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SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS 

BY JEFFREY D. VAALER1 

1. Introduction. In the late 1930s A. Beurling observed that the entire 
function 

(1.1) B(z) = ( ^ ) 2 { t (z - n)-2 - £ (z - my2 + 2*"1} 

satisfies a simple and useful extremal property. We have 

(1.2) sgn(x)<B(x) 

for all real x and 

(1.3) ( B(x) - sgn(x) dx = 1. 
• ' - o o 

The function B(z) is entire of exponential type 2TT, and Beurling showed that 
if F(z) is any entire function of exponential type 2TT satisfying sgn(x) < F(x) 
for all real x9 then 

(1.4) ( F(x) - sgn(x)dx > 1. 

Moreover, he showed that there is equality in (1.4) if and only if F(z) = B(z). 
As an application Beurling found an interesting inequahty for almost periodic 
functions (we include it here in Theorem 15), but his results were never 
published. 

In 1974 A. Selberg used the function B(z) to obtain a sharp form of the 
large sieve inequahty. Selberg noted that if XE(X) ^S t r i e characteristic function 
of the interval E = [a, /?] and 

(1.5) CE(z)-\{B(fi-z) + B(z-a)}, 

then 

(1.6) XB(*)<CE(X) 
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184 J. D. VAALER 

for all real x. For x ¥= a and x =£ fl we have 

XE(X) = 2"{sgn(0 ~ x) + s S n (* ~ <*)}> 

so (1.6) follows immediately from (1.2). Since CE(x) is continuous, the 
restrictions on x can be removed. By using (1.3) and (1.5) Selberg observed 
that CE(x) is integrable along the real axis and 

CE(x) - XE(X) dx - 1. 
- 0 0 

Of course, CE(z) is entire of exponential type 277, but now, for applications, it 
is usually more convenient to work with an equivalent property of the Fourier 
transform of CE. Specifically, the Fourier transform 

Q ( 0 = / CE(x)e(-tx) dx 
• ' - o o 

(where we write e(u) = el7Tlu) is a continous function supported on [-1,1]. 
To illustrate one of the simplest applications of Selberg's function, let 

\l9 A2> • >Aw be real numbers and 
TV 

f{x) = £ a(n)e(Xnx) 

an almost periodic trigonometric polynomial. Suppose that XVX2,...,XN sue 
well spaced in the sense that \Xn — Xm\ > 1 whenever n =£ m. Using inequality 
(1.6) we have 

(1.8) [fi \f(x)\2 dx < f CE(x)\f(x)\2dx 

* * .oo 

E Za(n)a(m)f CE(x)e((Xn - Xm)x) dx 
n = l m — \ 

N N 

= I La(n)a(m)CE(K-K)-
« = 1 m — l 

Now CE(Xm — Xn) = 0 if \Xm - Xn\ > 1, so all of the nondiagonal terms on 
the right of (1.8) are zero. It follows that 

f \f(x)\2dx<CE(0)I. \a(n)\2=(p-a + l ) i \a(n)\2. 

More generally, if |XW — Xm| ^ ô > 0 for n =t m, then an obvious change of 
variables in the previous argument leads to the upper bound 

(1.9) / ' l /OOfdx < ( / * - « + f i - 1 ) ! \a(n)\
2. 

« n = l 

By modifying his original construction Selberg found an entire function cE{z) 
of exponential type 2m which satisfies the minorizing inequality cE(x) < x^(*) 
for all real x and also 

/
oo 

XE(X) ~cE(x)dx = 1. 
- n r , 
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Of course, this provides a lower bound which, when combined with (1.9), can 
be written as 

(1.10) f | / ( x ) | 2 J x = ( j 8 - « + öo-1) E \a(n)\2 

with -1 < 6 < 1. 
The identity (1.10) was also obtained by Montgomery and Vaughan [M-V] 

from a generalization of Hilbert's inequality. In fact, their form of Hubert's 
inequality can also be established directly from Beurling's inequality (1.2) and 
knowledge of the Fourier transform of B(x) - sgn(x). We provide the details 
in Theorem 16. 

The functions cE(z) and CE(z) occur as special cases of a general method 
for constructing entire functions of prescribed exponential type which minorize 
or majorize a given function of bounded variation. We describe this result in 
§4. 

Let 
M+N 

S(x) = E a(n)e(nx) 
n = M+l 

be a trigonometric polynomial with period 1, and let £1? £2>- ••>£/? t>e r e a l 
numbers which are well spaced modulo 1. Specifically, we suppose that 
ll£r ~~ £JI > $ > 0 for r # 5, where ||x|| is the distance from x to the nearest 
integer. In its most basic setting the large sieve is an inequality of the form 

R M+N 

(1-11) E |S(€r)l <A(JM) E \a(n)\\ 
r=l n = M+\ 

By using the function CE(z) Selberg established (1.11) with A(JV, ô) = N - 1 
4- 8 _1, which is sharp. An essentially equivalent bound with A(7V, 8) = N + 8~x 

was obtained at about the same time by Montgomery and Vaughan [Mon]. 
Selberg's proof of (1.11) is simple and direct. Let F(z) be the entire function of 
exponential type 2TT8 defined by F(z) = CE(8z), where E = [8(M + 1), 
8(M + TV)]. It follows that F(x) > 0 for all real x and F(x) > 1 for M + 1 < 

x < M + iV. Since 

we see that F is supported on [-8, 8] and F(0) = N — l + ô"1. By a theorem of 
Fejer [Boa, pp. 124-126] there is an entire function / ( z ) such that F(x) = 
| ƒ(x) | 2 for all real x,f(x) is obviously in L2(R), and 

/ ( * ) = r / 2 / ( < ) e ( z 0 ^ , 

that is, ƒ is supported on [-8/2, 8/2]. Now define 
M+N 

S*(x)= E a{n)f{n)~le{nx). 
n = M+l 

The identity 

(1.12) 5(x) = f f(u)S*(u + JC) C/M 
•'-fi/2 
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follows immediately. If we apply Cauchy's inequality to the right side of (1.12) 
we find that 

(1.13) \S(Q\2< f/2 \f(u)\2duf/2 \S*(u + Sr)\
2du 

J-K n J-K n 

= F(0)f'+S/2\S*(u)\2du. 

Finally, we sum both sides of (1.13) over r and use the well spacing of 
£x, f 2» • • ->£R m°d 1. In this way we obtain 

(1.14) £ \S(ir)\
2<F(0)f\S^u)\2du 

M + N 

= ( A T - I + Ô-1) £ k » ! ) ! 2 ^ » ) - 1 

n = M+l 

M+N 

<(N-l+8-1) £ \a(n)t 
n-M+1 

This method for proving the large sieve is implicit in [Sel, p. 215]. 
In view of the extremal property satisfied by Buerling's function B(z% one 

might expect that a similar property would hold for the function CE(z). This is 
indeed the case, but only if the length ft — a of the interval E is an integer. 
Selberg has shown that if F(z) is any entire function of exponential type 2TT 
which majorizes XE(X) along the real axis, then 

/
oo 

H*) - XB(X) àx > 1, 
- 0 0 

provided that ft - a is an integer. In this case CE(z) is clearly extremal; 
however, it is not unique. The set of all extremal functions for (1.15) was 
determined by Selberg (see [GV2, p. 289]). If ft — a is not an integer, then 
inequality (1.15) is false in general. B. Logan [Log] has found the correspond
ing extremal function for fi — a not an integer and established that it is 
unique. 

Although Selberg's function CE(z) is not extremal for every interval E, it 
has proved to be a useful device for establishing several important inequalities. 
A further account of its applications in connection with the large sieve is 
contained in [Mon, GVt, GV2 and Sel]. Our purpose here is to give a more 
general discussion of the extremal problems which motivated the construction 
of B(z) and CE(z) and to provide some additional applications. 

Our notation for Fourier transforms, Fourier series, and convolutions fol
lows that of Stein and Weiss [StW]. We say that a function ƒ: R -> C is 
normalized if 

(1.16) lim \{f(x + h)+f(x-h)}=f(x) 

for every real x. An entire function F(z), z = x 4- iy9 is said to have exporten-
tial type o > 0 if, for every e > 0, 

\f{z)\^A(e)e«>+*M 
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for all z and some positive constant A(e) which may depend on e. We write \\x\\ 
for the distance from the real number x to the nearest integer. 

ACKNOWLEDGEMENT. The author wishes to thank Professors Arne Beurling 
and Atle Selberg for helpful conversations about this paper. 

2. Special functions. We have noted that the function B{x) majorizes sgn(x) 
and minimizes the integral on the left of (1.8). Before proving these facts about 
B(x), we consider the following simpler question: How can sgn(jc) be ap
proximated by an entire function F(z) of exponential type o in such a way that 
the integral 

\F(x) - sgn(x)\dx 
- 0 0 

is minimized? This problem can be reformulated in terms of Beurling's theory 
of minimal extrapolation [Beu], and a solution can be constructed from a 
general method of Sz. Nagy [SNa] (see also Shapiro [Sha, Chapter 7]). Here, 
however, we shall take a more direct approach which can be suitably modified 
to deal with B(x) and the problem of majorizing sgn(x). 

If F(z) is an entire function of exponential type IT and F(x) is bounded on 
R, then F(z) can be represented by the interpolation formula (Timan [Tim, p. 
183] or Zygmund [Zyg, vol. II, p. 275]) 

(2.2) F ( r ) - ( ^ ) 

•JF(0)z-1+ £ (-l)"F(n)((z-«)-1 + «-1)+F'(0)J. 

This suggests that the special function 

(2.3) G ( z ) = ( ^ ) { £ ( - l J - s g n ^ X ^ - n ^ + n-O + l o g ^ , 
« = = - 0 0 

«*0 

which interpolates sgn(x) at the integers, should be a good approximation to 
sgn(x) on R. In fact, G(z) is the unique entire function which minimizes the 
integral (2.1) with a = IT. It will be clear from the following lemmas that our 
choice of G'(0) = log 4 is the right one. 

LEMMA 1. The function G(x) satisfies 

(2.4) 0 < sgn(sin7Tx){sgn(jc) - G(x)} < 
SUITTA; 

7TX 
( l + | x | ) -1 

for all real x. 

PROOF. We define functions UN(z) and GN(z) by 

(2.5) uM = (SJ^)L-1 + £ (-D"((*-«r1 + «-1)] 
^ ' \ n=-N J 
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(2.6) G „ ( z ) = ( ^ ) J ^ ( - i r s g n ^ C z - H)"1 + «-1) 

£ (-l)msgn(m)m M. 

m*0 

It follows that UN(z) -* 1 and (/^(z) -> G(z) uniformly on compact subsets 
of C as N -> oo. From (2.5) and (2.6) we have 

(2.7) sgn(sin7rx){t/2^(A:) - G2Ar(*)} 

Sin7TX 
IN 

x-1 + 2 £ ( - l ) n (x + «)_ 1 . 

Next we assume that x > 0 and reorganize the sum on the right of (2.7). We 
find that 

2N IN 2N 

x-1 + 2 £ (-l)"(x + «f1 = £ (-I)-(JC + H)"1 + Z (-l)m(^ + m)~l 

n—1 « = 0 m=l 
Af-1 

= £ { ( * + 2/)_1(x + 2/ + l )" 1 - ( J C + 2/ + l)'\x + 2/ 4- 2)"1} 
/=o 

+ (JC + 2N)~l 

= E (-i)n(x + «r i(x + « + i)- i+(x + 2iv)-1. 
« = 0 

Letting N -> oo we have 

(2.8) sgn(sin7Tx){l - G(x)} 

sm77\x s (-^"(x + ^ - ^ + w + i ) - 1 . 
«=o 

Finally, we use the estimate 

0 < E (-1)W(^ + «)_1(x + « + l)"1 < x'\x + l)"1 

«=o 
for the alternating series in (2.8) to deduce that (2.4) holds for x > 0. Since the 
expressions in (2.4) are even functions, the inequality must also hold for x < 0. 
The case x = 0 is trivial, so the lemma is proved. 

LEMMA 2. The function I(z) = \G'(z) satisfies 

(2.9) ƒ(*) « (1 + x2Yl 

for all real x. Thus I(x) is integrable, and its Fourier transform is given by 

TTt COt TTt if \t\ < 1 / 2 , 
(2.10) 7(0 = 0 if \t\ > 1/2. 
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PROOF. We write the function GN(z\ defined by (2.6), in the form 

/~ ^ \ ^ / \ r*» / xsin7r(z — n) 
(2.11) GN(z) = £ sgn(n) v / 

n = .N w{z-n) 
N 

= £ sgn(n)f e((z-n)t)dt. 
n—N - V 2 

By applying \{d/dz) to both sides of (2.11) and using the identity 

(2.12) E sgn(/i)e(-/iO = - i cot irr + i( ^ n ^ T / ' 
n=-N ^ ' 

we find that 

(2.13) - G ^ ( z ) = f1/2 {ntcot <nt}e(tz) dt 

-C(^}{cosv{2N+1)t)eitz)dt-' - 1 / 2 

As N -> oo, the second integral on the right of (2.13) converges to zero by the 
Riemann-Lebesgue lemma. This establishes the representation 

f l / 2 

-1/2 
(2.14) I(z)= fl/2 {irtcot irt}e(tz)dt. 

Next we define \p(t) = 77/ cot ?r£ for -1 < ƒ < 1 and integrate by parts twice in 
(2.14). We obtain 

I(z) = -(2TTZ)"2/772cot TTz + J 1 7 2 ^ ' (O^( tó ) * } , 

which proves the estimate (2.9). Of course, this also shows that I(x) is 
integrable, and (2.10) then follows from (2.14) by the Fourier inversion 
formula. 

COROLLARY 3. The Fourier transform of the function D(x) = G(x) — sgn(x) 
is given by 

<2'15) c w - { ( . « ) - { « 0 - 1 } ».*o. 
PROOF. Since D is odd we may assume that ? # 0. Then (2.15) is obtained 

from the formula 

1 r°° 
ƒ ( / ) - ! = x ƒ e(-fcc) dD(x) 

after an integration by parts. 

THEOREM 4. If F(z) is an entire function of exponential type a, then 

/
OO err 

\F(x) - sgn(.x)| dx > -
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for o > 0, and 

i \F(x) - sgn(x)| J x = 4-00 

for o = 0. Moreover, there is equality in (2.16) if and only ifF(z) = G{GTT~1Z). 

PROOF. We begin by assuming that o > 0; then, by an obvious change of 
variables, we may assume that a = IT. Let F(z) be an entire function of 
exponential type m such that 

/
oo 

\F(x) - sgn(x)| dx < oo. 
- 0 0 

By Lemma 1 the function sgn(x) — G(x) is integrable, so, by the triangle 
inequality, F(x) — G(x) is integrable. Since F(z) - G(z) has exponential type 
77, it follows from a classical result of Polya and Plancherai [P-P] that 
F'(x) — G'(x) is integrable. Finally, G\x) is integrable by Lemma 2, and thus 
F\x) must be integrable. This also shows that F(x) and F(x) - sgn(x) have 
bounded variation on R. 

For the remainder of the proof we write 4>(x) = F(x) - sgn(x) and <p(x) 
= \F\x). The Fourier transforms of \p and <p are related by the identity 

(2.18) ^(0 = («0 _ 1 {*(0-1} 
for t # 0. This follows immediately from 

1 z*0 0 

9 ( 0 - 1 = 2 ƒ «(-'*)<**(*) 
and an integration by parts. Since <p(z) = i-F'(z) is a n entire function of 
exponential type TT, the transform <p(t) is continuous and supported on [- \, \\ 
Thus, 

(2.19) ^t)^-(mt)-1 

if |/| > \. Next we observe that sgn(sin7r.x;) has period 2 and the Fourier series 
expansion 

2 °° 
(2.20) sgn(sin77x) = — £ (2Jfc 4- l)_1e((A: 4- £)*) . 

/c = - o o 

As sgn(sin7Tx) is a normalized function of bounded variation on [0,2], this 
Fourier expansion converges at every point x and the partial sums are 
uniformly bounded. Using (2.19) and (2.20) we obtain the lower bound 

/
oo I /«oo I 

|JF(JC) — sgn(x)| dx >\j \p(x)sgn(sin7rx) dx\ 

(2.21) m k — oo "•» 

Jr £ (2fc+l)-^(-(fc+l)) 
& = - o o 

4 oo 

4 I (2A:+1)-2=1. 
TT £ OQ 

A: 4- 2 )*) ^ 
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It is clear from the lower bound in Lemma 1 that there is equality in (2.21) if 
F(z) = G(z). On the other hand, if we assume that there is equality in (2.21) 
then {F(x) — sgn(x)}sgn(sin7rx) does not change sign. Since F(x) is continu
ous, we easily deduce that F(n) = sgn(«) at each integer n. From the interpo
lation formula (2.2) and (2.3) it follows that 

F(z) = G(z) + /3sin7Tz 

for some constant ft. But we have already seen that F(x) — <J(x) is integrable; 
thus 0 = 0. 

If F(z) has exponential type zero, then it is of exponential type a for every 
a > 0. Therefore (2.16) holds for every a > 0; hence (2.17) is false. 

We now turn our attention to the problem of majorizing sgn(x) by entire 
functions of exponential type. If F(z) is entire of exponential type 2TT, 
bounded on R, and an odd function, then F can be represented by the 
interpolation formula 

(2.22) F(z)=(™^)2 

£ F(m)(z-m)-2+ lim £ F{n){z - H)" 1 . 
1 — 00 N-*°° n—N I 

This is a special case of a more general identity which we prove in §3. Of 
course, the advantage of (2.22) over (2.2) is that (2.22) interpolates both F and 
F' at the integers. The price we pay for this is an increase in the exponential 
type from IT to 2 77. In view of (2.22) we define three special functions, each 
having exponential type Itr, as follows: 

H{z)=(^f-)2[ I s g n ( , n ) ( z - m ) - 2
 + 2 z A 

ƒ(*) « i # ' ( z ) , and * ( z ) = ( ^ ) 2 . 

We note that H(z) + K(z) is the function B(z) defined by (1.1). 

LEMMA 5. For all real x we have 

(2.23) \H{x)\ < 1 

and 

(2.24) |sgn(x) - H(x)\ < K(x). 

PROOF. It suffices to show that 

(2.25) 1 - K(x) < H(x) < 1 

holds for x > 0. The result will then follow easily from the observation that 
sgn(*) and H(x) are odd functions. 

From the identity 

t (z-m)-2=(^-f 
*-* V ' \ Sin TTZ I 
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we have (with x > 0) 

(2.26) H(x) = 1 +(^P) 2{2*- 1 - x-2 - 2 £ (JC + m)"2]. 

By the arithmetic-geometric mean inequality, 
00 00 

+ 2 L (x + m)~2= £ {(JC + m)"2 +(x + m + 1)~2} " 2 ^ I (JC + m)"2 = £ "~ - ^" 2 - ' - - - - ^'2 

1=1 m=0 

> 2 ^ (x + m) (jc + m + l ) = 2x_ l . 
m = 0 

It follows that the inequahty on the right of (2.25) holds for x > 0. On the 
other hand, 

00 00 

£ (JC + m)~2 < £ (* + "0_l(* + m + l)_ l = JC"1, 
m = l m — 0 

which, when combined with (2.26), confirms the inequality on the left of (2.25). 
The bound (2.24) obviously implies Beurling's inequality (1.2) and also 

shows that H(x) — sgn(jc) is integrable. To obtain (1.3) we note that 

/

oo /*oo /«oo 

i?(jc) - sgn(jc) dx = / K(x) dx + / H(x) - sgn(jc) dx 
- 0 0 ^ - 0 0 • ' - 0 0 

/
oo 

K(x)dx = 1, 
- o o 

since H(x) — sgn(jc) is odd. 
Next we consider the function J(z). 
THEOREM 6. The function J(x) is integrable and satisfies 

(2.27) / ( JC) <3C (1 +|JC|)"3 

for all real x. The Fourier transform ofJ(x) is given by 

(2.28) J(t) = I 7Tt(l ~ \t\) COt 7Tt + |*| /ƒ0 < |f| < 1, 

\0 ifl^\t\. 

The function J(t) is even, nonnegative, continuously differentiable, and strictly 
decreasing on [0,1]. 

PROOF. Let 

so that 

lim HN(z) = H(z) and lim \H'N(Z) = J(z) 
N-* oo N-* oo ^ 
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uniformly on compact subsets of C. From the identities 

(2.29) K{z)=f1(l-\t\)e(tz), 
J-l 

dt 

and 

(2.30) zK(z) = 7T~ fl sgn(t)e(tz) dt, 
2.7TI J_i 

we have 
N 

(2.31) HN(z)= £ sga(m)K(z-m) + 2zK(z) 
m = -N 

N 

f ( l - M ) Ë sgn(m)e(-mt)\e(tz)dt 
J~l \m—N J 

+ — f1 sgn(t)e(tz)dt. 

As in our proof of Lemma 2, we apply \{d/dz) to both sides of (2.31), use the 
identity (2.12) and the Riemann-Lebesgue lemma, and conclude that 

(2.32) J(z)= fl {vt(l -\t\) cot TTt +\t\) e (tz) dt. 

Let <p(t) = 7Tt(l — t)cot irt + t for -1 < t < 2, with <p defined by continuity 
at 0 and 1. We then write (2.32) in the form 

(2.33) / ( z ) = 2 f <p(t)cos(27Ttz) dt 

and integrate by parts three times. This provides the representation 

1 ( n AIT1 

J(z) = - { 2 / <p/,,(r)sin(277/z) dt r-sin27rz 
(2TTZ)3 I ô 3 

and also shows that (2.27) must hold. It is clear from (2.27) that J(x) is 
integrable and (2.28) follows from (2.32). The remaining properties attributed 
to J(t) are all easily verified. 

COROLLARY 7. The Fourier transform of the function E(x) = H(x) — sgn(x) 
is given by 

10 ift = 0, 

<2-34> '<'>-((rt)-(A.)-i) >f*o. 
We are now in a position to prove Beurling's result that the function B(z) is 

extremal in inequality (1.4). In §3 we show that the representation (2.22) also 
holds when F(z) has exponential type 2<n and is integrable on R. We use this 
fact in our proof of Beurling's theorem. 

THEOREM 8. Let F(z) be an entire function of exponential type a such that 
F(x)^ sgn(jc) for all real x. Ifa>0 then 

/
°° 2TT 

F(x) - sgn(x)dx > — ; 
Ï o 
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if a = 0 then 

(2.36) ( F(x) - sgn(x) dx = + oo. 
• ' - o o 

Moreover, there is equality in (2.35) if and only ifF(z) = Z?(a(27r)_1z). 

PROOF. If a > 0 then without loss of generality we may suppose that 
a = 2TT. We proceed exactly as in the proof of Theorem 4, but use H and / in 
place of G and I. We let 4>(x) = F(x) - sgn(x), q>(x) = iF'(x), and show 
that <p(x) is integrable. Again we obtain the identity 

^(o = (^r1{*(o-i} 
if t =£ 0. Since ç>(f ) is now supported on the interval [-1,1], we have 

(2.37) t(t) = -(mtyl 

for |f| > 1. 
At this point we use the Poisson summation formula (Zygmund [Zyg, Vol. I, 

p. 68]). Specifically, \p(x) is a normalized function of bounded variation; 
therefore 

00 00 

(2.38) £ <H* + 0 = E Um)e{mx) 
1—-0O m=*-oo 

at each point x (the symmetric partial sums of both series converge to the same 
value). From (2.37) we obtain 

00 00 

(2.39) £ $(m)e(mx) = $(Ö)~ £ (irin^^e^mx) 
m=*-oo m = -oo 

_ f#(0) + 2(jc -[x] - 1 / 2 ) if jc£ Z, 
~ \ ^ (0 ) i f x G Z . 

Now we observe that ^(x) > 0, and, hence, the function (2.38) is nonnegative. 
This obviously implies that $(0) ^ 1, which is exactly inequality (2.35). 

If there is equality in (2.35)—that is, if \p(Q) = 1—then 
00 

lim £ ^(x + 0 = 0. 

Hence, F(l + ) = sgn(/ + ), and therefore F(l) = 2?(/), at each integer /. Since 
F(JC) majorizes sgn(x), we also conclude that F\l) = 0 = # ' ( 0 at each integer 
/ ¥= 0. When we expand the entire function F(z) — B(z), which is integrable 
on R, by using (2.22), we find that 

F(z) - B(z) = (F'(0) - 2)zK(z). 

Since xK(x) is «0/ integrable, we must have F'(0) = 2; hence, F(z) = B(z). 
Finally, if o = 0 we deduce that (2.36) holds exactly as in our proof of 

Theorem 4. 

3. Interpolation formulas. The representation (2.22) is useful for constructing 
majorants because it allows us to control both F(n) and F'{n). We now give a 
general account of this interpolation formula. Throughout this section F(z) 
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will denote an entire function of exponential type a with a < 2TT. For 0 < p < 
oo let Ep be the set of those functions F(z) which satisfy 

ƒ 00 p 

\F(x)\ dx < oo forO <p < oo, 
- 0 0 

and 
sup |-F(*)| < oo for/? = oo. 

- 0 0 <X< 00 

If F(z) is in Ep, 0 < p < oo, then, by a result of Plancherel and Polya [P-P], 

(3.1) t \F(m)f«pr \F(x)fdx 
m = - o o - o o 

and 

(3.2) f \F'(x)\"dx^pr \F(x)fdx. 
• ' - 0 0 - 0 0 

For /? = oo the analogue of (3.2) is given by the classical inequahty of 
Bernstein [Bra]: if F(z) is in E°° then 

(3.3) sup \F'(x)\ < 2TT( sup | F ( J C ) | | . 
- 0 0 < X < 0 0 ^ - 0 0 < X < 0 0 ' 

By the Paley-Weiner theorem, F(z) is in E2 if and only if 

(3.4) F(z)= fl F(t)e(tz)dt 
J-i 

with F(t) in L2([-l , 1]). Of course, F(t) is the Fourier transform of F, defined 
for almost all t by 

F(t)= lim f F(x)e(-tx)dx 
r-»oo J-T 

and F ( 0 = 0 for almost all t, with \t\ > 1. 

THEOREM 9. Let F(z)be an entire function in Ep for some finite p. Then 

(
\ 2 ( oo oo \ 

^ E /•(».)(*-m)-2 + E F'(«)(z - «r1 , 
' V m = - o o « = - o o / 

u>/*ere the expression on the right of (3.5) converges uniformly on compact subsets 
ofC. 

If p = 2 f/ie Fourier transform F(t) occurring in (3.4) /las the form 
(3.6) F ( 0 = (1 - M)u F (0 +(27r/)-1sgn(/)Ü F(0 
for almost all t in [-1,1], w/iere wF ö«<i vF are periodic functions in L2([0,1]) with 
period 1 a«d Fourier series expansions 

00 

(3.7) « F ( 0 = E F(m)e(-»tf) 
m = - o o 

00 

(3.8) uF(t) = E F ( n ) e ( - « 0 -
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If p = 1 then (3.7) and (3.8) are absolutely convergent, uF and vF are 
continuous, and (3.6) holds f or all t in [-1,1]. In particular•, 

00 

(3.9) £ F(m) = uF(0) = H0) 

and 

(3.10) £ / » = vF(0) = 0. 
« = - 0 0 

PROOF. TO begin with, we suppose that/? = 2, so F(z) is given by (3.4). For 
0 < t < 1 we define 

(3.11) Up(t) = F(t) + F(t-l) 

and 

(3.12) vF(t) = 2iri{fJP(0 + (/ - l)F(f - 1)}. 

We then extend the domain of uF and vF to R by requiring that both functions 
have period 1. Since F is in L2([-l,l]), it is clear that uF and vF are in 
L2([0,1]). The identity (3.6) follows easily from (3.11), (3.12), and the periodic
ity of uF and vF. To obtain the expansions (3.7) and (3.8), we note that 

F(n) = f [F(t) +F(t-\)}e{tn)dt= f uF(t)e{tn) dt 

and 

F'(n) = f 2vTitF(t)e(tn) dt 
J-i 

= fl 2m{tF(t) +(t - l)F(t - l)}e(tn) dt 

= f vF(t)e(tn) dt 

for each integer n. Thus, F(«) and F'{n) are the Fourier coefficients of uF and 
uF, respectively. 

Next we apply the Fourier transform identities (2.29) and (2.30). It follows 
that for each positive integer N, 

(3.13) ( ^ f f E F(m)(z-m)-2
+ £ F>(r,)(z - n)"1} 

= f {(! ~\t\)uF(t, N) +(2<iri)-\gn{t)vF{t, N)} e{tz) dt, 

where 

and 

N 

uF(t,N)= £ F(m)e(-mt) 
m = -N 

N 

vF(t9N)= £ F'(n)e(-nt). 
n = -N 
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Since the sequences F(m) and F'(n) are square summable, the left side of 
(3.13) converges uniformly on compact subsets of C as N -> oo. On the right 
side of (3.13) we have uF(t, N) -> uF{t) and vF(t, N) -> vF(t) in L2-norm. 
This is all we need to establish the representation (3.5). 

If p = 1 then (3.1) and (3.2) imply that uF(t) and vF(t) have absolutely 
convergent Fourier series. Thus, we may take uF and vF to be continuous 
periodic functions. Since F(t) is now continuous and supported on [-1,1], the 
identity (3.6) must hold for all t in [-1,1]. If we let t = 0, then (3.9) and (3.10) 
follow immediately. 

Finally, we must show that (3.5) holds if F(z) is an entire function in Ep 

with 2 < p < oo. We accomplish this by considering the entire function 
fz-l(F(z) - F(0)) i f z # 0 , 

(3.14) R(z) . , x 
V J V ' \F'(0) ifz = 0 
and its derivative 

f z"2(F(0) + zF'(z) - F(z)) if z # 0, 
(3.15) * ' ( z ) . , , x 

V ' UF ' (O) ifz = 0. 
Since # (z ) is in E2, by the first part of our proof we have 

(3.16) R(Z)= lim (™f-)2 

•[ £ R(m)(z-my2+ £ R'{n){z-n)-

uniformly on compact subsets of C. Next we multiply both sides of (3.16) by z 
and use (3.14) and (3.15). After a brief computation we find that 
(3.17) F{z)-F(0) 

= lim f ^ ^ ) 2 / £ F(m)(z-my2+ £ F'(n)(z - n)"1 

m=-N n=-N 

+ £ R'(k)-F{o) E ( z - / ) -

As the identity 
OO / \7 

£ ( z _ , ) - 2 _ L 7 « _ 2 

, v 7 V s m 77Z / / = - 0 0 

is well known; all that remains is to show that 

lim £ R'(k) = 0. 

We have 

(3.18) f \R'(x)\ dx^ f |x|"2|F(0) - F(JC) | dx 
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The first integral on the right of (3.18) is obviously finite. The second integral 
is also finite because F'(x) is in LP(R) by (3.2). Thus, R'(z) is in E1. Since we 
have already established (3.10) for functions in E1, we obtain 

E R'(k)= ƒ R'(x)dx = 0. 
k — oo -«> 

This completes our proof. 

THEOREM 10. Let F(z) be an entire function of exponential type o with 
o < 277, let R(z) be defined by (3.14), and suppose that R(z) is in Ep for some 
finite p. Then 

(3.19) F ( z ) = ( ^ ) 2 ( £ F(m)(z - my2 + F>(0)z-i 
^ ' \ m — -oo 

+ E F'(«){(z-«ri + «- i}+^F, 
rt = -oo I 

where the expression on the right of (3.19) converges uniformly on compact 
subsets ofC, and A F is a constant given by 

(3.20) AP-\F'{Q)+ t (F(0)-F(n))n-\ 
« = = - 0 0 

PROOF. Since R(z) is in Ep, we may apply Theorem 9. As in the proof of 
that result, we find that (3.16) and (3.17) holds. Now, however, we reorganize 
(3.17) and use (3.15) to obtain 

F{z)= U m (BBH)2 

• E F(m)(z - my2 + F'(0)z~l + £ *"("){(* - n)~l + n~1} 
I m—N n—N 

(3.21) "*° 

+ | F ' ( 0 ) + E (F(0)-F(k))kA. 
L k—N I 

k*0 ' 

If 0 < p < q < oo, then Ep Q Eq. Thus, we may assume without loss of 
generality that 1 < p < oo. It follows that 

00 00 

(3.22) £ | F ( m ) m - 1 f = E \R(m) + F^m^f 
w ^ - o o 

00 

< 2 > £ {\R(m)\P+\F(0)m-i\P}<ao, 

m — -oo w^-oo 

w = -oo 
w # 0 
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and 

(3.23) £ \F'(n)n~l\P = E \R'(n) + R^n-1? 

n*0 n*0 

00 

< 2 ' Z {\R'(n)f+\R(n)n-l\P}< 00. 
« = - 0 0 

n*0 

For the series defining A F we also have 

00 00 

(3.24) L \(F(0)-F(k))k-2\= £ IH^Wk]-1 < 00. 
k = ~oo k = -oo 

k*0 k*0 

Estimates (3.22)-(3.24), together with (3.21), show that the right side of (3.19) 
converges uniformly on compact subsets, with AF given by the absolutely 
convergent series (3.20). 

We note that if F(z) is odd and bounded on R, then AF = 0 and (3.19) 
reduces to (2.22). 

4. Majorizing functions of bounded variation. Let ƒ : R -> C be a normalized 
function of bounded variation. The results of §2 can be applied in a simple 
way to prove approximation and majorization theorems for such a function ƒ. 
We use the following notation: If 8 > 0 we write F8(x) = 8F(8x). If F(x) is 
integrable we have F8(t) = F(8~lt). In this case we also define the convolu
tions 

and 

f(i)F(x - | ) di 

(df)*F(x)= f F(x-i)dfH). 

For entire functions F(z) of exponential type a with F(x) integrable, it is easy 
to verify that ƒ * F(z) and (df )* F(z) have exponential type at most a. We 
denote the total variation of ƒ on (-oo, x] by Vf (x) and let Vf = l i m ^ +O0Vf(x). 

THEOREM 11. The entire function f * Is(z) has exponential type at most 7r8 and 
satisfies 

ƒ 00 -, 

\f(x)-f*I8(x)\dx<(2Sy1Vf. 
- 0 0 

The entire functions ƒ * Js(z) and (dV^)* K8(z) have exponential type at most 
2TTÔ and satisfy 

(4.2) \f(x)-f*Js(x)\ < (2Ô)-l{dVf)*Ks(x) 

for all real x. 


