclveness

relation of the type (1.9) will hold. This is due to the

fact that M(u) depends on uj whereas in b(.,.) only

the hm12015 of u

Lemma 2:

" 1s covered. But still we can show

Assume N is bounded away from % 1 . There

exists a constant vy, such that for any choilce

(3.7)

the

(3.8)

term

;mmgugg ﬂﬁmﬁnﬂ-&u - Zﬁmjmﬂu ?mmzu_ﬂv

appearing on th right hand side of (3.3) 1s bounded by

(%,9) mﬁdamsus‘sJ + vy wmﬁmshavw + aﬁm“msne.sdm + wﬁmwme.awa .

Proof':
If they

the two

Inthe following CrCprees denote numerical constants.

are strictly positive we write M< . We will need

a priori estimates:

Proposition 1: Let J be a bounded interval. For v ¢ mmﬁmg

the

(3.10)

L-norm may be bounded by

Nl " 1/2 enl/2
_qd_,H_oanL.v nln Gwﬁ__ﬁ.:ﬁmﬁu..f + =<=H_MALJ=< M_Hsmhh.v

Proposition 2: TLet J be I_ resp. H+ . Under the
above assumptions on ms inverse relations of the
type

11 IW\M "
ol =e, h o s
I L (1) 2 [ =rmﬂuJ
(3.11)
y -1
lle" Il < c, h o'l
rmﬁ;J 2 L, (J)

hold for o € ms .

Remark: (3.11) is proved in [6] .

Because of the assumption there 1s a ou < 1 with

(3.12) Isyl = ¢y -

This gives at once

a(z,z) 2 gllz'|?

(3.13)

blz,2) = e lz"|® .

Cel

II.]l denotes the Wmﬁwdnsoua. For functions in the space H

the second derivatives are defined in Hw and are in

bmﬂH+q. Tn this way ||z"| has to be understood.

Further we find the bounds

(318 Jula)| s eg{llz Il + h2' 12 21 %}

(3.15)  la(z,2)| < collz'|l fI="]l .

11.
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12.

For functions o € S

v n We set because of Proposition 2

(3.16)  IM(o) ! = eg b 20" |+ co{lleo 1 + Ho'll o'} -

In this way we come to the estimate of the first term in

(%.8):

_u\mw

(3.7) Jule) aleo)| = opo{le'l? o'l + lo'17/

which by means of Young's lnequality may be estimated by
< sl + oy ({01 + 10'1%)
(3.18)  |ule) alo.0)| < sle™1® + cp) (8){llo'] P

with 8 € (0,1} arbitrary and oHHﬁmv depending on the

1

constants and on 1 + & .

S T

The second term in (3.8) may be estimated by

- 2
(3.19) M) Ao | = cpplnlet {02 el + o' 1? + lo'll llo" I}
The first term on the right hand side is bounded by

0 V2 ()| o'l = slla”l® + gx oFp 1T (@)

(3.20) ¢ 12

12

The second causes no difficulties. The third can be estimated
by

-1

2 2y w2
(3.21) e | o'l llo"ll < b7 Al + ¢y 5 hlle'] 1E

Because of Proposition 2 we get
(3.22) nlle'l® "1 s cylle' Pl < slle"1? + 7% o2 flo' 1S

This completes the proof.

Remark: The method discussed has its predecessor in mﬂu "
Tn order to approximate the solution of the Dirichlet
problem of a second order elliptie differential
equation we constructed a bilinear-form defined for
functions not necessarily fulfilling any boundary
conditions. Whereas this form is in mmsmﬂmw indefinite
it is positive definite in the approximation spaces

by the ald of certain inverse properties.

15,
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