
The eigenvalue problem for compact symmetric operators 
 
In the following 𝐻 denotes an (infinite dimensional) real Hilbert space with scalar product (. , . ) and the 
norm ‖. . . ‖. We will consider mappings 𝐾: 𝐻 → 𝐻. Unless otherwise noticed the standard assumptions on 
𝐾are: 
 
i) 𝐾 is symmetric, i.e., for all 𝑥, 𝑦 ∈ 𝐻 it holds (𝑥, 𝐾𝑦) = (𝑥, 𝐾𝑦) 

 
ii) 𝐾 is compact, i.e., any (infinite) sequence {𝑥𝑛} bounded in 𝐻 contains a subsequence {𝑥𝑛′} such 

that {𝐾𝑥𝑛′} is convergent 
 

iii)  𝐾 is injective, i.e., 𝐾𝑥 = 0 implies 𝑥 = 0 . 
 
 
A first consequence is 
 
Lemma:  𝐾 is bounded, i.e. 

‖𝐾‖: = 𝑠𝑢𝑝
𝑥≠0

‖𝐾𝑥‖

‖𝑥‖
< ∞. 

 
Lemma: Let 𝐾 be bounded, and fulfill condition i) above, but not necessarily the two other conditions ii) 
and iii). Then ‖𝐾‖ equals 
 

𝑁(𝐾) = 𝑠𝑢𝑝
𝑥≠0

|(𝑥,𝐾𝑥)|

‖𝑥‖
. 

 
Theorem: There exists a countable sequence {𝜆𝑖 , 𝜙𝑖} of eigen-elements and eigenvalues 𝐾𝜙𝑖 = 𝜆𝑖𝜙𝑖  with 
the properties 
 

i) the eigen-elements are pair-wise orthogonal, i.e.  (𝜙𝑖 , 𝜙𝑘) = 𝛿𝑖,𝑘 
 

ii) the eigenvalues tend to zero 
 

iii) for the generalized Fourier sums it holds 
 
                            𝑆𝑛: = ∑ (𝑥, 𝜙𝑖)

𝑛
𝑖=1 𝜙𝑖 → 𝑥    with 𝑛 → ∞ for all 𝑥 ∈ 𝐻 

 
iv) the Parseval equation 

 
‖𝑥‖2 = ∑ (𝑥, 𝜙𝑖)

2∞
𝑖   

holds for all 𝑥 ∈ 𝐻. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



Hilbert Scales 
J. A. Nitsche 

 
Let 𝐻 be a (infinite dimensional) Hilbert space with scalar product (. , . ), the norm ‖. . ‖ and let 𝐴 be a 
linear operator with the properties 
 

𝐴 is self-adjoint, positive definite 
 

𝐴−1 is compact. 
 
 Without loss of generality, possible by multiplying 𝐴 with a constant, one may assume 
 

(𝑥, 𝐴𝑥) ≥ ‖𝑥‖       for all 𝑥 ∈ 𝐷(𝐴). 
 
Any eigen-element of the compact operator 𝐾 = 𝐴−1 is also an eigen-element of 𝐴 to the eigenvalues 
being the inverse of the first. Now by replacing 𝜆𝑖 → 𝜆𝑖

−1 we have that there is a countable sequence 
{𝜆𝑖 , 𝜙𝑖} with 
 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖   ,   (𝜙𝑖 , 𝜙𝑘) = 𝛿𝑖,𝑘  and  𝑙𝑖𝑚
𝑖→∞

𝜆𝑖  

 
and any 𝑥 ∈ 𝐻 is represented by  

 
𝑥 = ∑ (𝑥, 𝜙𝑖)

∞
𝑖=1 𝜙𝑖   and    ‖𝑥‖2 = ∑ (𝑥, 𝜙𝑖)

2∞
1 . 

 
Lemma 1:  Le 𝑥 ∈ 𝐷(𝐴), then  
 

𝐴𝑥 = ∑ 𝜆𝑖(𝑥, 𝜙𝑖)
∞
𝑖=1 𝜙𝑖  ,    ‖𝐴𝑥‖2 = ∑ 𝜆𝑖

2(𝑥, 𝜙𝑖)
2

𝑖=1 ,  (𝐴𝑥, 𝐴𝑦) = ∑ 𝜆𝑖
2(𝑥, 𝜙𝑖)

∞
𝑖=1 (𝑦, 𝜙𝑖). 

 
Similarly one can define the spaces 𝐻𝛼  with scalar product  
 

(𝑥, 𝑦)𝛼 = ∑ 𝜆𝑖
𝛼(𝑥, 𝜙𝑖)

∞
𝑖 (𝑦, 𝜙𝑖) = ∑ 𝜆𝑖

𝛼𝑥𝑖𝑦𝑖
∞
𝑖    and norm  ‖𝑥‖𝛼

2 = (𝑥, 𝑥)𝛼.  
 
The relation to 𝑥 ∈ 𝐷(𝐴) is given by 
 

‖𝑥‖2
2 = (𝐴𝑥, 𝐴𝑥)0 , 𝐻2 = 𝐷(𝐴). 

 
The set {𝐻𝛼|𝛼 ≥ 0} is called a Hilbert scale. The condition 𝛼 ≥ 0 is in the context of this section necessary 
for the following reasons: 
 
Since the eigen-values 𝜆𝑖  tend to infinity we would have for 𝛼 < 0: 𝑙𝑖𝑚 𝜆𝑖

𝛼 → 0. Then there exist sequences 
𝑥̂ = (𝑥1, 𝑥2, . . . ) with 
 

‖𝑥̂‖2
2 < ∞ , ‖𝑥̂‖0

2 = ∞ . 
 
Because of Bessel’s inequality there exists no 𝑥 ∈ 𝐻  with 𝐼𝑥 = 𝑥̂. This difficulty could be overcome by 
duality arguments which we omit here. 
 
There are certain relations between the spaces {𝐻𝛼|𝛼 ≥ 0} for different indices: 
 
 
Lemma 2: Let 𝛼 < 𝛽. Then 
 

‖𝑥‖𝛼 ≤ ‖𝑥‖𝛽  
 
and the embedding 𝐻𝛽 → 𝐻𝛼  is compact. 
 
 
Lemma 3: Let 𝛼 < 𝛽 < 𝛾. Then 
 



‖𝑥‖𝛽 ≤ ‖𝑥‖𝛼
𝜇‖𝑥‖𝛾

𝜈  for 𝑥 ∈ 𝐻𝛾 
with 
 

𝜇 =
𝛾−𝛽

𝛾−𝛼
 and  𝜈 =

𝛽−𝛼

𝛾−𝛼
. 

 
 
Lemma 4: Let α < β < γ. To any x ∈ Hβ and t > 0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 
 

‖𝑥 − 𝑦‖𝛼 ≤ 𝑡𝛽−𝛼‖𝑥‖𝛽   
 

‖𝑥 − 𝑦‖𝛽 ≤ ‖𝑥‖𝛽  ,  ‖𝑦‖𝛽 ≤ ‖𝑥‖𝛽  
 

‖𝑦‖𝛾 ≤ 𝑡−(𝛾−𝛽)‖𝑥‖𝛽   . 
 
 
Corollary: Let 𝛼 < 𝛽 < 𝛾. To any 𝑥 ∈ 𝐻𝛽  and 𝑡 > 0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 
 

i) ‖𝑥 − 𝑦‖𝜌 ≤ 𝑡𝛽−𝜌‖𝑥‖𝛽     for  𝛼 ≤ 𝜌 ≤ 𝛽 
 

ii) ‖𝑦‖𝜎 ≤ 𝑡−(𝜎−𝛽)‖𝑥‖𝛽        for  𝛽 ≤ 𝜎 ≤ 𝛾  . 
 
 
Remark: Our construction of the Hilbert scale is based on the operator 𝐴 with the two properties i) and ii). 
The domain 𝐷(𝐴) of 𝐴 equipped with the norm  
 

‖𝐴𝑥‖2 = ∑ 𝜆𝑖
2(𝑥, 𝜙𝑖)

2
𝑖=1   

 
turned out to be the space 𝐻2, which is densely and compactly embedded into 𝐻 = 𝐻0. It can be shown 
that on the contrary to any such pair of Hilbert spaces there is an operator 𝐴 with the properties i) and ii) 
such that 
𝐷(𝐴) = 𝐻2 𝑅(𝐴) = 𝐻0 and  ‖𝑥‖2 = ‖𝐴𝑥‖. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Extension and generalizations 

J. A. Nitsche 
 
For 𝑡 > 0 one may introduce the Hilbert space 𝐻(𝜏) by an additional inner product resp. norm in the form 
 

(𝑥, 𝑦)(𝑡)
2 = ∑ 𝑒−√𝜆𝑖𝑡(𝑥, 𝜙𝑖)(𝑦, 𝜙𝑖)𝑖=1   

 
‖𝑥‖(𝑡)

2 = (𝑥, 𝑥)(𝑡)
2  .  

 
Now the factor has exponential decay 𝑒−√𝜆𝑖𝑡 instead of a polynomial decay in case of 𝜆𝑖

𝛼.  
 
Obviously it holds 

‖𝑥‖(𝑡) ≤ 𝑐(𝛼, 𝑡)‖𝑥‖𝛼  for 𝑥 ∈ 𝐻𝛼  
 
with 𝑐(𝛼, 𝑡) depending only from 𝛼 and 𝑡 > 0. Thus the (𝑡)-norm is weaker than any 𝛼-norm. On the other 
hand any negative norm index, i.e. ‖𝑥‖𝛼  with 𝛼 < 0, is bounded by the  0-norm and the newly introduced 
(𝑡)-norm.  
 
It holds: 
 
Lemma: Let 𝛼 > 0 be fixed. The 𝛼-norm of any 𝑥 ∈ 𝐻0 is bounded by 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝑡/𝛿‖𝑥‖(𝑡)
2  

with 𝛿 > 0 being arbitrary. 
 
Proof: The inequality is a consequence of the following inequality 
 

𝜆−𝛼 ≤ 𝛿2𝛼 + 𝑒𝑡(𝛿−1−√𝜆), for any 𝑡, 𝛿, 𝛼 > 0 and 𝜆 ≥ 1. 
 
This holds for the following reasons: 
 

i) if 𝜆−1/2 ≤ 𝛿 then obviously 𝜆−𝛼 ≤ 𝛿2𝛼  
 

ii) in case of 𝜆−1/2 ≥ 𝛿 it holds 𝑒𝑡(𝛿−1−√𝜆) ≥ 1,  
 

iii) whereas 𝜆−𝛼 ≤ 1  is a consequence of  𝛼 > 0 and 𝜆 ≥ 1. 
 
 
The counterpart of the lemma 4 above is 
 
Lemma: Let 𝑡, 𝛿 > 0 be fixed. To any 𝑥 ∈ 𝐻0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 
 

‖𝑥 − 𝑦‖ ≤ ‖𝑥‖ 
 

‖𝑦‖1 ≤ 𝛿−1‖𝑥‖ 
 

‖𝑥 − 𝑦‖(𝑡) ≤ 𝑒−𝑡/𝛿‖𝑥‖. 
 
 
 
 
 
 
 

 



 
 

Isometric elliptic, parabolic and hyperbolic operators 
 
 

The proposed mathematical modelling framework is based on appropriately define Hilbert (energy) 
scales. The baseline model is provided by the potential theory based symmetric mechanical (Laplace) 
potential energy operator. In classical theoretical physics models this is about a symmetric operator 
accompanied by the Hilbert scale domain 𝐻2. The Friedrichs extension of the Laplace operator with the 
𝐻2 domain provides a self-adjoint potential energy operator defining the inner product of the related 
potential energy Hilbert space 𝐻1. By construction the Laplacian operator is isometric with respect to the 
correspondingly defined Hilbert scales, i.e., ‖−∆𝑢‖𝛼

2 ≅ ‖𝑢‖𝛼+2
2 . A similar property holds for the related 

parabolic (heat) equation operator 𝐻[𝑢] ≔ 𝑢̇ − ∆𝑢 with respect to the norm |‖𝑢‖|𝛼
2 ≔ ∫ ‖𝑢‖𝛼

2 (𝑡)𝑑𝑡
∞

0
, i.e., 

 
(*)       |‖𝐻[𝑢]‖|𝛼

2 ≅ |‖𝑢‖|𝛼+2
2 . 

 
In general the above elliptic and parabolic isometries in („polynomial decay“) Hilbert scales are not valid 
for the d’Alembert (wave) operator 𝐴[𝑢] ≔ 𝑢̈ − ∆𝑢 (*). However, in case of („exponential decay“) Hilbert 
scales with norm |‖𝑢‖|𝛼

2 ≔ ∫ ‖𝑢‖𝛼.𝜏
2 𝑑𝜏

∞

0
, and related inner product in the form 

 
(𝑢, 𝑣)α.(𝜏)

2 : = ∑ 𝜆𝑖
α𝑒−√𝜆𝑖𝜏(𝑢, 𝜙𝑖)(𝑣, 𝜙𝑖)𝑖  , 𝜏 > 0 

 
it holds  
 

(**)        |‖𝐴[𝑢]‖|𝛼
2 ≅ |‖𝑢‖|𝛼+2

2  . 
 
 
Proof: Let 𝑤𝑖 : = (𝑤, 𝜙𝑖) resp. 𝑓𝑖: = (𝑓, 𝜙𝑖) being the generalized Fourier coefficient related to the eigen-
pairs  −∆𝑣𝑖 = 𝜆𝑖𝑣𝑖. Then for 𝐴[𝑤] = 𝑓, it follows  𝑤̈𝑖(𝑡) + 𝜆𝑖𝑤𝑖(𝑡) = 𝑓𝑖(𝑡) with the solution 
 

𝑤𝑖(𝑡) =
1

√𝜆𝑖
∫ sin (√𝜆𝑖(𝑡 − 𝜏)

𝑡

0
𝑓𝑖(𝜏)𝑑𝜏 .  

 
Then for 𝜏 ≤ 𝑡 one gets 

 

∫ ‖𝑤‖𝑘+2,(𝑡)
2 𝑑𝑡

𝑇

0
= ∑ 𝜆𝑖

𝑘+2 ∫ 𝑒−√𝜆𝑖𝑡𝑤𝑖
2(𝑡)𝑑𝑡 ≤

𝑇

0
∑ 𝜆𝑖

𝑘+2 ∫ 𝑒−√𝜆𝑖𝑡 [
1

√𝜆𝑖
∫ sin (√𝜆𝑖(𝑡 − 𝜏)

𝑡

0
𝑓𝑖(𝜏)𝑑𝜏]

2

𝑑𝑡
𝑇

0
    

 

≤ ∑ 𝜆𝑖
𝑘+1 ∫ 𝑒−√𝜆𝑖𝑡(∫ sin (√𝜆𝑖(𝑡 − 𝜏)𝑑𝜏

𝑡

0
) [∫ sin (√𝜆𝑖(𝑡 − 𝜏)𝑑𝜏

𝑡

0
𝑓𝑖

2(𝜏)𝑑𝜏] 𝑑𝑡
𝑇

0
   

 

≤ ∑ 𝜆𝑖
𝑘+1/2

∫ 𝑒−√𝜆𝑖𝑡 [∫ 𝑓𝑖
2(𝜏)𝑑𝜏

𝑡

0
] 𝑑𝑡

𝑇

0
 . 

 
Exchanging the order of integration gives 
 

∫ ∫ 𝑒−√𝜆𝑖𝑡𝑡

0
𝑓𝑖

2(𝜏)𝑑𝜏𝑑𝑡
𝑇

0
= ∫ ∫ 𝑒−√𝜆𝑖𝑡𝑇

𝑡
𝑓𝑖

2(𝜏)𝑑𝑡𝑑𝜏 = ∫ 𝑓𝑖
2(𝜏)𝑑𝑡 [∫ 𝑒−√𝜆𝑖𝑡𝑇

𝑡
𝑑𝜏]

𝑇

0

𝑇

0
  

 
                            ≤ 1

√𝜆𝑖
∫ 𝑓𝑖

2(𝜏)𝑑𝑡
𝑇

0
  

 
from which it follows ∫ ‖𝑤‖𝑘+2,(𝑡)

2 𝑑𝑡
𝑇

0
≤ 𝑐 ∫ ‖𝑓‖𝑘,(𝑡)

2 𝑑𝑡
𝑇

0
 . 

 
Note: The (exponential decay type) Hilbert scales 𝐻𝛼.(𝜏) provide the baseline framework to define Krein 
space based potential energy Hilbert scales accompanied by related self-adjoint potential energy 
operators. 
(*) the counter example is given by the function 𝛷(𝑥, 𝑡) ≔ 𝑒−(

1

2
−(𝑥−𝑡))2

, 𝑢(𝑥, 𝑡) ≔ 𝑡2𝛷(𝑥, 𝑡), 𝑓(𝑥, 𝑡) ≔ 2𝛷(𝑥, 𝑡) − 4𝑡𝛷′(𝑥, 𝑡) fulfilling the relationships 
𝛷̇(𝑥, 𝑡) = −𝛷′(𝑥, 𝑡), 𝛷̈(𝑥, 𝑡) = 𝛷′′(𝑥, 𝑡), 𝑢̈(𝑥, 𝑡) − 𝑢′′(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) and  ‖𝑢′′‖𝐿2(𝐿2)~‖𝛷′′‖𝐿2(𝐿2)     but    ‖𝑓‖𝐿2(𝐿2)~‖𝛷′‖𝐿2(𝐿2). 
 



 

Coercive operators with compact disturbances 
 
A variational representation of an operator in the form 𝐵 = 𝐴 + 𝐾, where 𝐴 is a 𝐻𝛼  - coercive operator with a 
compact disturbance 𝐾 fullfills a coerciveness (Garding type inequality) condition in the form, (AzA), (see also 
(KaY), (BrK10)), 
 

(𝐵𝑢, 𝑣) ≥ 𝑐 ∙ ‖𝑢‖𝛼‖𝑣‖𝛼 − (𝐾𝑢, 𝑣) or (𝐵𝑢, 𝑣) ≥ 𝑐1 ∙ ‖𝑢‖𝛼
2 − 𝑐2 ∙ ‖𝑢‖𝛽

2  
 

with 𝐻𝛽 ⊂ 𝐻𝛼 compactly embedded. 

 
The Riesz and the Calderón-Zygmund operators 

 
The Riesz transformations are the n-dimensional generalizations of the 1-dimensional Hilbert transformation.  
They arise when study the Neumann problem in upper half-plane. The Riesz transforms 
 

𝑅𝑘𝑢 = −𝑖𝑐𝑛𝑝. 𝑣. ∫
𝑥𝑘−𝑦𝑘

|𝑥−𝑦|𝑛+1 𝑢(𝑦)𝑑𝑦
∞

−∞
 ,   𝑐𝑛: =

𝛤(
𝑛+1

2
)

𝜋(𝑛+1)/2  
 

commutes with translations and homothesis, having nice properties relative to rotation, (PeB), (StE). The 
“rotation property” plays a key role in the context of the rotation group 𝑆𝑂(𝑛):  
 

let 𝑚: = 𝑚(𝑥): = (𝑚1(𝑥), . . . 𝑚𝑛(𝑥)) be the vector of the Mikhlin multipliers of the 
Riesz operators and 𝜌 = 𝜌𝑖𝑘 ∈ 𝑆𝑂(𝑛), then it holds 𝑚(𝜌(𝑥)) = 𝜌(𝑚(𝑥)),  
i.e.    𝑚𝑗(𝜌(𝑥)) = ∑ 𝜌𝑗𝑘𝑚𝑘(𝑥) . 

 
The Calderón-Zygmund operators 𝛬 with symbol |𝜈| and its inverse operator 𝛬−1 may be represented 
in the following forms, (EsG) 3.15, 3.17, 3.35, (LiI) p. 58 ff., 
 

  (𝛬𝑢)(𝑥) = (∑ 𝑅𝑘𝐷𝑘𝑢)(𝑥)𝑛
𝑘=1 =

𝛤(
𝑛+1

2
)

𝜋
𝑛+1

2

∑ 𝑝. 𝑣. ∫ ∑
𝑥𝑘−𝑦𝑘

|𝑥−𝑦|𝑛+1

𝜕𝑢(𝑦)

𝜕𝑦𝑘
𝑑𝑦𝑛

𝑘=1
∞

−∞
𝑛
𝑘=1   

                 = −
𝛤(

𝑛−1

2
)

2𝜋
𝑛+1

2

𝑝. 𝑣. ∫
𝛥𝑦𝑢(𝑦)

|𝑥−𝑦|𝑛−1 𝑑𝑦
∞

−∞
= −(𝛥𝛬−1)𝑢(𝑥)  

(𝛬−1𝑢)(𝑥) =
𝛤(

𝑛−1

2
)

2𝜋
𝑛+1

2

𝑝. 𝑣. ∫
𝑢(𝑦)

|𝑥−𝑦|𝑛−1 𝑑𝑦
∞

−∞
 , 𝑛 ≥ 2 . 

 
Note: For space dimension 𝑛 = 1 this is about Λ = 𝐷𝐻 = 𝑃𝐻, where 𝐻 denotes the Hilbert transformation and 

𝐷 = 𝑃 the Schrödinger momentum operator 𝑃 = −𝑖
𝑑

𝑑𝑥
 , (MeY) p. 5. In (BrK6) the Calderón-Zygmund operators 

𝛬 is proposed as alternative Schrödinger2.0 momentum operator. 
 
Note:  If 𝑗 ≠ 𝑗 then 𝑅𝑗𝑅𝑘 is a singular convolution operator. On the other hand, it holds  𝑅𝑗

2 = −(1/𝑛)𝐼 + 𝐴𝑗 
where 𝐴𝑗  is a convolution operator. The following identities are valid 
 

‖𝑅𝑗‖ = 1  , 𝑅𝑗
∗ = −𝑅𝑗   ,  ∑ 𝑅𝑗

2 = −𝐼  ,   ∑‖𝑅𝑗𝑢‖
2

= ‖𝑢‖2 ,𝑢 ∈ 𝐿2 . 
 
Let  𝑚: = 𝑚(𝑥): = (𝑚1(𝑥), . . . 𝑚𝑛(𝑥))  be the vector of the Mikhlin multipliers of the Riesz operators and 𝜌 =

𝜌𝑖𝑘 ∈ 𝑆𝑂(𝑛), then 
 

𝑚(𝜌(𝑥)) = 𝜌(𝑚(𝑥)), whereby 𝑚𝑗(𝜌(𝑥)) = ∑ 𝜌𝑗𝑘𝑚𝑘(𝑥) 
and 

             𝑚(𝜌(𝑥)) = 𝑐𝑛 ∫ (
𝜋𝑖

2𝑆𝑛−1 𝑠𝑖𝑔𝑛(𝑥𝜌−1(𝑦)) + 𝑙𝑜𝑔 |
1

𝑥𝜌−1(𝑦)
|)

𝑦

|𝑦|
𝑑𝜎(𝑦)  

                                                                                     = 𝑐𝑛 ∫ (
𝜋𝑖

2𝑆𝑛−1 𝑠𝑖𝑔𝑛(𝑥𝑦) + 𝑙𝑜𝑔 |
1

𝑥𝑦
|)

𝑦

|𝑦|
𝑑𝜎(𝑦) . 

 
Note: The Riesz operator is a special Calderón-Zygmund (Pseudo Differential-, convolution-) operator 𝑇(𝑓) = 𝑆 ∗ 𝐹 with a 
distribution 𝑆 defined by symbols 𝑚(𝜔) ∈ 𝐶∞(𝑅𝑛 − {0}) with the following properties, (MeY), 
 

i)  𝑚(𝜇𝜔) = 𝑚(𝜔), 𝜇 > 0 
ii) the mean of 𝑚(𝜔) on the unit sphere is zero 
iii) it holds 𝑚(𝜔) =

𝜔𝑗

|𝜔|
.  



The Leray-Hopf and the Riesz operators 
 
The Leray-Hopf (Helmholtz-Weyl) operator 𝑃(𝑧) is the matrix valued Fourier multiplier given by 
 

𝑃(𝜉) = 𝐼𝑑 −
𝜉⊗𝜉

|𝜉|2 = (𝛿𝑗𝑘 −
𝜉𝑗𝜉𝑘

|𝜉|2 )1≤𝑗,𝑘≤𝑛     ,  𝑃 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑄. 

 
It is like the Riesz operator, not a classical Pseudo Differential Operator (PDO) of order zero with the 
symbol 
  

𝑏𝑖𝑗(𝑧) = 𝛿𝑖𝑗 −
𝑧𝑖𝑧𝑗

|𝑧|2   

 
because of the singularity at the origin, (LeN). 
 
The operator 𝑄 is an orthogonal projector, as it holds 𝑄: = 𝑅 ⊗ 𝑅 = (𝑅𝑗𝑅𝑘)1≤𝑗,𝑘≤1 = 𝑄2 . As a result the 
Leray-Hopf operator 
 

𝑃 = 𝐼𝑑 − 𝑅 ⊗ 𝑅 =: 𝐼𝑑 − 𝑄 = 𝐼𝑑 −
𝐷⊗𝐷

𝐷2 𝐼𝑑 − 𝛥−1(𝛻 × 𝛻)  
 
is also an orthogonal projection operator from (𝐿3(𝑅3))3 onto the closed subspace of divergence free 
vector fields. It can be computed through the following identity 
 

𝑃 = (−∆)−1𝑐𝑢𝑟𝑙𝑐𝑢𝑟𝑙. 
 
 
(LeN) Lerner, N. (2009). A Note on the Oseen Kernels. In: Bove, A., Del Santo, D., Murthy, M. (eds) 
Advances in Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential 
Equations and Their Applications, vol 78. Birkhäuser Boston 
 
In der Fluiddynamik, speziell der Lösbarkeitstheorie der NSE , spielt die Helmholtz-Projektion eine 
wichtige Rolle. Wird die Helmholtz-Projektion auf die linearisierte inkompressiblen Navier-Stokes-
Gleichungen angewandt, erhält man die Stokes-Gleichung. Diese ist nur noch von der Geschwindigkeit 
der Teilchen in der Strömung abhängig, jedoch nicht mehr vom statischen Druck, wodurch die Gleichung 
auf eine Unbekannte reduziert werden konnte. 
 
 
 
Note: We note that under rotation in 𝑅𝑛, the Riesz operators transform in the same manner as the 
components of a vector ([SteE1] III, 1.2). 
 
Note: The one-component plasma model of the non-linear collision operator of the Landau equation is 
given by 
 

 𝑄(𝑓, 𝑓) =
𝜕

𝜕𝑣𝑖
{∫ 𝑎𝑖𝑗(𝑣 − 𝑤) [𝑓(𝑤)

𝜕𝑓(𝑣)

𝜕𝑣𝑗
− 𝑓(𝑣)

𝜕𝑓(𝑤)

𝜕𝑤𝑗
]

𝑅𝑁 𝑑𝑤} 

with 

𝑎𝑖𝑗(𝑧) ≔
1

|𝑧|
𝑃(𝑧): =

𝑏𝑖𝑗(𝑧)

|𝑧|
=

1

|𝑧|
[𝐼𝑑 − 𝑄̅](𝑧) and 𝑄̅(𝑧) ≔ (𝑅𝑖𝑅𝑗)1≤𝑖,𝑗≤𝑁. 

  
The symbol function 𝑎(𝑧) is symmetric, non-negative and even in 𝑧; 𝑓 denotes an unknown function 
corresponding at each time 𝑡 to the density of a particle at the point 𝑥 with velocity 𝑣.  
 
 
[CoP] Constantin P., Gallavotti G., Kazhikhov A. V., Meyer Y., Ukai S., Mathematical Foundation of 
turbulent Viscous Flows, Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, 
September 1-5, 2003 
 



[StE1] Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University 
Press, Princeton, new Jersey, 1970 
 
 

The Stokes operator 
 
Sohr: The Stokes operator 𝐴 is basic for our functional analytic approach to the Navier-Stokes system, see 
the discussion in Section 2, I. We need some elementary Hilbert space methods, see Section 3.2, II. 
We develop only the 𝐿2-theory for 𝐴. The advantage of this approach is that we can admit arbitrary 
domains. In particular we can include the interesting case of unbounded boundaries. 
 
 
Fujiwara, D. and Morimoto, H., An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sc. 
Univ. Tokyo, vol.24 (1977), 685-700 
 

◼ precise definition of P(f):= f – grad q 
 
Hieber, M., Saal, J., The Stokes equation in the Lp-setting: well-posedness and regularity properties. 
Handbook of math. analysis in mech. of viscous fluids, 117-206. Springer, 2018. 
 
Abstract 
This article discusses the Stokes equation in various classes of domains Ω C Rn within the Lp-setting for 1 
≤ p ≤ ∞ from the point of view of evolution equations. Classical as well as modern approaches to well-
posedness results for strong solutions to the Stokes equation, to the Helmholtz decomposition, to the 
Stokes semigroup, and to mixed maximal Lq -Lp-regularity results for 1 < p; q < ∞ are presented via the 
theory of R-sectorial operators. Of concern are domains having compact or noncompact, smooth or 
nonsmooth boundaries, as well as various classes of boundary conditions including energy preserving 
boundary conditions. In addition, the endpoints of the Lp-scale, i.e., p=1 and p=∞ are considered and 
recent well-posedness results for the case p =∞ are described. Results on Lq -Lp-smoothing properties of 
the associated Stokes semigroups and on variants of the Stokes equation (e.g., nonconstant viscosity, 
Lorentz spaces, Stokes-Oseen system, flow past rotating obstacles, hydrostatic Stokes equation) 
complete this survey article. 
 
Giga, Y., Sohr, H., On the Stokes operator in exterior domains. J. Fac.Sci. Univ. Tokyo Sect. IA Math. 36, 
103–130 (1989) 
 
 
The content of this section is basically taken from [GiY]. With 𝑐 we denote numeric constants which may 
have different values at different places. 
 
Let 𝑃 be the orthogonal projection operator of (𝐿2(𝛺))𝑛  onto the divergence free vector field 𝛨𝜔  
consisting of all solenoidal vector functions 𝑢, i.e. the operator is an orthogonal projection onto the kernel 
of the divergence operator. It  is a Pseudo-Differential operator (PDO) of degree zero [(EsG]). The Stokes 
operator 𝐴 is a selfadjoint operator in 𝛨𝜎, being the Friedrichs extension of the non-negative symmetric 
operator −𝑃𝛥 in 𝛨𝜔  defined for all 𝑢 ∈ 𝐶2 with 𝑑𝑖𝑣𝑢 = 0 and 𝑢𝑛|𝜕𝛺 = 0. T 
 
The Stokes operator enables the definition of a related Hilbert scale (𝛼 ∈ 𝑅) with corresponding norm 
 

‖𝑢‖𝛼: = ‖𝐴𝛼/2𝑢‖  . 
 
Throughout this paper, if not explicitly mentioned, we assume 𝑝 = 2and 𝑛 = 3 for (𝐿𝑝(𝛺))𝑛. 
 
Using the Stokes operator and its related Hilbert scale framework the Navier-Stokes equations can be 
represented as an evolution equation in 𝐻0 . Since 𝑃(𝑔𝑟𝑎𝑑𝑝) = 0 one gets  
 

𝐴𝑢 = 𝑃𝑓  in 𝐻0 
 

Putting 𝐵(𝑢): = 𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢) and assuming 𝑃𝑢0 = 𝑢0 the NSE initial-boundary equation is given by 



 
                          (*)                     𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 + 𝐵𝑢 = 𝑃𝑓 , 𝑢(0) = 𝑢0. 

 
 
 
As 𝑢 is divergence free and 𝑢 ⋅ 𝑣 identically vanishes on 𝜕𝛺 one gets 
 

𝑏(𝑢, 𝑣, 𝑤): = ((𝑢, 𝑔𝑟𝑎𝑑)𝑣, 𝑤) = ∬ (𝑢, 𝑔𝑟𝑎𝑑)𝑣 ⋅ 𝑤𝑑𝑥 = −𝑏(𝑢, 𝑤, 𝑣)
𝛺

 

 
and especially 𝑏(𝑢, 𝑣, 𝑣) = 0. 
 


