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Scattering, determinants, hyperfunctions in relation to
Γ(1−s)
Γ(s)

Jean-François Burnol

Abstract

The method of realizing certain self-reciprocal transforms as (absolute) scattering, previ-
ously presented in summarized form in the case of the Fourier cosine and sine transforms, is
here applied to the self-reciprocal transform f(y) 7→ H(f)(x) =

R ∞

0
J0(2

√
xy)f(y) dy, which

is isometrically equivalent to the Hankel transform of order zero and is related to the func-
tional equations of the Dedekind zeta functions of imaginary quadratic fields. This also allows
to re-prove and to extend theorems of de Branges and V. Rovnyak regarding square inte-
grable functions which are self-or-skew reciprocal under the Hankel transform of order zero.
Related integral formulae involving various Bessel functions are all established internally to
the method. Fredholm determinants of the kernel J0(2

√
xy) restricted to finite intervals (0, a)

give the coefficients of first and second order differential equations whose associated scattering
is (isometrically) the self-reciprocal transform H, closely related to the function Γ(1−s)

Γ(s)
. Re-

markable distributions involved in this analysis are seen to have most natural expressions as
(difference of) boundary values (i.e. hyperfunctions.) The present work is completely indepen-
dent from the previous study by the author on the same transform H, which centered around
the Klein-Gordon equation and relativistic causality. In an appendix, we make a simple-minded
observation regarding the resolvent of the Dirichlet kernel as a Hilbert space reproducing kernel.
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1 Introduction (the idea of co-Poisson)

We explain the underlying framework and the general contours of this work. Throughout the paper,

we have tried to formulate the theorems in such a form that one can, for most of them, read their

statements without having studied the preceeding material in its entirety, so a sufficiently clear

idea of the results and methods is easily accessible. Setting up here all notations and necessary

preliminaries for stating the results would have taken up too much space.

The Riemann zeta function ζ(s) = 1
1s + 1

2s + 1
3s + . . . is a meromorphic function in the entire

complex plane with a simple pole at s = 1, residue 1. Its functional equation is usually written in

one of the following two forms:

π− s
2 Γ(

s

2
)ζ(s) = π− 1−s

2 Γ(
1 − s

2
)ζ(1 − s) (1a)

ζ(s) = χ0(s)ζ(1 − s) χ0(s) = πs−
1
2
Γ(1−s

2 )

Γ( s2 )
(1b)

The former is related to the expression of π− s
2 Γ( s2 )ζ(s) as a left Mellin transform1 and to the Jacobi

identity:

π− s
2 Γ(

s

2
)ζ(s) =

1

2

∫ ∞

0

(θ(t) − 1)t
s
2−1 dt (ℜ(s) > 1) (2a)

=
1

2

∫ ∞

0

(θ(t) − 1 − 1√
t
)t

s
2−1 dt (0 < ℜ(s) < 1) (2b)

θ(t) = 1 + 2
∑

n≥1

qn
2

q = e−πt θ(t) =
1√
t
θ(

1

t
) (2c)

1in the left Mellin transform we use s − 1, in the right Mellin transform we use −s.
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The latter form of the functional equation is related to the expression of ζ(s) as the right Mellin

transform of a tempered distribution with support in [0,+∞), which is self-reciprocal under the

Fourier cosine transform:2

ζ(s) =

∫ ∞

0

(
∑

m≥1

δm(x) − 1)x−sdx (3a)

∫ ∞

0

2 cos(2πxy)(
∑

n≥1

δn(y) − 1) dy =
∑

m≥1

δm(x) − 1 (x > 0) (3b)

This last identity may be written in the more familiar form:
∫

R

e2πixy
∑

n∈Z

δn(y)dy =
∑

m∈Z

δm(x) (4)

which expresses the invariance of the “Dirac comb” distribution
∑
m∈Z δm(x) under the Fourier

transform. As a linear functional on Schwartz functions φ , the invariance of
∑

m∈Z δm(x) under

Fourier is expressed as the Poisson summation formula:

∑

n∈Z

φ̃(n) =
∑

m∈Z

φ(m) φ̃(y) =

∫

R

e2πixyφ(x) dx (5)

The Jacobi identity is the special instance with φ(x) = exp(−πtx2), and conversely the validity of

(5) for Schwartz functions (and more) may be seen as a corollary to the Jacobi identity.

The idea of co-Poisson [4] leads to another formulation of the functional equation as an identity

involving functions. The co-Poisson identity ((10) below) appeared in the work of Duffin and

Weinberger [13]. In one of the approaches to this identity, we start with a function g on the positive

half-line such that both
∫∞
0 g(t) dt and

∫∞
0 g(t)t−1 dt are absolutely convergent. Then we consider

the averaged distribution g ∗ D(x) =
∫∞
0 g(t)D(xt )

dt
t where D(x) =

∑
n≥1 δn(x) − 1x>0(x). This

gives (for x > 0):

g ∗D(x) =

∞∑

n=1

g(x/n)

n
−
∫ ∞

0

g(1/t)

t
dt (6)

If g is smooth with support in [a,A], 0 < a < A <∞, then the co-Poisson sum g ∗D has Schwartz

decrease at +∞ (easy from applying the Poisson formula to g(1/t)
t ; cf. [8, 4.29] for a general

statement). The right Mellin transform ĝ ∗D(s) is related to the right Mellin transform ĝ(s) of g

via the identity:

ĝ ∗D(s) =

∫ ∞

0

(g ∗D)(x)x−s dx = ζ(s)

∫ ∞

0

g(x)x−s dx = ζ(s)ĝ(s) (7)

This is because the right Mellin transform of a multiplicative convolution is the product of the

right Mellin transforms. The necessary calculus of tempered distributions needed for this and other

statements in this paragraph is detailed in [8]. The functional equation in the form of (1b) gives:3

ĝ ∗D(s) = χ0(s)ζ(1 − s)ĝ(s) = χ0(s) ̂I(g) ∗D(1 − s) I(g)(t) =
g(1/t)

t
(8)

2of course, δm(x) = δ(x − m).
3one observes that dI(g)(s) = bg(1 − s).
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One may reinterpret this in a manner involving the cosine transform C acting on L2(0,+∞; dx).

The Mellin transform of a function f(x) in L2(0,∞; dx) is a function f̂(s) on ℜ(s) = 1
2 which is

nothing else than the Plancherel Fourier transform of e
1
2uf(eu): f̂(1

2 + iγ) =
∫∞
0
f(x)x−

1
2−iγ dx =

∫∞
−∞ f(eu)e

u
2 e−iγu du,

∫∞
0

|f(x)|2 dx =
∫∞
−∞ |f(eu)e

u
2 |2 du = 1

2π

∫
ℜ(s)= 1

2
|f̂(s)|2|ds|. The unitary

operator CI is scale invariant hence it is diagonalized by the Mellin transform: ĈI(f)(s) = χ0(s)f̂(s),

Ĉ(f)(s) = χ0(s)f̂(1−s), where χ0(s) is obtained for example using f(x) = e−πx
2

and coincides with

the chi-function defined in (1b). It has modulus 1 on the critical line as C is unitary. So (8) says

that the co-Poisson intertwining identity holds:

C(g ∗D) = I(g) ∗D (9)

The co-Poisson intertwining (9) or explicitely:

∫ ∞

0

2 cos(2πxy)

( ∞∑

m=1

g(x/m)

m
−
∫ ∞

0

g(1/t)

t
dt

)
dx =

∞∑

n=1

g(n/y)

y
−
∫ ∞

0

g(t) dt (y > 0) (10)

is, when g is smooth with support in [a,A], 0 < a < A < ∞, an identity of (even) Schwartz

functions. If g is only supposed to be such that
∫∞
0

|g(t)|(1 + 1
t ) dt < ∞ then the co-Poisson

intertwining C(g ∗ D) = I(g) ∗ D holds as an identity of distributions (either considered even or

with support in [0,∞)). Sufficient conditions for pointwise validity have been established [8]. The

general statement of the intertwining is C(g ∗ E) = I(g) ∗ C(E) where E is an arbitrary tempered

distribution with support on [0,∞) (see footnote4) and it is proven directly. The co-Poisson identity

(10) is another manner, not identical with the Poisson summation formula, to express the invariance

of D under the cosine transform, or the invariance of the Dirac comb under the Fourier transform.

If the integrable function g has its support in [a,A], 0 < a < A < ∞, then g ∗D is constant in

(0, a) and its cosine transform (thanks to the co-Poisson intertwining) is constant in (0, A−1). Up

to a rescaling we may take A = a−1, and then a < 1 (if a non zero example is wanted.) Appropriate

modifications allow to construct non zero even Schwartz functions constant in (−a, a) and with

Fourier transform again constant in (−a, a) where a > 0 is arbitrary [8].

Schwartz functions are square-integrable so here we have made contact with the investigation of

de Branges [1], V Rovnyak [28] and J. and V. Rovnyak [29, 30] of square integrable functions on

(0,∞) vanishing on (0, a) and with Hankel transform of order ν vanishing on (0, a). For ν = − 1
2

the Hankel transform of order ν is f(y) 7→
√

2
π

∫∞
0

cos(xy)f(y) dy and up to a scale change this

is the cosine transform considered above. The co-Poisson idea allows to attach the zeta function

to, among the spaces defined by de Branges [1], the spaces associated with the cosine transform:

it has allowed the definition of some novel Hilbert spaces [3] of entire functions in relation with

the Riemann zeta function and Dirichlet L-functions (the co-Poisson idea is in [4] on the adeles of

an arbitrary algebraic number field K; then, the study of the related Hilbert spaces was begun for

K = Q. Further results were obtained in [7].)

4both sides in fact depend only on E(x) + E(−x) as a distribution on the line, which may be identically 0, and
this happens exactly when E is a linear combination of odd derivatives of the delta function.
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The study of the function χ0(s) = πs−
1
2

Γ( 1−s
2 )

Γ( s
2 ) , of unit modulus on the critical line, is interesting.

We proposed to realize the χ0 function as a “scattering matrix”. This is indeed possible and has been

achieved in [6]. The distributions, functions, and differential equations involved are all related to,

or expressed by, the Fredholm determinants of the finite cosine transform, which in turn are related

to the Fredholm determinants of the finite Dirichlet kernels sin(t(x−y))
π(x−y) on [−1, 1]. The study of the

Dirichlet kernels is a topic with a vast literature. A minor remark will be made in an appendix.

We mentioned the Riemann zeta function and how it relates to χ0(s) = πs−
1
2

Γ( 1−s
2 )

Γ( s
2 ) and to the

cosine transform. Let us now briefly consider the Dedekind zeta function of the Gaussian number

field Q(i) and how it relates to χ(s) = Γ(1−s)
Γ(s) and to the H transform. The H transform is

H(g)(y) =

∫ ∞

0

J0(2
√
xy)g(x) dx J0(2

√
xy) =

∞∑

n=0

(−1)n
xnyn

n!2
(11)

Up to the unitary transformation g(x) = (2x)−
1
4 f(

√
2x), H(g)(y) = (2y)−

1
4 k(

√
2y), it becomes

the Hankel transform of order zero k(y) =
∫∞
0

√
xyJ0(xy)f(x) dx. It is a self-reciprocal, unitary,

scale reversing operator (H(g(λx))(y) = 1
λH(g)( yλ )). We shall also extend its action to tempered

distributions on R with support in [0,+∞). At the level of right Mellin transforms of elements of

L2(0,∞; dx) it acts as:

Ĥ(g)(s) = χ(s)ĝ(1 − s) χ(s) =
Γ(1 − s)

Γ(s)
ℜ(s) =

1

2
(12)

It has e−x1x≥0(x) as one among its self-reciprocal functions, as is verified directly by series expansion
∫∞
0
J0(2

√
xy)e−y dy =

∑∞
n=0

(−1)n

n!2 xn
∫∞
0
yne−y dy = e−x. The identity

∫ ∞

0

J0(2
√
t)t−s dt = χ(s) =

Γ(1 − s)

Γ(s)
(13)

is equivalent to a special case of well-known formulas of Weber, Sonine and Schafheitlin [33,

13.24.(1)]. Here we have an absolutely convergent integral for 3
4 < ℜ(s) < 1 and in that range

the identity may be proven as in: e−x =
∫∞
0 J0(2

√
xy)e−y dy =

∫∞
0 J0(2

√
y) 1
xe

− y

x dy, Γ(1 − s) =
∫∞
0
J0(2

√
y)(
∫∞
0
x−s−1e−

y
x dx) dy = Γ(s)

∫∞
0
J0(2

√
y)y−s dy. The integral is semi-convergent for

ℜ(s) > 1
4 , and of course (13) still holds. In particular on the critical line and writing t = eu,

s = 1
2 + iγ, we obtain the identities of tempered distributions

∫
R
e

1
2uJ0(2e

1
2u)e−iγu du = χ(1

2 + iγ),

e
1
2uJ0(2e

1
2u) = 1

2π

∫
R
χ(1

2 + iγ)e+iγu du.

We have ζQ(i)(s) = 1
4

∑
(n,m) 6=(0,0)

1
(n2+m2)s = 1

1s + 1
2s + 1

4s + 2
5s + 1

8s + · · · =
∑
n≥1

cn

ns and it

is a meromorphic function in the entire complex plane with a simple pole at s = 1, residue π
4 . Its

functional equation assumes at least two convenient well-known forms:

(
√

4)s(2π)−sΓ(s)ζQ(i)(s) = (
√

4)1−s(2π)−(1−s)Γ(1 − s)ζQ(i)(1 − s) (14a)

(
1

π
)sζQ(i)(s) = χ(s)(

1

π
)1−sζQ(i)(1 − s) χ(s) =

Γ(1 − s)

Γ(s)
(14b)
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The former is related to the expression of π−sΓ(s)ζQ(i)(s) as a left Mellin transform:

π−sΓ(s)ζQ(i)(s) =
1

4

∫ ∞

0

(θ(t)2 − 1)ts−1 dt (ℜ(s) > 1) (15a)

=
1

4

∫ ∞

0

(θ(t)2 − 1 − 1

t
)ts−1 dt (0 < ℜ(s) < 1) (15b)

θ(t)2 =
1

t
θ(

1

t
)2 (15c)

The latter form of the functional equation is related to the expression of ( 1
π )sζQ(i)(s) as the right

Mellin transform of a tempered distribution which is supported in [0,∞) and which is self-reciprocal

under the H-transform:

(
1

π
)sζQ(i)(s) =

∫ ∞

0

(
∑

m≥1

cmδπm(x) − 1

4
)x−sdx (16a)

∫ ∞

0

J0(2
√
xy)(

∑

n≥1

cnδπn(y) −
1

4
) dy =

∑

m≥1

cmδπm(x) − 1

4
1x>0(x) = E(x) (x > 0) (16b)

The invariance of E under the H-transform is equivalent to the validity of the functional equation

of ( 1
π )sζQ(i)(s) and it having a pole with residue 1

4 at s = 1. The co-Poisson intertwining becomes

the assertion:

y > 0 =⇒
∫ ∞

0

J0(2
√
xy)

( ∞∑

m=1

cm
g(x/πm)

πm
− 1

4

∫ ∞

0

g(
1

t
)
dt

t

)
dx =

∞∑

n=1

cn
g(πn/y)

y
−1

4

∫ ∞

0

g(t) dt

(17)

If g is smooth with support in [b, B], 0 < b < B < ∞, then we have on the right hand side

a function of Schwartz decrease at +∞ (compare to Theorem 3), and its H-transform is also of

Schwartz decrease at +∞. The former is constant for 0 < y < πB−1 and the latter is constant for

0 < x < πb. The supremum of the values obtainable for the product of the lengths of the intervals

of constancy is π2. But, as for the cosine and sine transforms, there does exist smooth functions

which are constant on a given (0, a) for arbitrary a > 0 with an H transform again constant on

(0, a) and have Schwartz decrease at +∞ (the two constants being arbitrarily prescribed.)

De Branges and V. Rovnyak have obtained [1, 28] rather complete results in the study of the

Hankel transform of order zero f(x) 7→ g(y) =
∫∞
0

√
xyJ0(xy)f(x) dx from the point of view of

understanding the support property of being zero and with transform again zero in a given interval

(0, b). They obtained an isometric expansion (Theorem 1 of section 2) and also the detailed de-

scription of the related spaces of entire functions ([1]). The more complicated case of the Hankel

transforms of non-zero integer orders was treated by J. and V. Rovnyak [29, 30]. These, rather

complete, results are an indication that the Hankel transform of order zero or of integer order is

easier to understand than the cosine or sine transforms, and that doing so thoroughly could be

useful to better understand how to try to understand the cosine and sine transforms.

The kernel J0(2
√
uv) of the H-transform satisfies the Klein-Gordon equation in the variables

6



x = v − u, t = v + u:

(
∂2

∂u∂v
+ 1)J0(2

√
uv) = (� + 1)J0(2

√
uv) = (

∂2

∂t2
− ∂2

∂x2
+ 1)J0(

√
t2 − x2) = 0 (18)

It is a noteworthy fact that the support condition, initially considered by de Branges and V. Rovnyak,

and which, nowadays, is also seen to be in relation with the co-Poisson identities, has turned out to

be related to the relativistic causality governing the propagation of solutions to the Klein-Gordon

equation. This has been established in [9] where we obtained as an application of this idea the

isometric expansion of [1, 28] in a novel manner. It was furthermore proven in [9] that the H
transform is indeed an (absolute) scattering, in fact the scattering from the past boundary to the

future boundary of the Rindler wedge 0 < |t| < x for solutions of a first order, two-component

(“Dirac”), form of the KG equation.

In the present paper, which is completely independent from [9], we shall again study the H-

transform and show in particular how to recover in yet a different way the earlier results of [1, 28]

and also we shall extend them. This will be based on the methods from [5, 6], and uses the

techniques motivated by the study of the co-Poisson idea [8]. Our exposition will thus give a fully

detailed account of the material available in summarized form in [5, 6]. Then we proceed with a

development of these methods to provide the elucidation of the (two dimensions bigger) spaces of

functions constant in (0, a) and with H-transforms constant in (0, a).

The use of tempered distributions is an important point of our approach5; also one may envision

the co-Poisson idea as asking not to completely identify a distribution with the linear functional

it “is”. In this regard it is of note that the distributions which arise following the method of [5]

are seen in the present case of the study of the H-transform to have a very natural formulation as

differences of boundary values of analytic functions, that is, as hyperfunctions [23]. We do not use

the theory of hyperfunctions as such, but could not see how not to mention that this is what these

distributions seem to be in a natural manner.

The paper contains no number theory. And, the reader will need no prior knowledge of [2];

some familiarity with the m-function of Hermann Weyl [10, 21, 26] is necessary at one stage of

the discussion (there is much common ground, in fact, between the properties of the m-function

and the axioms of [2]). The reproducing kernel in any space with the axioms of [2] has a specific

appearance (equation (109) below) which has been used as a guide to what we should be looking

for. The validity of the formula is re-proven in the specific instance considered here6. Regarding

the differential equations governing the deformation, with respect to the parameter a > 0 7, of the

5at the bottom of page 456 of [1] the formulas given for A(a, z) and B(a, z) as completed Mellin transforms are
lacking terms which would correspond to Dirac distributions; possibly related to this, the isometric expansion as
presented in Theorem II of [1] is lacking corresponding terms. The exact isometric expansion appears in [28] and the
exact formulas for A(a, z) and B(a, z) as completed Mellin transforms appear, in an equivalent form, in [30, eq.(37)].

6the critical line here plays the rôle of the real axis in [2], s is 1
2
− iz and the use of the variable s is most useful

in distinguishing the right Mellin transforms which need to be completed by a Gamma factor from the left Mellin
transforms of “theta”-like functions.

7the a here corresponds to 1
2
a2 in [1].

7



Hilbert spaces, we depart from the general formalism of [2] and obtain them in a canonical form, as

defined in [21, §3]. Interestingly this is related to the fact that the A and B functions (connected

to the reproducing kernel, equation (109)) which are obtained by the method of [5] turn out not

to be normalized according to the rule in general use in [2]. Each rule of normalization has its

own advantages; here the equations are obtained in the Schrödinger and Dirac forms familiar from

the spectral theory of linear second order differential equations [10, 21, 26]. This allows to make

reference to the well-known Weyl-Stone-Titchmarsh-Kodaira theory [10, 21, 26], and to understand

H as a scattering. Regarding spaces with the axioms of [2], the articles of Dym [14] and Remling

[27] will be useful to the reader interested in second order linear differential equations. And we refer

the reader with number theoretical interests to the recent papers of Lagarias [18, 19].

The author has been confronted with a dilemma: a substantial portion of the paper (most of

chapters 5, 6, 8) has a general validity for operators having a kernel of the multiplicative type

k(xy) possessing certain properties in common with the cosine, sine or H transforms. But on the

other hand the (essentially) unique example where all quantities arising may be computed is the

H transform (and transforms derived from it, or closely related to it, as the Hankel transforms of

integer orders). We have tried to give proofs whose generality is obvious, but we also made full use

of distributions, as this allows to give to the quantities arising very natural expressions. Also we

never hesitate using arguments of analyticity although for some topics (for example, some aspects

involving certain integral equations and Fredholm determinants) this is certainly not really needed.

2 Hardy spaces and the de Branges-Rovnyak isometric ex-
pansion

Let us state the isometric expansion of [1, 28] regarding the square integrable Hankel transforms of

order zero. We reformulate the theorem to express it with the H transform (11) rather than the

Hankel transform of order zero.

Theorem 1 ([1], [28]). : Let k ∈ L2(0,∞; dx). The functions f1 and g1, defined as the following

integrals:

f1(y) =

∫ ∞

y

J0(2
√
y(x− y))k(x) dx , (19a)

g1(y) = k(y) −
∫ ∞

y

√
y

x− y
J1(2

√
y(x− y))k(x) dx , (19b)

exist in L2 in the sense of mean-square convergence, and they verify:
∫ ∞

0

|f1(y)|2 + |g1(y)|2 dy =

∫ ∞

0

|k(x)|2 dx . (19c)

The function k is given in terms of the pair (f1, g1) as:

k(x) = g1(x) +

∫ x

0

J0(2
√
y(x− y))f1(y) dy −

∫ x

0

√
y

x− y
J1(2

√
y(x− y))g1(y) dy (19d)

8



The assignment k 7→ (f1, g1) is a unitary equivalence of L2(0,∞; dx) with L2(0,∞; dy)⊕L2(0,∞; dy)

such that the H-transform acts as (f1, g1) 7→ (g1, f1). Furthermore k and H(k) both identically

vanish in (0, a) if and only if f1 and g1 both identically vanish in (0, a).

Let us mention the following (which follows from the proof we have given of Thm. 1 in [9]): if

f1, f
′
1, g1, g

′
1 are in L2 then k, k′ and H(k)′ are in L2. Conversely if k, k′ and H(k)′ are in L2 then

the integrals defining f1(y) and g1(y) are convergent for each y > 0 as improper Riemann integrals,

and f ′
1 and g′1 are in L2.

It will prove convenient to work with (f(x), g(x)) = 1
2 (g1(

x
2 ) + f1(

x
2 ), g1(

x
2 ) − f1(

x
2 )):

f(y) =
1

2
k(
y

2
) +

1

2

∫ ∞

y/2

(
J0(
√
y(2x− y)) −

√
y

2x− y
J1(
√
y(2x− y))

)
k(x) dx (20a)

g(y) =
1

2
k(
y

2
) − 1

2

∫ ∞

y/2

(
J0(
√
y(2x− y)) +

√
y

2x− y
J1(
√
y(2x− y))

)
k(x) dx (20b)

k(x) = f(2x) +
1

2

∫ 2x

0

(
J0(
√
y(2x− y)) −

√
y

2x− y
J1(
√
y(2x− y))

)
f(y) dy

+ g(2x) − 1

2

∫ 2x

0

(
J0(
√
y(2x− y)) +

√
y

2x− y
J1(
√
y(2x− y))

)
g(y) dy (20c)

∫ ∞

0

|k(x)|2 dx =

∫ ∞

0

|f(y)|2 + |g(y)|2 dy (20d)

The H transform on k acts as (f, g) 7→ (f,−g). The pair (k,H(k)) identically vanishes on (0, a)

if and only if the pair (f, g) identically vanishes on (0, 2a). The structure of the formulas is more

apparent after observing (x, y > 0):

∂

∂x

(1

2
J0(
√
y(2x− y))10<y<2x(y)

)
= δ2x(y) −

1

2

√
y

2x− y
J1(
√
y(2x− y))10<y<2x(y) (21)

In this section I shall prove the existence of an isometric expansion k ↔ (f, g) having the stated

support properties and relation to the H-transform; that this construction does give the equations

(20a), (20b), (20c), will only be established in the last section (9) of the paper. The method

followed in this section coincides partly with the one of V. Rovnyak [28]; we try to produce the most

direct arguments, using the commonly known facts on Hardy spaces. The reader only interested in

Theorem 1 is invited after having read the present section to then jump directly to section 9 for the

conclusion of the proof.

To a function k ∈ L2(0,∞; dx) we associate the analytic function

k̃(λ) =

∫ ∞

0

eiλxk(x) dx (ℑ(λ) > 0) (22)

with boundary values for λ ∈ R again written k̃(λ), which defines an element of L2(R, dλ2π ), the

assignment k 7→ k̃ being unitary from L2(0,∞; dx) onto H2(ℑ(λ > 0), dλ2π ). Next we have the

conformal equivalence and its associated unitary map from H2(ℑ(λ > 0), dλ2π ) to H2(|w| < 1, dθ2π ):

w =
λ− i

λ+ i
K(w) =

1√
2

λ+ i

i
k̃(λ) (23)
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It is well known that this indeed unitarily identifies the two Hardy spaces. With k0(x) = e−x,

k̃0(λ) = i
λ+i , K0(w) = 1√

2
, and ‖k0‖2 =

∫∞
0 e−2xdx = 1

2 = ‖K0‖2. The functions k̃n(λ) =

(λ−iλ+i )
n i
λ+i correspond to Kn(w) = 1√

2
wn. To obtain explicitely the orthogonal basis (kn)n≥0, we

first observe that w = 1 − 2 i
λ+i , so as a unitary operator it acts as:

w · k(x) = k(x) − 2

∫ x

0

e−(x−y)k(y) dy = k(x) − e−x2

∫ x

0

eyk(y) dy (24)

Writing kn(x) = Pn(x)e
−x we thus obtain Pn+1(x) = Pn(x) − 2

∫ x
0
Pn(y) dy:

Pn(x) =

(
1 − 2

∫ x

0

)n
· 1 =

n∑

j=0

(
n

j

)
(−2x)j

j!
(25)

So as is well-known Pn(x) = L
(0)
n (2x) (in the notation of [31, §5]) where the Laguerre polynomials

L
(0)
n (x) are an orthonormal system for the weight e−xdx on (0,∞).

One of the most common manner to be led to the H-transform is to define it from the two-

dimensional Fourier transform as:

H(f)(
1

2
r2) =

1

2π

∫∫
ei(x1y1+x2y2)f(

y2
1 + y2

2

2
)dy1dy2 =

∫ ∞

0

(∫ 2π

0

eirs cos θ dθ

2π

)
f(

1

2
s2)sds

H(f)(
1

2
r2) =

∫ ∞

0

J0(rs)f(
1

2
s2) sds r2 = x2

1 + x2
2, s

2 = y2
1 + y2

2

(26)

which proves its unitarity, self-adjointness, and self-reciprocal character and the fact that it has

e−x has self-reciprocal function. The direct verification of H(k0) = k0 is immediate: H(k0)(x) =
∫∞
0
J0(2

√
xy)e−y dy =

∑∞
n=0

(−1)n

n!2 xn
∫∞
0
yne−y dy = e−x. Then, H(e−tx) = t−1e−

x
t for each t > 0.

So
∫∞
0
e−txH(k)(x) dx = t−1

∫∞
0
e−

1
t
xk(x) dx hence:

∀k ∈ L2(0,∞; dx) H̃(k)(λ) =
i

λ
k̃(

−1

λ
) (27)

With the notation H(K) for the function in H2(|w| < 1) corresponding to H(k), we obtain from

(23), (27), an extremely simple result:8

H(K)(w) = K(−w) (28)

This obviously leads us to associate to K(w) =
∑∞
n=0 cnw

n the functions:

F (w) :=
∞∑

n=0

c2nw
n (29a)

G(w) :=

∞∑

n=0

c2n+1w
n (29b)

K(w) = F (w2) + wG(w2) (29c)

and to k the functions f and g in L2(0,+∞; dx) corresponding to F and G. Certainly, ‖k‖2 =

‖f‖2 + ‖g‖2, and the assignment of (f, g) to k is an isometric identification. Furthermore, certainly

8we also take note of the operator identity H · w = −w · H.
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the H transform acts in this picture as (f, g) 7→ (f,−g). Let us now check the support properties.

Let α(m) be the leftmost point of the (essential) support of a given m ∈ L2(0,∞; dx). As is

well-known,

− α(m) = lim sup
t→+∞

1

t
log |m̃(it)| , (30)

If w corresponds to λ via (23) then w2 corresponds to 1
2 (λ − 1

λ), so if to a function f with corre-

sponding F (w) we associate the function ψ(f) ∈ L2(0,∞; dx) which corresponds to F (w2),

(t+ 1)ψ̃(f)(i t) = (
t+ 1

t

2
+ 1)f̃(i

t+ 1
t

2
) , (31)

then we have the identity:

α(ψ(f)) =
1

2
α(f) (32)

Returning to F (resp. f) and G (resp. g) associated via (29a), (29b), to K (resp. k) we thus have

k = ψ(f) + w · ψ(g), H(k) = ψ(f) − w · ψ(g), hence if the pair (f, g) vanishes on (0, 2a) then the

pair (k,H(k)) vanishes on (0, a) (clearly the unitary operator of multiplication by w = λ−i
λ+i does not

affect α(m).) Conversely, as α(f) = 2α(k + H(k)) and α(g) = 2α(k − H(k)), if the pair (k,H(k))

vanishes on (0, a) then the pair (f, g) vanishes on (0, 2a).

We have thus established the existence of an isometric expansion, its support properties, and its

relation to the H-transform. That there is indeed compatibility of (20a) and (20b) with (29a) and

(29b), and with (20c), will be established in the last section (9) of the paper with a direct study of

(31). In the meantime equations (20a), (20b), (20c) and (20d) will have been confirmed in another

manner. Yet another proof of the isometric expansion has been given in [9].

3 Tempered distributions and their H and Mellin transforms

Any distribution D on R has a primitive. If the closed support of D is included in [0,+∞), then

it has a unique primitive, which we will denote
∫ x
0
D(x) dx, or, more safely, D(−1), which also has

its support in [0,+∞). The temperedness of such a D is equivalent to the fact that D(−N) for

N ≫ 0 is a continuous function with polynomial growth. With D(−N)(x) = (1 + x2)Mg(N,M)(x),

M ≫ 0, we can express D as P (x, ddx)(g) where P is a polynomial and g ∈ L2(0,∞; dx). Conversely

any such expression is a tempered distribution vanishing in (−∞, 0). The Fourier transforms of

such tempered distributions D̃(λ) appear thus as the boundary values of Q( d
dλ , λ)f(λ) where Q

are polynomials and the f ’s belong to H2(ℑ(λ) > 0). As taking primitives is allowed we know

without further ado that this class of analytic functions is the same thing as the space of functions

g(λ) = R( d
dλ , λ, λ

−1)f(λ), R a polynomial and f ∈ H2. It is thus clearly left stable by the operation:

g 7→ H(g)(λ) :=
i

λ
g(

−1

λ
) (ℑ(λ) > 0) (33)

which will serve to define the action of H on tempered distributions with support in [0,+∞).

11



Let us also use (33), where now λ ∈ R, to define H as a unitary operator on L2(−∞,+∞; dx).

It will anti-commute with f(x) → f(−x) so:

H(f)(x) =

∫ ∞

−∞
(J0(2

√
xy)1x>0(x)1y>0(y) − J0(2

√
xy)1x<0(x)1y<0(y))f(y) dy (34)

Useful operator identities are easily established from (33):

x
d

dx
· H = −H · d

dx
x and

d

dx
x · H = −H · x d

dx
(35a)

d

dx
· H = H ·

∫ x

0

and

∫ x

0

·H = H · d
dx

(35b)

x · H = −H · d
dx

x
d

dx
and H · x = − d

dx
x
d

dx
· H (35c)

It is important that d
dx is always taken in the distribution sense. It would actually be possible

to define the action of H on distributions supported in [0,+∞) without mention of the Fourier

transform, because these identities uniquely determine H(D) if D is written ( ddx)N (1+x)MgN,M (x)

with gN,M ∈ L2(0,∞; dx). But the proof needs some organizing then as it is necessary to check

independence from the choice of N and M , and also to establish afterwards all identities above. So

(33) provides the easiest road. Still, in this context, let us mention the following which relates to

the restriction of H(D) to (0,+∞):

Lemma 2. Let k be smooth on R with compact support in [0,+∞). Then H(k) is the restriction

to [0,+∞) of an entire function γ which has Schwartz decrease as x → +∞. For any tempered

distribution D with support in [0,+∞), there holds
∫ ∞

0

H(D)(x)k(x) dx =

∫ ∞

0

D(x)γ(x) dx , (36)

where in the right hand side in fact one has
∫∞
−ǫD(x)γ(x)θ(x) dx where the smooth function θ is 1

for x ≥ − ǫ
3 and 0 for x ≤ − ǫ

2 and is otherwise arbitrary (as is ǫ).

Let us suppose k = 0 for x > B. Defining:

γ(x) =

∫ B

0

J0(2
√
xy) k(y) dy (37)

we obtain an entire function and, according to our definitions, H(k)(x) = γ(x)1x>0(x) as a distribu-

tion or a square-integrable function. Using (35c) (H = − 1
xH· ddx x d

dx for x > 0) and bounding J0 by

1 we see (induction) that γ is O(x−N ) for any N as x→ +∞ , and using (35a) ( ddx ·H = − 1
xH· ddxx

for x > 0) the same applies to its derivative and also to its higher derivatives. So it is of the Schwartz

class for x→ +∞.

Replacing D by H(D) in (36) it will be more convenient to prove:
∫ ∞

0

D(x)k(x) dx =

∫ ∞

0

H(D)(x)γ(x) dx (38)
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If (38) holds for D (and all k’s) then < D′, k >= − < D, k′ >= − < H(D),−θ(x)
∫∞
x γ(y)dy > (ob-

serve that
∫ x
0 γ(y) dy = H(k′)(x) vanishes at +∞) so< D′, k >= + <

∫ x
0 H(D), θγ >=< H(D′), θγ >

hence (38) holds as well for D′ (and all k’s). So we may assume D to be a continuous function of

polynomial growth. It is also checked using (35c) that if (38) holds for D it holds for xD. So we

may reduce to D being square-integrable, and the statement then follows from the self-adjointness

of H on L2 (or we reduce to Fubini).

The behavior of H with respect to the translations τa : f(x) 7→ f(x − a) is important. For

f ∈ L2(R; dx) the value of a is arbitrary and we can define

τ#
a := H τaH (39a)

τ̃a(f)(λ) = eiaλf̃(λ) (39b)

τ̃#
a (f)(λ) = eia

−1
λ f̃(λ) (39c)

We observe the remarkable commutation relations (which would fail for the cosine or sine trans-

forms):

∀a, b τaτ
#
b = τ#

b τa (40)

For a distribution D the action of τ#
a is here defined only for a ≥ −α(H(D)), where α(E) is the

leftmost point of the closed support of the distribution E. On this topic from the validity of (30)

when f ∈ L2(0,∞; dx), and invariance of α under derivation9, integration, and multiplication by x,

one has:

− α(E) = lim sup
t→+∞

1

t
log |Ẽ(it)| (41)

We thus have the property, not shared by the cosine or sine transforms:

a ≥ −α(H(D)) =⇒ α(τ#
a (D)) = α(D) (42)

We now consider D with α(D) > 0 and α(H(D)) > 0 and prove that its Mellin transform is

an entire function with trivial zeros at 0, −1, −2, . . . , following the method of regularization by

multiplicative convolution and co-Poisson intertwining from [8]. The other, very classical in spirit,

proof shall be presented later. The latter method is shorter but the former provides complementary

information.

In [8, §4.A] the detailed explanations relative to the notion of multiplicative convolution are

given:

(g ∗D)(x) “ = ”

∫

R

g(t)D(
x

t
)
dt

|t| , (43)

where we will in fact always take g to have compact support in (0,+∞). It is observed that

g ∗ xD = x(
g

x
∗D) (g ∗D)′ =

g

x
∗D′ (44)

9It is important in order to avoid a possible confusion to insist on the fact that d

dx
is always taken in the distribution

sense so for example d

dx
1x>0 = δ(x) indeed has the leftmost point of its support not affected by d

dx
.
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The notion of right Mellin transform
∫∞
0 D(x)x−sdx is developed in [8, §4.C], for D with support

in [a,+∞), a > 0:

D̂(s) = s(s+ 1) · · · (s+N − 1)D̂(−N)(s+N) , (45)

where N ≫ 0. The meaning of D̂ is as the maximal possible analytic continuation to a half-plane

ℜ(s) > σ, where σ is as to the left as is possible. The notion is extended10 in [8, §4.F] to the case

where the restriction of D to (−a, a) is “quasi-homogeneous”. For example, if D|(−a,a) = 10<x<a

(resp. δ), then D̂ is defined as D̂1 with D1 = D−10<x<∞ (resp. D− δ.) Then, also in the extended

case, the following holds:

ĝ ∗D(s) = ĝ(s)D̂(s) (46)

where g in an integrable function with compact support in (0,∞) and ĝ(s) is the entire function
∫∞
0 g(t)t−s dt. We then have the following theorem:

Theorem 3. Let D a tempered distribution with support in [a,+∞), a > 0 and such that H(D)

also has a positive leftmost point of support. Let g be a smooth function with compact support in

(0,∞). Then the multiplicative convolution g ∗D belongs to the Schwartz class.

This is the analog of [8, Thm 4.29]. The function k(t) = (Ig)(t) = g(1/t)
t is defined and it is

written as k = H(γ1x>0) where γ is the entire function, of Schwartz decrease at +∞ such that

H(k) = γ · 1x>0. Then it is observed that

t > 0 =⇒ (g ∗D)(t) =

∫ ∞

0

D(x)
k(x/t)

t
dx =

∫ ∞

0

H(D)(x)γ(tx) dx (47)

We have used Lemma 2. Then the Schwartz decrease of
∫∞
0

H(D)(x)γ(tx) dx as t → +∞ is es-

tablished as is done at the end of the proof of [8, Thm 4.29], integrating by parts enough times to

transform H(D) into a continuous function of polynomial growth, identically zero on [0, c], c > 0.

Theorem 4. Let D a tempered distribution with a positive lefmost point of support and such that

H(D) also has a positive leftmost point of support. Then D̂(s) and Γ(s)D̂(s) are entire functions

and:

Γ(s)D̂(s) = Γ(1 − s)Ĥ(D)(1 − s) (48)

We first establish:

Theorem 5 (“co-Poisson intertwining”). Let D be a tempered distribution supported in [0,+∞)

and let g be an integrable function with compact support in (0,∞). Then, with (Ig)(t) = g(1/t)
t :

H(g ∗D) = (Ig) ∗ H(D) (49)

10if D is near the origin a function with an analytic character, then straightforward elementary arguments allow a
complementary discussion. However if D is just an element of L2(0,∞; dx) then bD is a square-integrable function on
the critical line, and nothing more nor less.
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Let us first suppose that D is an L2 function. In that case, we will use the Mellin-Plancherel

transform f 7→ f̂(s) =
∫∞
0 f(t)t−s dt, for f square integrable and ℜ(s) = 1

2 . Then ĝ ∗ f is, changing

variables, the Fourier transform of an additive convolution where one of the two has compact support,

well known to be the product ĝ · f̂ . We need also to understand the Mellin transform of H(f). Let

us suppose ft(x) = exp(−tx). Then H(ft) = 1
t f 1

t
has Mellin transform Ĥ(ft)(s) = t−sΓ(1 − s) and

f̂t(s) = ts−1Γ(1 − s), so we have the identity for such f ’s:

Ĥ(f)(s) =
Γ(1 − s)

Γ(s)
f̂(1 − s) (50)

The linear combinations of the ft’s are dense in L2, so (49) holds for all f ’s as an identity of

square integrable functions on the critical line. We are now in a position to check the intertwining:

Ĥ(g ∗ f)(s) = Γ(1−s)
Γ(s) ĝ(1 − s)f̂(1 − s) = Îg(s)Ĥ(f)(s) = ̂Ig ∗ H(f)(s).

For the case of an arbitrary distribution it will then be sufficient to check that if (49) holds for

D it holds for xD and for D′. This is easily done using (44). We have g ∗ (D′) = (xg ∗ D)′, so

H(g ∗D′) =
∫ x
0 H(xg ∗D) =

∫ x
0 ( Igx ∗H(D)) = Ig ∗ (

∫ x
0 H(D)) = Ig ∗H(D′). A similar proof is done

for xD. This completes the proof of the intertwining.

The theorem 4 is then established as is [8, Thm 4.30]. We pick an arbitrary g smooth with

compact support in (0,∞). We know by theorem 3 that g ∗D is a Schwartz function as x → +∞,

and certainly it vanishes identically in a neighborhood of the origin, so ĝ ∗D(s) = ĝ(s)D̂(s) is an

entire function. So D̂(s) is a meromorphic function in the entire complex plane, in fact an entire

function as g is arbitrary. We then use the intertwining and (50) for square integrable functions.

This gives ĝ(1−s)Ĥ(D)(s) = ̂Ig ∗ H(D)(s) = ̂H(g ∗D)(s) = Γ(1−s)
Γ(s) ĝ(1−s)D̂(1−s). Hence, indeed,

after replacing s by 1 − s:

Γ(s)D̂(s) = Γ(1 − s)Ĥ(D)(1 − s) (51)

The left-hand side may have poles only at 0, −1, . . . , and the right-hand side only at 1, 2, . . . . So

both sides are entire functions and D̂(s) has trivial zeros at 0, −1, −2, . . .

We now give another proof of Theorem 4, which is more classical, as it is the descendant of the

second of Riemann’s proof, and is the familiar one from the theory of theory of L-series and modular

functions. The existence of two complementary proofs is instructive, as it helps to better understand

the rôle of the right Mellin transform
∫∞
0
f(x)x−s dx vs. the left Mellin transform

∫∞
0
θ(it)ts−1 dt.

To the distribution D we associate its “theta” function11 θD(λ) = D̃(λ) =
∫∞
0
eiλxD(x) dx,

which is an analytic function for ℑ(λ) > 0 12. Right from the beginning we have:

θH(D)(it) =
1

t
θD(

i

t
) (52)

If the leftmost point of the support of D is positive then θD(it) has exponential decrease as t→ +∞
and

∫∞
1
θD(it)ts−1 dt is an entire function. If also the leftmost point of support of H(D) is positive

11the author hopes to be forgiven this temporary terminology in a situation where only the behavior under λ 7→ −1
λ

is at work.
12we adopt the usual notation, and consider θD as a function of it rather than t.
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then θH(D)(it) has exponential decrease as t→ +∞ and
∫ 1

0
θD(it)ts−1 dt =

∫∞
1
θH(D)(it)t

−s dt is an

entire function. So, under the support property considered in Theorem 4 D(s) :=
∫∞
0
θD(it)ts−1 dt

is indeed an entire function, and the functional equation is

D(s) = D∗(1 − s) (53)

with D∗(s) =
∫∞
0 θH(D)(t)t

s−1 dt.

To conclude we also need to establish:

D(s) = Γ(s)D̂(s) (54)

We shall prove this for ℜ(s) ≫ 0 under the hypothesis that D has support in [a,+∞), a > 0 (no

hypothesis on H(D)). In that case, as θD(it) is O(t−N ) for a certain N as t → 0 (t > 0), and is of

exponential decrease as t→ +∞, we can define D(s) =
∫∞
0 θD(it)ts−1 dt as an analytic function for

ℜ(s) ≫ 0. Let us suppose that D is a continuous function which is O(x−2) as x→ +∞. Then, for,

ℜ(s) > 0, the identity (54) holds as an application of the Fubini theorem. We then apply our usual

method to check that if (54) holds for D it also holds for xD and for D′. For this, obviously we

need things such as D̂′(s) = sD̂(s+ 1) [8, 4.15] and x̂D(s) = D̂(s− 1), the formulas θD′ = −iλθD,

θxD = −i ∂∂λθD, and Γ(s+ 1) = sΓ(s). The verifications are then straightforward.

In summary we have seen how the support property for D and H(D) is related in two comple-

mentary manners to the functional equation, one using the right Mellin transform D̂(s) of D and

the idea of co-Poisson, the other using the left Mellin transform D(s) of the “theta” function θD

associated to D as an analytic function on the upper half-plane and the behavior of θD(it) under

t 7→ 1
t . It is possible to push further the analysis and to characterize the class of entire functions

D(s) = Γ(s)D̂(s), as has been done in [8] in the case of the cosine and sine transforms. It is also

explained in [8] how the discussion extends to allow finitely many poles. The proofs and statements

given there are easily adapted to the case of the H transform. Only the case of poles at 1 and 0

will be needed here and this corresponds, either to the condition that D and H(D) both restrict in

(−a, a) for some a > 0 to multiples of the Dirac delta function, or, that they are both constant in

[0, a) for some a > 0. We recall that the Mellin transform D̂(s) is defined in such a manner, that it

is not affected from either substracting δ or 1x>0 from D.

4 A group of distributions and related integral formulas

We now derive some integral identities which will prove central. The identities will be re-obtained

later as the outcome of a less direct path. We are interested in the tempered distribution ga(x)

whose Fourier transform is exp(ia−1
λ ). Indeed τ#

a (f) (equation (39a)) is the additive convolution of

f with ga: we note that ga differs from δ(x) by a square integrable function as 1 − exp(−iaλ−1) =

O|λ|→∞(|λ|−1); so there is a convolution formula τ#
a (f) = f − fa ∗ f for a certain square integrable
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function fa. For f ∈ L2, the convolution fa ∗ f as the Fourier transform of an L1-function is

continuous on R. Starting from the identity exp(ia−1
λ ) = −iλ iλ exp(ia−1

λ ) we identify ga for a ≥ 0

as ∂
∂xHδa. It is important that ∂

∂x is taken in the distribution sense. So we have, simply:

ga(x) = δ(x) − aJ1(2
√
ax)√

ax
1x>0(x) (a ≥ 0) (55)

If a < 0 then ga(x) = g−a(−x), fa(x) = f−a(−x). So:

g−a(x) = δ(x) − aJ1(2
√
−ax)√

−ax 1x<0(x) (−a ≤ 0) (56)

The group property under the additive convolution ga ∗ gb = ga+b leads to remarkable integral

identities fa+b = fa+fb−fa∗fb involving the Bessel functions. The pointwise validity is guaranteed

by continuity; the Plancherel identity confirms the identity, where fa(x) = aJ1(2
√
ax)√

ax
1x>0(x) for

a ≥ 0 and f−a(x) = fa(−x):
fa+b = fa + fb − fa ∗ fb (57)

At x = 0 the pointwise identity is obtained by continuity from either x > 0 or x < 0. We have

essentially two cases: ga ∗ gb for a, b ≥ 0 and ga ∗ g−b for a ≥ b ≥ 0. The following is obtained:

Proposition 6. Let a ≥ b ≥ 0 and x ≥ 0. There holds:

(a+ b)J1(2
√

(a+ b)x)√
(a+ b)x

=
aJ1(2

√
ax)√

ax
+
bJ1(2

√
bx)√

bx
−
∫ x

0

aJ1(2
√
ay)

√
ay

bJ1(2
√
b(x− y))√

b(x− y)
dy (58a)

(a− b)J1(2
√

(a− b)x)√
(a− b)x

=
aJ1(2

√
ax)√

ax
−
∫ ∞

x

aJ1(2
√
ay)

√
ay

bJ1(2
√
b(y − x))√

b(y − x)
dy (58b)

0 =
bJ1(2

√
bx)√

bx
−
∫ ∞

0

aJ1(2
√
ay)

√
ay

bJ1(2
√
b(y + x))√

b(y + x)
dy (58c)

Exchanging a and b and changing variables we combine (58b) and (58c) into one single equation

for x ≥ 0 and a, b ≥ 0:

(a− b)J1(2
√

(a− b)x)√
(a− b)x

1a−b≥0(a− b) =
aJ1(2

√
ax)√

ax
−
∫ ∞

0

aJ1(2
√
a(y + x))√

a(y + x)

bJ1(2
√
by)√

by
dy (59)

The formula for x = 0 in (59) is obtained by continuity. It is equivalent to

∫ ∞

0

J1(u)J1(cu)
du

u
=

1

2
min(c,

1

c
) (c > 0) (60)

which is a very special case of formulas of Weber, Sonine and Schafheitlin ([33, 13.42.(1)]). Another

interesting special case of (59) is for a = b. The formula becomes

J1(2
√
x)√

x
=

∫ ∞

0

J1(2
√
y)

√
y

J1(2
√
x+ y)√

x+ y
dy (61)

which is equivalent to a special case of a formula of Sonine ([33, 13.48.(12)]).
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We already mentioned the equation ∂2

∂u∂vJ0(2
√
uv) = −J0(2

√
uv). New identities are obtained

from (59) or (58a) after taking either the a or the b derivative. We investigate no further (59) as the

corresponding semi-convergent integrals, in a form or another, are certainly among the formulas of

[33, §13]. Let us rather focus more closely on the case a, b ≥ 0 ((58a).) We have a function which

is entire in a, b, and x and the identity holds for all complex values of a, b, and x. Let us take the

derivative with respect to a:

J0(2
√

(a+ b)x) = J0(2
√
ax) −

∫ x

0

J0(2
√
ay)

bJ1(2
√
b(x− y))√

b(x− y)
dy (62)

We replace b by −b and then set x = b. This gives:

I0(2
√
b(b− a)) = J0(2

√
ba) +

∫ b

0

J0(2
√
ay)

bI1(2
√
b(b− y))√

b(b− y)
dy (63)

We take the derivative of (62) with respect to b:

− xJ1(2
√

(a+ b)x)√
(a+ b)x

= −
∫ x

0

J0(2
√
ay)J0(2

√
b(x− y)) dy (64)

Then we replace b by −b and set x = b:

bI1(2
√
b(b− a))√

b(b− a)
=

∫ b

0

J0(2
√
ay)I0(2

√
b(b− y)) dy (65)

Combining (63) and (65) by addition and substraction we discover that we have solved certain

integral equations:

φ+
b (x) = I0(2

√
b(b− x)) − bI1(2

√
b(b− x))√

b(b− x)
= (1 +

∂

∂x
)I0(2

√
b(b− x)) (66a)

φ−b (x) = I0(2
√
b(b− x)) +

bI1(2
√
b(b− x))√

b(b− x)
= (1 − ∂

∂x
)I0(2

√
b(b− x)) (66b)

φ+
b (x) +

∫ b

0

J0(2
√
xy)φ+

b (y) dy = J0(2
√
bx) (66c)

φ−b (x) −
∫ b

0

J0(2
√
xy)φ−b (y) dy = J0(2

√
bx) (66d)

The significance will appear later in the paper and we leave the matter here. The method was devised

after the importance of solving equations (66c) and (66d) had emerged and after the solutions (66a)

and (66b) had been obtained as the outcome of a more indirect path. Of course, direct verification

by replacement of the Bessel functions by their series expansions is possible and easy.

5 Orthogonal projections and Hilbert space evaluators

Let a > 0 and let Pa be the orthogonal projection on L2(0, a; dx) and Qa = HPaH the orthogonal

projection on H(L2(0, a; dx)) and let Ka ⊂ L2(0,∞; dx) be the Hilbert space of square integrable

18



functions f such that both f and H(f) have their supports in [a,∞). Also we shall write Ha =

PaHPa. Also we shall very often use Da = H2
a = PaHPaHPa. Using:

J0(2
√
xy) =

∞∑

n=0

(−1)n
xnyn

n!2
, (67)

we exhibit Ha = PaHPa as a limit in operator norm of finite rank operators so PaHPa is a compact

(self-adjoint) operator. It is not possible for a non zero f ∈ L2(0, a; dx) to be such that ‖Ha(f)‖ =

‖f‖, as this would imply that Ha(f) vanishes identically for x > a, but Ha(f) is an entire function.

So the operator norm of Ha is strictly less than one, and 1 ±Ha as well as 1 −Da are invertible.

We consider the equation

φ = u+ H(v) u, v ∈ L2(0, a; dx) (68)

Hence:

u+Ha(v) = Pa(φ) (69a)

Ha(u) + v = Pa(H(φ)) (69b)

u = (1 −Da)
−1(Pa(φ) −HaPaH(φ)) (69c)

v = (1 −Da)
−1(−HaPa(φ) + PaH(φ)) (69d)

Then if φn = un + H(vn) is L2-convergent, (un) and (vn) will be convergent, and the vector space

sum L2(0, a; dx)+H(L2(0, a; dx)) is closed. Its elements are analytic functions for x > a so certainly

this is a proper subspace of L2. Hence we obtain that each Ka is not reduced to {0} and

K⊥
a = L2(0, a; dx) + H(L2(0, a; dx)) (70)

We also mention that ∪a>0Ka is dense in but not equal to L2(0,∞; dx), more generally that ∪a>bKa

is dense in but not equal to Kb, and also obviously ∩a<∞Ka = {0}, ∩a<bKa = Kb.

In this section a > 0 will be fixed (all defined quantities and functions will depend on a, but

this will not always be explicitely indicated.) We shall be occupied with understanding the vectors

Xa
s ∈ Ka such that

∀f ∈ Ka

∫ ∞

a

f(x)Xa
s (x) dx = f̂(s) =

∫ ∞

a

f(x)x−s dx (71)

and in particular we are interested in computing

Xa(s, z) =

∫ ∞

a

Xa
s (x)Xa

z (x) dx (72)

As a is fixed here, we shall drop the superscript a to lighten the notation. For the time being we

shall restrict to ℜ(s) > 1
2 and we define Xs to be the orthogonal projection to Ka of 1x>a(x)x

−s.

As a preliminary to this study we need to say a few words regarding:

gs(x) := H(1x>a(x)x
−s) =

∫ ∞

a

J0(2
√
xy)y−s dy (73)
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The integral is absolutely convergent for ℜ(s) > 3
4 , semi-convergent for ℜ(s) > 1

4 , and gs is defined

by the equation as an L2 function for ℜ(s) > 1
2 (it will prove to be entire in s for each x > 0). We

need the following identity, which shows also that gs(x) is analytic in x > 0:

gs(x) = χ(s)xs−1 −
∫ a

0

J0(2
√
xy)y−s dy = χ(s)xs−1 −

∞∑

n=0

(−1)n
xn an+1−s

n!2(n+ 1 − s)
(74)

This is obtained first in the range 3
4 < ℜ(s) < 1:

∫∞
a
J0(2

√
xy)y−s dy = xs−1

∫∞
ax
J0(2

√
y)y−s dy =

xs−1
(
χ(s) −

∫ ax
0 J0(2

√
y)y−s dy

)
= xs−1χ(s) −

∫ a
0 J0(2

√
xy)y−s dy. The poles at s = 1, s = 2,

. . . are only apparent. The identity is valid by analytic continuation in the entire plane ℜ(s) > 1
2 .

For each given x > 0 we have in fact an entire function of s ∈ C. But we are here more interested

in gs as a function of x and we indeed see that it is analytic in C\] −∞, 0] (it is an entire function

of x if s ∈ −N). 13

There are unique vectors us, vs in L2(0, a; dx) such that

1x>a(x)x
−s = Xs(x) + us(x) + H(vs)(x) (75)

and they are the solutions to the system of equations:

us +Ha(vs) = 0 (76a)

Ha(us) + vs = Pa(gs) (76b)

From (76a) we see that us is in fact the restriction to (0, a) of an entire funtion, and from (76b)

that vs is the restriction to (0, a) of a function which is analytic in C\] −∞, 0]. Redefining us and

vs to now refer to these analytic functions their defining equations become (on (0,+∞)):

us + HPa(vs) = 0 (77a)

HPa(us) + vs = gs (77b)

and (75) becomes (we set Xs(a) = Xs(a+)):

1x≥a(x)x
−s = Xs(x) + 10<x<a(x)us(x) + HPa(vs)(x) (78a)

1x≥a(x)x
−s = Xs(x) − 1x≥a(x)us(x) (78b)

Xs(x) = 1x≥a(x)(x
−s + us(x)) (78c)

The key to the next steps will be the idea to investigate the distribution (x d
dx+s)Xs on the (positive)

real line. Let Ds be x d
dx + s. There holds:

DsH = −HD1−s (79)

To compute d
dxPa(vs) we first suppose ℜ(s) > 1, so (we know the behavior as x → 0 from (74))

d
dxPa(vs) = Pa(v

′
s) − vs(a)δa(x) and x d

dxPa(vs) = Pa(xv
′
s) − avs(a)δa(x). This remains true for

13For some other transforms k(xy), such as the cosine transform, the argument must be slightly modified in order
to accomodate the fact

R ∞
0 k(y)y−s dy has no range of absolute convergence.
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ℜ(s) > 1
2 . Applying Ds to (77a) thus gives Ds(us) − H (PaD1−s(vs) − avs(a)δa(x)). We similarly

apply D1−s to (77b) and obtain the following system:

Ds(us)(x) − (HPaD1−svs)(x) = −avs(a)J0(2
√
ax) (80a)

−(HPaDsus)(x) +D1−s(vs)(x) = (D1−sgs)(x) − aus(a)J0(2
√
ax) (80b)

From (73), we have D1−sgs = −HDs(1x>ax
−s) = −H(a1−sδa(x)) = −a1−sJ0(2

√
ax). Let us define

Ja0 (x) = J0(2
√
ax) (81)

We have proven:

+Dsus −HPaD1−svs = −avs(a)Ja0 (82a)

−HPaDsus +D1−svs = −a(a−s + us(a))J
a
0 (82b)

Restricting to the interval (0, a) and solving, we find:

PaDsus = −a(1 −Da)
−1(vs(a)J

a
0 + (a−s + us(a))HaJ

a
0 ) (83a)

PaD1−svs = −a(1 −Da)
−1((a−s + us(a))J

a
0 + vs(a)HaJ

a
0 ) (83b)

It is advantageous at this stage to define φ+
a and φ−a to be the solutions of the equations (in

L2(0, a; dx)):

φ+
a +Haφ

+
a = Ja0 (84a)

φ−a −Haφ
−
a = Ja0 (84b)

We already know from (66a) and (66b) exactly what φ+
a and φ−a are (in this special case of the H

transform), but we shall proceed as if we didn’t. We see from (84a), (84b) that φ+
a and φ−a are

entire functions, and we can rewrite the system as:14

φ+
a + HPaφ+

a = Ja0 (85a)

φ−a −HPaφ−a = Ja0 (85b)

We observe the identities:

(1 −Da)
−1Ja0 = Pa

φ+
a + φ−a

2
(86a)

(1 −Da)
−1HaJ

a
0 = Pa

−φ+
a + φ−a
2

(86b)

So (83a) and (83b) become

Dsus = +a
a−s + us(a) − vs(a)

2
φ+
a − a

a−s + us(a) + vs(a)

2
φ−a (87a)

D1−svs = −aa
−s + us(a) − vs(a)

2
φ+
a − a

a−s + us(a) + vs(a)

2
φ−a (87b)

14in conformity with our conventions, these are identities on (0,∞); to see them as identities on C one must read
R

a

0 J0(2
√

xy)φ+
a (y) dy rather than (HPaφ+

a )(x).
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From (87a) we compute successively (again, these are identities on (0,+∞)):

HPaDsus = a
a−s + us(a) − vs(a)

2
(Ja0 − φ+

a ) − a
a−s + us(a) + vs(a)

2
(−Ja0 + φ−a ) (88)

PaDsus = a
a−s + us(a) − vs(a)

2
(δa −Hφ+

a ) − a
a−s + us(a) + vs(a)

2
(−δa + Hφ−a ) (89)

In (89), Hφ+
a should perhaps be more precisely written as H(φ+

a 1x>0). From (85a) we know that

φ+
a 1x>0 is tempered as a distribution. From (78c) we compute DsXs = 1x>aDs(us) + a(a−s +

us(a))δa(x) = Dsus − PaDsus + a(a−s + us(a))δa(x). From (87a) and(89) then follows:

DsXs = +a
a−s + us(a) − vs(a)

2
(φ+
a + Hφ+

a − δa) − a
a−s + us(a) + vs(a)

2
(φ−a −Hφ−a + δa)

+a(a−s + us(a))δa(x)

(90)

And the result of the computation is:

DsXs = +a
a−s + us(a) − vs(a)

2
(φ+
a + Hφ+

a ) + a
a−s + us(a) + vs(a)

2
(−φ−a + Hφ−a ) (91)

We then define the remarkable distributions:

Aa =

√
a

2
(φ+
a + Hφ+

a ) (92a)

−iBa =

√
a

2
(−φ−a + Hφ−a ) (92b)

Ea = Aa − iBa (92c)

From (84a) we observe that Aa has its support in [a,∞). Furthermore it is H invariant. Similarly,

−iBa, which is H anti invariant, also has its support in [a,+∞). We recover Aa and −iBa from Ea

through taking the invariant and anti-invariant parts. We may also rewrite DsXs as:

DsXs =
√
a(a−s + us(a))Ea −

√
a vs(a)HEa (93)

Some other manners of writing Aa and −iBa are useful: from (85a) Hφ+
a = δa − Paφ

+
a and from

(85b) Hφ−a = δa + Paφ
−
a , so:

Aa =

√
a

2
(δa + φ+

a 1x>a) (94a)

−iBa =

√
a

2
(δa − φ−a 1x>a) (94b)

And, we take also notice of the following definitions and identities:

ja =
√
a(δa − φ+

a 10<x<a) ja =
√
aHφ+

a Aa =
1

2
(ja + Hja) (95a)

−ika =
√
a(δa + φ−a 10<x<a) −ika =

√
aHφ−a Ba =

1

2
(ka −Hka) (95b)
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From (85a) and (85b) we know that φ+
a and φ−a are bounded, so the right Mellin transforms are

defined directly for ℜ(s) > 1 by:15

Âa(s) =

√
a

2

(
a−s +

∫ ∞

a

φ+
a (x)x−s dx

)
(96a)

−iB̂a(s) =

√
a

2

(
a−s −

∫ ∞

a

φ−a (x)x−s dx
)

(96b)

Êa(s) =
√
a
(
a−s +

1

2

∫ ∞

a

(φ+
a (x) − φ−a (x))x−s dx

)
(96c)

Ĥ(Ea)(s) =
√
a

1

2

∫ ∞

a

(φ+
a (x) + φ−a (x))x−s dx (96d)

From (85a) and (85b) we know that φ+
a −φ−a is square-integrable at +∞, so, using Hφ+

a = δa−Paφ+
a

and Hφ−a = δa + Paφ
−
a we compute:

∫ ∞

a

(φ+
a (x) − φ−a (x))x−s dx =

∫ ∞

0

(Hφ+
a −Hφ−a )gs(x) dx = −

∫ a

0

(φ+
a (x) + φ−a (x))gs(x) dx (97)

Then using (86a):

∫ a

0

φ+
a (x) + φ−a (x)

2
gs(x) dx =

∫ a

0

(1 −Da)
−1(Ja0 )(x)gs(x) dx =

∫ a

0

Ja0 (x)((1 −Da)
−1(gs))(x) dx

(98)

Comparing with (76a) and (76b) the right-most term of (98) may be written as
∫ a
0
J0(2

√
ax)vs(x) dx

which in turn we recognize from (77a) to be −us(a). We have thus proven the identity:

Êa(s) =
√
a(a−s + us(a)) (99)

In a similar manner we have:
∫ ∞

a

φ+
a (x) + φ−a (x)

2
x−s dx =

∫ ∞

a

J0(2
√
ax)x−s dx +

∫ a

0

−φ+
a (x) + φ−a (x)

2
gs(x) dx (100)

∫ a

0

−φ+
a (x) + φ−a (x)

2
gs(x) dx =

∫ a

0

((1 −Da)
−1HaJ

a
0 )(x)gs(x) dx = −

∫ a

0

J0(2
√
ax)us(x) dx

= vs(a) − gs(a) = vs(a) −
∫ ∞

a

J0(2
√
ax)x−s dx

(101)

Âa(s) + iB̂a(s) = Ĥ(Ea)(s) =
√
a

∫ ∞

a

φ+
a (x) + φ−a (x)

2
x−s dx =

√
avs(a) (102)

Then, we obtain the reformulation of (93) as:

DsXs = Êa(s)Ea − Ĥ(Ea)(s)HEa (103)

15the integral for cEa(s) is certainly absolutely convergent for ℜ(s) > 1
2

as φ+
a − φ−

a is square integrable on (0,∞),

and in fact it is absolutely convergent for ℜ(s) > 1
4
. As we know already completely explicitely φ+

a and φ−
a , we do not

pause on this here. A general argument suitable to establish in more general cases absolute convergence for ℜ(s) > σ

for some σ < 1
2

will be given later.
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And, noting D̂sXs(z) = (s+ z − 1)X̂s(z) = (s+ z − 1)
∫∞
a
Xs(x)Xz(x) dx we are finally led to the

remarkable result:

Xa(s, z) =

∫ ∞

a

Xa
s (x)Xa

z (x) dx =
Êa(s)Êa(z) − Ĥ(Ea)(s)ĤEa(z)

s+ z − 1
(104)

This equation has been proven under the assumption ℜ(s) > 1, and ℜ(z) > 1
2 . To complete the

discussion we need to know that the evaluators f 7→ f̂(s), s ∈ C are indeed continuous linear forms on

Ka. For ℜ(s) > 1
2 , we have f̂(s) =

∫∞
a
f(x)x−s dx. For ℜ(s) < 1

2 we have f̂(s) = Γ(1−s)
Γ(s) Ĥ(f)(1−s).

For ℜ(s) = 1
2 continuity follows by the Banach-Steinhaus theorem, and of course more elementary

proofs exist (as in [3] for the cosine or sine transform). So we do have unique Hilbert space vectors

Xa
s ∈ Ka such that ∀f ∈ Ka∀s ∈ C f̂(s) =

∫∞
a Xa

s (x)f(x) dx. Then (104) holds throughout C × C

by analytic continuation.

The vectors Xa
s are zero for s ∈ −N, and it is more precise to use vectors X a

s = Γ(s)Xa
s which

are non-zero for all s ∈ C. These vectors are the evaluators16 for f 7→ F(s), F(s) = Γ(s)f̂(s).

We recapitulate some of the results in the following theorem, whose analog for the cosine (or sine)

transform was given in [5] (up to changes of variables and notations, the first paragraph as well as

equation (108) are theorems from [1]; the equations (105), (106), (107) are our contributions. In

this specific case of H we shall later identify exactly φ+
a and φ−a and Ea and Ea. As we shall explain

the analog of the Ea-function in [1] has value 1 at s = 1
2 , and is not identical with the Ea here):

Theorem 7. For a given a > 0 let Ka be the Hilbert space of square integrable functions f(x) on

[a,+∞) whose H-transforms
∫∞
0 J0(2

√
xy)f(y) dy (in the L2-sense) again vanish for 0 < x < a.

The completed right Mellin transforms Γ(s)f̂(s) = Γ(s)
∫∞
a
f(x)x−s dx are entire functions and

evaluations at s ∈ C are continuous linear forms.

Let X a
s for each s ∈ C be the unique vector in Ka such that ∀f ∈ Ka Γ(s)f̂(s) =

∫∞
a
f(x)X a

s (x) dx.

Let φ+
a and φ−a be the entire functions which are the solutions to:

φ+
a (x) +

∫ a

0

J0(2
√
xy)φ+

a (y) dy = J0(2
√
ax) (105)

φ−a (x) −
∫ a

0

J0(2
√
xy)φ−a (y) dy = J0(2

√
ax) (106)

Then

Êa(s) =
√
a
(
a−s +

1

2

∫ ∞

a

(φ+
a (x) − φ−a (x))x−s dx

)
(107)

is an entire function with trivial zeros at −N and, defining Ea(s) = Γ(s)Êa(s), we have:

∀s, z ∈ C

∫ ∞

a

X a
s (x)X a

z (x) dx =
Ea(s)Ea(z) − Ea(1 − s)Ea(1 − z)

s+ z − 1
(108)

We knew in advance that we had to end up with a formula such as (108) (with a E function to

be discovered17), and this is why we started investigating (x d
dx + s)Xa

s (x) in the first place! The

16evaluators for the “euclidean” product
R

fg dx, not the “hilbertian”
R

fg dx.
17the method was initially developed by the author for the cosine and sine transforms [5, 6] and leads for them

to the only known “explicit” formulas for E; for the zero order Hankel transform the problem of computing the
reproducing kernel had been already solved by de Branges [1].
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reason is this: the Hilbert space of the entire functions F(s), f ∈ Ka (the Hilbert structure is the

one from Ka, or (F1,F2) = 1
2π

∫
ℜ(s)= 1

2
F1(s)F2(s)

|ds|
|Γ(s)|2 ) verifies the de Branges axioms [2], up to

the change of variable s = 1
2 − iz. Let us recall the axioms of [2] for a (non-zero) Hilbert space of

entire functions F (z):

(H1) for each z, evalution at z is a continuous linear form,

(H2) for each F , z 7→ F (z) belongs to the Hilbert space and has the same norm as F ,

(H3) if F (w) = 0 then G(z) = z−w
z−wF (z) belongs to the space and has the same norm as F

Let K(z, w) be defined as the evaluator at z: ∀F F (z) = (F,K(z, ·)). It is anti-analytic in z and

analytic in w (the scalar product is complex linear in its first entry, and conjugate linear in its

second entry). It is a reproducing kernel: K(z, w) = (K(z, ·),K(w, ·)). It is proven in [2] that (H1),

(H2), (H3) entail the existence of an entire function E(z) with |E(z)| > |E(z)| for ℑ(z) > 0, such

that the space is exactly the set of entire functions F (z) such that both F (z)
E(z) and F (z)

E(z) belong to

H2(ℑ(z) > 0), and the Hilbert space norm of F is 1
2π

∫
R
|F (t)|2 dt

|E(t)|2 .18 We have incorporated a 2π

for easier comparison with our conventions. Then the reproducing kernel is expressed as:

K(z, w) =
E(z)E(w) − E(z)E(w)

i(z − w)
(109)

The function E is not unique; if the space has the isometric symmetry F (z) 7→ F (−z), a function

E exists which is real on the imaginary axis and writing E = A− iB where A and B are real on the

real axis, the pair (A,B) is unique up to A 7→ kA, B 7→ k−1B, A is even and B is odd. If A(0) 6= 0

(this happens exactly when the space contains at least one element not vanishing at 0) then it may

be uniquely normalized so that A(0) = 1. Then E is uniquely determined.

Model examples are the Paley-Wiener spaces of entire functions F (z) of exponential type at

most τ with ‖F‖2 = 1
2π

∫
R
|F (t)|2 dt < ∞. Then E(z) = e−iτz is a possible E function. The

Paley-Wiener spaces are related to the study of the differential operator − d2

dx2 on the positive half-

line, and an important class of spaces verifying the axioms of [2] is associated with the theory of the

eigenfunction expansions for Schrödinger operators − d2

dx2 +V (x) ([27]). In these examples the spaces

are indexed by a parameter τ (the Schrödinger operator is first studied on a finite interval (0, τ))

and they are ordered by isometric inclusions (the E-function of a bigger space may be used in the

computation of the norm of an element of a smaller space). Typically indeed, de Branges spaces are

studied included in one fixed space L2(R, 1
2πdν), are ordered by isometric inclusion and indexed by a

parameter19. Obviously this theory is intimately related with the Weyl-Stone-Titchmarsh-Kodaira

theory of the spectral measure. The articles of Dym [14] and Remling [27], the book of Dym and

McKean [15], will be useful to the interested reader. In the case of the study of H we will have

18the conditions on F (z) are not formulated in [2] as Hardy space conditions, but they are exactly equivalent.
19the axioms allow for “jumps” in the isometric chain of inclusions, as occur in the theory of the Krein strings [15],

discrete Schrödinger equations being special cases.
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dν(γ) = |Γ(1
2 + iγ)|−2dγ. It is an important flexibility of the axioms not to be limited to functions

of finite exponential type, and also the spectral measures are not necessarily such that (1 + γ2)−1

is integrable. It has turned out in our study of the spaces associated with the H-transform that

the naturally occurring E function is not the one normalized to take value 1 at z = 0. Rather the

normalization will prove to be limσ→+∞
−iB(iσ)
A(iσ) = 1. This has an important impact on the aspect

of the differential equations which will govern the deformation of the Ka’s with respect to a: they

will take the form of a first order linear differential system in canonical form (as generally studied

in [21, §3].)

The space of the functions F(s) = Γ(s)f̂(s), f ∈ Ka verify (this is easy) the de Branges axioms,

with s = 1
2 − iz and they were defined20 in [1]. The spaces Ka have the real structure, which is

manifest in the s variable through the isometry F(s) 7→ F(s). Rather than with the reproducing

kernel K(z1, z2) we work mainly with X (s1, s2) = K(−z1, z2) which is analytic in both variables.

Of course then it is X (s, s) which gives the squared norm of the evaluator at s. Writing E(s) = E(z)

we obtain from (109):

X (s1, s2) =
E(s1)E(s2) − E(1 − s1)E(1 − s2)

s1 + s2 − 1
(110)

which is indeed what has appeared on the right hand side of (108). With E(s) = A(s) − iB(s), A
(resp. B) even (resp. odd) under s 7→ 1 − s, this is also:

X (s1, s2) = 2
−iB(s1)A(s2) + A(s1)(−iB(s2))

s1 + s2 − 1
(111)

and for ℜ(s) 6= 1
2 , 0 < X (s, s) = 2ℑ(B(s)A(s))

ℜ(s)− 1
2

so both A and B have all their zeros on the critical

line.21

The method in this chapter has been developed in [5, 8, 6] for the case of the cosine and sine

transforms, and it leads to the currently only known “explicit” formulae22 for the structural elements

E , A, B and reproducing kernels for the spaces for the cosine and sine transforms. So far, almost

nothing very specific to H has been used apart from it being self-adjoint self-reciprocal with an

entire multiplicative kernel k(xy). The next section is still of a very general validity.

As was mentioned in the Introduction the realization of the structural elements of the spaces as

right Mellin transforms of distributions is a characteristic aspect of the method; the Dirac delta’s

in the expressions for Aa(x) and −iBa(x) could have been overlooked if we had only been prepared

to use functions, and the whole development was based on the computation of (x d
dx + s)Xs(x) as a

distribution. This aspect will be further reinforced in the concluding chapter of the paper (section

9) where it will be seen that the distributions Aa(x) and −iBa(x) are very naturally differences of

boundary values of analytic functions, so they are hyperfunctions [23] in a natural manner.

20in the variable z, and associated with the Hankel transform of order zero, rather than with the H transform.
21this is also seen from 2A(s) = E(s) + E(1 − s) as |E(s)| > |E(1 − s)| for ℜ(s) > 1

2
. As X (s, s) =

|E(s)|2−|E(1−s)|2

2ℜ(s)−1

this is in fact the same argument.
22as “explicit” as the Fredholm determinants of the finite Dirichlet kernels are “explicit”.
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Let us consider the behavior of Âa(s), B̂a(s), Êa(s) and Ĥ(Ea)(s) for ℜ(s) ≥ 1
2 . Let us first

look at Êa(s) =
√
a
(
a−s + 1

2

∫∞
a (φ+

a (x) − φ−a (x))x−s dx
)
. We remark that φ+

a (x) − φ−a (x) is the

H-transform of −(φ+
a (x) + φ−a (x))10<x<a(x).

Lemma 8. Let k(x) a continuous function on [0,+∞) and A ∈ [0, 1] be such that k1(x) =
∫ x
0 k(t) dt = O(xA) as x → ∞. Let a > 0 and let f(x) be an absolutely continuous function on

[0, a]. Then
∫ a
0 k(xy)f(y) dy = O(xA−1) as x→ +∞.

There exists C < ∞ such that ∀x > 0 |k1(x)| ≤ C xA. Then
∫ a
0 k(xy)f(y) dy = 1

xk1(xa)f(a) −
1
x

∫ a
0
k1(xy)f

′(y) dy, and |
∫ a
0
k1(xy)f

′(y) dy| ≤ CxA
∫ a
0
yA|f ′(y)| dy. This was easy. . .

With k(x) = J0(2
√
x), one has k1(x) =

√
xJ1(2

√
x) = O(x

1
4 ). We have φ+

a (x) − φ−a (x) =

−
∫ a
0 J0(2

√
xy)(φ+

a (x)+φ−a (x)) dy and from Lemma 8 this is O(x−
3
4 ). So the integral in the expres-

sion for Êa(s) is absolutely convergent for ℜ(s) > 1
4 . In particular Êa is bounded on the critical

line. But then Ĥ(Ea)(s) = χ(s)Êa(1 − s) is also bounded. Hence:

Proposition 9. The functions Âa and B̂a are bounded on the critical line.

Let us turn to the situation regarding ℜ(s) = σ → +∞.

Let f(x) be a function of class C2 on [0, a] and e(x) =
∫ a
0 J0(2

√
xy)f(y) dy. It is O(x−

3
4 ).

There holds d
dxxe(x) =

∫ a
0

( ddyyJ0(2
√
xy))f(y) dy = af(a)J0(2

√
ax) −

∫ a
0
J0(2

√
xy) yf ′(y) dy. Let

k(x) =
∫ a
0
J0(2

√
xy) yf ′(y) dy. By the Lemma 8 it is O(x−

3
4 ). For ℜ(s) > 3

4 , with absolutely

convergent integrals:

af(a)

∫ ∞

a

J0(2
√
ax)x−s dx−

∫ ∞

a

k(x)x−s dx = −ae(a)a−s + s

∫ ∞

a

e(x)x−s dx (112)

We show that the left hand side of (112) is O(a−s 1
s ) for ℜ(s) > 5

4 . We apply to k what we did for

e, d
dxxk(x) = a2f ′(a)J0(2

√
ax) −

∫ a
0
J0(2

√
xy) y(yf ′)′(y) dy. This is O(1) (using |J0| ≤ 1). So for

ℜ(s) > 1, we can compute
∫∞
0 ( ddxxk(x))x

−s dx by integration by parts, this gives −ak(a)a−s +

s
∫∞
a k(x)x−s dx. So for ℜ(s) ≥ 1 + ǫ we have

∫∞
a k(x)x−s dx = O(a−s 1

s ). Then regarding
∫∞
a J0(2

√
ax)x−s dx we note that d

dxxJ0(2
√
ax) = J0(2

√
ax)−√

axJ1(2
√
ax), so for ℜ(s) ≥ 5

4 +ǫ we

can apply the same method of integration by parts, and prove that
∫∞
a
J0(2

√
ax)x−s dx = O(a−s 1

s ).

So the left hand side of (112) is indeed O(a−s 1
s ) for ℜ(s) ≥ 3

2 and we have:

Lemma 10. Let f(x) be a function of class C2 on [0, a] and let e(x) =
∫ a
0
J0(2

√
xy)f(y) dy. One

has ∫ ∞

a

e(x)x−s dx =
a−s

s

(
ae(a) +O(

1

s
)
)

(ℜ(s) ≥ 3

2
) (113)

Let us return to
∫∞
a J0(2

√
ax)x−s dx = 1

s

(
J0(2a)a

1−s+
∫∞
a (J0(2

√
ax)−√

axJ1(2
√
ax))x−s dx

)
.

We want to iterate so we also need x d
dx

√
axJ1(2

√
ax) = 1

42
√
ax d

d2
√
ax

2
√
axJ1(2

√
ax) = axJ0(2

√
ax).

So we can integrate by parts and obtain that the last Mellin integral is O(a−s 1
s ) for ℜ(s) ≥ 7

4 + ǫ.
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So, certainly: ∫ ∞

a

J0(2
√
ax)x−s dx =

a−s

s

(
aJ0(2a) +O(

1

s
)
)

(ℜ(s) ≥ 5

2
) (114)

Using φ+
a = Ja0 −HPaφ+

a and φ−a = Ja0 + HPaφ−a and combining (113) and (114) we obtain:

Proposition 11. One has for ℜ(s) ≥ σ0 (here σ0 = 5
2 for example):

Êa(s) = a
1
2−s(1 +

aφ+(a) − aφ−(a)

2s
+O(

1

s2
)) Âa(s) =

√
a

2
a−s(1 +

aφ+
a (a)

s
+O(

1

s2
))

(115a)

Ĥ(Ea)(s) = a
1
2−s(

aφ+(a) + aφ−(a)

2s
+O(

1

s2
)) −iB̂a(s) =

√
a

2
a−s(1 − aφ−a (a)

s
+O(

1

s2
))

(115b)

Theorem 12. One has

lim
σ→+∞

−iBa(σ)

Aa(σ)
= 1 and

Ea(1 − σ)

Ea(σ)
∼σ→+∞

aφ+
a (a) + aφ−a (a)

2σ
(116)

So the functions Aa and Ba are not normalized as is usually done in [2] which is to impose (when

possible) to the E function to have value 1 at the origin (which for us is s = 1
2 ; the exact value of

Aa(
1
2 ) will be obtained later.) This difference in normalization is related to the realization of the

differential equations governing the deformation of the spaces Ka as a first order differential system

in “canonical” form, as in the classical spectral theory of linear differential equations ([21, 10].) This

allows to realize the self-reciprocal scale reversing operator as a scattering [6].

6 Fredholm determinants, the first order differential system,
and scattering

Let us return to the defining equations for the entire functions φ+
a and φ−a :

φ+
a + HPaφ+

a = Ja0 (117a)

φ−a −HPaφ−a = Ja0 (117b)

Either we read these equations as identities on (0,∞), or we decide that HPaφ±a in fact stands for
∫ a
0 J0(2

√
xy)φ±a (y) dy, and the equation holds for x ∈ C; the latter option slightly conflicts with our

earlier definition of H as an operator on functions or distributions. But whatever choice is made

this has no impact on what comes next. We shall apply to the equations the operators a ∂
∂a and

x ∂
∂x . As Ja0 (x) = J0(2

√
ax) we have a ∂

∂aJ
a
0 = x ∂

∂xJ
a
0 . We write δx = x ∂

∂x + 1
2 = ∂

∂xx− 1
2 . First we

have:

a
∂

∂a
φ+
a + HPaa

∂

∂a
φ+
a = −aφ+

a (a)Ja0 + a
∂

∂a
Ja0 (118a)

a
∂

∂a
φ−a −HPaa

∂

∂a
φ−a = +aφ−a (a)Ja0 + a

∂

∂a
Ja0 (118b)
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Then, as x ∂
∂xH = −H ∂

∂xx, δxH = −Hδx, δxPaf = (Paδxf) − af(a)δa(x), δxJ
a
0 = a ∂

∂aJ
a
0 + 1

2J
a
0 :

δxφ
+
a −HPaδxφ+

a = (
1

2
− aφ+

a (a))Ja0 + a
∂

∂a
Ja0 (119a)

δxφ
−
a + HPaδxφ−a = (

1

2
+ aφ−a (a))Ja0 + a

∂

∂a
Ja0 (119b)

Combining we obtain:

a
∂

∂a
φ+
a − δxφ

−
a + HPa(a

∂

∂a
φ+
a − δxφ

−
a ) = −(aφ+

a (a) + aφ−a (a) +
1

2
)Ja0 (120a)

a
∂

∂a
φ−a − δxφ

+
a −HPa(a

∂

∂a
φ−a − δxφ

+
a ) = +(aφ+

a (a) + aφ−a (a) − 1

2
)Ja0 (120b)

Comparing with (117a) and (117b), and as there is uniqueness:

a
∂

∂a
φ+
a − δxφ

−
a = −(aφ+

a (a) + aφ−a (a) +
1

2
)φ+
a (121a)

a
∂

∂a
φ−a − δxφ

+
a = +(aφ+

a (a) + aφ−a (a) − 1

2
)φ−a (121b)

The quantity aφ+
a (a) + aφ−a (a) will play a fundamental rôle and we shall denote it by µ(a).23 So:

(a
∂

∂a
+

1

2
+ µ(a))φ+

a = δxφ
−
a (122a)

(a
∂

∂a
+

1

2
− µ(a))φ−a = δxφ

+
a (122b)

It follows easily from this that a ∂
∂a (φ+

a φ
−
a ) = −φ+

a φ
−
a + 1

2
∂
∂xx((φ

+
a )2 + (φ−a )2). So

a
d

da

∫ a

0

φ+
a (x)φ−a (x) dx = aφ+

a (a)φ−a (a) −
∫ a

0

φ+
a (x)φ−a (x) dx +

1

2
a(φ+

a (a)2 + φ−a (a)2) (123)

a
d

da
a

∫ a

0

φ+
a (x)φ−a (x) dx =

1

2
µ(a)2 (124)

We then compute:
∫ a

0

φ+
a (x)φ−a (x) dx =

∫ a

0

((1 −Da)
−1Ja0 )(x)Ja0 (x) dx , (125)

where we recall φ+
a = (1 + Ha)

−1Ja0 , φ−a = (1 − Ha)
−1Ja0 , Da = H2

a . The operator Da acts

on L2(0, a; dx) with kernel Da(x, z) =
∫ a
0
J0(2

√
xy)J0(2

√
yz) dy. After the change of variables

x = at, y = au, z = av this becomes the operator da on L1(0, 1; dt) with kernel da(t, v) =
∫ 1

0 aJ0(2a
√
tu) aJ0(2a

√
uv) du. We compute the derivative with respect to a:

∂

∂a

∫ 1

0

aJ0(2a
√
tu) aJ0(2a

√
uv) du (126a)

=

∫ 1

0

((2u
∂

∂u
+ 1)J0(2a

√
tu)) aJ0(2a

√
uv) du+

∫ 1

0

aJ0(2a
√
tu))((2

∂

∂u
u− 1)J0(2a

√
uv)) du

(126b)

= 2aJ0(2a
√
t)J0(2a

√
v) (126c)

23maybe it would be unfair to hide the fact that µ(a) = 2a, in this study of H! In a later section a further mu
function, associated with a variant of H, will also be found explicitely and it will be quite more complicated.
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So d
dada is a rank one operator, with range CJ0(2a

√
t)10<t<1(t). We now use the well-known formula

d

da
log det(1 − da) = −Tr((1 − da)

−1 d

da
da) (127)

The rank one operator (1 − da)
−1 d

dada has the function (1 − da)
−12aJ0(2a

√
t) as eigenvector

and the eigenvalue is
∫ 1

0
J0(2a

√
t)((1 − da)

−12aJ0(2a
√
v))(t) dt. Going back to (0, a) we obtain

2
∫ a
0 J0(2

√
ax)((1 −Da)

−1J0(2
√
az))(x) dx and in view of (125) we have proven:

d

da
log det(1 −Da) = −2

∫ a

0

φ+
a (x)φ−a (x) dx (128)

Then, using (124), we have the important formula:

µ(a)2 = −a d
da

a
d

da
log det(1 −Da) (129)

We shall now also relate φ+
a (a) and φ−a (a) to Fredholm determinants. In fact the following holds:

aφ+
a (a) = +a

d

da
log det(1 +Ha) (130a)

aφ−a (a) = −a d
da

log det(1 −Ha) (130b)

This is the application of a well-known general theorem, for any continuous kernel k(x, y): if w(x)+
∫ a
0 k(x, y)w(y) dy = k(x, a) for 0 ≤ x ≤ a then w(a) = + d

da log det(0,a)(δ(x − y) + k(x, y)). A proof

may be given which is of a somewhat similar kind as the one given above for (128), or one may

more directly use the Fredholm’s formulas for the determinant and the resolvent.24 The theorem

is proven in the book of P. Lax [20], Theorem 12 of Chapter 24 (Lax treats the case of a kernel on

(a,+∞), here we have the simpler case of a finite interval (0, a).) This means that µ(a) has another

expression in terms of Fredholm determinants:

µ(a) = a
d

da
log

det(1 +Ha)

det(1 −Ha)
(131)

Combining (129) and (131) we obtain:

−2a
d

da
a
d

da
log det(1 +Ha) =

(
a
d

da
log

det(1 +Ha)

det(1 −Ha)

)2

− a
d

da
a
d

da
log

det(1 +Ha)

det(1 −Ha)
(132a)

−2a
d

da
a
d

da
log det(1 −Ha) =

(
a
d

da
log

det(1 +Ha)

det(1 −Ha)

)2

+ a
d

da
a
d

da
log

det(1 +Ha)

det(1 −Ha)
(132b)

2a
d

da
aφ+

a (a) = −µ(a)2 + aµ′(a) (132c)

2a
d

da
aφ−a (a) = +µ(a)2 + aµ′(a) (132d)

d

da
a(φ−a (a) − φ+

a (a)) = a(φ+
a (a) + φ−a (a))2 (132e)

These Fredholm determinants identities are reminiscent of certain well-known Gaudin identities [22,

App. A16], which apply to the even and odd parts of an additive (Toeplitz) convolution kernel on

24let us recall that for a continuous kernel on a finite interval, the formula of Fredholm for a determinant as a
convergent series always applies, even if the operator given by the kernel is not trace class, which may happen.
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an interval (−a, a); here the situation is with kernels k(xy) which have a multiplicative look, and

reduction to the additive case would give g(t+ u) type kernels on semi-infinite intervals.

We have defined Aa =
√
a

2 (φ+
a + Hφ+

a ) and −iBa =
√
a

2 (−φ−a + Hφ−a ). Let us recall that

here φ±a is restricted to [0,+∞) and is then tempered as a distribution. Using the differential

equations (122a) and (122b) and the commutation property δxH = −Hδx, δx = x ∂
∂x + 1

2 , we

have δxAa =
√
a

2 (δxφ
+
a −Hδxφ+

a ) =
√
a

2 (a ∂
∂a + 1

2 − µ(a))(φ−a −Hφ−a ) = −(a ∂
∂a − µ(a))(−iBa) and

δx(−iBa) =
√
a

2 (−(a ∂
∂a + 1

2 + µ(a))φ+
a − (a ∂

∂a + 1
2 + µ(a))Hφ+

a ) = −(a ∂
∂a + µ(a))Aa. The following

first order system of differential equations therefore holds:

a
∂

∂a
Aa = −µ(a)Aa − δx(−iBa) (133a)

a
∂

∂a
(−iBa) = +µ(a)(−iBa) − δxAa (133b)

Then we also have the second order differential equations (a ∂
∂a −µ(a))(a ∂

∂a +µ(a))Aa = +δ2xAa and

(a ∂
∂a + µ(a))(a ∂

∂a − µ(a))(−iBa) = +δ2x(−iBa), or, taking the right Mellin transforms, and writing

s = 1
2 + iγ, δx = iγ:

−a ∂
∂a
a
∂

∂a
Âa + (µ(a)2 − aµ′(a))Âa = γ2Âa (134a)

−a ∂
∂a
a
∂

∂a
(−iB̂a) + (µ(a)2 + aµ′(a))(−iB̂a) = γ2(−iB̂a) (134b)

With the new variable u = log(a) we obtain Dirac and Schrödinger equations which are associated

with this study of H, modeled on the study of the cosine and sine transforms summarized in [5, 6].

All quantities in the statement of the theorem will be completely explicited later in terms of Bessel

functions, but we keep the notation sufficiently general to allow, if an interesting other case arises,

to write down the identical results:

Theorem 13. For each a > 0 let φ+
a and φ−a be the entire functions which are the solutions to:

φ+
a (x) +

∫ a

0

J0(2
√
xy)φ+

a (y) dy = J0(2
√
ax) (135a)

φ−a (x) −
∫ a

0

J0(2
√
xy)φ−a (y) dy = J0(2

√
ax) (135b)

Let Ha be the integral operator on L2(0, a; dx) with kernel J0(2
√
xy). There holds:

φ+
a (a) = +

d

da
log det(1 +Ha) (135c)

φ−a (a) = − d

da
log det(1 −Ha) . (135d)

The tempered distributions Aa =
√
a

2 (1+H)(φ+
a 10<x<∞) and Ba = i

√
a

2 (−1+H)(φ−a 10<x<∞) vanish

on (−∞, a) and are respectively self-reciprocal and skew-reciprocal under H. Their completed right

Mellin transforms Aa(s) = Γ(s)Âa(s) and Ba(s) = Γ(s)B̂a(s) are entire functions with all their zeros

on the critical line, they are respectively even and odd for s ↔ 1 − s, and they verify the following
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Dirac and Schrödinger types of differential equations in the variable u = log(a), −∞ < u < +∞,

d

du
Aa = −µ(a)Aa − γBa (135e)

d

du
Ba = +µ(a)Ba + γAa (135f)

γ2Aa =

(
− d2

du2
+ V+(u)

)
Aa (135g)

γ2Ba =

(
− d2

du2
+ V−(u)

)
Ba (135h)

V+(log a) = µ(a)2 − dµ(a)

du
= −2

d2 log det(1 +Ha)

du2
(135i)

V−(log a) = µ(a)2 +
dµ(a)

du
= −2

d2 log det(1 −Ha)

du2
(135j)

µ(a) =
d

du
log

det(1 +Ha)

det(1 −Ha)
= aφ+

a (a) + aφ−a (a) (135k)

where s = 1
2 + iγ.

Let us consider the Hilbert space of pairs

[
α(u)
β(u)

]
on R with squared norms

∫∞
−∞ |α(u)|2 +

|β(u)|2 du2 , and the two equivalent differential systems in canonical forms:

([
0 1
−1 0

]
d

du
−
[

0 µ(eu)
µ(eu) 0

])[
α(u)
β(u)

]
= γ

[
α(u)
β(u)

]
(136)

([
0 1
−1 0

]
d

du
+

[
−µ(eu) 0

0 µ(eu)

])[
α(u) + β(u)
−α(u) + β(u)

]
= γ

[
α(u) + β(u)
−α(u) + β(u)

]
(137)

The components obey the corresponding Schrödinger equations:

−α′′(u) + V+(u)α(u) = γ2α V+(u) = µ(eu)2 − dµ(eu)

du
(138a)

−β′′(u) + V−(u)β(u) = γ2β V−(u) = µ(eu)2 +
dµ(eu)

du
(138b)

Regarding the behavior at −∞, we are in the limit-point case for each of the Schrödinger equations

(138a) and (138b) because clearly (say, from the defining integral equations for φ+
a and φ−a ) one has

φ+
a (a) →a→0 J0(0) = 1, φ−a (a) →a→0 1, µ(a) ∼a→0 2a, so the potentials are exponentially vanishing

as u→ −∞. Perhaps we should reveal that one has exactly µ(a) = 2a = 2eu so we are dealing here

with quite concrete Schrödinger equations and Dirac systems whose exact solutions will later be

written explicitely in terms of modified Bessel functions, but we delay using any information which

would be too specific of the H-transform.

For each γ ∈ C

u 7→
[
Aexp(u)(

1
2 + iγ)

Bexp(u)(
1
2 + iγ)

]
(139)

is a (non-zero) solution of the system (136), and we now show that it is square-integrable (with re-

spect to du = d log(a)) at +∞. Let us recall the equation (111) (s+z−1)Xa(s, z) = −2iBa(s)Aa(z)−
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2iAa(s)Ba(z), from which we deduce

a
∂

∂a
Xa(s, z) = −2Aa(s)Aa(z) − 2(iBa(s))(iBa(z)) (140)

We have25 ‖X a
s ‖2 = Xa(s, s), Aa(s) = Aa(s), iBa(s) = iBa(s), so

a
∂

∂a
‖X a

s ‖2 = −2|Aa(s)|2 − 2|Ba(s)|2 (141)

and as of course lima→+∞ ‖X a
s ‖2 = 0 (we have ‖X a

s ‖2 ≤
∫∞
a

|X 1
s |2(x) dx for a ≥ 1) we obtain:

∀s ∈ C ‖X a
s ‖2 = 2

∫ ∞

a

(|Aa(s)|2 + |Ba(s)|2)
da

a
(142)

This establishes the square-integrability at +∞ of
[Aexp(u)(s)

Bexp(u)(s)

]
, for any s ∈ C.

The solutions of (136) with eigenvalue γ = 0 are
[
Aa( 1

2 )
0

]
and

[
0

Aa( 1
2 )−1

]
. The former is square-

integrable, so from 2 ≤ t + t−1 the latter then necessarily is not. This confirms that the Dirac

system (136) is in the limit point case at +∞ (according to a general theorem of Levitan [21, §13,

Thm 7.1] any first order differential operator
[

0 1
−1 0

]
d
du +

[
a(u) b(u)
c(u) d(u)

]
with continuous coefficients is

in the limit point case at infinity). So the pair (139) is in fact, for any γ ∈ C, the unique solution of

(136) which is square-integrable at +∞. Also the Schrödinger equation (138b) is in the limit point

case as not all of its solutions are square integrable at +∞. Whether the limit-point case at +∞
holds for equation (138a) is less evident. Let us recall from [10, §9, Thm 2.4] and [26, §X, Thm X.8]

that a sufficient condition for this is the existence of a lowerbound lim infu→+∞ V+(u)/u2 > −∞.

We will prove in the next chapter that µ(a) = 2a = 2eu so this is certainly the case here. In the

present chapter only the fact that the Dirac system is known to be in the limit-point case will be

used.

We now take u0 = log a0 and apply on (u0,∞) the Weyl-Stone-Titchmarsh-Kodaira theory ([10,

§9], [21, §3]). Let ψ(u, s) be the unique solution of the system (136) for the eigenvalue γ, s = 1
2 + iγ,

and with the initial condition ψ(u0, s) = [ 1
0 ] and let φ(u, s) be the unique solution with the initial

condition φ(u0, s) = [ 0
1 ]. Let m(γ)ψ(u, s) + φ(u, s) for ℑγ > 0 be the unique solution which is

square-integrable on (u0,+∞). So m(γ) =
Aa0 (s)

Ba0(s) , s = 1
2 + iγ, ℜ(s) < 1

2 . It is a fundamental general

property of the m function from Hermann Weyl’s theory that ℑ(m(γ)) > 0 (for ℑ(γ) > 0.) Here,

we have a case where the m-function is found to be meromorphic on all of C; so we see that its

poles and zeros on R are simple. Furthermore, the spectral measure ν is obtained via the formula

ν(a, b) = limǫ→0+
1
π

∫ b
a ℑm(γ + iǫ) dγ (under the condition ν{a, b} = 0). We obtain:

dν(γ) =
∑

Ba0(ρ)=0

Aa0(ρ)

−iB′
a0

(ρ)
δ(γ −ℑρ) (143)

The spectrum is thus purely discrete and the general theory tells us further that the finite linear

combinations
∑
ρ cρ

Aa0 (ρ)

−iB′

a0
(ρ)ψ(u, ρ) have squared norms

∑
ρ

Aa0 (ρ)

−iB′

a0
(ρ) |cρ|2 and also that they are

25let us recall the notation Xa
s = Γ(s)Xa

s ∈ L2(a, +∞; dx).
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dense in L2((u0,∞) → C2; du). For Ba0(ρ) = 0, ψ(u, ρ) = Aa0(ρ)
−1
[
Aexp(u)(ρ)

Bexp(u)(ρ)

]
1u≥u0(u), so the

vectors Za0
ρ =

[
2Aexp(u)(ρ)

2Bexp(u)(ρ)

]
1u≥u0(u) are an orthogonal basis of L2((u0,∞) → C2; 1

2du) and they

satisfy ‖Za0
ρ ‖2 = −2Aa0(ρ) iB′

a0
(ρ). Similarly a spectral interpretation is given to the zeros of Aa0

if one looks at the initial condition [ 0
1 ]. The factors of 2 and 1

2 , have been incorporated so that the

statement may be translated (taking into account results established later) into the fact that the

evaluators Ka0(ρ, z), for Ba0(ρ) = 0, are an orthogonal basis of the Hilbert space of the functions

Γ(z)f̂(z), f ∈ Ka0 . This last statement is a general theorem (under a certain condition) for spaces

with the de Branges axioms [2, §22].

To discuss in a self-contained manner the generalized Parseval identity which is associated with

the differential system on the full line, it is convenient to make a preliminary majoration of ‖Xa
s ‖2,

ℜ(s) = 1
2 . From (108) we have, for ℜ(s) = 1

2 : ‖X a
s ‖2 = 2ℜ(Ea(s)E ′

a(s)). And Ea(s) = Γ(s)Êa(s).

And Êa(s) =
√
a
(
a−s+ 1

2

∫∞
a

(φ+
a (x)−φ−a (x))x−s dx

)
. We know from the discussion of Lemma 9 that

the integral in the expression for Êa(s) is absolutely convergent for ℜ(s) > 1
4 . Hence by the Riemann-

Lebesgue lemma Êa(
1
2 + iγ) ∼ a−iγ as |γ| → ∞, γ ∈ R. Similarly, Êa

′
(1
2 + iγ) ∼ − log(a)a−iγ . So,

with ‖X a
s ‖2 = |Γ(s)|2‖Xa

s ‖2 and using Stirling’s formula we obtain:

Lemma 14. For each given a > 0 one has ‖Xa
s ‖2 ∼ 2 log |s| as |s| → ∞, ℜ(s) = 1

2 .

From (104) expressed using Aa and Ba we see that
cBa(s)

s− 1
2

is square integrable, so s−1B̂a(s) is

square integrable on the critical line (with respect to |ds|). Then using again (104) we see that

s−1Âa(s) is also square integrable on the critical line.26 Let us pick a function F (s) on the critical

line which is such that sF (s) is square integrable. Then F (s)Âa(s) and F (s)B̂a(s) are absolutely

integrable on the critical line and (
∫
ℜ(s)= 1

2
|F (s)Âa(s)| |ds|2π )2 ≤ C

∫
ℜ(s)= 1

2

|cAa(s)|2
|s|2

|ds|
2π and similarly

with Ba. If we define αF (u) = 2
∫
ℜ(s)= 1

2
F (s)Âa(s)

|ds|
2π and βF (u) = 2

∫
ℜ(s)= 1

2
F (s)B̂a(s)

|ds|
2π we

then compute:

∫ ∞

u0

|αF (u)|2 + |βF (u)|2 du ≤ C

∫

ℜ(s)= 1
2

∫∞
u0

(|Âa(s)|2 + |B̂a(s)|2) du
|s|2

|ds|
2π

=
C

2

∫

ℜ(s)= 1
2

‖Xa
s ‖2

|s|2
|ds|
2π

<∞ (144)

So αF (u) and βF (u) are square integrable at +∞. More precisely the above upper bound holds as

well for
∫
ℜ(s)= 1

2
|F (s)Âa(s)| |ds|2π and

∫
ℜ(s)= 1

2
|F (s)B̂a(s)| |ds|2π . So the double integrals

∫∫

u0<u<∞,ℜ(s)= 1
2

Aexp(u)(z)Aexp(u)(s)F(s)
|ds|

2π|Γ(s)|2 du (145a)

∫∫

u0<u<∞,ℜ(s)= 1
2

Bexp(u)(z)Bexp(u)(s)F(s)
|ds|

2π|Γ(s)|2 du (145b)

26we know in fact according to proposition 11 that cAa and cBa are bounded on the critical line.
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where z ∈ C is arbitrary, and F(s) = Γ(s)F (s), are absolutely convergent and Fubini may be

employed. Using (140):

Xexp(u0)(z, s) = 2

∫ ∞

u0

(Aexp(u)(z)Aexp(u)(s) + Bexp(u)(z)Bexp(u)(s)) du (146)

And we obtain the following identity of absolutely convergent integrals, for any F(s) = Γ(s)F (s)

with s F (s) ∈ L2(ℜ(s) = 1
2 ; |ds|

2π ):

∫

ℜ(s)= 1
2

Xexp(u0)(z, s)F(s)
|ds|

2π|Γ(s)|2 =

∫ ∞

u0

(Aexp(u)(z)αF (u) + Bexp(u)(z)βF (u)) du (147)

We shall prove that this identity holds under the weaker hypothesis F (s) ∈ L2(ℜ(s) = 1
2 ; |ds|

2π ).

First, still with s F (s) square integrable we suppose additionally that F = f̂ with f ∈ Kexp(u0)
27.

The hilbertian kernel Kexp(u0)(z, s) is Xexp(u0)(z, s) so Kexp(u0)(z, s) = Xexp(u0)(z, s). The equations

give then:

F(z) =

∫ ∞

u0

(Aexp(u)(z)αF (u) + Bexp(u)(z)βF (u)) du (148a)

αF (u) = 2

∫

ℜ(s)= 1
2

F(s)Aa(s)
|ds|

2π |Γ(s)|2 (148b)

βF (u) = 2

∫

ℜ(s)= 1
2

F(s)Ba(s)
|ds|

2π |Γ(s)|2 (148c)

We have worked under the hypothesis that sF (s) is square integrable. To show that the formulae

extend in the L2 sense, we first examine:

|αF (u)|2 = 4

∫

ℜ(s1)= 1
2

F(s1)Aa(s1)
|ds1|

2π |Γ(s1)|2
∫

ℜ(s2)= 1
2

F(s2)Aa(s2)
|ds2|

2π |Γ(s2)|2
(149)

∫ ∞

u0

|αF (u)|2 + |βF (u)|2 du
2

=

∫∫

ℜ(si)=
1
2

F(s1)F(s2)Xexp(u0)(s1, s2)
|ds1|

2π |Γ(s1)|2
|ds2|

2π |Γ(s2)|2
(150)

There was absolute convergence in the triple integral used as an intermediate. Also Xexp(u0)(s1, s2) =

Xexp(u0)(s2, s1) and
∫
ℜ(s1)= 1

2
F(s1)Xexp(u0)(s2, s1)

|ds1|
2π |Γ(s1)|2 = F(s2). Hence:

∫ ∞

u0

(|αF (u)|2 + |βF (u)|2) du
2

=

∫

ℜ(s)= 1
2

|F (s)|2 |ds|
2π

=

∫ ∞

exp(u0)

|f(x)|2 dx (151)

So with an arbitrary f ∈ Ka, F = f̂ , F(s) = Γ(s)f̂(s), the assignment f 7→ (αF , βF ) exists in

the sense of L2 convergence when one approximates f by a sequence fn in Ka such that sf̂n(s) is

in L2(ℜ(s) = 1
2 ; |ds|

2π ), and f 7→ (αF , βF ) is linear and isometric. We check that its range is all of

L2(u0,∞; du2 ) ⊕ L2(u0,∞; du2 ). For this let us identify the functions αw(u) and βw(u) which will

correspond to F(s) = Xa0(w, s) (a0 = exp(u0).) On one hand from (147) it must be the case that:

∀z ∈ C

∫

ℜ(s)= 1
2

Xa0(z, s)Xa0(w, s)
|ds|

2π|Γ(s)|2 =

∫ ∞

u0

(Aexp(u)(z)αw(u)+Bexp(u)(z)βw(u)) du (152)

27this is certainly possible as we know that the f(x) which are smooth, vanishing on (0, a) and of Schwartz decrease
as x → +∞ are dense in Ka.
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The left hand side is Xa0(w, z) which on the other hand is given by the formula 2
∫∞
u0

(Aa(z)Aa(w)−
Ba(z)Ba(w)) du. The functions u 7→

[
Aa(z)
Ba(z)

]
, z ∈ C are certainly dense in L2((u0,∞) → C2; du2 ) as

we know in particular that the pairs for the ρ’s such that Ba0(ρ) = 0 give an orthogonal basis. So

we have the identification on (u0,+∞):

αw(u) = 2Aexp(u)(w) βw(u) = −2Bexp(u)(w) (153)

This proves that the range is all of L2((u0,∞) → C2; du2 ). Let us note that in this identifica-

tion the hilbertian evaluator Ka0(w, ·) is sent to the pair u 7→ 2 1u>u0(u)(Aa(w) , Ba(w)). To

check if all is coherent we compute the hilbertian scalar product (Ka0(w, ·),Ka0(z, ·)). We obtain

4
∫∞
u0

Aa(w)Aa(z) + Ba(w)Ba(z)du2 = 2
∫∞
u0

Aa(w)Aa(z) − Ba(w)Ba(z) du = Xexp(u0)(w, z), which is

indeed Ka0(w, z).

Let us return to the consideration of a general F (s) ∈ L2(ℜ(s) = 1
2 ; |ds|

2π ). Under the hypothesis

that s F (s) is square integrable we have assigned to F the functions

αF (u) = 2

∫

ℜ(s)= 1
2

F(s)Aa(s)
|ds|

2π |Γ(s)|2 =

∫

ℜ(s)= 1
2

F (s)2Âa(s)
|ds|
2π

(154a)

βF (u) = 2

∫

ℜ(s)= 1
2

F(s)Ba(s)
|ds|

2π |Γ(s)|2 =

∫

ℜ(s)= 1
2

F (s)2B̂a(s)
|ds|
2π

(154b)

which are square-integrable at +∞. From (147) there holds, for any a0 = exp(u0):

∫

ℜ(s)= 1
2

Xexp(u0)(z, s)F (s)
|ds|
2π

=

∫ ∞

u0

(2Âexp(u)(z)αF (u) + 2B̂exp(u)(z)βF (u))
du

2
(155)

The function of z on the left side is the orthogonal projection Fa0 of F to the space K̂a0 . So,

we deduce by unicity αF (u)1u≥u0(u) = αFu0
(u) and βF (u)1u≥u0(u) = βFu0

(u). We then obtain

‖Fa0‖2 =
∫∞
u0

(|αF (u)|2 + |βF (u)|2)du2 so αF and βF are square-integrable on (−∞,+∞), and as

∪aKa is dense in L2(0,∞; dx) the assignment F 7→ (αF , βF ) is isometric, and also it has a dense

range in L2(R → C2; du2 ). We can then remove the hypothesis that s F (s) is square integrable and

define the functions αF and βF to be the limit in the L2 sense of functions αn and βn associated

with Fn’s such that ‖F − Fn‖ → 0 and the s Fn are square-integrable. Summing up:

Theorem 15. There are unitary identifications L2(0,∞; dx)→̃L2(ℜ(s) = 1
2 ; |ds|

2π )→̃L2(R → C2; du2 )

given in the L2 sense by the formulas, where ℜ(s) = 1
2 :

F (s) = f̂(s) =

∫ ∞

0

f(x)x−s dx f(x) =

∫

ℜ(s)= 1
2

F (s)xs−1 |ds|
2π

(156a)

α(u) = lim
n→∞

∫

ℜ(s)= 1
2

Fn(s) 2Âexp(u)(s)
|ds|
2π

(Fn →L2 F ; s Fn(s) ∈ L2) (156b)

β(u) = lim
n→∞

∫

ℜ(s)= 1
2

Fn(s) 2B̂exp(u)(s)
|ds|
2π

(156c)

F (s) = lim
a0→0

∫ ∞

log(a0)

(α(u) 2Âexp(u)(s) + β(u) 2B̂exp(u)(s))
du

2
(156d)
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The orthogonal projection of f to Ka0 corresponds to the replacement of α(u) by α(u)1u>u0 (u) and

of β(u) by β(u)1u>u0(u) (u0 = log(a0).). The unitary operators f 7→ H(f), F (s) 7→ χ(s)F (1 − s),

correspond to (α, β) 7→ (α,−β). For f = Xa0
z one has α(u) = 2Âexp(u)(z)1u>log(a0)(u) and β(u) =

−2B̂exp(u)(z)1u>log(a0)(u). The self-adjoint operator F (s) 7→ γF (s) (s = 1
2 + iγ) corresponds to the

canonical operator:

H =

[
0 d

du

− d
du 0

]
−
[

0 µ(eu)
µ(eu) 0

]
(156e)

which, in L2(R → C2; du2 ), is essentially self-adjoint when defined on the domain of the functions of

class C1 (or even C∞) with compact support. The unitary operator ei τH acts on L2(0,∞; dx) as

f(x) 7→ e
1
2 τf(eτx).

For the statement of self-adjointness we start with α and β of class C1 with compact support,

define F by (156d) and integrate by parts to confirm that γF (s) corresponds to H ([ αβ ]). We know

by Hermann Weyl’s theorem that in the limit point case the pairs [ αβ ] of class C1 with compact

support are a core of self-adjointness (cf. [21, §13].) On the other hand we know that multiplication

by γ on L2(ℜ(s) = 1
2 ; |ds|

2π ) with maximal domain is a self-adjoint operator. So the two self-adjoint

operators are the same.

Having discussed the matter from the point of view of the isometric expansion we now turn to

another topic, the topic of the scattering, or rather total reflection against the potential barrier

at +∞. Another pair of solutions of the first order system (136) (hence also of the second order

differential equations) is known. Let us recall from equations (95a), (95b) that we defined ja =
√
a(δa−φ+

a 10<x<a) =
√
aHφ+

a and −ika =
√
a(δa+φ−a 10<x<a) =

√
aHφ−a . Using again (122a) and

(122b) it is checked that ja and ka verify the exact same differential system as Aa and Ba:

a
∂

∂a
ja = −µ(a)ja + iδxka (157a)

a
∂

∂a
ka = +µ(a)ka − iδxja (157b)

The right Mellin transforms ĵa(s) and −ik̂a(s) are defined as

ĵa(s) = a
1
2−s −

√
a

∫ a

0

φ+
a (x)x−s dx (158a)

−ik̂a(s) = a
1
2−s +

√
a

∫ a

0

φ−a (x)x−s dx (158b)

As φ+
a and φ−a are analytic these are meromorphic functions in C with possible28 pole locations at

s = 1, 2, . . . From the point of view of the Schrödinger equation (138a) and as u = log(a) → −∞,

a→ 0, we thus see that, for s = 1
2 +iγ, γ ∈ R, ĵa(

1
2 +iγ) and ĵa(

1
2−iγ) are two (linearly independent

for γ 6= 0) solutions, differing from e−iγu and eiγu by an exponentially small (in u = log(a)) quantity

(and similarly with −ik̂a with respect to the Schrödinger equation (135h)). So we have identified

the unique solutions which verify the Jost conditions at −∞.

28the poles do exist.
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As Paφ
+
a is square integrable, and also using (85a), we have on the critical line:

Γ(s)ĵa(s) + Γ(1 − s)ĵa(1 − s) (159a)

= Γ(s)ĵa(s) + Γ(1 − s)as−
1
2 − Γ(1 − s)

√
a

∫ a

0

φ+
a (x)xs−1 dx (159b)

= Γ(s)ĵa(s) + Γ(1 − s)as−
1
2 − Γ(s)

√
a

∫ ∞

0

(HPaφ+
a )(x)x−s dx (159c)

= Γ(s)ĵa(s) + Γ(1 − s)as−
1
2 + Γ(s)

√
a

∫ ∞

0

(φ+
a (x) − J0(2

√
ax))x−s dx (159d)

= Γ(s)a
1
2−s + Γ(1 − s)as−

1
2 − Γ(s)

√
a

∫ a

0

J0(2
√
ax)x−s dx

+ Γ(s)
√
a

∫ ∞

a

(φ+
a (x) − J0(2

√
ax))x−s dx (159e)

As J0(2
√
ax) − φ+

a (x) is square integrable both integrals are simultaneously absolutely convergent

at least for 1
2 < ℜ(s) < 1 (the 1

2 can be improved, but this does not matter). As the boundary

values on the critical line coincide we have an identity of analytic functions. We recognize in
∫∞
a
J0(2

√
ax)x−s dx, which is absolutely convergent for ℜ(s) > 3

4 , the quantity gs(a) (equation

(73)). And from equation (74) we know gs(a) = χ(s)as−1 −
∫ a
0
J0(2

√
ax)x−s dx. So

Γ(s)ĵa(s) + Γ(1 − s)ĵa(1 − s) = Γ(s)a
1
2−s + Γ(s)

√
a

∫ ∞

a

φ+
a (x)x−s dx , (160)

which is indeed 2Aa(s). From the equation (158a) ĵa(s) = a
1
2 (a−s −

∫ a
0 φ

+
a (x)x−s dx) (valid as

is for ℜ(s) < 1) the function u 7→ ĵa(s) differs from u 7→ e−iγu by an error which is relatively

exponentially smaller (we write s = 1
2 + iγ, ℑ(γ) > − 1

2 ). So ĵa is the Jost solution at −∞ of the

Schrödinger equation (135g). The identity relating Ba(s) and k̂a(s) = i a
1
2 (a−s +

∫ a
0
φ−a (x)x−s dx)

is proven similarly.

Theorem 16. The unique29 solution, square integrable at u = +∞, of the Schrödinger equation

(135g) (resp. (135h); γ 6= 0) is expressed in terms of the functions ĵa(
1
2 + iγ) (resp. −i k̂a(1

2 + iγ))

satisfying at −∞ the Jost condition ĵa ∼u→−∞ e−iγu (resp. −ik̂a ∼u→−∞ e−iγu) as:

Aa(s) =
1

2

(
Γ(s)ĵa(s) + Γ(1 − s)ĵa(1 − s)

)
(161a)

Ba(s) =
1

2

(
Γ(s)k̂a(s) − Γ(1 − s)k̂a(1 − s)

)
(161b)

Let us add a time parameter t and consider the wave equation:

(
∂2

∂t2
− ∂2

∂u2
+ µ2 − dµ

du

)
Φ(t, u) = 0 (162)

Then Φ(t, u) = eiγtĵexp(u)(
1
2 + iγ) is a solution which behaves as eiγ(t−u) as u→ −∞. This wave is

thus right-moving, it is an incoming wave from u = −∞ at t = −∞. For a given frequency γ there

29here we make use of the fact that (135g) is in the limit point case at +∞, because it is proven in the next chapter,
or known from (66a), (66b), that µ(a) = 2a = 2 eu, in this study of the H transform.
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is a unique, up to multiplicative factor, wave which respects the condition of being at each time

square integrable at u = +∞. This wave is eiγtAexp(u)(
1
2 + iγ). So the equation (161a) represents

the decomposition in incoming and reflected components. There is in the reflected component a

phase shift θγ = argχ(s), the solution behaving approximatively at u→ −∞ as C(γ) cos(γu+ 1
2θγ).

This is an absolute scattering, as there is nothing a priori to compare it too. We will thus declare

that equation (162) has realized χ(s) as an (absolute) scattering. Similarly the Schrödinger equation

(135h) realizes −χ(s) as an absolute scattering.

We have 2Aa(
1
2 ) = 2Γ(1

2 )ĵa(
1
2 ) and ĵa(

1
2 ) = 1− a

1
2

∫ a
0
φ+
a (x)x−

1
2 dx. So lima→0 Aa(

1
2 ) = Γ(1

2 ) =
√
π. On the other hand a d

daAa(
1
2 ) = −µ(a)Aa(

1
2 ) and µ(a) = a d

da log det(1+Ha)
det(1−Ha) . so:

Aa(
1

2
) =

√
π Âa(

1

2
) =

√
π

det(1 −Ha)

det(1 +Ha)
(163)

We have a d
da‖X a

1
2

‖2 = −2Aa(
1
2 )2. And X a

1
2

= Γ(1
2 )Xa

1
2

. So:

Theorem 17. The squared-norm of the evaluator f 7→ Xa
1
2

(f) =
∫∞
a

f(x)√
x
dx on the Hilbert space

Ka of square integrable functions vanishing on (0, a) and with H transforms again vanishing on

(0, a) is:

‖Xa
1
2
‖2 = 2

∫ ∞

a

(
det

1 −Hb

1 +Hb

)2
db

b
(164)

where Ha is the restriction of H to L2(0, a; dx).

It will be seen that det(1+Ha) = ea−
1
2a

2

and det(1−Ha) = e−a−
1
2a

2

. Having spent a long time

in the general set-up we now turn to determine explicitely what the functions φ+
a , φ−a , etc. . . are.

7 The K-Bessel function in the theory of the H transform

Let us recall that we may define the H transform on all of L2(R; dx) through the formula H̃(f)(λ) =
i
λ f̃(−1

λ ). This anticommutes with f(x) 7→ f(−x), and H leaves separately invariant L2(0,+∞; dx)

and L2(−∞, 0; dx). We defined the groups τa : f(x) 7→ f(x − a) and τ#
a = HτaH. We observed

that the two groups are mutually commuting, and that if the leftmost point of the support of f is

at α(f) ≥ 0 then the leftmost point of the support of τ#
b (f), for any b ≥ 0, more precisely for any

b ≥ −α(H(f)), is still exactly at α(f). From this we obtain the exact description of Ka:

Lemma 18. One has Ka = τaτ
#
a L

2(0,+∞; dx).

Let now Q be the orthogonal projection L2(R; dx) 7→ L2(0,+∞; dx). The orthogonal projection

Qa from L2(0,∞; dx) to Ka is thus exactly τaτ
#
a Qτ−aτ

#
−a. It will be easier to work with Ra =

Qτ−aτ
#
−a, especially as we are interested in scalar products so we can skip the τaτ

#
a isometry. First,

we obtain gat (x) = Ra(ft)(x), for ft(x) = e−tx. The part of τ−a(ft) supported in x < 0 will be

sent by τ#
−a to a function supported again in x < 0. We can forget about it and we have thus first
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e−tae−tx1x>0(x), whose H transform is e−ta 1
t exp(−x

t ), which we translate to the left, again we cut

the part in x < 0, and we reapply H, this gives gat (x) = e−a(t+
1
t
)e−tx1x>0(x). In other words we

have used in this computation:

Qτ−aτ
#
−a = HQτ−aHQτ−a (a ≥ 0) (165)

The orthogonal projection fat := Qa(ft) of ft(x) = e−tx1x>0(x) to Ka is thus τaτ
#
a (gat ). We can

then compute exactly the Fourier transform of fat as fat (iτ) = (e−τx, τaτ#
a (gat ))L2(R) which is also

(τ#
−aτ−ae

−τx, gat )L2(R) = (gτ , g
a
t ) = e−a(t+

1
t
)e−a(τ+

1
τ
) 1
t+τ . Hence:

Lemma 19. The orthogonal projection fat to Ka of e−tx1x>0(x) has its Fourier transform f̃at (λ)

which is given as:

f̃at (iτ) = e−a(t+
1
t
+τ+ 1

τ
) 1

t+ τ
(166)

The Gamma completed right Mellin transform Fa
t (s) of fat is the left Mellin transform of f̃at (iτ).

∫ ∞

a

fat (x)X a
s (x) dx = Fa

t (s) = e−a(t+
1
t
)

∫ ∞

0

e−a(τ+
1
τ
) τ

s−1

t+ τ
dτ (167)

Let us write W a
s for the element of L2(0,+∞; dx) such that τaτ

#
a W

a
s = X a

s . We have Fa
t (s) =

(X a
s , f

a
t ) = (W a

s , g
a
t ) = e−a(t+

1
t
)
∫∞
0
W a
s (x)e−tx dx. So the Laplace transform of W a

s (x) is exactly:
∫ ∞

0

W a
s (x)e−tx dx =

∫ ∞

0

e−a(τ+
1
τ
) τ

s−1

t+ τ
dτ (168)

Writing 1
t+τ =

∫∞
0
e−(t+τ)x dx, we recover W a

s (x) as:

W a
s (x) =

∫ ∞

0

e−a(τ+
1
τ
)τs−1e−τx dτ (169)

Then we obtain
∫∞
0
W a
s (x)W a

z (x) dx which is nothing else than Xa(s, z):

Theorem 20. The (analytic) reproducing kernel associated with the space of the completed right

Mellin transforms of the elements of Ka is

Xa(s, z) =

∫∫

[0,+∞)2
e−a(t+

1
t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu (170)

Here is a shortened argument: the analytic reproducing kernel Xa(s, z) is the completed right

Mellin transform of X a
s (x), so this is

∫∞
0

(X a
s , e

−tx)ts−1 dt. But for ℜ(s) > 1
2 , (X a

s , e
−tx) =

Γ(s)(Qa(x
−s1x>a), e−tx) = Γ(s)(x−s1x>a, fat ) = Fa

t (s) (Qa is the orthogonal projection to Ka).

This gives again (170).

To proceed further, we compute (s + z − 1)Xa(s, z). Using integration by parts, multiplication

by s (resp. z) is converted into −t ddt (resp. −u d
du ; there are no boundary terms.)

sXa(s, z) =

∫∫

[0,+∞)2
(a(t− 1

t
) +

t

t+ u
)e−a(t+

1
t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu (171a)

zXa(s, z) =

∫∫

[0,+∞)2
(a(u − 1

u
) +

u

t+ u
)e−a(t+

1
t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu (171b)
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(s+ z − 1)Xa(s, z) = a

∫∫

[0,+∞)2
(t− 1

t
+ u− 1

u
)e−a(t+

1
t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu

= a

∫ ∞

0

e−a(t+
1
t
)ts−1 dt

∫ ∞

0

e−a(u+ 1
u

)uz−1 du

− a

∫ ∞

0

e−a(t+
1
t
)ts−2 dt

∫ ∞

0

e−a(u+ 1
u

)uz−2 du (171c)

The K-Bessel function is Ks(x) = 1
2

∫∞
0 e−x

1
2 (t+ 1

t
)ts−1 dt =

∫∞
0 e−x coshu cosh(su) du. It is an even

function of s. It has, for each x > 0, all its zeros on the imaginary axis, and was used by Pólya in a

famous work on functions inspired by the Riemann ξ-function and for which he proved the validity

of the Riemann hypothesis [24, 25]. We have obtained the formula

Xa(s, z) =
E(s)E(z) − E(1 − s)E(1 − z)

s+ z − 1
E(s) = 2

√
aKs(2a) (172)

To confirm Ea(s) = 2
√
aKs(2a), let us define temporarily A(s) = 1

2

√
a
∫∞
0
e−a(t+

1
t
)(1 + 1

t )t
s−1 dt

and −iB(s) = 1
2

√
a
∫∞
0
e−a(t+

1
t
)(1− 1

t )t
s−1 dt which are respectively even and odd under s 7→ 1− s

and are such that E(z) = A(z) − iB(z). We have ∀s, z ∈ C −iB(s)A(z) +A(s)(−iB(z)) =

−iBa(s)Aa(z) + Aa(s)(−iBa(z)) and considering separately the even and odd parts in z, we find

that there exists a constant k(a) such that A(s) = k(a)Aa(s) and B(s) = k(a)−1Ba(s). Let us check

that limσ→∞
−iB(σ)
A(σ) = 1. It is a corollary to limσ→∞Kσ(x)/Kσ+1(x) = 0 which is elementary:

∫ 0

−∞ exp(−x coshu)eσu du = O(1) (σ → +∞), and for each T > 0,
∫∞
T

exp(−x coshu)eσu du ≥
T exp(−x cosh 3T )e2σT ,

∫ T
0

exp(−x coshu)eσu du ≤ TeσT , and combining we get Kσ(x) = (1 +

o(1))1
2

∫∞
T exp(−x coshu)eσu du. So lim supσ→+∞

Kσ(x)
Kσ+1(x)

≤ e−T for each T > 0. Using (116), we

then conclude k(a) = 1.

Let us examine the equality Ea(s) = 2
√
aKs(2a) =

√
a
∫∞
0

exp(−a(t+ 1
t ))t

s−1 dt. It exhibits

Ea as the left Mellin transform of
√
a exp(−a(t + 1

t )), so the distribution Ea is determined as the

distribution whose Fourier transform is
√
a exp(i a(λ−λ−1)). Using τa and τ#

a , this means exactly:

Ea =
√
a τ#

a τaδ =
√
aHτaHδ(x− a) (173)

We exploit the symmetry Ks = K−s, which corresponds to Ẽa(λ) = Ẽa(−λ−1) = −iλH̃Ea(λ), so

the unexpected identity appears:

Ea =
d

dx
HEa (174)

From (173) we readHEa =
√
aτaJ0(2

√
ax) =

√
aJ0(2

√
a(x− a))1x>a(x). Using (174), and recalling

equations (96c) and (96d) we deduce:

φ+
a (x) + φ−a (x)

2
= J0(2

√
a(x− a)) = I0(2

√
a(a− x) (175a)

φ+
a (x) − φ−a (x)

2
=

∂

∂x
J0(2

√
a(x− a)) =

∂

∂x
I0(2

√
a(a− x)) (175b)

We knew already from equations (66a), (66b)! Summing up we have proven:
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Theorem 21. Let H be the self-reciprocal operator with kernel J0(2
√
xy) on L2(0,∞; dx). Let Ha be

the restriction of H to L2(0, a; dx). The solutions to the integral equations φ+
a +Haφ

+
a = J0(2

√
ax)

and φ−a −Haφ
−
a = J0(2

√
ax) are the entire functions:

φ+
a (x) = I0(2

√
a(a− x)) +

∂

∂x
I0(2

√
a(a− x)) (176a)

φ−a (x) = I0(2
√
a(a− x)) − ∂

∂x
I0(2

√
a(a− x)) (176b)

One has 1 − a = φ+
a (a) = d

da log det(1 +Ha) and 1 + a = φ−a (a) = − d
da log det(1 −Ha), and

det(1 +Ha) = e+a−
1
2a

2

(176c)

det(1 −Ha) = e−a−
1
2a

2

(176d)

The tempered distributions Aa =
√
a

2 (1 + H)φ+
a and −i Ba =

√
a

2 (−1 + H)φ−a , respectively invariant

and anti-invariant under H, are also given as:

Aa(x) =

√
a

2

(
δa(x) + 1x>a(x)

(
J0(2

√
a(x− a)) +

∂

∂x
J0(2

√
a(x− a))

))
(176e)

−iBa(x) =

√
a

2

(
δa(x) − 1x>a(x)

(
J0(2

√
a(x− a)) − ∂

∂x
J0(2

√
a(x− a))

))
(176f)

Their Fourier transforms are
∫

R
eiλxAa(x) dx =

√
a

2 (1+ i
λ ) exp(ia(λ− 1

λ )) and −i
∫

R
eiλxBa(x) dx =

√
a

2 (1 − i
λ) exp(ia(λ− 1

λ)). The Gamma completed right Mellin transforms are:

Γ(s)Âa(s) = Aa(s) =
√
a(Ks(2a) +Ks−1(2a)) (176g)

−iΓ(s)B̂a(s) = −iBa(s) =
√
a(Ks(2a) −Ks−1(2a)) (176h)

Aa(s) − iBa(s) = Ea(s) = 2
√
a Ks(2a) =

√
a

∫ ∞

0

e−a(t+
1
t
)ts−1 dt (176i)

They verify the first order system, where µ(a) = aφ+(a) + aφ−(a) = 2a:

([
0 1
−1 0

]
a
d

da
−
[

0 µ(a)
µ(a) 0

])[
Aa(s)
Ba(s)

]
= −i(s− 1

2
)

[
Aa(s)
Ba(s)

]
(176j)

The pair
[
Aa(s)
Ba(s)

]
is the unique solution of the first order system which is square-integrable with

respect to d log(a) at +∞. The total reflection against the exponential barriers at log(a) → +∞
of the associated Schrödinger equations realizes +Γ(1−s)

Γ(s) and −Γ(1−s)
Γ(s) (ℜ(s) = 1

2) as scattering

matrices.

From (163) we have Aa(
1
2 ) =

√
π e−2a. To normalize Aa according to Aa(

1
2 ) = 1, we would have

to make the replacement Aa → π− 1
2 e2aAa and Ba → √

π e−2aBa and the expression of Ea in terms

of the K-Bessel function would be less simple. Let us also note that according to (116) we must

have Kσ−1(2a)
Kσ(2a) ∼σ→+∞

a
σ .

Regarding the isometric expansion, as given in theorem 15, we apply it to a function F (s) =
∫∞
0 k(x)x−s dx such that d

dxxk(x) as a distribution on R is in L2. Using the L2-function 1
s Âa(s),
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which is the Mellin transform of the function Ca(x) = 1
x

∫ x
0 Aa(x) dx, and the Parseval identity we

obtain α(u) = 2
∫∞
0 (−x d

dxk(x))Ca(x) dx as an absolutely convergent integral. The square integrable

function Ca(x) is explicitely:

Ca(x) =

√
a

2x
1x>a(x)

(
J0(2

√
a(x − a)) +

√
x− a

a
J1(2

√
a(x− a))

)
(177)

And under the hypothesis made on x d
dxk(x) we obtain the existence of:

α(u) = lim
X→∞

√
ak(a) − 2Xk(X)Ca(X) +

√
a

∫ X

a

k(x)(1 +
∂

∂x
)J0(2

√
a(x− a)) dx (178)

Let us observe that k(x) =
∫∞
x

l(y)
y dy with l(y) ∈ L2, so |k(x)|2 ≤ C

x and Xk(X)Ca(X) = O(X− 1
4 ).

Hence:

α(u) =
√
ak(a) +

√
a

∫ →∞

a

k(x)(1 +
∂

∂x
)J0(2

√
a(x− a)) dx (179)

Comparing with equation (20a) we see that the f(y) defined there is related to α(u) , u = log(a) by

the formula f(y) = 1
2
√
a
α(log(a)), a = y

2 , so |f(y)|2 dy = 1
4a |α(log(a))|22 da = |α(log(a))|2 1

2d log(a).

Similarly we obtain β(u):

β(u) =
√
ak(a) +

√
a

∫ →∞

a

k(x)(−1 +
∂

∂x
)J0(2

√
a(x− a)) dx (180)

and comparing with (20b), g(y) = 1
2
√
a
β(log(a)), |g(y)|2 dy = |β(log(a))|2 1

2d log(a). So according to

theorem 15 we do have equation (20d):

∫ ∞

0

(|f(y)|2 + |g(y)|2) dy =

∫ ∞

0

|k(x)|2 dx (181)

From 15 the assignment k → (α, β) extends to a unitary identification L2(ℜ(s) = 1
2 ; |ds|

2π )→̃L2(R →
C2; du2 ), which has the property H(k) → (α,−β). In order to complete the proof of the isometric

expansion, it remains to check the equation (20c) which expresses k in terms of f and g. According

to 15 we recover k(x) has the inverse Mellin transform of
∫

R
(α(u) 2Âa(s) + β(u) 2(−iB̂a(s))) du2 .

Expressing this in terms of f(y) and g(y), y = 2a, u = log(a), this means the identity of distributions,

where we suppose for simplicity that f(y) and g(y) have compact support in (0,+∞) (as usual, this

means having support away from 0 as well as ∞.):

k(x) =

∫ ∞

0

(
2

√
y

2
f(y) 2A y

2
(x) + 2

√
y

2
g(y) 2(−iB y

2
(x))

)
dy

2y

= 2

∫ ∞

0

(
√
yf(2y)Ay(x) +

√
yg(2y) 2(−iBy(x)))

dy

y

(182)

Then imagining that we are integrating against a test function ψ(x) and using Fubini we obtain:

2

∫ ∞

0

√
yf(2y)Ay(x)

dy

y

=

∫ ∞

0

f(2y)

(
δ(x− y) + 1x>y

(
J0(2

√
y(x− y)) −

√
y

x− y
J1(2

√
y(x− y))

))
dy

(183)
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= f(2x) +

∫ x

0

(
J0(2

√
y(x− y)) −

√
y

x− y
J1(2

√
y(x− y))

)
f(y) dy

= f(2x) +
1

2

∫ 2x

0

(
J0(
√
y(2x− y)) −

√
y

2x− y
J1(
√
y(2x− y))

)
f(y) dy

(184)

Proceeding similarly with g(y) one obtains for 2
∫∞
0

√
yg(2y)(−i By(x))dyy :

g(2x) − 1

2

∫ 2x

0

(
J0(
√
y(2x− y)) +

√
y

2x− y
J1(
√
y(2x− y))

)
f(y) dy (185)

Combining (183) and (185) in the formula (182) for k(x) we obtain equation (20c).

8 The reproducing kernel and differential equations for the
extended spaces

Let La ⊂ L2(0,∞; dx) be the Hilbert space of square integrable functions f which are constant in

(0, a) and with their H-transforms again constant in (0, a). The distribution x d
dx

d
dxx f = d

dxxx
d
dxf

vanishes in (0, a) and its H transform does too. So s(s − 1)f̂(s) is an entire function with trivial

zeros at −N. The Hilbert space of the functions s(s−1)Γ(s)f̂(s) satisfies the axioms of [2]; we prove

everything according to the methods developed in the earlier chapters. Our goal is to determine the

evaluators and reproducing kernel for the spaces La.

For f ∈ La, f̂(s) is a meromorphic function with at most a pole at s = 1 and also f̂(0)

does not necessarily vanish. The Mellin-Plancherel transform
∫∞
0
f(x)x−s dx =

∫ a
0
c(f)x−s dx +

∫∞
a
f(x)x−s dx has polar part − c(f)

s−1 . Let us write (f, Y1) = −c(f) = Res(f̂(s), s = 1) = s(s −
1)Γ(s)f̂(s)|s=1. This defines an element Y1 ∈ La. We define also Ya1 = Γ(1)Y1 = Y1. Then (f,Ya1 ) =

s(s − 1)Γ(s)f̂(s)|s=1. We also define Ya0 as the vector such that (f,Ya0 ) = s(s − 1)Γ(s)f̂(s)|s=0 =

−f̂(0). One observes (f,H(Y1)) = (H(f), Y1) = s(s − 1)Γ(s)Ĥ(f)(s)|s=1 = s(s − 1)Γ(1 − s)f̂(1 −
s)|s=1 = −f̂(0) = (f,Ya0 ) so Ya0 = H(Ya1 ). To lighten the notation we sometimes write Y1 and Y0

instead Ya1 and Ya0 when no confusion can arise.

We will also consider the vectors X×
s ∈ La such that ∀f ∈ La f̂(s) = (X×

s , f).30 The orthogonal

projection of X×
s to Ka ⊂ La is Xs. Let us look more closely at this orthogonal projection.

First let Na be the (closed) vector space sum L2(0, a; dx) + HL2(0, a; dx). Inside Na we have the

codimension two space Ma defined as the sum of (10<x<a)
⊥ ∩ L2(0, a; dx) and of its image under

H. Finally, let Ra be the orthogonal complement in Na of Ma, which has dimension two. For a

function f to belong to La it is necessary and sufficient that its orthogonal projection to Na be

perpendicular to the functions in L2(0, a; dx) which are perpendicular to 10<x<a, and the same for

the H-transform, so this means exactly that its orthogonal projection to Na belongs to Ra. So we

have the orthogonal decomposition of L2(0,∞; dx) into the sum of the three spaces Ka, Ra and Ma

and La = Ka ⊕Ra. For f ∈ La to be in Ka it is necessary and sufficient that c(f) = −(f,Ya1 ) = 0

and the same for c(H(f)), so this means that {Ya1 ,Ya0 } is a basis of Ra. The function Ya1 belongs

30sometimes written Xa×
s .
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to Na = L2(0, a; dx) + HL2(0, a; dx) and as such is uniquely written as u1 + Hv1. As Ya1 ∈ La we

have constants α, β ∈ C such that:

u1 +Hav1 = −α (186a)

Hau1 + v1 = −β (186b)

where we recall that Pa is the restriction to (0, a) and Ha = PaHPa, Da = H2
a . From what was said

previously α = (Ya1 ,Ya1 ) and β = (H(Ya1 ),Ya1 ) = (Ya0 ,Ya1 ). We have thus:

u1 = (1 −Da)
−1(−α10<x<a + βHa(10<x<a)) (186c)

v1 = (1 −Da)
−1(+αHa(10<x<a) − β10<x<a) (186d)

Also the function Ya1 may be obtained as the orthogonal projection to La of − 1
a10<x<a. Indeed

it follows from what has been seen above that for any element f ∈ La, (f,Ya1 ) = − 1
a

∫ a
0
f(x) dx. As

the function − 1
a10<x<a already belongs to Na, we have

− 1

a
10<x<a = u1 + Hv1 + u2 + Hv2 (187)

where u2 + Hv2 belongs to Ma, which means that u2 ∈ L2(0, a; dx) verifies
∫ a
0
u2(x) dx = 0 and

v2 ∈ L2(0, a; dx) verifies
∫ a
0
v2(x) dx = 0. But there is unicity so we have exactly

u1 + u2 = −1

a
10<x<a v1 + v2 = 0 (188)

And we deduce: ∫ a

0

u1(x) dx = −1

∫ a

0

v1(x) dx = 0 (189)

So α and β are determined as the solutions of the system:

α(10<x<a, (1 −Da)
−110<x<a) − β(10<x<a, (1 −Da)

−1Ha10<x<a) = 1 (190a)

α(10<x<a, (1 −Da)
−1Ha10<x<a) − β(10<x<a, (1 −Da)

−110<x<a) = 0 (190b)

We thus have:

Proposition 22. Let p(a) and q(a) be defined as

p(a) =

∫ a

0

(1 −Da)
−1(10<x<a)(x) dx (191a)

q(a) =

∫ a

0

(1 −Da)
−1Ha(10<x<a)(x) dx (191b)

then: [
p(a) −q(a)
−q(a) p(a)

] [
(Y1,Y1) (Y1,Y0)
(Y0,Y1) (Y0,Y0)

]
=

[
1 0
0 1

]
(191c)

The evaluators Ya1 and Ya0 = H(Ya1 ) are given as u1 + Hv1 and Hu1 + v1 with:

u1 = −(Y1,Y1)(1 −Da)
−1(10<x<a) + (Y0,Y1)(1 −Da)

−1Ha(10<x<a) (191d)

v1 = −(Y0,Y1)(1 −Da)
−1(10<x<a) + (Y0,Y0)(1 −Da)

−1Ha(10<x<a) (191e)
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We have introduced, for s 6= 0, 1, X×
s as the evaluator f̂(s) for functions in La. We shall write

X×
s = Γ(s)X×

s and then Ys = s(s − 1)X×
s . This is compatible with our previous definitions of Ya1

and Ya0 . We note that the orthogonal projection of X×
s to Ka is Xs. So we may write

X×
s = Xs + λ(s)Ya1 + µ(s)Ya0 (192)

We shall also write Ya(s, z) =
∫∞
0

Yas (x)Yaz (x) dx = z(z − 1)Γ(z)Ŷas (z). One has H(Yas ) = Ya1−s
and Ya(s, z) = Ya(1 − s, 1 − z) = Ya(z, s). Taking the scalar products with Ya1 and Ya0 in (192) we

obtain

1

s(s− 1)
Ya(1, s) = λ(s)α + µ(s)β (193a)

1

s(s− 1)
Ya(1, 1 − s) = λ(s)β + µ(s)α (193b)

λ(s) =
1

s(s− 1)
(pYa(1, s) − qYa(1, 1 − s)) (193c)

µ(s) =
1

s(s− 1)
(−qYa(1, s) + pYa(1, 1 − s)) = λ(1 − s) (193d)

Combining with (192), this gives:

Ys = s(s− 1)Xs + Ya(1, s)(pYa1 − qYa0 ) + Ya(1, 1 − s)(−qYa1 + pYa0 ) (194)

Let Ta(s) = p(a)Ya(1, s) − q(a)Ya(1, 1 − s) (195)

Proposition 23. The (analytic) reproducing kernel Ya(s, z) of the extended space La is given by

each of the following expressions:

s(s− 1)z(z − 1)Xa(s, z) +
[
Ya(1, s) Ya(1, 1 − s)

] [ p(a) −q(a)
−q(a) p(a)

] [
Ya(1, z)

Ya(1, 1 − z)

]
(196a)

= s(s− 1)z(z − 1)Xa(s, z) +
[
Ta(s) Ta(1 − s)

] [α(a) β(a)
β(a) α(a)

] [
Ta(z)

Ta(1 − z)

]
(196b)

= s(s− 1)z(z − 1)Xa(s, z) + Ta(s)Ya(1, z) + Ta(1 − s)Ya(1 − z) (196c)

A very important observation, before turning to the determination of the quantities p(a) and

q(a) shall now be made. Let L be the unitary operator:

L(f)(x) = f(x) − 1

x

∫ x

0

f(y) dy (197)

It is the operator of multiplication by s−1
s at the level of right Mellin transforms. Obviously it

converts functions constant on (0, a) into functions vanishing on (0, a). Let us now consider the

operator

H⋄ = L H L−1 = L2 H = HL−2 (198)
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It is a unitary, self-adjoint, self-reciprocal, scale reversing operator whose kernel is easily computed

to be

k⋄(xy) = J0(2
√
xy) − 2

J1(2
√
xy)

√
xy

+
1 − J0(2

√
xy)

xy
=

∞∑

n=0

(−1)n
n2xnyn

(n+ 1)!2
(199)

It has L(e−x) = (1+ 1
x )e−x− 1

x as self-reciprocal function; the Mellin transform is s−1
s Γ(1−s) which,

multiplied by s(s − 1) gives (1 − s)2Γ(1 − s) which is the Mellin transform of a more convenient

invariant function for H⋄, the function x(x − 1)e−x. This function is the analog for H⋄ of e−x for

H. Let us now consider the space L(La). It consists of the square integrable functions vanishing

identically on (0, a) and having H⋄ transforms also identically zero on (0, a). But then the entire

theory applies to H⋄ exactly as it did for H, up to some minor details in the proofs where the function

J0 was really used like in Lemma 9 or proposition 11. We have for H⋄ versions of all quantities

previously considered for H. To check that the proof of 11 may be adapted, we need to look at

k⋄1(x) =
∫ x
0
k⋄(t) dt =

√
xJ1(2

√
x) + 2(J0(2

√
x)− 1) + 2

∫ 2
√
x

0
1−J0(u)

u du = Ox→+∞(x
1
4 ). So we may

employ lemma 8 as was done for H. Proposition 11 and Theorem 12 thus hold. We must be careful

that the operator L−1 is always involved when comparing functions or distributions related to H⋄

with those related to H. For example, one has X×
s = s

s−1L
−1X⋄

s and Ys = s(s− 1)X×
s = L−1X ⋄

s .

The two types of Gamma completed Mellin transforms differ: for H we consider Γ(s)f̂(s) while for

H⋄ we consider s2Γ(s)ĝ(s). Indeed this is quite the coherent thing to do in order that:

s2Γ(s)ĝ(s) = s(s− 1)Γ(s)f̂(s) (200)

for g = L(f). The bare Mellin transforms of elements of spaces K⋄
a are not always entire in the

complex plane: they may have a pole at s = 0. After multiplying by s2Γ(s) which is the left

Mellin transform of the self-invariant function x(x − 1)e−x, as Γ(s) is the left Mellin transform

of e−x, we do obtain entire functions, whose trivial zeros are at −1, −2, . . . (0 is not a trivial

zero anymore.) From equation (200) we see that the (analytic) reproducing kernel X ⋄
a (s, z) exactly

coincides with the function Ya(s, z) whose initial computation has been given in Proposition 23.

Also the Schrödinger equations will realize ±
(

1−s
s

)2 Γ(1−s)
Γ(s) as scattering matrices, and there will be

an isometric expansion generalizing the de Branges-Rovnyak expansion to the spaces La. We will

determine exactly the functions A⋄
a(s), B⋄

a(s), E⋄
a(s) and especially the function µ⋄(a). It will be

seen that this is a more complicated function than the simple-minded µ(a) = 2a. . .

The key now is to obtain the functions p(a) and q(a) defined in Proposition 22, and the function

Ya(1, s). It turns out that their computation also involves the quantities (we recall that Ja0 (x) =

J0(2
√
ax)):

r(a) = 1 +

∫ a

0

((1 −Da)
−1Ha · Ja0 )(x) dx (201a)

s(a) =

∫ a

0

((1 −Da)
−1 · Ja0 )(x) dx (201b)

In order to compute r, s, p, q we shall need the already defined functions φ+
a (= (1 +Ha)

−1Ja0 on
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(0, a)), φ−a , (= (1 −Ha)
−1Ja0 ) as well as the entire functions ψ+

a and ψ−
a verifying:

ψ+
a + HPaψ+

a = 1 (202a)

ψ−
a −HPaψ−

a = 1 (202b)

We have r(a) = 1+ 1
2

∫ a
0

(−φ+
a (x)+φ−a (x)) dx, and we know explicitely φ±a . But, we shall proceed in

a more general manner. First we recall the differential equations (121a), (121b) which are verified

by φ±a (where δx = x ∂
∂x + 1

2 ):

a
∂

∂a
φ+
a = +δxφ

−
a − (µ(a) +

1

2
)φ+
a (203a)

a
∂

∂a
φ−a = +δxφ

+
a + (µ(a) − 1

2
)φ−a (203b)

We compute ar′(a) = a
−φ+

a (a)+φ−

a (a)
2 + 1

2

∫ a
0

(x ∂
∂x +1)(φ+

a (x)−φ−a (x))+µ(a)(φ+
a (x)+φ−a (x)) dx and

simplifying this gives exactly ar′(a) = µ(a)1
2

∫ a
0 (φ+

a (x) + φ−a (x)) dx = s(a). Similarly starting with

s(a) = 1
2

∫ a
0 (φ+

a (x)+φ−a (x)) dx we obtain as′(a) = 1
2µ(a)+ 1

2

∫ a
0 (x ∂

∂x (φ+
a (x)+φ−a (x))+µ(a)(−φ+

a (x)+

φ−a (x))) dx which gives µ(a)r(a) − s(a). So the quantities r and s verify the system:

ar′(a) = µ(a)s(a) (204a)

(as)′(a) = µ(a)r(a) (204b)

Either solving the system taking into account the behavior as a → 0 or using the explicit formulas

for φ±a we obtain in this specific instance of the study of H, for which µ(a) = 2a, that r(a) = I0(2a)

and s(a) = I1(2a).

From (202a) and (202b) we obtain two types of differential equations, either involving x ∂
∂x or

a ∂
∂a . From ψ+

a (x) +
∫ a
0
J0(2

√
xy)ψ+

a (x) dx = 1, we obtain (1 + HPa)a ∂
∂aψ

+
a (x) = −aψ+

a (a)Ja0 . We

do similarly with ψ−
a and deduce:

a
∂

∂a
ψ+
a (x) = −aψ+

a (a)φ+
a (x) (205a)

a
∂

∂a
ψ−
a (x) = +aψ−

a (a)φ−a (x) (205b)

Regarding the differential equations with x ∂
∂x , which we shall actually not use, the computation is

done using only the fact that the kernel is a function of xy so x ∂
∂xJ0(2

√
xy) = y ∂

∂yJ0(2
√
xy). We

only state the result:

(x
∂

∂x
+

1

2
)ψ+
a (x) =

1

2
ψ−
a (x) − aψ+

a (a)φ−a (x) (206a)

(x
∂

∂x
+

1

2
)ψ−
a (x) =

1

2
ψ+
a (x) + aψ−

a (a)φ+
a (x) (206b)

Let us now turn to the quantities p(a) and q(a). We have p(a) =
∫ a
0

(1 −Da)
−1(10<x<a)(x) dx =

1
2

∫ a
0 (ψ+

a (x)+ψ−
a (x)) dx. So p′(a) = 1

2 (ψ+
a (a)+ψ−

a (a))− 1
2ψ

+
a (a)

∫ a
0 φ

+
a (x) dx+ 1

2ψ
−
a (a)

∫ a
0 φ

−
a (x) dx.

Reorganizing this gives:

p′(a) =
ψ+
a (a) + ψ−

a (a)

2
(1 +

∫ a

0

−φ+
a (x) + φ−a (x)

2
dx) +

−ψ+
a (a) + ψ−

a (a)

2

∫ a

0

+φ+
a (x) + φ−a (x)

2
dx

(207)
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We remark that from the integral equations defining ψ±
a we have ψ+

a (a) = 1−
∫ a
0 J0(2

√
ax)ψ+

a (x) dx =

1 −
∫ a
0 φ

+
a (x) dx and ψ−

a (a) = 1 +
∫ a
0 J0(2

√
ax)ψ−

a (x) dx = 1 +
∫ a
0 φ

−
a (x) dx. So

ψ+
a (a)+ψ−

a (a)
2 = r(a)

and
−ψ+

a (a)+ψ−

a (a)
2 = s(a). Hence the quantity p(a) verifies:

p′(a) = r(a)2 + s(a)2 (208)

With exactly the same method one obtains:

q′(a) = 2r(a)s(a) (209)

Let us observe that q(a) = 1
2

∫ a
0 ((1 − Ha)

−1 − (1 + Ha)
−1)(1) dx = O(a2) and p(a) = 1

2

∫ a
0 ((1 +

Ha)
−1 + (1 −Ha)

−1)(1) dx ∼a→0 a. So (p ± q) ∼a→0 a. Also r(a) ∼a→0 1 and s(a) ∼a→0 a. The

equation for p(a) can be integrated:

p(a) = a(r(a)2 − s(a)2) (210)

Indeed this has the correct derivative. Regarding q(a) the situation is different, one has q′ = 2rs =
2a
µ rr

′ so in the special case considered here, and only in that case we have q(a) = 1
2 (r(a)2 − 1).

Summing up:

Proposition 24. The quantities r(a), s(a), p(a) and q(a) verify the differential equations ar′(a) =

µ(a)s(a), as′(a)+s(a) = µ(a)r(a), p′(a) = r(a)2 +s(a)2, q′(a) = 2r(a)s(a), p(a) = a(r(a)2−s(a)2).
In the special case of the H transform one has:

r(a) = I0(2a) (211a)

s(a) = I1(2a) (211b)

p(a) = a(I2
0 (2a) − I2

1 (2a)) (211c)

q(a) =
1

2
(I2

0 (2a) − 1) (211d)

We now need to determine Ya(1, s) = s(s − 1)Γ(s)Ŷ1(s). There holds Y1 = u1 + Hv1 =

−α10<x<a + 1x>aHv1. So Ŷ1(s) = αa
1−s

s−1 +
∫∞
a (Hv1)(x)x−s dx. Then

∫∞
a (Hv1)(x)x−s dx =

∫∞
0 v1(x)gs(x) dx =

∫ a
0 v1(x)gs(x) dx, where the function gs from (73) has been used. Recalling

from (76a), (76b) the analytic functions us, equal to −(1−Da)
−1Ha(gs) on (0, a), and vs, equal to

(1 −Da)
−1Pa(gs) on (0, a), and using (186d) and self-adjointness we obtain

∫ a

0

v1(x)gs(x) dx = −α
∫ a

0

us(x) dx − β

∫ a

0

vs(x) dx (212)

Let us now recall that we computed ((83a)) (x ∂
∂x + s)us and found it to be on the interval (0, a)

given as −avs(a)(1 − Da)
−1(Ja0 ) − a(a−s + us(a))(1 − Da)

−1Ha(J
a
0 ). Integrating and also using

equations (99) and (102) we obtain

√
aÊa(s) − a1−s + (s− 1)

∫ a

0

us(x) dx = −
√
aĤ(Ea)(s)s(a) −

√
aÊa(s)(r(a) − 1) (213)
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∫ a

0

us(x) dx =
√
a
a

1
2−s − Êa(s)r(a) − Ĥ(Ea)(s)s(a)

s− 1
(214)

We have similarly ((83b)) (x ∂
∂x+1−s)vs = −√

aÊa(s)(1−Da)
−1(Ja0 )−√

aĤ(Ea)(s)(1−Da)
−1Ha(J

a
0 )

so integration gives avs(a) − s
∫ a
0
vs(x) dx = −√

aÊa(s)s(a) −
√
aĤ(Ea)(s)(r(a) − 1) hence

∫ a

0

vs(x) dx =
√
a
Êa(s)s(a) + Ĥ(Ea)(s)r(a)

s
(215)

Combining (214), (215) with (212), and using Ya(1, s) = s(s− 1)Γ(s)Ŷ a1 (s):

Ŷ1(s) =
√
a Êa(s)

(α(a)r(a)

s− 1
− β(a)s(a)

s

)
+
√
a Ĥ(Ea)(s)

(α(a)s(a)

s− 1
− β(a)r(a)

s

)
(216a)

Ya(1, s) =
√
a
(
sα(a)(Ea(s)r(a) + Ea(1 − s)s(a)) + (1 − s)β(a)(Ea(s)s(a) + Ea(1 − s)r(a))

)

(216b)

Proposition 25. The functions Ya(1, s) and Ya(1, 1 − s) verify

[
Ya(1, s)

Ya(1, 1 − s)

]
=

√
a

[
α(a) β(a)
β(a) α(a)

] [
s(Ea(s)r(a) + Ea(1 − s)s(a))

(1 − s)(Ea(s)s(a) + Ea(1 − s)r(a))

]
(217)

Comparing with equation (195) we get: Ta(s) =
√
as(Ea(s)r(a) + Ea(1 − s)s(a)). So:

Theorem 26. The analytic reproducing kernel Ya(s, z) associated with the extended spaces La is:

Ya(s, z) = s(s− 1)z(z − 1)Xa(s, z) +
[
Ta(s) Ta(1 − s)

] [α(a) β(a)
β(a) α(a)

] [
Ta(z)

Ta(1 − z)

]
(218a)

Xa(s, z) =
Ea(s)Ea(z) − Ea(1 − s)Ea(1 − z)

s+ z − 1
Ea(s) = 2

√
aKs(2a) (218b)

Ta(s) =
√
a s (Ea(s)r(a) + Ea(1 − s)s(a)) r(a) = I0(2a) s(a) = I1(2a) (218c)

α(a) =
p(a)

p(a)2 − q(a)2
p(a) = a(I2

0 (2a) − I2
1 (2a)) (218d)

β(a) =
q(a)

p(a)2 − q(a)2
q(a) =

1

2
(I2

0 (2a) − 1) (218e)

We proceed now to the determination of A⋄
a, B⋄

a and E⋄
a = A⋄

a(s) − iB⋄
a(s). The function A⋄

a(s)

is even under s→ 1 − s and B⋄
a(s) is odd. We must have:

zYa(1, z) = 2(−iB⋄
a(1))A⋄

a(z) + 2A⋄
a(1)(−iB⋄

a(z)) (219)

On the other hand from (195) we have Ya(1, z) = αTa(z) + βTa(1 − z). Let us write

z Ta(z) =
√
a(z(z − 1)r(a)Ea(z) + zr(a)Ea(z)

+ z(z − 1)s(a)Ea(1 − z) + zs(a)Ea(1 − z)) (220)

z Ta(1 − z) =
√
a(−z(z − 1)s(a)Ea(z) − z(z − 1)r(a)Ea(1 − z)) (221)
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zYa(1, z) =
√
a
(
z(z − 1)((αr − βs)Ea(z) + (αs− βr)Ea(1 − z))

+ zα(r Ea(z) + sEa(1 − z))
)

(222)

Extracting the even part (zYa(1, z))+ and the odd part (zYa(1, z))−:

(zYa(1, z))+ =
√
a
(
z(z − 1)(α− β)(r + s)Aa + (z − 1

2
)α(r − s)(−iBa) +

1

2
α(r + s)Aa

)
(223)

(zYa(1, z))− =
√
a
(
z(z − 1)(α+ β)(r − s)(−iBa) + (z − 1

2
)α(r + s)Aa +

1

2
α(r − s)(−iBa)

)
(224)

We have (zYa(1, z))+ = 2(−iB⋄
a(1))A⋄

a(z) and (zYa(1, z))− = 2A⋄
a(1)(−iB⋄

a(z)). Let us define

K(a) = (2(−iB⋄
a(1)))−1 and L(a) = (2A⋄

a(1))−1. We know that:

lim
σ→+∞

−iB⋄
a(σ)

A⋄
a(σ)

= 1 (225)

So it must be that

K(a)(α − β)(r + s) = L(a)(α+ β)(r − s) (226)

Also, taking z = 1 in (223) we have 1
KL = 2

√
a1

2α (rEa(1) + sEa(0)) = αTa(1). But referring to

(195) one has Ta(1) = pα− qβ = 1. So:

K(a)L(a) =
1

α(a)
(227)

Then:

K(a)2 =
1

α(a)

(α+ β)(r − s)

(α− β)(r + s)
=
α2 − β2

α(a)

r2 − s2

(α − β)2(r + s)2
=

1

p

p

a

1

(α− β)2(r + s)2
(228)

(α− β)(r + s)K(a) = a−
1
2 (229)

We conclude:

A⋄
a = z(z − 1)Aa + (z − 1

2
)

α(r − s)

(α − β)(r + s)
(−iBa) +

α

2(α− β)
Aa (230a)

−iB⋄
a = z(z − 1)(−iBa) + (z − 1

2
)

α(r + s)

(α + β)(r − s)
Aa +

α

2(α+ β)
(−iBa) (230b)

Let us now observe that α
α±β = p

p±q and further:

α

α− β

r − s

r + s
=

p

p− q

a(r − s)2

p
= a

p′ − q′

p− q
= a

d

da
log(p− q) (231a)

α

α+ β

r + s

r − s
=

p

p+ q

a(r + s)2

p
= a

p′ + q′

p+ q
= a

d

da
log(p+ q) (231b)

A⋄
a(z) = (z(z − 1) +

1

2

p

p− q
)Aa(z) + a

d

da
log(p− q)(z − 1

2
)(−iBa(z)) (232a)

−iB⋄
a(z) = (z(z − 1) +

1

2

p

p+ q
)(−iBa(z)) + a

d

da
log(p+ q)(z − 1

2
)Aa(z) (232b)

Combining we get finally:
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Theorem 27. The E function associated with the entire functions s(s− 1)Γ(s)f̂(s), f ∈ La is:

E⋄
a(z) =

(
z(z − 1) +

1

2
a
d

da
log(p(a)2 − q(a)2)(z − 1

2
) +

1

2
p(a)α(a)

)
Ea(z)

+
(1

2
a
d

da
log

p(a) + q(a)

p(a) − q(a)
(z − 1

2
) +

1

2
p(a)β(a)

)
Ea(1 − z)

(233)

where p(a) = a(I2
0 (2a) − I2

1 (2a)), q(a) = 1
2 (I2

0 (2a) − 1), α(a) = p(a)
p(a)2−q(a)2 , β(a) = q(a)

p(a)2−q(a)2 , and

Ea(z) = 2
√
aKz(2a).

We shall now obtain by two methods the function µ⋄(a). First, we compute E⋄
a(

1
2 ) = (− 1

4 +
1
2p(α+ β))Ea(1

2 ) = 1
4
p+q
p−qEa(1

2 ) and invoke a d
daE⋄

a(
1
2 ) = −µ⋄(a)E⋄

a (1
2 ). We thus have:

Theorem 28. The mu function for the chain of spaces La, 0 < a <∞ is

µ⋄(a) = µ(a) + a
d

da
log

p− q

p+ q
(234)

= 2a+ a
d

da
log

(2a− 1)I2
0 (2a) − 2aI2

1 (2a) + 1

(2a+ 1)I2
0 (2a) − 2aI2

1 (2a) − 1
(235)

= 2a− 2 + o(1) (a→ +∞) (236)

The asymptotic behavior is a corollary to lima→∞ 2a−pq′+qp′
p2−q2 = −2 which itself follows from

p2 − q2 ∼ 1
4I0(2a)

4 1
16a2 and ( qp )

′ ∼ + 1
16a3 which are easily deduced from the asymptotic expansion

I0(x) = ex

√
2πx

(1 + 1
8x + 9

128x2 + . . . ) ([33]). Of course the o(1) is in fact an O(a−1).

The second method to obtain µ⋄(a) relies on
E⋄

a(1−σ)
E⋄

a(σ) ∼σ→+∞
µ⋄(a)

2σ ((116)). We have:

E⋄
a (σ)

σ2Ea(σ)
= 1 +

1
2a

d
da log(p2 − q2) − 1

σ
+O(

1

σ2
) (237a)

E⋄
a (1 − σ)

σ2Ea(1 − σ)
→σ→∞ 1 − 1

2
(a
d

da
log

p+ q

p− q
)

2

µ(a)
(237b)

so µ⋄(a)
µ(a) = 1 − 1

µ(a)a
d
da log p+q

p−q and (234) is confirmed. We can use this method to gather more

information. From (115a) we have, as ℜ(s) → +∞:

Êa(s) = a
1
2−s(1 +

aφ+(a) − aφ−(a)

2s
+O(

1

s2
)) (238a)

Ê⋄
a(s) = a

1
2−s(1 +

aφ⋄+(a) − aφ⋄−(a)

2s
+O(

1

s2
)) (238b)

Let us be careful that Ea(s) = Γ(s)Êa(s) while E⋄
a (s) = s2Γ(s)Ê⋄

a(s). We obtain:

aφ⋄+(a) − aφ⋄−(a) = aφ+(a) − aφ−(a) + a
d

da
log(p2 − q2) − 2 (239a)

aφ⋄+(a) = aφ+(a) + a
d

da
log

p− q

a
(239b)

aφ⋄−(a) = aφ−(a) − a
d

da
log

p+ q

a
(239c)
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We recall that (p± q) ∼a→0 a. We integrate (239b) and (239c) using (130a), (130b) and this gives

det(1 +H⋄
a) = p−q

a det(1 +Ha) and det(1 −H⋄
a) = p+q

a det(1 −Ha).

det(1 +H⋄
a) =

p− q

a
det(1 +Ha) = det(1 +Ha)

1

a

∫ a

0

(r − s)2 da (240a)

det(1 −H⋄
a) =

p+ q

a
det(1 −Ha) = det(1 −Ha)

1

a

∫ a

0

(r + s)2 da (240b)

Theorem 29. Let H⋄ = LHL−1 be the self-reciprocal operator on L2(0,∞; dx) with kernel:

J0(2
√
xy) − 2

J1(2
√
xy)

√
xy

+
1 − J0(2

√
xy)

xy
=

∞∑

n=0

(−1)n
n2xnyn

(n+ 1)!2
(241a)

and let H⋄
a be the restriction to L2(0, a; dx). Then:

det(1 +H⋄
a) = e+a−

1
2a

2 1

a

∫ a

0

(I0(2a) − I1(2a))
2 da = e+a−

1
2a

2(
I2
0 (2a) − I2

1 (2a) − I2
0 (2a) − 1

2a

)

(241b)

det(1 −H⋄
a) = e−a−

1
2a

2 1

a

∫ a

0

(I0(2a) + I1(2a))
2 da = e−a−

1
2a

2(
I2
0 (2a) − I2

1 (2a) +
I2
0 (2a) − 1

2a

)

(241c)

From theorem 26 ‖Y 1
2
‖2 = 1

16‖X 1
2
‖2 + 2(α + β)Ta(

1
2 )2 and Ta(

1
2 ) = 1

2

√
a (r + s)Ea(1

2 ). Also,

(α + β)(r + s)2 = 1
p−q (r + s)2. Furthermore ‖Y 1

2
‖2 = 1

16Γ(1
2 )2‖X⋄

1
2

‖2 = π
16‖X⋄

1
2

‖2 and ‖X 1
2
‖2 =

π‖X 1
2
‖2. And also from (163) Ea(1

2 ) =
√
π det(1−Ha)

det(1+Ha) and from theorem 17 one has ‖Xa
1
2

‖2 =

2
∫∞
a

(
det 1−Hb

1+Hb

)2
db
b and the analog holds for X⋄a

1
2

. Let us observe that X⋄a
1
2

= −LX×
1
2

so ‖X⋄a
1
2

‖ =

‖Xa×
1
2

‖. So

‖Xa×
1
2

‖2 = 2

∫ ∞

a

(
det

1 −H⋄
b

1 +H⋄
b

)2
db

b
= 2

∫ ∞

a

(
det

1 −Hb

1 +Hb

)2
db

b
+ 8a

p′ + q′

p− q

(
det

1 −Ha

1 +Ha

)2

(242)

Theorem 30. Let La be the Hilbert space of square integrable functions on f ∈ L2(0,∞; dx) such

that both f and H(f) =
∫∞
0
J0(2

√
xy)f(y) dy are constant on (0, a). Then the squared norm of the

linear form f 7→
∫∞
0

f(x)√
x
dx is given by either one of the following two expressions:

2

∫ ∞

a

(
(2b+ 1)I2

0 (2b) − 2bI2
1 (2b) − 1

(2b− 1)I2
0 (2b) − 2bI2

1 (2b) + 1

)2
e−4b

b
db (243a)

= 2

∫ ∞

a

e−4b

b
db+ 2

8a(I0(2a) + I1(2a))
2

(2a− 1)I2
0 (2a) − 2aI2

1 (2a) + 1
e−4a (243b)

The squared norm of the restriction of the linear form to the subspace Ka of functions vanishing on

(0, a) and with H(f) also vanishing on (0, a) is 2
∫∞
a

e−4b

b db.

One may express the wish to verify explicitely from equations (230a) and (230b), or in the
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equivalent form

A⋄
a(z) =

(
(z − 1

2
)2 +

1

4

p+ q

p− q

)
Aa(z) + (a

d

da
log(p− q))(z − 1

2
)(−iBa(z)) (244a)

−iB⋄
a(z) =

(
(z − 1

2
)2 +

1

4

p− q

p+ q

)
(−iBa(z)) + (a

d

da
log(p+ q))(z − 1

2
)Aa(z) (244b)

the differential system:

a
∂

∂a
A⋄
a(z) = −µ⋄(a)A⋄

a(z) − (z − 1

2
)(−iB⋄

a(z)) (245a)

a
∂

∂a
(−iB⋄

a(z)) = +µ⋄(a)(−iB⋄
a(z)) − (z − 1

2
)A⋄

a(z) (245b)

and also to verify explicitely the reproducing kernel formula

Ya(s, z) =
E⋄
a(s)E⋄

a (z) − E⋄
a(1 − s)E⋄

a (1 − z)

s+ z − 1
(246)

The interested reader will see that the algebra has a tendency to become slightly involved if one

does not benefit from the following preliminary observations: using p′ = r2 + s2, q′ = 2rs, ar′ = µr,

as′ = µr − s, p = a(r2 − s2) one first establishes aq′′ + q′ = 2µp′, ap′′ + p′ − p
a = 2µq′. Using this

one checks easily:
(
p′ + q′

p+ q

)′
+

(
p′ + q′

p+ q

)2

=
1

a2

p

p+ q
+

2µ− 1

a

p′ + q′

p+ q
(247a)

(
p′ − q′

p− q

)′
+

(
p′ − q′

p− q

)2

=
1

a2

p

p− q
− 2µ+ 1

a

p′ − q′

p− q
(247b)

Also the identity
p2

p2 − q2
= a

p′ + q′

p+ q
a
p′ − q′

p− q
= pα (247c)

is useful. The verifications may then be done.

9 Hyperfunctions in the study of the H transform

In this final section we return to the equation (31):

ψ̃(f)(i t) =
t+ 1

2t
f̃(i

t+ 1
t

2
) , (248)

Let us recall that f ∈ L2(0,∞; dx) and ψ : L2(0,∞; dx) → L2(0,∞; dx) is the isometry which

corresponds to F (w) 7→ F (w2), where F (w) =
∑∞

n=0 cnw
n, f(x) =

∑∞
n=0 cnPn(x)e−x, Pn(x) =

L
(0)
n (2x). Let g = ψ(f). Using λ = it, in the L2 sense:

g(x) =
1

2π

∫ ∞

−∞

λ+ i

2λ
f̃(
λ− 1

λ

2
)e−iλx dλ (249)

It is natural to consider separately λ > 0 and λ < 0. So let us define:

G+(x) =
1

2π

∫ 0

−∞

λ+ i

2λ
f̃(
λ− 1

λ

2
)e−iλx dλ (250a)

G−(x) = − 1

2π

∫ ∞

0

λ+ i

2λ
f̃(
λ− 1

λ

2
)e−iλx dλ (250b)
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We observe that G+ is in the Hardy space of ℑ(x) > 0 and G− is in the Hardy space of ℑ(x) < 0.

Their boundary values must coincide on (−∞, 0) as g ∈ L2(0,+∞; dx). So we have a single analytic

function G(z) on C \ [0,+∞) with G = G+ for ℑ(x) > 0 and G = G− for ℑ(x) < 0. Then

g = ψ(f) = G+ −G− is computed as

g(x) = G(x + i0) −G(x− i0) (251)

In other words g is most naturally seen as a hyperfunction [23], as a difference of boundary values

of analytic functions. We shall now compute it explicitely, and also we will show later that this

observation extends to the distributions Aa(x), −iBa(x), Ea(x) which are associated with the study

of the H transform. The point of course is that the corresponding functions G will for them have a

simple natural expression.

We have, for ℑ(z) > 0:

G(z) =
1

2π

∫ ∞

0

λ− i

2λ
f̃(

−λ+ 1
λ

2
)e+iλz dλ (252a)

G(z) =
1

2π

∫ ∞

0

λ− i

2λ

(∫ ∞

0

ei
1
2x(−λ+ 1

λ
)f(x) dx

)
e+iλz dλ (252b)

Let µ = 1
2 (λ− 1

λ), λ = µ+
√

1 + µ2, λ−i2λ dλ = λ
λ+i dµ, with, for 0 < λ <∞, −∞ < µ <∞.

G(z) =
1

2π

∫ ∞

−∞

λ

λ+ i

(∫ ∞

0

e−iµxf(x) dx

)
e+iλz dµ (252c)

For µ → +∞, λ = 2µ+ 1
2µ+ . . . , and for µ→ −∞, λ = − 1

2µ+ . . . , and λ
λ+i ∼ i

2µ as µ→ −∞. So far

the inner integral is in the L2 sense. We shall now suppose that f and f ′ are in L1 (so limx→∞ f(x) =

0) and write
∫∞
0 e−iµxf(x) dx =

∫∞
0 e−iµx−xexf(x) dx = f(0)

iµ+1 + 1
iµ+1

∫∞
0 e−iµx(f(x) + f ′(x)) dx.

G(z) =
1

2π

(
f(0)

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1
dµ+

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1

(∫ ∞

0

e−iµx(f(x) + f ′(x)) dx

)
dµ

)

(252d)

In this manner, with f ∈ L1, f ′ ∈ L1, ℑ(z) > 0, we have an absolutely convergent double integral.

G(z) =
1

2π

(
f(0)

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1
dµ+

∫ ∞

0

(∫ ∞

−∞

λ

λ+ i

e−iµx+iλz

iµ+ 1
dµ

)
(f(x) + f ′(x)) dx

)

(252e)

Observing 1
2π

∫∞
−∞

λ
λ+i

e+iλz

iµ+1 dµ = 1
2π

∫∞
0

λ−i
2λ

1
iµ+1e

+iλz dλ = 1
2πi

∫∞
0

1
λ−ie

+iλz dλ, we then suppose

ℜ(z) < 0, ℑ(z) > 0 (or ℑ(z) ≥ 0) so that we may rotate the contour to λ = −it, 0 ≤ t < ∞. This

procedure gives thus:
1

2π

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1
dµ =

1

2πi

∫ ∞

0

etz

1 + t
dt (252f)

Also:
1

2π

∫ ∞

−∞

λ

λ+ i

e−iµx+iλz

iµ+ 1
dµ =

1

2πi

∫ ∞

0

1

λ− i
e−i

x
2 (λ− 1

λ
)+iλz dλ (252g)
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We rotate the contour to λ ∈ i[0,−∞), which is licit as x ≥ 0 and, for ℜ(z) < 0, x ≥ 0, we obtain:

1

2πi

∫ ∞

0

ezt−
x
2 (t+ 1

t
)

1 + t
dt (252h)

Going back this allows to write (252e), for ℜ(z) < 0, ℑ(z) > 0 as:

G(z) =
1

2πi

(
f(0)

∫ ∞

0

ezt

1 + t
dt+

∫ ∞

0

(∫ ∞

0

ezt−
x
2 (t+ 1

t
)

1 + t
dt

)
(f(x) + f ′(x)) dx

)
(252i)

and finally, after integrating by parts:

G(z) =
1

2πi

∫ ∞

0

(∫ ∞

0

1

2
(1 +

1

t
)ezt−

1
2y(t+

1
t
) dt

)
f(y) dy (252j)

This last expression (still temporarily under the hypothesis f, f ′ ∈ L1) is certainly a priori absolutely

convergent for ℜ(z) < 0 and gives G(z) in this half-plane.

We are led to the study of:

a(z, y) =
1

2πi

∫ ∞

0

1

2
(1 +

1

t
)ezt−

1
2 y(t+

1
t
) dt (253a)

We still temporarily assume ℜ(z) < 0. We even suppose z < 0 and make a change of variable:

a(z, y) =
1

2πi

(√
y

y − 2z

1

2

∫ ∞

0

e−
1
2

√
y(y−2z)(u+ 1

u
) du+

1

2

∫ ∞

0

e−
1
2

√
y(y−2z)(u+ 1

u
) 1

u
du

)
(253b)

a(z, y) =
1

2πi

(√
1

y − 2z

1

2

∫ ∞

0

e−
1
2

√
y−2z(v+y 1

v
) dv +

1

2

∫ ∞

0

e−
1
2

√
y−2z(v+y 1

v
) 1

v
dv

)
(253c)

a(z, y) =
1

2πi

(√
y

y − 2z
K1(

√
y(y − 2z)) +K0(

√
y(y − 2z))

)
(253d)

For any z ∈ C \ [0,+∞) and any y ≥ 0 the integrals in (253c) converge absolutely and define an

analytic function of z. Furthermore the K Bessel functions decrease exponentially as y → +∞
in (253d). For fixed z, a(z, y) is certainly a square-integrable function of y (also at the origin),

locally uniformly in z so the equation (252j) defines G as an analytic function on the entire domain

C \ [0,+∞). Then by an approximation argument (252j) applies to any f ∈ L2(0,∞; dx) and any

z ∈ C \ [0,+∞).

We now study the boundary values a(x+i0, y), a(x−i0, y), x, y ≥ 0. We could use the expression

of the K Bessel functions in terms of the Hankel functions H(1) and H(2), go to the boundary, and

then recover the Bessel functions J0 and J1. But we shall proceed in a more direct manner. Let us

first examine

d(z, y) =
1

2πi

1

2

∫ ∞

0

ezt−
1
2y(t+

1
t
) 1

t
dt

=
1

2πi

1

2

∫ ∞

0

e−
1
2

√
y(y−2z)(u+ 1

u
) 1

u
du =

1

2πi

∫ ∞

1

e−
√
y(y−2z) t dt√

t2 − 1

(254a)

=
1

2πi

∫ ∞

1

e−
√
y(y−2z) t t−1 dt+

1

2πi

∫ ∞

1

e−
√
y(y−2z) t(

1√
t2 − 1

− 1

t
) dt (254b)
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=
1

2πi

e−
√
y(y−2z) −

∫∞
1 e−

√
y(y−2z) t t−2 dt√

y(y − 2z)
+

1

2πi

∫ ∞

1

e−
√
y(y−2z) t(

1√
t2 − 1

− 1

t
) dt (254c)

We now look at the (distributional) boundary values z → x with z = x + iǫ, ǫ → 0+ or z = x− iǫ

and ǫ→ 0+. We shall take x > 0. Here the singularities at y = 2x and at y = 0 are integrable and

we need only take the limit in the naive sense. We distinguish y > 2x from 0 < y < 2x. In the

former case, nothing happens:

d(x+ i0, y) = d(x− i0, y) =
1

2πi

∫ ∞

1

e−
√
y(y−2x) t dt√

t2 − 1
(255a)

In the latter case:

d(x + i0, y) =
1

2π

e+i
√
y(2x−y) −

∫∞
1 e+i

√
y(2x−y) t t−2 dt√

y(2x− y)
+

1

2πi

∫ ∞

1

e+i
√
y(2x−y) t(

1√
t2 − 1

− 1

t
) dt

(255b)

d(x− i0, y) = − 1

2π

e−i
√
y(2x−y) −

∫∞
1
e−i

√
y(2x−y) t t−2 dt√

y(2x− y)
+

1

2πi

∫ ∞

1

e−i
√
y(2x−y) t(

1√
t2 − 1

− 1

t
) dt

(255c)

So d(x + i0, y)− d(x − i0, y) is supported in (0, 2x) and has values there

1

π

cos
√
y(2x− y) −

∫∞
1 cos(

√
y(2x− y) t) t−2 dt√

y(2x− y)
+

1

π

∫ ∞

1

sin(
√
y(2x− y) t)(

1√
t2 − 1

− 1

t
) dt

(255d)

We used this method to have a clear control not only of the pointwise behavior but also of the limit

as a distribution. There is no necessity now to keep working with absolutely convergent integrals

and we have the simple result, using the very classical Mehler formula:31

d(x+ i0, y) − d(x− i0, y) = 10<y<2x(y)
1

π

∫ ∞

1

sin(
√
y(2x− y) t)√
t2 − 1

dt =
1

2
10<y<2x(y)J0(

√
y(2x− y))

(256)

Let us now consider the behavior of

e(z, y) =
1

2πi

1

2

∫ ∞

0

ezt−
1
2y(t+

1
t
) dt =

1

2πi

√
y

y − 2z

1

2

∫ ∞

0

e−
1
2

√
y(y−2z)(u+ 1

u
) du (257)

We make the simple observation that e(z, y) = ∂
∂zd(z, y). So we shall have (as is confirmed by a

more detailed examination):

e(x+ i0, y)− e(x− i0, y) =
∂

∂x

1

2
10<y<2x(y)J0(

√
y(2x− y))

= δ2x(y) −
1

2
10<y<2x(y)

√
y

2x− y
J1(
√
y(2x− y))

(258)

Combining all those elements we obtain that the function k(x) = ψ(f)(x) is given as:

k(x) = f(2x) +
1

2

∫ 2x

0

J0(
√
y(2x− y))f(y) dy − 1

2

∫ 2x

0

√
y

2x− y
J1(
√
y(2x− y))f(y) dy (259)

31we are mainly interested in the boundary value as a distribution and we skip the discussion of the pointwise
behavior at the borders y = 0 and y = 2x.
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Some pointwise regularity of f at x is necessary to fully justify the formula; in order to check if

continuity of f at 2x is enough we can not avoid examining e(z, y) more closely as z → x.

e(z, y) =

√
y

y − 2z

1

2πi

∫ ∞

1

e−
√
y(y−2z) t t dt√

t2 − 1

=
1

2πi

e−
√
y(y−2z)

y − 2z
+

√
y

y − 2z

1

2πi

∫ ∞

1

e−
√
y(y−2z) t t−

√
t2 − 1√

t2 − 1
dt

(260)

The integral term on the right causes no problem at all. And writing e−
√

y(y−2z)

y−2z = 1
y−2z +

e−
√

y(y−2z)−1
y−2z , again the term on the right has no problem, so there only remains 1

y−2z , and of

course, this is very well-known, the difference between +i0 and −i0 gives the Poisson kernel, so for

non-tangential convergence, continuity of f at 2x is enough. Of course this discussion was quite

superfluous if we wanted to understand k as an L2 function, here we have the information that non

tangential boundary value of G(x + i0) − G(x − i0) does give pointwise the formula (259) if f is

continuous at y = 2x. We can also rewrite (259) as:

k(x) = (1 +
d

dx
)
1

2

∫ 2x

0

J0(
√
y(2x− y))f(y) dy (261)

This is exactly one half of equation (20c), where k was obtained from (f, g) as ψ(f) + w · ψ(g).

Let us observe that w = λ−i
λ+i verifies, as an operator, ( ddx + 1) · w = w · ( ddx + 1) = d

dx − 1.

So the isometry corresponding to g(w) 7→ wG(w2), which is the composite w · ψ, sends g to

(−1 + d
dx)1

2

∫ 2x

0
J0(
√
y(2x− y))f(y) dy. This is indeed the second half of equation (20c).

The formulas (20a) and (20b) may be established in an exactly analogous manner (taking k with

compact support to simplify the discussion). But this would be a repetition of the arguments we

just went through, so rather I will conclude the paper with a method allowing to go directly from

Aa(s), −iBa(s), Ea(s) to the distributions Aa(x), −iBa(x), Ea(x), and this will show that they are

in a natural manner (differences of) boundary values of an analytic function.

From the expression Ea(s) = Γ(s)Êa(s) = 2
√
aKs(2a) =

√
a
∫∞
0 e−a(t+

1
t
)ts−1 dt, we shall recover

Êa(s) as a right Mellin transform with the help of the Hankel formula Γ(s)−1 =
∫
C e

vv−s dv, where C
is a contour coming from −∞ along the lower edge of the cut along (−∞, 0] turning counterclockwise

around the origin and going back to −∞ along or slightly above the upper edge of the cut. Let us

write the Hankel formula as

ts−1

Γ(s)
=

1

2πi

∫

C
etvv−s dv (t > 0) (262)

So we have:

Êa(s) =
√
a

1

2πi

∫ ∞

0

(∫

C
etvv−s dv

)
e−a(t+

1
t
) dt (263)

Let us suppose ℜ(s) > 1. Then the contour C can be deformed into the contour Cǫ coming from

−i∞ to −iǫ, then turning counterclockwise from e−i
π
2 ǫ to ei

π
2 ǫ, then going to +i∞. Also we impose
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0 < ǫ < a. The integrals may then be permuted:

Êa(s) =
√
a

1

2πi

∫

Cǫ

(∫ ∞

0

etve−a(t+
1
t
) dt

)
v−s dv (264)

and using e(z, y) from (257) this gives:

ℜ(s) > 1 =⇒ Êa(s) =
√
a

∫

Cǫ

2e(v, 2a)v−s dv (265)

We have previously studied e(z, y), which is also expressed as in (260). We see on this basis and

simple estimates that we may deform Cǫ into a contour Ca,η going from +∞ to a+ η along the lower

border, turning clockwise around a from a+ η − i0 to a+ η + i0, then going from a+ η to +∞ on

the upper border (η ≪ 1). We will have in particular from (260) a term 2
2πi

∫ a+η+i0
a+η−i0

v−s

2a−2v dv which

is a−s. The final result is obtained:

ℜ(s) > 1 =⇒ Êa(s) =
√
a

(
a−s −

∫ ∞

a

√
a

x− a
J1(2

√
a(x− a))x−s dx

)
(266)

This identifies Êa(s) as the right Mellin transform of the distribution

Ea(x) =
√
a

(
δa(x) + 1x>a(x)

∂

∂x
J0(2

√
a(x− a))

)
=

√
a
∂

∂x

(
1x>a(x)J0(2

√
a(x− a))

)
(267)

This proof reveals that the distribution Ea(x) is expressed in a natural manner as the difference of

boundary values
√
a(2e(x+ i0, 2a)− 2e(x− i0, 2a)), with

√
a 2e(z, 2a) =

√
a

1

2πi

∫ ∞

0

ezt−a(t+
1
t
) dt =

√
a

1

2πi
2

√
a

a− z
K1(2

√
a(a− z)) (268)

The formulas (176e) and (176f) are recovered in the same manner.

Theorem 31. The distribution Aa(x) =
√
a

2 (1 + H)(φ+
a 10<x<∞), φ+

a (x) +
∫ a
0
J0(2

√
xy)φ+

a (y) dy =

J0(2
√
ax), is the difference of boundary values

√
a(a(x+ i0, 2a)− a(x− i0, 2a)), with:

√
a a(z, 2a) =

√
a

1

2πi

∫ ∞

0

1

2
(1 +

1

t
)ezt−a(t+

1
t
) dt

=
√
a

1

2πi

(√
a

a− z
K1(2

√
a(a− z)) +K0(2

√
a(a− z))

) (269)

The distribution −iBa(x) =
√
a

2 (−1 + H)(φ−a 10<x<∞), φ−a (x) −
∫ a
0
J0(2

√
xy)φ−a (y) dy = J0(2

√
ax),

is the difference of boundary values
√
a(−ib(x+ i0, 2a)− (−ib(x− i0, 2a))), with:

√
a(−ib(z, 2a)) =

√
a

1

2πi

∫ ∞

0

1

2
(1 − 1

t
)ezt−a(t+

1
t
) dt

=
√
a

1

2πi

(√
a

a− z
K1(2

√
a(a− z)) −K0(2

√
a(a− z))

) (270)
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10 Appendix: a remark on the resolvent of the Dirichlet
kernel

In this paper we have studied a special transform on the positive half-line with a kernel of a multi-

plicative type k(xy), following the method summarized in [5, 6]. We have associated to the kernel

the investigation of its Fredholm determinants on finite intervals (0, a), and have related them with

first and second order differential equations leading to problems of spectral and scattering theory.

There is a vast literature on kernels of the additive type k(x − y), and on the related Fredholm

determinants on finite intervals. The Dirichlet kernel on L2(−s, s; dx):

Ks(x, y) =
sin(x − y)

π(x − y)
(271)

has been the subject of many works (only a few references will be mentioned here.) The Fredholm

determinant det(1 − Ks), as a function of s (or more generally as a function of the endpoints of

finitely many intervals), has many properties, and is related to the study of random matrices [22].

The Fredholm determinants of the even and odd parts

K±
s (x, y) =

sin(x − y)

π(x − y)
± sin(x+ y)

π(x+ y)
(272)

on L2(0, s; dx) have been studied by Dyson [16]. He used the second derivatives of their logarithms

to construct potentials for Schrödinger equations on the half-line, and studied their asymptotics

with the tools of scattering theory. Jimbo, Miwa, Môri, and Sato [17] related det(1 − Ks) to a

Painlevé equation. Widom [34] obtained the leading asymptotics using the Krein continuous analog

of orthogonal polynomials. Deift, Its, and Zhou [11] justified the Dyson asymptotic expansions

using tools developed for Riemann-Hilbert problems. Tracy and Widom [32] established partial

differential equations for the Fredholm determinants of integral operators arising in the study of the

scaling limit of the distribution functions of eigenvalues of random matrices. We refer the reader

to the cited references and to [12] for recent results and we apologize for not providing any more

detailed information here.

We have, in the present paper, been talking a lot of scattering and determinants and one might

wonder if this is not a re-wording of known things. In fact, our work is with the multiplicative

kernels k(xy), and (direct) reduction to additive kernels would lead to (somewhat strange) g(t+ u)

kernels on semi-infinite intervals (−∞, log(a)]. So we are indeed doing something different; one may

also point out that the entire functions arising in the present study are not of finite exponential

type; and the scattering matrices do not at all tend to 1 as the frequency goes to infinity. In the

case of the cosine and sine kernels the flow of information will presumably go from the additive to

the multiplicative, as the additive situation is more flexible, and has stimulated the development of

powerful tools, with relation to Painlevé equations, Riemann-Hilbert problems, Integrable systems

[11].
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Nevertheless, one may ask if the framework of reproducing kernels in Hilbert spaces of entire

functions also may be used in the additive situation. This is the case indeed and it is very much

connected to the method of Krein in inverse scattering theory, and his continuous analog of or-

thogonal polynomials (used by Widom in the context of the Dirichlet kernel in [34].) The Gaudin

identities for convolution kernels ([22, App. A16]) play a rôle very analogous to the identities in the

present paper (132a), (132b) involved in the study of multiplicative kernels. Widom in his proof [34]

of the main term of the asymptotics as s → +∞ studied the Krein functions associated with the

complement of the interval (−1,+1) and he mentioned the interest of extremal properties. In this

appendix, I shall point out that the resolvent of the Dirichlet kernel indeed does have an extremal

property: it coincides exactly (up to complex conjugation in one variable) with the reproducing

kernel of a certain (interesting) Hilbert space of entire functions. This could be a new observation,

obviously closely related to the method of Widom [34].

The spacemPWs we shall use is, as a set, the Paley-Wiener space PWs, but the norm is different:

mPWs = {f(z) entire of exponential type at most s with ‖f‖ <∞}

‖f‖2 =

∫

R\(−1,1)

|f(t)|2 dt (273)

Let Xs(z, w) be the element of mPWs which is the evaluator at z: ∀f ∈ mPWs (f,Xs(z, ·)) = f(z).

We shall compare Xs(z, w) with the resolvent of the kernel

Ds(x, y) =
sin(s(x− y))

π(x − y)
(274)

on L2(−1, 1; dx).

Let f ∈ mPWs. It belongs to PWs so

f(z) =

∫

R

f(t)
eis(t−z) − e−is(t−z)

2πi(t− z)
dt =

∫

R

f(t)
sin(s(t− z))

π(t− z)
dt (275)

On the other hand:

f(z) =

(∫ −1

−∞
+

∫ ∞

1

)
f(t)Xs(z, t)dt (276)

As f(z) =
(∫ −1

−∞ +
∫∞
1

)
f(t) Xs(z, t)dt =

(∫ −1

−∞ +
∫∞
1

)
f(t)Xs(z, t) dt one has Xs(z, t) = Xs(z, t)

for t ∈ R. We have for y1 and y2 real

Xs(y1, y2) =

∫

R\(−1,1)

Xs(y1, t)Xs(y2, t) dt =

∫

R\(−1,1)

Xs(y1, t)Xs(y2, t) dt = Xs(y2, y1) (277)

so more generally Xs(z1, z2) = Xs(z2, z1).

We apply (276) to f(z) = sin(s(z−y))
π(z−y) for some y ∈ C:

sin(s(z − y))

π(z − y)
=

∫

R\(−1,1)

sin(s(t− y))

π(t− y)
Xs(z, t) dt (278)
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We apply (275) to f(y) = Xs(z, y) for some z ∈ C:

Xs(z, y) =

∫

R

Xs(z, t)
sin(s(t− y))

π(t− y)
dt (279)

Combining we obtain:

Xs(z, y) −
sin(s(z − y))

π(z − y)
=

∫ 1

−1

Xs(z, t)
sin(s(t− y))

π(t− y)
dt (280)

Restricting to y ∈ (−1, 1), z = x ∈ (−1, 1), this says exactly:

Xs(x, y) = Rs(x, y) (281)

where Rs(x, y) is the kernel of the resolvent: 1 +Rs = (1−Ds)
−1, Rs −Ds = RsDs. The resolvent

Rs(x, y) is entire in (x, y) and the general formula is thus:

∀z, w ∈ C Rs(z, w) = Xs(z, w) . (282)
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