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Pseudodifferential Operators
on SU(2)

Frank Geshwind and Nets Hawk Katz

ABSTRACT. We construct an algebra of left-invariant pseudodifferential operators on SU(2).
We require only that the symbols be homogeneous and C?. For Fourier-bandlimited symbols, we
derive the expected formulae for composition and commutators and construct an orthonormal
basis of common approximate eigenvectors that could be used to study spectral theory. Some
remarks on applications to matrices of operators are made.

Introduction

The idea of time-frequency localization is ubiquitous in mathematics. Analysts using tools such
as wavelets and windowed Fourier transforms look for the “time-frequency content” of functions (e.g.,
[M]). Pseudodifferential operator theorists discuss microlocal regularity and wavefront sets (e.g.,
[T]). Representation theorists seek to unify their subject, which is after all the study of functions on
groups, through the orbit method (see [Ki]), which is based on the idea that different representations
“live” in different coadjoint orbits that correspond to them in an almost functorial way.

The Fourier transform of a function f(x) is defined by

f® =ff(x)e‘2”i"‘5 dx

and may be thought of as extracting the frequency content of f. Indeed, f (&) is the inner product of
the function f with a “pure wave” of frequency £. As the reader undoubtedly knows, this transform
is an indispensable tool for the mathematical analyst, and it would be unreasonable for us to try to
list the applications. The Fourier transform is equally important for applied analysts, being the main
tool for processing stationary signals.

As pointed out in [M], time-frequency methods were introduced by both pure and applied
analysts in order to study more general objects. With a desire to generalize results obtained by Fourier
transform methods, mathematicians introduced various notions of time-scale analysis (e.g., atomic
decompositions and Stein’s generalization of Littlewood—Paley theory to R"). Applied analysts need
time-frequency methods to process “signals whose spectral characteristics are varying with time”
[B, p. 418].

Time-scale and time-frequency methods amount to studying functions and operators in terms
of their interaction with “atomic” functions that roughly speaking, have particular time-frequency
support. (As will be explained, one cannot construct “atoms” that have precise time-frequency
support.) So, for example, the continuous wavelet transform is defined, for appropriate v, by
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W9 = [ reow ("T_’) dx

and is seen to be the result of decomposing f into its inner products with a certain function “shifted”
in time and scale. Similarly, the windowed Fourier transform

Su(£)(. §) =/f(x)w(x—t)e"“5 dx

is given by the values of the function f paired with a window function shifted in time and frequency.
The Fourier inversion theorem states roughly that

Fe) = j FE)e =t ge.

Hence the functions {e?***} ¢cge Dehave like an orthonormal basis, and we may say that the values
of f are independent of one another. At the risk of being pedantic, we may also write that roughly

fx) = ff(y)S(x - y)dy,

which is a formula that is its own inverse. This last expression is the statement that the Dirac delta
functions {§(x — y)}, g~ are as much like an orthonormal basis as the Fourier “basis.”

Hand in hand with these observations is the observation that the operator Ts : f(x) +—
xs(x) f(x) is a projection that annihilates a nontrivial set of functions for any set S (provided
that the complement of S has positive measure). Similarly, one has the corresponding frequency
projections B that map f to the function whose Fourier transform is given by xr(§) f (§) for any
set of frequencies F. These too are projections that annihilate a nontrivial set of functions when the
complement of F has positive measure.

One might wish to say that a function f has “time-frequency support” in the set S x F if f is
supported in S and f is supported in F. However, one has Heisenberg uncertainty type theorems,
the weakest of which states that if S and F' are bounded sets, then no function has “time-frequency
support” in S x F. If one tries to force things by first projecting f via T, so that the result will be
supported in S, and then projecting via Br, so that the result will be frequency supported in F, one
finds that the intermediate property of being supported in S has vanished. The operators T's and Br
do not commute.

One may attempt to rectify matters by replacing the notion of support by one of almost support,
saying that a function is supported in a set S if most of its energy (L2-norm) is contained in that
set. The traditional Heisenberg uncertainty theorem states that the area of S x F must be at least
one for a function to be almost time-frequency supported on S x F. By using concepts such as
almost time-frequency support, analysts are able to perform useful phase-space analyses. The reader
is urged again to consult [M] for an excellent survey of these matters and to see [B] for further
discussion of applications of time-frequency methods to signal analysis.

To put the notion of time-frequency support in the context of an earlier paragraph, as well as
the rest of the paper, one can say that we are replacing the commuting of 75 and B by the almost
commuting of the good classes of operators we shall introduce. The eigenfunctions of these operators
also must have time-frequency support, which is as large as a Heisenberg box. The question we shall
be addressing is the location of the box. A pseudodifferential operator is, roughly speaking, an
operator written in the form

Lf ) = f / a(x, £)é "N £(y) dy d. ©.1)
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Another way of writing this, in the spirit of the spectral theorem, is
L= /a(x,&‘)de dBg. (0.1%)

The function a(x, &) is called the symbol of the operator. Usually, there is a regularity requirement
on a(x, &) forcing a to be smooth in & and controlling the growth in & of a and its derivatives in
x. The action of converting a symbol to an operator is called a quantization. Sometimes, instead of
a(x, &) in the integral one writes a(y, &) or even a(%z, &). These are, respectively, the right and
Weyl quantizations. The quantization (0.1) is called the Kohn—Nirenberg quantization. Intuitively,
one should think of a pseudodifferential operator as acting as a “multiplier,” i.e., that it multiplies the
functions it acts on, represented as functions in time and frequency, by its symbol. Pseudodifferential
operator theory is concerned with making approximate sense of this idea. One does so by introducing
the notion of the wavefront set of a function. This is, roughly speaking, the set of points (x, §) so
that all localizations of the function f near x have the property that their Fourier transforms do
not decay rapidly in the direction of £. The wavefront set is a sort of time-frequency singular set.
The action of pseudodifferential operators does not increase wavefront sets. This is one example
of the time-frequency locality of pseudodifferential operators. Many things can be shown about the
behavior of the wavefront sets of solutions to PDEs in terms of the highest order terms of the PDE.
This sort of result is commonly referred to as microlocal regularity.

Given a Lie group G, its coadjoint orbits are the orbits in the cotangent space at the identity
T} G of the natural group action there. Because of the group action, the cotangent bundle of the group
TS = T}G x G istrivial. The representations of the group may all be viewed as spaces of functions on
the group in the usual way. Then one can ask where in the cotangent bundle of the group does the time-
frequency support of a given representation lie. A good answer is on the product of a coadjoint orbit
with the group. One way to see this is to notice that the coadjoint orbits are the simultaneous level sets
of the symbols of all of the biinvariant operators on the group—operators for which the representations
are eigenspaces. Coadjoint orbits are also an attractive answer because they are symplectic manifolds
sporting a natural Poisson bracket related to the commutation relations of the Lie algebra of G. As
we shall mention a little later, this suggests as a goal for geometry, the association to each symplectic
manifold of a space of functions for which the symplectic manifold should be viewed as the time fre-
quency space and a quantization procedure for making operators out of the functions on the manifold.

In this paper, we seek to unify some of these ideas. We construct an algebra of left-invariant
pseudodifferential operators on SU(2). This project began out of a desire to understand better
the effect that the symbol of an operator has on its spectrum. The classical Weyl’s lemma for the
Laplacian states that the number of eigenvalues of the Laplacian on a compact manifold M that are
less than A can be asymptotically related to the volume of the set in the cotangent bundle of M where
the symbol of the Laplacian is less than A. Various Sz&go limit theorems hint that the time-frequency
support of small eigenvalues for other operators should be essential where their symbols are small.
See [LS] for a complete description. We wanted a more direct approach to these ideas, in particular
to study the spectral asymptotics of matrices of differential operators with identically vanishing
principal symbol determinant. Here, each eigenvalue of the symbol matrix in the appropriate sense
of eigenvalue should relate the asymptotic behavior of infinitely many eigenvalues. The goal was to
see that each eigensymbol is essentially equally important in any region of phase space.

Left-invariant operators on semisimple compact groups seemed a good model case in which to
test these ideas since such operators have many common finite-dimensional invariant subspaces and
are nonetheless noncommutative enough to be interesting. We found that to prove some of the results
we wanted for matrices of operators, it was necessary to be able to construct rather well-behaved
pseudodifferential operators. We find that the operators we construct have an orthonormal basis of
common approximate eigenvectors. This basis is essentially a local Fourier basis.
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All of our results are stated for operators with bandlimited symbols. This restriction is not
essential, however, since all C? functions are in an appropriate sense “almost bandlimited,” i.e., their
Fourier series decay like ;1; Thus, any of our operators may be decomposed into the sum of one
with bandlimited symbol and one with arbitrarily small norm.

The operators we discuss are not new. A much more general class was studied in [CW] where
boundedness between various L? spaces was obtained. What is new, however, is our symbol calculus
for these operators; and the basis of approximate eigenvectors for those whose symbols are in C2.
We prove the following result.

Theorem 5.2.
Let f be a bandlimited symbol. Then x{, ..., x, ., is an orthonormal basis of approximate

eigenvectors for ¢ (f) with error bounded by C(n + 1)4=% where C is a constant depending only
on the C? norm of f and its bandwidth.

Here ¢@ is our quantization of homogeneous symbols of order d on the nth representation
space of SU (2).

Many generalizations are possible. The restriction to SU(2) does not seem to be essential.
We are presently working on generalizing our construction to other semisimple compact groups, the
geometry of whose coadjoint orbits we understand less well. Also, some of our spectral theoretic
results even in the SU (2) case are not completely satisfactory.

A more general context in which to view our constructions is that of quantization of symplectic
manifolds. Our algebra constitutes an asymptotic quantization of the sphere (see [KM]). Modulo
some technical difficulties, a similar construction on toric manifolds (for definition see [KT]) is
indicated. In [KM], rather general constructions of asymptotic quantizations are given; however,
they operate on a sheaf of wave packets which is a rather unwieldy object. Our operators, however,
will act on the usual spaces given by geometric quantization [AK, Ko, GS, KT] that are usually
viewed as the spaces of global holomorphic sections of a line bundle. We hope that our work will
be a step forward toward the aspiration of [KM] for “A Fourier transformation theory in which
nonlinear symplectic manifolds would serve as phase spaces, i.e., the spaces where the wavefront
sets lie, [which] could become a definitive mathematical theory of quantization of these manifolds.
This kind of theory would combine both of the aforementioned approaches to quantization.” We
hope our paper inspires future work.

1. The Setup
The group G = SU (2) may be thought of as the unit quaternions. In other words, as a set,
G={w+ix+jy+kzeH|w+x>+y +22=1)}.

All of the tangent spaces may be identified by the group action to the one at the identity, namely,
the hyperplane w = 1, which we will denote by g. Note that in this coordinate system, the bracket
operation for the Lie algebra g is given by

[e1, e2] = 2e3, [e2, €3] = 2ey, [e3, 1] = 2e3,

where e; = (1,0, 0), e; = (0, 1,0), and 3 = (0, 0, 1).
The tangent and cotangent spaces, g and g*, are identified by the natural metric
g =dx? +dy* +dz%.

We would like to have a procedure for converting a function on the cotangent space into a left-
invariant operator on functions on G that agrees with pseudodifferential and representation theoretic
intuition.
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Recall that the complexification of g is isomorphic as a Lie algebra to s/(2, C), which is the
Lie algebra generated by H, X and Y with commutation relations [H, X] = 2X, [H, Y] = -2Y,
and [X, Y] = H. The map from sl(2, C) to the complexification of g is given by H = i(0, 0, 1),
X =i(1/2,i/2,0),and Y =i(1/2, —i/2,0). The reader is invited to check that this is a Lie algebra
isomorphism.

The spheres x2 + y2 + z2 = n? are the integer coadjoint orbits that are usually associated with
the representations of highest weight n and dimension n + 1. Alas, we shall find it more convenient
to associate the sphere of radius n + 1 to the representation of highest weight n. We shall choose a
Cartan subalgebra, which is the same as choosing a direction in g, and is also the same as choosing
a direction in g*. We choose the direction (0, 0, 1).

Notice that in the representation of highest weight n the matrices for H, X, and Y are given by

0 Ju 0 o0 0 0 e 0 0
0 0 V2m=1) --- 0 V/n 0 e 00
m(X)=|: , mM=]0 VZh-1 0],
0 0 0 /n : : .0
0 O 0 0 0 0 N
and
n 0 .. 0 0
0 n—-2 0 0
Tt,,(H)= : . :
0 - 0 —-n+2 0
0 0 - 0 —n

One can see that the values of the matrix correspond exactly to the Fourier coefficients of the
functions (x +iy)/2, (x —iy)/2 and z on the sphere of radius n + 1, along horizontal circles at integer
height. Since the symbols of these operators are, respectively, i (x + iy)/2, i(x — iy)/2, and iz, a
quantization is suggested that associates to functions, matrices built out of their Fourier coefficients.

We will let (z, 8) be coordinates on $2, the unit sphere, where @ is the angle of longitude on
the sphere, about the z-axis. We will write functions on the two-sphere as f(z, 6) and expand them
in Fourier series in 8 as

f@0) =) fa@e™.

Before introducing the quantization procedure, we will state and prove a few lemmas about
regularity of the functions f;,(z)e’®.

2. Regularity of Spherically Directed Fourier Components

Lemma 2.1.
If f € C*(8?), then f,(z)e'™ € C*(S?).

Proof. Then nth component of f,
) 1 [ )
fn(z)eme = ﬁf sofe—mﬂ d0,
0

where Sy denotes the action of the circle on functions on the sphere. Thus, f, (2)e'™ is an integral
of C* functions on the sphere and hence is C* itself. [
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Lemma 2.2.
If f(z,6) € H*(S), the kth L? Sobolev space on $*, then f,(2)e™ € H*(S?) and
Il fa (@)™ llzk < I f ll2k-

Proof. The vector field 3% = x% - yé"’; preserves the degree of polynomials. The Hilbert
space H*(S5?) decomposes into an orthogonal direct sum of the spaces of spherical harmonics of
fixed degree. The nth component of f is just the projection of f into the in eigenspace of %. Since
% preserves the spaces of spherical harmonics, the growth of the spherical harmonic coefficients of
fn(2)€'™ can be no greater than the growth of the coefficients of f. Hence if f is in H*(S?), then
sois fy()e™. O

Unfortunately, in order to obtain the needed estimates for our quantization procedure, we must
understand the regularity of f,(z)e""® not just as a function on the sphere but as a function of z. This
is very different. For instance, x + iy = +/1 — z2¢'® is C™ on the sphere, but +/1 — z2 is not even
C! as a function of z. This is because ;’—Z is not a continuous vector field on the sphere. Its length is

1
N-z2'
Lemma 2.3.
Let f,(z)e'™ be a C? function on S*. Then near either pole,

fi(@) = CV1 =22+ R(2),

where R(z) is C' in z up to the pole and C is a constant that vanishes when |n| # 1. Also, R(z) is

o(v/1 —z2) whenn # 0.

Proof. The function
. iz
f1(2)e™ = g(x, y) + f h(r,0)dr,
0

where g(x, y) is a polynomial of degree 2 in x and y (the < 2 part of the Taylor series of f,(z)e‘"?)
and h is a function that is C2 in @ and C! in r with h and 2! vanishing at 0. The function g(x, y)
can be written as

g(x,y) = A + Ay(x +iy) + As(x — iy) + Aa(x + iy)? + As(x? + y?) + As(x — iy)?

= A1 + V1T —22(A26" + A3e7) + (1 — 22)(A4e¥® + As + Age™9),

where the A’s are constants, most of which are zero. The functions 1 and 1 — z2 are C! in z. Now,

A; =Ounlessn = 1 and A3 = O unless n = —1, so we need only to show that the lemma holds for

fu(@e™ = [V h(r, 8) dr. Now r = +/T — z2. So combining all our formulae yields
0

V=2 p2n )
fr@) = f f h(r,0)e~"® do dr.
0 0

Hence,

e ey 2n
f,:(Z) = f h(V1-22, G)C-ina do = (—Z)f h_('; ) e~ do.
0 0

-z
V1i-22
By assumption on A, the function ﬂ’r’—oz is continuous in . Hence, f, is continuous.

Finally, R(z) = A; + R1(z), with R;(z) being o(+/1 — z2) and A; = O unless n = 0. a
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3. Quantization Procedure

Given f(z,0) = Y fa(2)e'™, a C? function on $2, the two-sphere of radius 1, define

2—j—k
dP(Njx = (=itn+ 1) fi; (u—

), 1<j,k<n+1landd €eR.
n+1

Remark. As with classical pseudodifferential calculi, our symbols are really defined as
functions on the cotangent bundle of the manifold in question. Since the symbols correspond to left-
invariant operators on SU (2), they are determined by their values at the fiber over the identity (g*).
Since we require our symbols to be homogeneous, they are determined by their values on the unit
sphere and the use of n + 1 and d above are just the expressions for extending f to be homogeneous
of degree d, given its values at radius 1, and then evaluating on the sphere of radius n + 1.

Now, as with the operators H,X, and Y, in order to define an operator on SU (2), one needs only
to say how the operator acts in the representation of highest weight n for each n. Such an operator
is a sequence of square matrices, M,, of size (n + 1) x (n + 1). Hence, finally, the quantization of
f is given simply as such a sequence of matrices. O

For example, let f(z,6) = §(x +iy) = §+/1 — z2¢". Then

n41 n+1-2j n4+1-2j _
aP(fjx = fsj(k—l)T\[(l - —1) (1 + —“"—> =8jg-pVijm—j+1.

n+1 n+1

But

Tn(X)jk = Sj-nyvVij(n—j+1),
so the quantization is correct for the operator X, and similarly for Y.
Moreover, for f(z,0) = z,
n+2-2j
n+1
Hence, it is also correct for H. In the next section, we shall make use of the exact correspondence

of g, with 7,, when restricted to g, to show that the symbol of a commutator of two operators is
approximately the Poisson bracket of the symbols.

g (f)jx = 8n +1) =8;(n +2 - 2j).

4. Symbol Classes and Composition Rules

Let f(z, 0) be a C? function on the unit sphere. We will say that f is a bandlimited symbol of
bandwidth N if f,(z) =0 for [n| > N.

Lemma 4.1.
Let g and h be bandlimited symbols. Let dy, d, € R. Then

4" (®)gy (h) = g;"*® (gh) + O((n + 1"+,

Proof. By linearity of g% and the distributive property of function and matrix multiplication
it suffices to consider the case g = g(z)e'? and h = h(z)e'?°. Then we have by definition

‘ n+2—j—k
q’(ldl)(g)jk =(—i(n+ 1))“151,(k—j)8 (———;+1—) .
Similarly,
. n+2—j—k
P () jx = (—i(n + 1)) %84 jyh (—7+1—) '
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Hence using summation convention,

a5 (8) kg (W)kr
' n+2—j—r+h n+2—r—j—1I
= (=i(n+ D" 84,41) -8 ( I ) h ( n+1 '
On the other hand,
n+2—j—r n+2—j-—r
gt (gh) jr = (=i(n + D)8, 11y - )8 ( n 1 )h ( n+1 ) '
For fixed r and j, let go = g(*d™), g = g(*HEgre) g = h(HEE), and by =
h(n+2-r—- i—h )
n+1

Then the difference ¢\ (g)q %) (h) — q{“*%(gh) is given by
(—i(n + D)8, 41— j) (801 — o) + h1(g1 — g0)) -
Now, if || # 1,then hy —hg < ,ffq , by the mean value theorem and the fact that h(z) is C! in

z. On the other hand, if || = 1, then hy — kg < %&Tl) Also, if [} # 0, then gg < C+/1 — 22,
where z = ﬁi—;f‘—’; whereas if [; = 0, then g¢ is merely bounded.

Consider the term go(h; — hyp) in the difference above. If I; = 0, then A; — hy = 0, so the

term is identically zero. If I; # O, then go(h; — hg) < ;’ﬂ% because if |I;| = 1, then the difference

- +1 times somethmg that grows only as fast as g shrinks near the pole and if |l;| # 1, then the

dlfference is like m and g is bounded.

By symmetry, the term k(g1 — go) < ; +1 , which proves the lemma. ad

Lemma 4.2.
Let g and h be bandlimited symbols. Let d,, d, € R. Then

[2:(8), 4, (W] = 2ig; "~V ({g, b)) + o((n + DH*%TY),
Proof. Again it suffices to consider the case g = g(z)e’? and h = h(z)e'2?. Observe that
since g and h are C! functions on S2, their Poisson bracket, given by!
{8, h} = (&' @h(2) — Lig(2)h (2))e' 17,
is a continuous function on $2. By the computations of the previous lemma,
[+ (8), 4, (W] jr = (=i(n + D) * 280,41 -y (87 T2RTHH — g TR,

Here we have defined g* = g(%*2=%=) and similarly h* = h("‘*z—ﬁ) But notice that

n+1
gj—lzhj+ln — gj-thj—lx = gl'“l2(h]'+ll — hi—ln) —Rpi~h (gj+lz — gj 12).
Now consider the term T = g/~2(h/*th — pi=h), Letz = —"'—:—}f— Then

r=s (i) (4 () = ()

Hence, by the mean value theorem, there is an € with |e| < -4 such that

Prag)
2l L,
== — _\n
T m— (z+ ) (z +e).

I'This is because the vector fields 5 % and Z on 52 are mutually orthogonal and have reciprocal lengths, so the standard
symplectic structure (volume element) on 52 is given by 3 A a > (Archimedes’ principle).
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Now g(z) is uniformly continuous, and if |/;] # 1, then A’(z) is uniformly continuous in
[-1, 1] and so

2
T - m(llg(z)h’(z)) -0,

as n — 00, uniformly in z.

Again, the case |/;| = 1 breaks down into subcases where |/;| is O, 1 or bigger than 1. By
Lemma 2.3, it is enough to consider the case h(z) = +/1 — z2 since the z-smooth part of 4 can be
dealt with as in the previous case.

Now, again h’(z) exists, is continuous in (—1, 1), but is not uniformly continuous, so the above
argument will not work. However, as in the proof of Lemma 4.1, the important fact is that when
Iy =0, h/+h — hi~h and 1, g(z)h'(z) are zero, so their difference is identically zero.

When |/;| > 2, then, as in Lemma 4.1, g(z) dies at |z| = 1 as fast as the modulus of continuity
of h'(z) grows, so the result follows in this case also. Indeed, these facts imply that g(z) (h'(z +€) —
k' (z)) — 0 as € — 0, uniformly in z.

When |[;| = 1, as with h, we may as well assume that g(z) = +/1 — z2, since the z-smooth
part of g dies at the poles as fast as g does in the case when |/;| > 2. But then, since X commutes
with itself and [X, Y] = H, the result of the theorem is trivial.

In any case, the first terms of both types of brackets agree up to the correct order; the second
terms also agree by a symmetric argument. Hence the lemma is proved. O

5. Spectral Asymptotics

We shall study the spectrum of selfadjoint operators arising from our calculus by constructing
orthonormal bases of approximate eigenvectors for them. A vector v is an approximate eigenvector
for a matrix A with error € and approximate eigenvalue A if

|Av — Av| < €]v].

Let v} denote the unit vector of weight A in the representation of highest weight n. The
“time-frequency support” of v} should be thought of as a horizontal strip at height A with width 2
in the sphere of radius n + 1. We will actually produce a family of approximate eigenvectors that
are common to all homogeneous and sufficiently smooth left-invariant pseudodifferential operators.
Most of our approximate eigenvectors will “live” in squares.

Define w}, ;o = 75 Li—1 €% Vv, .5 Withm << nand j << n, we think of the
time-frequency support of wy, ; o as being a rectangle on the n + 1 sphere of height 2 centered at
(m + j, 0). Clearly wy, ; , is a unit vector.

Define the shift operator S, by S,v; = v, , where vy = 0 if n is not one of the weights of

the representation ,,. In our calculus, the symbol of S, is e’s”. Observe that
; 2
6
|S2wp, o — € Wy gl = I
Thus w}, ; , is an approximate eigenvector of S, with approximate eigenvalue ¢’ (the value of the
symbol of S, at the “location” of wf, ; ,) with error \/? . More generally, consider the following
lemma.

Lemma 5.1.
Let f(z,0) be a bandlimited symbol of bandwidth N << j defined on the unit sphere.

Letr=max( :

1
Ve EC

). Then there exist constants Cy and C, depending on the
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bandwidth and C* norm of f so that the vector w
with approximate eigenvalue, (—i(n + 1))? f (ZtL

. . d
m.j.y IS an approximate eigenvector for ¢\ (f)

w+1> ) with error bounded by

C1 rCz] d
(ﬁ+n+l)(n+l)'

Remark. The present lemma is simply the estimate needed to prove theorems such as that
cited in the introduction and should not be taken too seriously as an end in itself. The reader may
wish to consult the statement of the latter (Theorem 5.2), and Theorem 6.1, to see what results from
adjusting the parameters of the present lemma. O

Proof. By linearity, it suffices to prove the lemma for f(z,0) = fi(z)e"®. We wish to
approximate g (f) by (—i(n + 1))? fi(35) Sy. Let

A=gD(f) - (=in+ D) f; ( ) S

Then A is a matrix all of whose entries are / above the diagonal and of the form (—i(n + INE; (z) -
fi(Zi)) where the 2’s are no further than ;2L from Z.. The derivative of f; is bounded by "3

where C; is a constant depending on the C2 norm of f by the proof of Lemma 2.3. Thus,
rC,j
1Al < (n + 142

On the other hand, by the argument above, w,, ; is an approximate eigenvector for (—i(n +

1))"f(nJrl ) Sy with approximate eigenvalue (—i(n + 1))"f1(';'—++—11)e"" = f(2l "1, 1) and with error
(n+ 14 \/7- . Setting C; = N? proves the lemma. [

Our approximate eigenvectors constitute a precise notion of microlocality. They give meaning
to the values of the symbol. At the same time, the error terms give voice to the noncommutatvity
inherent in the situation. They will not be swept under the rug. If j is increased, the first term
becomes smaller, but the second is larger. If j is decreased, the reverse happens. It is a form of the
uncertainty principle.

But our goal in this section is to study the spectrum of operators, and we must ask ourselves
what can be said about the spectrum of an operator in relation to its approximate eigenvectors. For
a general operator, we can say very little. The spectrum of the shift operators studied above is 0.
However, for selfadjoint operators, the following theorem comes to our aid.

Theorem (Lidskii).

Let the n x n matrices A, B, and C be selfadjoint. Let the numbers ay, ...a,, B, ..., Bn,
Y1» ..., Yo betheir eigenvaluesinorder of size. Let A = B+C. Thenthe vector (¢;—p4, - .., @n—Bn)
is in the convex hull of all permutations of the vector (y1, . .., Vn)-
Corollary.

If ® : R —> R is a convex real-valued function, then 3 ; ®(ct; — B;) < 3 ®(¥)).

The proofs may be found in [K, pp. 124-126].

How does this relate to our situation? Suppose that A is ann xn selfadjoint matrix. Suppose also
that xi, . .., x, is an orthonormal family of approximate eigenvectors with error € and approximate
eigenvalues (B4, . .., B,). Then let B be the linear transformation satisfying Bx; = g;x;. We would
like to say that the spectrum of A is close to the spectrum of B. We know that |(A—B)x;| < €. Hence,
[|A — B|| < J/ne. Thus, if (a1, ..., ay) are the eigenvalues of A, Lidskii’s theorem guarantees only
that, for each j,

— Bjl < v/ne.
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Indeed, this is sharp. However, we also know that

A — Bllus < +/ne.

Here || ||gs means Hilbert-Schmidt norm. Thus, by applying the corollary with ®(y) = y?, we
obtain that while any one o; may be as far as y/ne from its corresponding 8;, the root mean square
of the deviations is bounded by €. In other words,

Y (@; - B)* < ne.
=1

However, to apply these observation to our situation, we must choose an orthonormal basis
of approximate eigenvectors. Notice that our estimate for the error in Lemma 5.1 deteriorates near
the north and south poles (i.e., for m or m + 2 j near —n or n.) However, near the poles, the weight
vectors themselves are approximate eigenvectors since the Fourier coefficients other than the Oth
decay. Thus, we choose the following orthonormal basis for span(v}, v;_,, ..., v",).

Let M + 1 be the smallest positive integer whose square is less than n + 1. Define

X =vp a4
for j running between 1 and M. Next we will define
n — A
IM+1+sM+t = Wy iogmi2,M, 28

where s and ¢ run between 0 and M — 1. Finally we let
n —_an
IM+mr+j = Vnoo(i M+M2)—-2j+2

for j running between 1 andn + 1 — %M — M?. In other words, at the poles from height n to about
n — /n and from height at least /n — n to height —n on the sphere of radius n + 1, we use the
weight vectors as elements of our basis. In the middle we use the local Fourier basis on windows of
m elements. We now come to the main theorem of this paper.

Theorem 5.2.
Let f be a bandlimited symbol. Then x{, ..., x, ., is an orthonormal basis of approximate

eigenvectors for q\@ (f) with error bounded by C (n + l)d’% where C is a constant depending only
on the C? norm of f and its bandwidth.

Proof. To prove the claim for x} with j between M + 1 and M + M 2, we need only to apply
Lemma 5.1. Letting r be the same as in Lemma 5.1, we have that

r< 2 = = 2 <2(n+ 1)i.
n4l—vntl 2 ___1
I \—F77 Jn+tl n+l

The j of Lemma4.1is M and M ~ +/n + 1 since M + 1 is the closest integer to 4/n + 1. Thus, the
total error is bounded by

(Cl +rC2j
Jji o on+1

We need only to prove the error estimate for x; with j < M or j > M 2 + M. For these Jj,we
have x; = v;_, 42 Also observe that for these j, we know that

n—-2j-2 2 -1

) (n+ 1) < 2C; 4 2Cy)(n + 1)-4.
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Let fi(z)e"® be the Ith component of f with [ # 0. Since f is C2, and since the vector field 2

is continuous, we obtain that | f;(z)| < Tcp/l — 22 by differentiating twice and observing that it
commutes with projection into a band that is bounded in C°. Thus,

2
Y@l < CV1=2,

170
Combining this with (*X) implies that

(g (fo(@)) — g (F)xj] < Cln + 1?3
for j < Mor j > M + M? + 1, which was the desired estimate. O

The above result may be thought of as being pitifully weak globally but containing a great deal
of microlocal information. Simply applying Lidskii’s theorem yields the result that the difference
between g{( f) and a matrix diagonalized by the x"’s and having eigenvalues corresponding to the
approximations for ¢@(f) has operator norm bounded by C(n + 1)4+3. This is clearly not sharp,
since all operators involved are of order d. By more carefully examining the error, one can of course
conclude the obvious bound of C(n + 1)?. Any such bound with an exponent smaller than d would,
among other things, imply the strong Garding’s inequality (see [F, §2.6]). We have not been able to
improve the exponent. Thus as it is, by this method, we can only show that an operator with positive
symbol has at most o((n + 1)%’“‘) negative eigenvalues. That is a lot, but not so much relative to
n + 1. What is more, we have seen that with the exception of o((n + 1) %+‘) many eigenvalues, the
values of the symbol (multiplied by (—i(n + 1))¢, naturally) paint a fuzzy portrait of the spectrum
of the operator. In the next section, we make some remarks about the relevance of eigensymbols to
the spectrum of matrices of operators.

6. Matrices of Operators

Let (fjx) be an m x m matrix of functions on the unit sphere satisfying f,-k = fij. One
might want to consider the spectrum of the selfadjoint matrix of operators, A j; = (q,(,"’)( fix)). Let

P1, - - -, Pn+1 be the points on the unit sphere at which any function attains the approximate eigenval-
ues of its quantization with respect to the vectors x7, ..., x| (€.8., Pm+jM+k = (fil:nérlle, 2zk

for0 < j,k < M —1). Let X be any length m-column vector of numbers. Then one has, for any j,
AXx?) = (=i(n + D) (0 (A)(p))X)x] + E),

where o (A)(p;) is the matrix whose kl/th component is fi;(p;) and |[E| < C(n + 1)‘%. Hence, the
eigenvalues of o (A), which we refer to as eigensymbols, give a fuzzy portrait of the spectrum of A
with error (n + 1)4-4.

In [Kal], the second author studied matrices of operators A satisfying det o (A) = Oidentically.
These are often referred to as degenerate determined systems and occur in geometry. At least one of
the eigensymbols, as defined above, is zero. As was shown in [Kal], saying that the eigensymbol is
0 does not properly reflect the local solvability properties of A. As we are about to remark, it does
not properly reflect the spectral properties either. In [Kal], a more general definition of eigensymbol
is provided. A symbol A is said to be an eigensymbol if there exists a column vector of operators X
satisfying

0 (AX) = Ao (X).
This is not equivalent to the previous definition because cancellation of highest order terms may

occur in the composition of A and X. If A and X are operators in our calculus, then for each j,
if A is of order r, the vector Xx is an approximate eigenvector for A with eigenvalue with error
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C(n + 1)""%. Thus lower order eigensymbols give a finer portrait of the spectrum than higher order
eigensymbols. With a little more effort, one obtains the following result.

Theorem 6.1.

Let A be anm x m matrix of operators with eigensymbols Ay, ..., Ay, having ordersry, ..., rm,

respectively. Then there is an orthonormal basis of approximate eigenvectors Yixfor A with eigen-
values (i(n 4 1)) A j(px) and errors bounded by C(n + 1)’1"%.
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This answers at least partly in the affirmative a conjecture in [Ka2].

References

Auslander, L. and Kostant, B. (1967). Quantization and unitary representations of solvable Lie groups. Bull. Amer.
Math. Soc. 73, 692—695.

Boashash, B. (1990). Time-frequency signal analysis. Advances in Spectral Analysis and Array Processing, 418-517.

Coifman, R. R. and Weiss, G. Analyse harmonique noncommutative sur certains espace homogenes. Lecture Notes
in Math. 242. Springer-Verlag, New York.

Folland, Gerald B. (1989). Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ.

Guillemin, V. and Sternberg, S. (1982). Geometric quantization and multiplicities of group representations. Invent.
Math. 67, 515-538.

Kato, Tosio. (1966). Perturbation Theory for Linear Operators. Springer-Verlag, New York.
Katz, Nets. (1993). Noncommutative Determinants and Applications. Thesis. University of Pennsylvania.

. Systems of left invariant differential operators. Unpublished preprint.
Kirillov, Alexander. Elements of the Theory of Representations. Springer-Verlag, New York.

Karasev, M. V. and Maslov, V. P. (1984). Pseudodifferential operators and a canonical operator in general symplectic
manifolds. Math. USSR Izv. 23, 277-305.

Kostant, B. (1970). Quantization and unitary representations. Lecture Notes in Math. 170. Springer-Verlag, New
York, 87-208.

Karshon, Y. and Tolman, S. (1993). The moment map and line bundles over presymplectic toric manifolds. J.
Differential Geom. 38, 465-484.

Laptev, A. and Safarov, Yu. Szego type Limit Theorems. Preprint.
Meyer, Yves. (1993). Wavelets: Algorithms and Applications. SIAM, Philadelphia, PA.
Taylor, Michael. (1981). Pseudodifferential Operators. Princeton University Press, Princeton, NJ.

Received June 28, 1995

Department of Mathematics, Yale University, New Haven, Connecticut 06520-8283
e-mail: fbog@math.yale.edu

Department of Mathematics and Statistics, The University of Edinburgh, James Clerk Maxwell Building, Room 5619,

King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
e-mail: nets@maths.ed.ac.uk



) U »
@ Anhou lé)lél‘}‘f o

the first of its kind for research scientists and practicing professionals

BIOREMEDIATION JOURNAL

Bioremediation Journal is a peer-reviewed, quarterly journal that publishes original laboratory and field

research in bioremediation, the use of biological and supporting physical treatments to treat contaminated

soil and groundwater. The journal presents a rapid dissemination of new information on emerging and
maturing bioremediation technologies and integrates scientific research and engineering practices. As the

first journal to focus on bioremediation, Bioremediation Journal provides a much-needed forum for publishing
current research in this field. The authors, editors, and readers are research scientists, field engineers, site reme-
diation managers, and regulatory experts from the academic, industrial, and government sectors worldwide.

High-quality, original articles that are rigorously peer reviewed make up the primary content. Other
contributions are short communications and technical notes and occasional invited review articles.
The journal also publishes letters to the editor, book and software reviews, new product and patent
information, and announcements of upcoming conferences and courses. Articles deal with laboratory
experimentation as well as field applications for in-well, aquifer, soil, and marine environments in
temperate, tropical, and cold climates. Topics include:

B Intrinsic bioremediation, including natural attenuation of oily-phase hydrocarbons, chlorinated hydrocarbon plumes, and
petroleum hydrocarbon plumes; assisted bioatténuation with land farming, permeable biobarriers, biophiles, and fungal
technologies; and the related concerns of bioavailability

B Bioslurping, for the removal of free product and simultaneous bioventing of the vadose zone

B Air sparging and related technologies, for groundwater remediation through biological and physical processes
B Bioventing, including bioventing of nonpetroleum hydrocarbons and bioventing applications and extensions
B Anaerobic and aerobic degradation of chlorinated solvents

B Bioremediation of recalcitrant organics, including polycyclic aromatic hydrocarbons (PAHs); polychlorinated biphenyls
(PCBs); pesticides, herbicides, and fungicides; explosives; and nitroaromatics

B Bioremediation of inorganics, including metals, radionuclides, nitrates, and cyanides

B Monitoring of bioremediation process performance, including molecular monitoring, process verification, and analytical
methods used in monitoring

B Social acceptance of bioremediation, including regulatory, economic, and public perception issues
B Remediation of petroleum hydrocarbons, including crude oil, jet fuels, and gasoline
B Bioreactors, including those operating in gaseous, aqueous, and slurry modes

B Augmentation devices, including surfactant addition, nutrient delivery, introduction of alternative electron acceptors,
and bioaugmentation

B Emerging, innovative, and coupled technologies
B Toxicity and geochemical considerations

- Editor-in-Chief Managing Editor ~ Associate Editors

Robert Hinchee Andrea Leeson Bruce Alleman Paul Johnson Hanadi Rifai Joseph Salanitro
Parsons Engineering Battelle Battelle Arizona State University  Rice University Shell Oil
Science, Inc.

1997 SubscriptionRate I " ORDER TOLL FREE TODAY
Volur‘ne 1, Issues 1-4 . ]-800-272.7737
ISSN: 1088-9868 (Institutional)............ $195.00 F AX I" 8 0 O' 37 4_ 3 4 O 1

ISSN: 1088-9868 (Individual)................. $85.00
Customers in Florida and outside the continental U.S. call 1-561-994-0555

CRC Press, Inc. ® 2000 Corporate Blvd., N.W. ® Boca Raton ¢ Florida e 33431



	Pseudodifferential Operators on SU(2).  

