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Abstract. We develop an approach to the classical limit of quantum theory
using the mathematical framework of nonstandard analysis. In this frame-
work infinitesimal quantities have a rigorous meaning, and the quantum me-
chanical parameter h can be chosen to be such an infinitesimal. We consider
those bounded observables which are transformed continuously on the stan-
dard (non-infinitesimal) scale by the phase space translations. We show that,
up to corrections of infinitesimally small norm, such continuous elements
form a commutative algebra which is isomorphic to the algebra of classical
observables represented by functions on phase space. Commutators of differ-
entiable quantum observables, divided by h, are infinitesimally close to the
Poisson bracket of the corresponding functions. Moreover, the quantum time
evolution is infinitesimally close to the classical time evolution. Analogous
results are shown for the classical limit of a spin system, in which the half-
integer spin parameter, i.e. the angular momentum divided by 7, is taken as
an infinite number.
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1 Introduction

The classical limit of quantum mechanics is often identified with the WKB
[Mas, BS] method. While this approach gives a good picture of the asymp-
totic behaviour of solutions of the Schrodinger equation as h — 0, it does
not give a satisfactory explanation why in this limit the non-commutativity
of quantum observables suddenly turns into the commutativity of classical
observables. The same is true of approaches based on Feynman integrals
[AHK], and on the limits of coherent states [Hep, Hag]. An approach to
the classical limit emphasizing the limit of observables and their algebraic
structure has recently been developed in [We2] (compare also [Rie, Em1]).
This approach makes rigorous the intuitive criterion for deciding which ob-
servables in quantum theory may effectively be treated classically: classical
observables should not change too much under small position or momentum
translations, where, due to the relation p = Ak, a small momentum transla-
tion might still correspond to a large translation in terms of wave numbers.

The aim of this paper is to show that a full theory of the classical limit can
be based on this single physical idea. We make use of nonstandard analysis
[Rob, AFHL]| because it allows us to describe an infinite separation of scales
inside a single mathematical structure. The main idea is that our usual
“standard” quantities can be embedded into a larger structure containing
also infinitely small and infinitely large quantities (this embedding is to a
certain extent comparable to the embedding of the reals into the complex
numbers). Like almost all results of nonstandard analysis our results can be
translated into statements about ordinary limits (in an abstract sense), e.g.
an infinitesimal (i.e. an infinitely small) number can be seen as nothing but
a maximally detailed description of how a sequence of real numbers can go
to zero. The actual construction of quantum theory with infinitesimal A is
completely trivial, thanks to a powerful principle of nonstandard analysis,
called the Transfer Principle. It states that whatever can be formulated
correctly in standard terms is immediately true or defined, respectively, in
the nonstandard world. In contrast to standard analysis the key here is not
to go to the limit, but to extract from the limiting theory the “standard
part”. Here the above mentioned physical idea gives an immediate criterion:
we only need to restrict the theory to observables which are continuous on
the standard scale, and then to neglect infinitesimal terms.

This formulation corresponds completely to the physical intuition. More-
over it is much more compact than the formulation in conventional mathe-
matical terms [We2] on which it is based. At the same time it retains full
mathematical rigour. Due to its extreme simplicity the nonstandard formu-
lation is also more suggestive of further generalizations. Another bonus is
that some proofs are simplified, but this is not our main point, and, in fact,
we draw heavily on the standard techniques of proof.

We briefly review some ideas and notation relating to nonstandard anal-
ysis. There are quite good introductions to the subject [Lin, AFHL, HL],



including undergraduate calculus courses based on it [Kei], and we refer to
these for more detailed information. Whenever it is convenient we denote an
entitiy of our standard mathematical world by a prefix “*” if it is considered
in the nonstandard universe. For example the real line is denoted by *IR. It
contains elements of the form *r, where » € IR is an ordinary real number,
but by far not all elements of *IR are of this form. In particular, there are
infinitesimals £ € *IR with the property that ¢ > 0, but ¢ < *r for every
r > 0. When z,y € *R, we write “x ~ y” for “z — y is infinitesimal”. The
infinitesimals have a decent arithmetic and, for example, the inverse of an
infinitesimal is an infinite number, which is larger than any standard real *r
in accordance with our intuition.

2 Classical limit for phase space observables

The first structure to which we will apply the Transfer Principle is an ir-
reducible representation of the canonical commutation relations in Weyl
form with d < oo degrees of freedom, i.e. we consider on the Hilbert space
H = L?(IR?) the unitary operators W (z, p) of phase space translations given
by

(W) ) = exp { =i + i 2k iy —a) (1

Alternatively, these operators can be written as
W (a,p) = emFHeQ (2)

where P and Q denote the usual momentum and position operators, and
the dot stands for the scalar product in R?. It will often be convenient to
denote phase space points (x, p) by a single letter £. The Euclidean length of
¢ is written as |£| = (v - 2 4+ p - p)'/2. Observables are described by bounded
operators A on the Hilbert space, written as A € B(#). On the observables
the Weyl operators implement the phase space translations a¢ via

ag(A) = W(E) AW()" . (3)

By the transfer principle all these formulas make sense also in the non-
standard world, i. e. for observables A € *B(#), for phase space points
&= (x,p) € *R?, and for any value of the constant % € *IR, including in-
finitesimal or infinite numbers. (We refrain from taking the number d of
degrees of freedom to be an infinite number in *IN). The norm is a well-
defined *R-valued function on *B(#), and, of course, it can be infinitesimal,
as well as infinite. We will call A € *B(H) infinitesimal, writing A ~ 0, if
|A]| ~ 0, and we will say that A € *B(H) is finite, if there is an ordinary
real number r € *R such that [|A|] < *r.

We can now state the basic idea of this paper: inside this monstrously
large object *B(#H) we will single out those operators that are well-behaved in



the sense of the classical limit. The Weyl operators themselves are an example
of badly behaved operators, since they oscillate wildly on an infinitesimal
scale. In contrast, operators that we can imagine as “observables” ought
to depend continuously on P and Q. We define the algebra D C *B(H) of
“good” observables as those finite elements A € *B(H), such that ag(A) is
continuous on the standard scale. Nonstandard analysis offers two equivalent
ways of making this phrase precise. The first is to say that for all standard
¢ € R we can find a standard 6 € R such that [{] < *¢ implies |Jag(A) — Al <
*e. The second is to say that

Ex0 implies ag(A)~ A . (4)

For example, it is seen immediately that the Weyl operators fail this def-
inition, whereas, if we scale down their oscillations by a factor A, they do
become continuous. Indeed, due to the commutation relations of the Weyl
operators, we have

ag(W(hn)) = &N W (hn) | (5)

where o((x,p), (¢',p')) = p-a' —x - p' is the symplectic form on phase space.
Since the exponential factor is continuous in £ on the standard scale, we have
W (hn) € D, if n is finite. Also, every infinitesimal operator is in D. Thus D
is every bit as non-commutative as *B(H). The surprise is, however, that we
only need to neglect infinitesimal terms to see in it the observable algebra of
classical mechanics.

Theorem. Let D C *B(H) be the algebra of continuous observables defined
above, and let D denote the same algebra, but with all infinitesimal ele-
ments identified with 0. Then Dy is canonically isomorphic to the algebra
of bounded uniformly continuous functions on phase space.

We sketch the rather simple proof because it uses only ideas well-known
from the physics literature, and gives an explicit description of the isomor-
phism claimed in the Theorem. Let €2 denote the ground state wave function
of the oscillator Hamiltonian H = (P24 Q?)/2 = (—h*A + Q?)/2. Then for
any A € B(H), we define a function on phase space by

(STA)(€) = (W(O)Q, AW (£)Q)
= (2 a(A)Q) . (6)

This is variously called the lower symbol [Sim|, a smeared Wigner function
[Car|, the Husimi function [Tak], or the convolution with a coherent state
[Wel] of the operator A. In the other direction, we have the upper symbol
[Sim], or P-representation [KS] (also going by many other names) which
assigns an operator to each bounded measurable function f via

St = fgms fap)ac(9)(@) o



Unlike the Wigner-Weyl isomorphisms between operators and phase space
functions, these operators map positive elements into positive elements.
Moreover, STS* and S*ST are both operators which just average over trans-
lations with a Gaussian weight. Explicitly,

2
stsi(a) =[S éfr ;g’ €/ 2h) o) . (8)
By transfer, all these formulas remain valid in the nonstandard case. How-
ever, since h is infinitesimal, the Gaussian factor is a nonstandard repre-
sentation of a Dirac J-Function. Hence for continuous operators A € D,
S¥ST(A) ~ A. Identifying infinitesimally close elements we find that ST and
S+ become inverses of each other. On the other hand, it is clear that, for
A € D, the function ST(A) is also finite and continuous in the sense of equa-
tion (4), ag¢ being interpreted as the phase space translation of functions.
This is the same as saying that «, is uniformly continuous up to infinitesi-
mals. Hence Dy is isomorphic to the space of bounded uniformly continuous
functions on phase space. Because ST and S¥ both preserve positivity, these
isomorphisms respect the ordering as well. This implies that they are also
algebraic isomorphisms.

Since the product of functions is commutative, we have that AB—BA ~ 0
for A, B € D. For sufficiently smooth observables we can even determine the
precise order of this infinitesimal. We say that A € D is twice differentiable,
if it has “partial derivatives” A;, A;; € D such that { ~ 0 implies

ag(A) A+252A + Z €Ay +ED(E) (9)
i,j=1
where D(£) ~ 0. Here &; denotes the components of &, i.e. the d position and
the d momentum coordinates. Applying ST and ag¢y, = aga, we see that
ST(A) is twice differentiable with uniformly continuous bounded derivatives.
Then, if A, B € D are twice differentiable, we get

T4, B] ~ ST (4), ST(B)} (10)

where the braces on the right hand side denote the Poisson bracket of the
phase space functions. The operators ST and St just effect the isomorphism
between functions and operators given by the Theorem. The proof of formula
(10) is rather involved, but completely parallel to the standard proof of the
analogous result in [We2|, so we will omit it.

An instructive example is the case of Weyl operators with slowed-down
oscillation, i.e. W (hn) for finite n. Their classical limits are the exponential
functions

(STW (h))(§) = em -/t it (1)

with the “symplectic form” {(z1,p1), (2, p2)} = p1-22—p9-x1. Commutators
become

%[W(hf)’w(hn)]z—sm( {EmHW (R(E+m) (12)



Because h ~ 0, and &, n are finite, the factor is & {£, n}, from which equation
(10) is verified by applying ST to each Weyl operator.

By equation (10) the quantum mechanical equations of motion are in-
finitesimally close to the classical ones. The same is also true for the solu-
tions of these equations: If H € D is a hermitian operator, we define the
time evolution of an observable A € D as usual by

Then one can prove as in the standard case [We2| that
(STAM)(©) = (STA)(FE) (14)

Here F;£& denotes the solution of Hamilton’s equation of motion with Hamil-
tonian function STH for the time interval ¢ with initial condition &.

3 Classical limit for spin systems

The same basic idea for obtaining a classical limit works in a number of other
contexts. We present here the case of spin systems, restricting attention
to a single spin, for simplicity of presentation. The basic relation here is
that angular momentum, which is the quantity remaining meaningful in the
classical limit equals hs, where s is the usual integer or half-integer spin
parameter labelling the irreducible representations of SU(2). Hence in this
context A — 0 simply means s — oc. The nonstandard approach to this
limit is to take an an irreducible representation U of *SU(2) with infinite spin
s € %*]N, where *IN denotes the nonstandard version of the natural numbers.
The nonstandard notions of “representation” and “irreducibility” are again
defined by the Transfer Principle. Since standard rotations R € SU(2) are
contained in *SU(2) in the form *R € *SU(2), and since the nonstandard
representation space is also a complex vector space with scalar multiplication
restricted to standard numbers, SU(2) is also represented by the infinite spin
representation, but, of course, this representation is highly reducible as a
standard representation.

The analogue of the Theorem in the previous section is proved precisely
along the same lines, with the Weyl operators replaced by the representing
unitaries Ug, and the coherent state () replaced by the eigenvector of the
rotations around the 3-axis with maximal eigenvalue (namely s). The ana-
logue of the phase space is the orbit of the one-dimensional projection |2)(Q]
under rotations, which is isomorphic in an obvious way to the (nonstandard)
sphere. The measure “d¢” is thus replaced by the integration over the sphere.
The operators ST, S* are also defined analogously, and that S* maps the con-
stant function into the identity operator is obvious from the irreducibility of

U.



Only one thing really has to be verified, namely that the kernel describing
the operator S*ST is infinitesimal outside the so-called monad {¢ : ¢ ~ 0} of
the north pole, i.e. if

[ cos(d/2)  sin(6/2)
R=( 55 onls))) (15)

is the SU(2)-rotation taking the north pole to latitude ¢ < 27,
QURD*~0 , unless ¢~0 . (16)

This can be seen without computation by realizing the spin-s representation
as the subrepresentation of a tensor product of 2s copies of the defining (spin-
1/2) representation, namely the representation on the completely symmetric
(Bose-) subspace. In this subspace € is identified with the product of 2s
“spin up” vectors. The matrix element we have to compute is thus equal to
(cos(¢/2))*, and the estimate (16) follows.

Scaled commutators of the form is[A, B] become Poisson brackets as be-
fore. The “phase space” on which this bracket lives is the sphere, which is
slightly unusual in that it does not contain unbounded momenta. The Pois-
son bracket is uniquely determined by the condition that the three coordinate
functions on the sphere (which are the limits of the angular momentum com-
ponents divided by s) satisfy angular momentum “commutation” relations.
In differential geometric terms this is saying that the symplectic form is the
surface 2-form of the sphere. Moreover, the dynamics converges in the same
sense as before.

For the proof of these statements it is helpful once again to look at the
spin-s representation as a representation on the permutation symmetric sub-
space of 2s spins-1/2. One can then appeal to the theory of mean-field lattice
systems in which permutation symmetry is the key ingredient, and in which
these results already exist. We refer the reader to [RW, DW] for the standard
version of this theory, and to [Wo, WH] for its nonstandard form.

Generalizations to compact Lie groups other than SU(2), or to several
interacting spins are straightforward using the appropriate coherent states
and symbol maps [Sim]. For a discussion of phase measurements in the
classical limit, also using nonstandard methods, see [Oza].
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