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Abstract 
 

An alternative (quantitative model to Kolmogorov's purely qualitative statistical 
turbulence model is provided. It takes into account the quantitative fluid behavior as 
its (statistically) described by the Euler or the Navier-Stokes equations. In order to 
highlight and focus on the new conceptual elements (and to avoid technical 
difficulties) we restrict ourself to the one-dimensional Constantin-Lax-Majda (CLM) 
vorticity equation with a viscosity term, ([MaA]. Based on the re-revisited generalized 
CLM equation with viscosity term we propose a turbulent flow model which allows 
non-stationary random functions with finite variance and related spectrum ([FrU] 
(4.54)) with respect to the 𝐻1/2 −energy norm. The central modification to the current 
“revisited CLM proposal” is identical to the alternatively proposed auxiliary function 
definition of 𝑣 = 𝐻[𝑢] = 𝐴[𝑢𝑥] in [BrK1]. The model allows wavelet synthesis according 
to [FaM], [FaM1]. 

 
Prologs 

 
M. Farge 

 
“Fourier transform would be the appropriate tool to analyze the intrinsic structure of a 
turbulent flow if and only if the turbulent flow field is a superposition of waves. Only in 
this case are wave numbers well defined and the Fourier energy spectrum is 
meaningful for describing and modeling turbulence. If, on the contrary, turbulence 
were a superposition of point vortices then the Fourier spectrum in this case would be 
meaningless. The problem we still face in turbulence theory is that we have not yet 
identified the typical “object” that composes a turbulent field.” 

 

[FaM1]: “The definition of the appropriate “object” that composes a turbulent field is 
still missing. It would enable the study how turbulent dynamics transports these 
space-scale “atoms”, distorts them, and exchanges their energy during the flow 
evolution. If the appropriate “object” has been defined that composes a turbulent 
field it would enable the study how turbulent dynamics transports these space-scale 
“atoms”, distorts them, and exchanges their energy during the flow evolution. …  
 

…The notion of “local spectrum” is antinomic and paradoxical when we consider the 
spectrum as decomposition in terms of wave numbers for as they cannot be defined 
locally. Therefore a “local Fourier spectrum” is nonsensical because, either it is non-
Fourier, or it is nonlocal. There is no paradox if instead we think in terms of scales 
rather than wave numbers. Using wavelet transform then there can be a space-scale 
energy be defined with a correspondingly defined scale decomposition in the vicinity 
of location x and a correspondingly defined local wavelet energy spectrum.  By 
integration this defines a local energy density and a global wavelet energy spectrum. 
The global wavelet spectrum can be expressed in terms of Fourier energy spectrum. It 
shows that the global wavelet energy spectrum corresponds to the Fourier spectrum 
smoothed by the wavelet spectrum at each scale. … 
 

… The concept enables the definition of a space-scale Reynolds number, where the 
average velocity is being replaced by the characteristics root mean square velocity 
𝑅𝑒( 𝑙, 𝑥) at scale l and location x. At large scale (i.e. 𝑙 ≈ 𝐿) 𝑅𝑒( 𝐿) coincides with the 
usual large-scale Reynolds number, where  𝑅𝑒( 𝐿) is defined as  
 

𝑅𝑒( 𝐿) = ∬ 𝑅𝑒( 𝐿, 𝑥)𝑑𝑥
𝑅𝑛

.  “ 
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A simple one-dimensional turbulent flow model with viscosity term  
based on the revisited  CLM vorticity equation in  [MaA] 

 
extract from original [BrK], 2016 

 
 
Based on the re-revisited generalized CLM equation ([MaA] 5.2) with viscosity term we propose a 
turbulent flow model which allows non-stationary random functions with finite variance and related 
spectrum ([FrU] (4.54)) with respect to the 𝐻1/2 −energy norm. The modification of current “revisited CLM 
proposals” is identical to the alternatively proposed auxiliary function definition of 𝑣 = 𝐻[𝑢] = 𝐴[𝑢𝑥] in 
[BrK1]. The model allows an wavelet synthesis according to [FaM], [FaM1]. 
   
Note: In [SaT1] for periodic boundary conditions the Fourier (spectral) representation of the non-linear 
term 𝜔𝐻[𝜔] = 𝜔𝐴[𝜔𝑥], whereby   denotes the vorticity and H  the Hilbert transform operator. If the 
solution of the Euler equation is smooth then the solution to the slightly viscous NSE with same initial 
data is also smooth. Adding diffusion to the CLM model it makes the solution less regular [MuA]. As a 
consequence of this the CLM model lost most of the interest in the context of NSE analysis.  
 
Note: In [MuA] a nonlocal diffusion term is proposed removing this drawback. The modification goes 
along with a reduced regularity of the “dissipation” term resulting in a reduced “energy” Hilbert scale of 
Hilbert scale factor −1/2. As this modification did not modify in same manner the non-linear term this 
leads to an unbalanced energy equation. As the non-linear term governs the dissipative term in case of 
turbulence, this is an argument to reject current revisited CLM model with viscosity term [DeS], [MuA], 
[OkH], [SaT], [SaT1]. At the same time those suggested modifications being applied in same manner  to 
the linear term would fit to the Stieltjes integral based Kolmogorov theory [ShA], as well as to the 
conceptual idea of this paper (i.e. an 𝐻1/2 − energy inner product enabling an energy inequality which 
does not exclude any information from the non-linear term). Combining both conceptual ideas provides a 
functional analytical common framework ([BrK]) for a statistical fluid mechanics theory [MoA],  statistics 
of gases and highly turbulent fluid flows [HoE].  
 
The building concept of the revisited generalized CLM model is therefore as follows: we consider periodic 
boundary condition and assume that the initial condition of 𝜔 is symmetric with respect to the origin 
([SaT1]). We propose a weak  𝐻−1/2 − variation representation of the extended Schochet-CLM model 
([ScS]) in the form  
 

(𝜔̇, 𝑣)−1/2 − 𝜀(𝜔𝑥𝑥 , 𝑣)−1/2 = (𝜔𝐻[𝜔], 𝑣)−1/2 , ∀𝑣 ∈ 𝐻−1/2. 
 
With the notation of [BrK] this representation is equivalent to 
 

(𝐴𝜔̇, 𝑣)0 + 𝜀(𝐻[𝜔], 𝑣)1/2 = (𝐴[𝜔𝐻[𝜔]], 𝑣)0 , ∀𝑣 = 𝐻[𝑤] ∈ 𝐻−1/2. 
 

Taken into account that the Hilbert transform is an isometry on all Hilbert scales and that 𝐻2[𝑣] = −𝑣 and 
putting 𝜔𝐻: = 𝐻[𝜔] this can be reformulation in the form 
 

(𝜔̇𝐻 , 𝑤)−1/2 + 𝜀(𝜔,𝑤)1/2 = (𝐻[𝜔𝐻[𝜔]],𝑤)−1/2 , ∀𝑤 ∈ 𝐻−1/2. 
 
From [MaA] we recall the identity 
 

2𝐻[𝜔𝐻[𝜔]] = 𝜔𝐻
2 − 𝜔2 

 
leading to  
 

(𝜔̇𝐻 − 𝜀𝜔′, 𝑤)−1/2 =
1

2
(𝜔𝐻

2 − 𝜔2, 𝑤)−1/2 , ∀𝑤 ∈ 𝐻−1/2. 
 
The left hand side of the variation representations above is reflecting to current revisited proposals of the 
CLM model, while now the right hand side of the variation equation shows a modified non-linear CLM 
model operator (as the domain has changed). 
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The spectral method analysis of the equation follows the same way as in ([SaT1]) leading to: 
 

𝜔̇𝑛 ≈ 𝑛(𝜀𝜔𝑛 +∑ 𝜔𝑘𝜔𝑛−𝑘
𝑛−1
𝑘=1 )    ,   𝜔𝑛(0) =

𝐴𝑛

2
 

whereby 
 

𝜔(𝑥, 0) = ∑ 𝐴𝑛 𝑠𝑖𝑛( 𝑛𝑥)
∞
1 . 

 
The spectral analysis above is also linked to the solution framework of [BrK3]. The Hilbert transform of the 
Gaussian is the Dawson function, which is norm equivalent to the Gaussian due to the related property of 
the Hilbert transform. Therefore a Dawson basis function based Hilbert space framework enables an 
alternative statistical hydromechanics. 
 
[FaM]: “The turbulent regime develops when the non-linear term of the NSE strongly dominates the linear 
term. Superposition principle holds no more for non-linear phenomena. Therefore turbulent flows cannot 
be decomposed as a sum of independent subsystems that can be separately studied. A wavelet 
representation allows analyzing the dynamics in both space and scale, retaining those degrees of 
freedom which are essential to compute the flow evolution”. 
 
[MeM] “Methods based on wavelet (Galerkin) expansions in 𝐿2 framework face the issue that in Galerkin 
methods the degrees of freedom are the expansion coefficients of a set of basis functions and these 
expansion coefficients are not in physical space (means in wavelet space). First map wavelet space to 
physical space, compute non-linear term in physical space and then back to wavelet space, is not very 
practical”. 
 
The 𝑐𝑜𝑡( ∘) (with its distributional Fourier series representation) and the first derivative of the Dawson 
function are proposed candidates for a wavelet as element of the complementary subspace 𝐻−1/2 −𝐻0 of 
𝐿2. The Hilbert transform is an isomorphism on any Hilbert scale 𝐻𝛽. Therefore the Hilbert transformed 
𝑐𝑜𝑡( ∘) is a wavelet, as well ([WeJ]). 
 
Following the concept of [FaM] the turbulent 𝐻−1/2 −signal can be split into two contributions: coherent 
bursts, corresponding to that part of the signal which can be compressed in a 𝐻0 −wavelet basis, plus 
incoherent noise, corresponding to that part of the signal which cannot be compressed in a  𝐻0 −wavelet 
basis, but in the 𝐻−1/2 −wavelet basis. For the 𝑛 = 1 periodic case the later one corresponds to the 
alternative zero-state energy model of the harmonic quantum oscillator.  
 
We note from [ShA] that a homogenous random field is a stationary process 𝑋(𝑠) with the correlation 
function 𝑅(𝑡) = 𝐸𝑋(𝑠 + 𝑡)𝑋(𝑠) of the process 𝑋. Ist spectral (Stieltjes integral) representation based on a 
finite spectral measure 𝐹 (spectral distribution function) with "spectral density" 𝑑𝐹 , where 𝑑𝐹(𝑘) is the 
contribution to the "energy" of the harmonics whose frequencies are within the interval (𝑘, 𝑘 + 𝑑𝑘). )(kF  is 
characterized by the properties "symmetry" (𝑑𝐹(−𝑘) = 𝑑𝐹(𝑘), "monotonicity" (𝐹(𝑘) ≤ 𝐹(𝑙) for 𝑘 ≤ 𝑙), 𝑅(0) 
"boundedness"). If 𝑋 is a real-valued process, then the spectral "function" is symmetric with respect to 
the point 𝑘 = 0. As a consequence for 𝐺(𝑘) = 𝐹(𝑘) − 𝐹(−𝑘) the correlation function 𝑅(𝑡) is given by  
 

𝑅(𝑡) = ∫ 𝑐𝑜𝑠( 𝜆𝑡)𝐺(𝑑𝜆)
∞
0

. 
 
This corresponds to a purely cos-Fourier series representation which is given by the Hilbert transformed 
𝑐𝑜𝑡( ∘). 
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