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Introduction

Sym
m

etry and invariance considerations, and
even conservation law

s,
undoubtedly played an im

portant role in the
thinking of the early

physicists, such as G
alileo and

N
ew

ton, and probably even before them
.

H
ow

ever, these considerations w
ere not thought

to be particularly im
-

portant and w
ere articulated only rarely. N

ew
ton's

equations w
ere not

form
ulated in any special coordinate

system
 and thus left all directions

and all points in
space equivalent. T

hey w
ere invariant under rotations

and displacem
ents, as w

e
now

 say. T
he sam

e applies to his gravitational
law

. T
here w

as little point in em
phasizing this

fact, and in conjuring up
the possibility of law

s of nature w
hich show

a low
er sym

m
etry. A

s to
the conservation law

s, the
energy law

 w
as useful and w

as instinctively
recognized in m

echanics even before G
alileo.' T

he
m

om
entum

 and
angular m

om
entum

 conservation theorem
s in their full

generality w
ere

not very useful even though in the special
case of central m

otion they
give, of course, one of K

epler's law
s. M

ost books
on m

echanics, w
ritten

around the turn of the century and
even later, do not m

ention the gen-
eral theorem

 of the conservation of angular
m

om
entum

.2 It m
ust have

R
eprinted by perm

ission from
 the Proceedings

of the N
ational A

cadem
y of Sci-

ences, V
ol. 51, N

o. 5 (M
ay, 1964).

G
. H

am
el, in his T

heoretische M
echanik (Stuttgart: B

. C
.

T
eubner, 1912)

m
entions (p. 130) Jordanus de N

em
ore (1300)

as having recognized essential
features of w

hat w
e now

 call m
echanical

energy and L
eonardo da V

inci as having
postulated the im

possibility of the Perpetuuin M
obile.

2 F. C
ajori's H

istory
of Physics (N

ew
 Y

ork: M
acm

illan C
om

pany, 1929) gives
exactly half a line to it (p. 108).
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been know
n quite generally because those dealing w

ith the three-body
problem

, w
here it is useful, w

rite it dow
n

as a m
atter of course. H

ow
-

ever, people did not pay very m
uch attention to it.

T
his situation changed radically,

as far as the invariance of the equa-
tions is concerned, principally as a result of E

instein's theories. E
instein

articulated the postulates about the
sym

m
etry of space, that is, the

equivalence of directions and of different points of
space, eloquently.5

H
e also re-established, in a m

odified form
, the equivalence of coordinate

system
s in m

otion and at rest. A
s far as the conservation law

s are
con-

cerned, their significance becam
e evident w

hen,
as a result of the in-

terest in B
ohr's atom

ic m
odel, the angular m

om
entum

 conservation
theorem

 becam
e all-im

portant. H
aving lived in those days, I know

 that
there w

as universal confidence in that law
as w

ell as in the other con-
servation law

s. T
here w

as m
uch reason for this confidence because

H
am

el, as early as 1904, established the connection betw
een the

con-
servation law

s and the fundam
ental sym

m
etries of

space and tim
e.4

A
lthough his pioneering w

ork rem
ained practically

unknow
n, at least

am
ong physicists, the confidence in the conservation law

s w
as as strong

as if it had been know
n as a m

atter of course to all. T
his is yet another

exam
ple of the greater strength of the physicist's intuition than of

his
know

ledge.
Since the turn of the century,

our attitude tow
ard sym

m
etries and

conservation law
s has turned nearly full circle. Few

 articles
are w

ritten
now

adays on basic questions of physics w
hich do

not refer to invariance
postulates, and the connection betw

een conservation law
s and

invari-
arice principles has been accepted, perhaps too generally.5 In addition,
the concept of sym

m
etry and invariance has been extended

into a new
area—

an area w
here its roots are m

uch less close to direct experience
and observation than in the classical

area of space-tim
e sym

m
etry. It

m
ay be useful, therefore, to discuss first the relations of phenom

ena, law
s

of nature, and invariance principles
to each other. T

his relation is not
quite the sam

e for the classical invariance principles, w
hich w

ill be
called geom

etrical, and the new
ones, w

hich w
ill be called dynam

ical.
8 See, for instance, his sem

ipopular booklet
R

elativitatstheorie (B
raunschw

eig:
Friedr. V

iew
eg und Sohu, various editions, 19164956).

4 C
. H

am
el, Z

. M
ath. Phys.,

50, 1 (1904); F. E
ngel, G

es. d. W
iss. G

ottingen, 270
(1916).

5 See the present w
riter's article, Progr. T

heoret. Phys.,
11, 437 (1954); also

Y
. M

urai, Progr. T
heoret. Phys., 11, 441 (1954); and

m
ore recently D

. M
. G

reen-
berg, A

nn. Phys. (N
.Y

.), 25, 290 (1963).
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Finally, I w
ould like to review

, from
a m

ore elem
entary point of view

than custom
ary, the relation betw

een conservation law
s and

invariance
principles.

E
vents, L

aw
s of N

ature, Invariance Principles

T
he problem

 of the relation of these
concepts is not new

; it has occu-
pied people for a long tim

e, first alm
ost subconsciously.

It m
ay be of

interest to review
 it in the light of our greater experience

and, w
e hope,

m
ore m

ature understanding.
From

 a very abstract point of view
, there is

a great sim
ilarity betw

een
the relation of the law

s of nature to the
events on one hand, and the

relation of sym
m

etry principles to the law
s of

nature on the other. L
et

m
e begin w

ith the form
er relation, that of the law

s of nature to the
events.

If w
e knew

 w
hat the position of

a planet w
ill be at any given tim

e,
there w

ould rem
ain nothing for the law

s of physics
to tell us about the

m
otion of that planet. T

his is true also
m

ore generally: if w
e had a

com
plete know

ledge of all events in the
w

orld, everyw
here and at all

tim
es, there w

ould be no use for the law
s of physics,

or, in fact, of any
other science. I am

 m
aking the rather obvious

statem
ent that the law

s
of the natural sciences are useful because w

ithout them
w

e w
ould know

even less about the w
orld. If w

e already knew
 the position of the planet

at all tim
es, the m

athem
atical relations betw

een these positions w
hich

the planetary law
s furnish w

ould not be useful butm
ight still be inter-

esting. T
hey m

ight give us a certain pleasure and perhaps
am

azem
ent to

contem
plate, even if they w

ould not furnish
us new

 inform
ation. Perhaps

also, if som
eone cam

e w
ho had som

e different inform
ation about

the
positions of that planet, w

e w
ould

m
ore effectively contradict him

 if his
statem

ents about the positions did not conform
 w

ith the planetary law
s—

assum
ing that w

e have confidence in the law
s of nature w

hich
are em

-
bodied in the planetary law

.
L

et us turn now
 to the relation of

sym
m

etry or invariance principles
to the law

s of nature. If w
e know

 a law
 ofnature, such as the equations

of electrodynam
ics, the know

ledge of the subtle
properties of these

equatious does not add anything to the content of these
equations. It

m
ay be interesting to note that the correlations betw

een events w
hich

the equations predict
are the sam

e no m
atter w

hether the events are
view

ed by an observer at rest,or an observer in uniform
 m

otion. H
ow

-

ever, all the correlations betw
een events are already given by the equa-

tions them
selves, and the aforem

entioned observation of the invariance
of the equations does not augm

ent the num
ber

or change the character
of the correlations.

M
ore generally, if w

e knew
 all the law

s of
nature, or the ultim

ate law
of nature, the invariance properties of these law

s w
ould

not furnish us
new

 inform
ation. T

hey m
ight give us a certain pleasure and perhaps

am
azem

ent to contem
plate, even though they w

ould not furnish
new

inform
ation. Perhaps also, if som

eone
cam

e around to propose a dif-
ferent law

 of nature, w
e could

m
ore effectively contradict him

 if his
law

 of nature did not conform
 w

ith
our invariance principle—

assum
ing

that w
e have confidence in the invariance principle.

E
vidently, the preceding discussion of the relation of the law

s of
nature to the events, and of the sym

m
etry or invariance principles to

the law
s of nature is a

very sketchy one. M
any, m

any pages could be
w

ritten about both. A
s far as I can

see, the new
 aspects w

hich w
ould

be dealt w
ith in these

pages w
ould not destroy the sim

ilarity of the
tw

o relations—
that is, the sim

ilarity betw
een the relation of the law

s of
nature to the events, and the relation of the invariance principles to
the law

s of nature. T
hey w

ould, rather, support it and confirm
 the func-

tion of the invariance principles to provide a structure
or coherence

to the law
s of nature just as the law

s of nature provide a structure and
coherence to the set of events.

G
eom

etrical and D
ynam

ical Principles of Invariance

W
hat is the difference betw

een the old and w
ell-established geom

etri-
cal principles of invariance, and the novel, dynam

ical ones? T
he

geo-
m

etrical principles of invariance, though they give
a structure to the

law
s of nature, are form

ulated in term
s of the events them

selves.
T

hus,
the tim

e-displacem
ent invariance, properly form

ulated, is: the
corre-

lations betw
een events depend only

on the tim
e intervals betw

een the
events, not on the tim

e at w
hich the first event takes place. If P1, F2, P3

are positions w
hich the aforem

entioned planet can assum
e at tim

es
t1, t2, t3, it could assum

e these positions also at tim
es t1 +

 t, t2 +
 t, t3 +

 t,
w

here t is quite arbitrary. O
n the other hand, the

new
, dynam

ical prin-
ciples of invariance are form

ulated in term
s of the law

s of nature. T
hey

apply to specific types of interaction, rather than to
any correlation be-

tw
een events. T

hus, w
e say that the electrom

agnetic interaction is
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gauge invariant, referring to a specific law
 of nature w

hich regulates the
generation of the electrom

agnetic field by charges, and the influence of
the electrom

agnetic field on the m
otion of the charges.

It follow
s that the dynam

ical types of invariance are based on the
existence of specific types of interactions. W

e all rem
em

ber having read
that, a long tim

e ago, it w
as hoped that all interactions could be derived

from
 m

echanical interactions. Som
e of us still rem

em
ber that, early in

this century, the electrom
agnetic interactions w

ere considered to be
the source of all others. It w

as necessary, then, to explain
aw

ay the
gravitational interaction, and in fact this could be done quite

success-
fully. W

e now
 recognize four or five distinct types of interactions: the

gravitational, the electrom
agnetic, one or tw

o types of strong (that is,
nuclear) interactions, and the w

eak interaction responsible for beta
decay, the decay of the p m

eson, and som
e sim

ilar phenom
ena. T

hus,
w

e have given up, at least tem
porarily, the hope of one single basic

interaction. Furtherm
ore, every interaction has a dynam

ical invariance
group, such as the gauge group for the electrom

agnetic interaction.
T

his is, how
ever, the extent of our know

ledge. O
therw

ise, let us not
forget, the problem

 of interactions is still a m
ystery. U

tiyam
a6 has stim

u-
lated a fruitful line of thinking about how

 the interaction itself
m

ay be
guessed once its group is know

n. H
ow

ever, w
e have no w

ay of telling
the group ahead of tim

e; w
e have no

w
ay of telling how

 m
any groups

and hence how
 m

any interactions there are. T
he groups seem

 to be
quite disjointed, and there seem

s to be rio connection betw
een the

various groups w
hich characterize the various interactions or betw

een
these groups and the geom

etrical sym
m

etry group, w
hich is a single,

w
ell-defined group w

ith w
hich w

e have been fam
iliar for m

any,m
any

years.G
eom

etrical Principles of Invariance and C
onservation L

aw
s

Since it is good to stay on terra cognita as long as possible, let us first
review

 the geom
etrical principles of invariance. T

hese w
ere recognized

by Poincaré first, and I like to call the group form
ed by these invariables

the Poincaré group.7 T
he true m

eaning and im
portance of these prin-

6R
. U

tiyam
a, Phys. R

ev., 101, 1597 (1956); also C
. N

. Y
ang and R

. L
. M

ills,
Phys. R

ev., 96, 191 (1954).
H

. Poincaré, C
om

pt. R
end., 140, 1504 (1905); R

end. C
irc. M

at. Palerm
o, 21,

129 (1906).

ciples w
ere brought out only by E

instein, in his special theory of rela-
tivity. T

he group contains, first, displacem
ents in space and tim

e. T
his

m
eans that the correlations betw

een events are the sam
e everyw

here
and at all tim

es, that the law
s of nature—

the com
pendium

 of the correla-
tions—

are the sam
e no m

atter w
hen and w

here they are established. If
this w

ere not so, it m
ight have been im

possible for the hum
an m

ind to
find law

s of nature.
It is good to em

phasize at this point the fact that the law
s ofnature,

that is, the correlations betw
een

events, are the entities to w
hich the

sym
m

etry law
s apply, not the events them

selves. N
aturally, the events

vary from
 place to place. H

ow
ever, if one observes the positions of a

throw
n rock at three different tim

es, one w
ill find

a relation betw
een

those positions, and this relation w
ill be the

sam
e at all points of the

E
arth.
T

he second sym
m

etry is not at all
as obvious as the first one: it postu-

lates the equivalence of all directions. T
his principle could be

recog-
nized only w

hen the influence of the E
arth's attraction

w
as understood

to be responsible for the difference betw
een

up and dow
n. In other

w
ords, contrary to w

hat w
as just said, the events betw

een w
hich the

law
s of nature establish correlations are not the three positions of

the throw
n rock, but the three positions of the rock w

ith
respect to the

E
arth.
T

he last sym
m

etry—
the independence of the law

s of
nature from

 the
state of m

otion in w
hich it is observed as long as this is uniform

—
is

not
at all obvious to the unpreoccupied m

ind.8 O
ne of its

consequences is
that the law

s of nature determ
ine not the velocity but the acceleration

of a body: the velocity is different in coordinate
system

s m
oving w

ith
different speeds; the acceleration is the

sam
e as long as the m

otion of
the coordinate system

s is uniform
 w

ith
respect to each other. H

ence,
the principle of the equivalence of uniform

ly
m

oving coordinate sys-
tem

s, and their equivalence w
ith coordinate system

s at rest, could not
be established before N

ew
ton's second law

w
as understood; it w

as at
once recognized then, by N

ew
ton him

self. It fell tem
porarily into dis-

8 T
hus, A

ristotle's physics postulated that
m

otion necessarily required the con-
tinued operation of a cause. H

ence, all bodies w
ould

com
e to an absolute rest if

they w
ere rem

oved from
 the cause w

hich im
parts them

 a velocity. [C
f.,

e.g., A
. C

.
C

rom
bie's A

ugustine to G
alileo (L

ondon: Falcon Press, 1952),
p. 82 or 244.1 T

his
cannot be true for coordinate system

s m
oving w

ith respect to each other. T
he co-

ordinate system
s w

ith respect to w
hich it is true then have

a preferred state of
m

otion.
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repute as a result of certain
electrom

agnetic phenom
ena

until E
instein

re-established it in
a som

ew
hat m

odified form
.

It w
as m

entioned already thatthe conservation law
s for

energy and
for linear and angular

m
om

entum
 are direct

consequences of the sym
-

m
etries just enum

erated. T
his

is m
ost evident in

quantum
-m

echanical
theory, w

here they follow
directly from

 the kinem
atics

of the theory,
w

ithout m
aking

use of any dynam
ical law

, such
as the Schrodinger

equation. T
his w

ill be dem
onstrated

at once. T
he situation is m

uch
m

ore
com

plex in classical theory,and, in fact, the sim
plest proof

of the con-
servation law

s in classical
theory is based

on the rem
ark that classical

theory is a lim
iting

case of quantum
 theory.

H
ence, any equation valid

in quantum
 theory, for

any value of Planck's constant
h, is valid also

in the lim
it h

0. T
races of this

reasoning can be recognized also
in the

general considerations
show

ing the connection
betw

een conservation
law

s and space-tim
e

sym
m

etry in classical theory. T
he

conservation
law

s can be derived also
by elem

entary
m

eans, using the dynam
ical

equation, that is, N
ew

ton's
second law

, and the
assum

ption that the
forces can be derived

from
 a potential w

hich
depends only on the dis-

tances betw
een the particles.

Since the notion ofa potential is not a
very

natural one, this is not the
usual procedure.

M
ach, for instance,

assum
es

that the force
on any particle is a sum

 of
forces, each due to another

particle.9 Such an
assum

ption is im
plicit also in

N
ew

ton's third law
,

otherw
ise the notion of

counterforce w
ould have

no m
eaning. In addi-

tion, M
ach assum

es that the force
depends only on the positions

of the
interacting pair, not on their

velocities. Som
e such

assum
ption is indeed

necessary in classical theory.1° U
nder

the assum
ptions just

m
entioned,

the conservation law
 for

linear m
om

entum
 follow

s
at once from

 N
ew

-
ton's third law

, and,
conversely, this third law

is also necessary for the
conservation of linear

m
om

entum
. A

ll this w
as recognized

already by
N

ew
ton. For the

conservation law
 of angular

m
om

entum
, w

hich w
as,

in its general form
,

discovered alm
ost 60

years after the Principia by
E

uler, B
ernouilli, and d'A

rcy,
the significance of the

isotropy of space
is evident. If the direction

of the force betw
een

a pair of particles w
ere

not directed along the line
from

 one particle to the
other, it w

ould not
be invariant under

rotations about that line.
H

ence, under the
assum

p-
E

. M
ach, T

he Science
of M

echanics (C
hicago: O

pen C
ourt

Pubi. C
o., various

editions), C
hap. 3, Sec. 3.

O
S

ee
footnote 5.

tions m
ade, only central forces

are possible. Since the torque of such
forces vanishes if they

are oppositely equal, the angular m
om

entum
 law

follow
s. It w

ould not follow
 if

the forces depended
on the positions of

three particles or
m

ore.
In quantum

 m
echanics,

as w
as m

entioned before, the conservation
law

s follow
 already from

 the
basic kinem

atical concepts. T
he

point is
sim

ply that the states in
quantum

 m
echanics are vectors in

an abstract
space, and the physical quantities, such

as position, m
om

entum
, etc.,

are operators on these vectors. It then
follow

s, for instance, from
 the

rotational invariance that,
given any state ,

there
is another state4

w
hich looks just like

in the coordinate system
 that

is obtained by a
rotation c about the Z

 axis. L
et

us denote the operator w
hich changes

into
by Z

a. L
et us further denote the

state into w
hich 4 goes

over
in the tim

e interval
r by H

4, (for a schem
atic picture, cf. Fig.

1). T
hen,

orZ
aH

r
x

z

Fig. 1

because of the rotational
invariance, ca

w
illgo over, in the sam

e tim
e

interval, into the state
H

T
,, w

hich looks, in the second
coordinate

system
, just like H

4,. H
ence, it

can be obtained from
 H

 by the
oper-

ation Z
. It follow

s that

H
Z

 —
Z

aH
r4,,

and since this is valid for
any 4,,

H
rZ

a —
Z

C
H

T
.

(1)

(2)
T

hus the operator Z
com

m
utes w

ith H
, and this is the

condition for
its being conserved. A

ctually,
the angular m

om
entum

 about
the Z

 axis

z
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is the lim
it of (1/a)(Z

a —
1) for infinitely sm

all a. T
he other conservation

law
s are derived in the sam

e
w

ay. T
he point is that the transform

ation
operators, or at least the infinitesim

al ones
am

ong them
, play a donble

role and are them
selves the conserved

quantities.
T

his w
ill conclude the discussion of the geom

etrical
principles of

invariance. Y
ou w

ill note that reflections w
hich

give rise inter alia to
the concept of parity

w
ere not m

entioned, nor did I speak about the
apparently m

uch m
ore general geom

etric principle of
invariance w

hich
form

s the foundation of the general theory of
relativity. T

he reason for
the form

er om
ission is that I w

ill have to consider the
reflection oper-

ators at the end of this discussion. T
he

reason that I did not speak about
the invariance w

ith respect to the general
coordinate transform

ations
of the general theory of relativity is that

I believe that the underlying
invariance is not geom

etric but dynam
ic. L

et
us consider, hence, the

dynam
ic principles of invariance.

D
ynam

ic Principles of Invariance

W
hen w

e deal w
ith the dynam

ic principles of
invariance, w

e are
largely on terra incognita. N

evertheless,
since som

e of the attem
pts to

develop these principles are both
ingenious and successful, and since

the subject is at the center of
interest, I w

ould like to m
ake a few

 com
-

m
ents. L

et us begin w
ith the

case that is best understood, the electro-
m

agnetic interaction.
In order to describe the interaction of charges

w
ith the electrom

ag-
netic field, one first introduces

new
 quantities to describe the electro-

m
agnetic field, the so-called electrom

agnetic potentials.
From

 these,
the com

ponents of the electrom
agnetic field

can be easily calculated,
but not conversely. Furtherm

ore, the
potentials are not uniquely deter-

m
ined by the field; several potentials

(those differing by a gradient)
give the sam

e field. It follow
s that the potentials

cannot be m
easurable,

and, in fact, only such quantities
can be m

easurable w
hich are invariant

under the transform
ations w

hich
are arbitrary in the potential. T

his
invariance is, of

course, an artificial one, sim
ilar to that w

hich w
e could

obtain by introducing into
our equations the location of a ghost. T

he
equations then m

ust be invariant w
ith

respect to changes of the coor-
dinate of that ghost. O

ne does notsee, in fact, w
hat good the introduc-

tion of the coordinate of the ghost does.

So it is w
ith the replacem

ent of the fields by the
potentials, as long as

one leaves everything else unchanged. O
ne postulates, how

ever, and
this is the decisive step, that in order

to m
aintain the sam

e situation,
one has to couple a transform

ation of the m
atter field w

ith
every transi-

tion from
 a set of potentials to another

one w
hich gives the sam

e electro-
m

agnetic field. T
he com

bination of these tw
o transform

ations,
one on

the electrom
agnetic potentials, the other

on the m
atter field, is called

a gauge transform
ation. Since it leaves the physical situation unchanged,

every equation m
ust be invariant thereunder. T

his is not true, for in-
stance, of the unchanged equations of m

otion, and they w
ould have, if

left unchanged, the absurd property that tw
o situations

w
hich are com

-
pletely equivalent at one tim

e w
ould develop, in the

course of tim
e, into

tw
o distinguishable situations. H

ence, the equations of m
otion have

to be m
odified, and this can be done m

ost easily by
a m

athem
atical

device called the m
odification of the L

agrangian. T
he sim

plest m
odi-

fication that restores the invariance gives the accepted
equations of

electrodynam
ics w

hich are w
ell in accord w

ith all experience.
L

et m
e state next, w

ithout giving all the details, that
a sim

ilar pro-
cedure is possible w

ith respect to the gravitational interaction. A
ctually,

this has been hinted at already by U
tiyam

a.11 T
he

unnecessary com
pli-

cation that one has to introduce in this
case is, instead of potentials,

generalized coordinates. T
he equations then have to be invariant w

ith
respect to all the coordinate transform

ations of the general theory of
relativity. T

his w
ould not change the content of the theory but w

ould
only am

ount to the introduction of
a m

ore flexible language in w
hich

there are several equivalent descriptions of the
sam

e physical situation.
N

ext, how
ever, one postulates that the m

atter field also transform
s as

the m
etric field so that one has to m

odify the equations in orderto pre-
serve their invariance. T

he sim
plest m

odification, or one of the sim
plest

ones, leads to E
instein's equations.

T
he preceding interpretation of the invariance of the general theory

of relativity does not interpret it as a geom
etrical invariance. T

hat this
should not be done had already been pointed out by the R

ussian physicist
Fock.12 W

ith a slight oversim
plification, one can

say that a geom
etrical

invariance postulates that tw
o physically different situations, such as

11
S

ee
footnote 6.

V
.

Fock, T
he T

heory of Space, T
im

e and G
ravitation (N

ew
 Y

ork: Pergam
on

Press, 1959). See also A
. K

retschrnan, A
nn. Phys., 53, 575 (1917).
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those in Figure 1, should develop, in the
course of tim

e, into situations
w

hich differ in the sam
e w

ay. T
his is not the

case here: the postulate'
is m

erely that tw
o different descriptions of the

sam
e situation should

develop, in the course of tim
e, into tw

o descriptions w
hich also describe

the sam
e physical situation. T

he sim
ilarity w

ith the
case of the electro-

m
agnetic potentials is obvious.
U

nfortunately, the situation is by no m
eans the

sam
e in the case of

the other interactions. O
ne know

s
very little about the w

eaker one of
the strong interactions. T

he strong
one, as w

ell as the w
eak interac-

tion, has a group w
hich is, first of all, very m

uch sm
aller than the

gauge
group or the group of general coordinate transform

ations.'3 Instead of
the infinity of generators of the

gauge and general transform
ation

groups, they have only a finite num
ber, that is, eight, generators. T

hey
do suffice, nevertheless, to a large extent to determ

ine the form
 of the

interaction, as w
ell as to derive som

e theorem
s, sim

ilar to those of
spectroscopy, w

hich give approxim
ate relations betw

een reaction rates
and betw

een energies, that is, m
asses. Figure 2 show

s the octuplet of
heavy m

asses—
its m

em
bers are joined to each other by the sim

plest
nontrivial representation of the underlying

group w
hich is equivalent

to its conjugate com
plex.
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A
nother difference betw

een the invariance
groups of electrom

agnet-
ism

 and gravitation on one hand, and at least the invariance
group of

the strong interaction on the other hand, is that the operations of the
form

er rem
ain valid sym

m
etry operations even if the existence of the

other types of interactions is taken into account. T
he sym

m
etry of the

strong interaction, on the other hand, is "broken" by the other inter-
actions, i.e., the operations of the group of the strong interaction are
valid sym

m
etry operations only if the other types of interactions

can be
disregarded. T

he sym
m

etry group helps to determ
ine the interaction

operator in every case. H
ow

ever, w
hereas all interactions are invariant

under the groups of the electrom
agnetic and gravitational interactions,

only the strong interaction is invariant under the
group of that inter-

action.
W

e have seen before that the operations of the geom
etric sym

m
etry

group entail conservation law
s. T

he question naturally arises w
hether

this is true also for the operations of the dynam
ic sym

m
etry groups.

A
gain, there seem

s to be a difference betw
een the different dynam

ic in-
variance groups. It is com

m
on opinion that the conservation law

 for
electric charge can be regarded as a consequence of gauge invariance,
i.e., of the group of the electrom

agnetic interaction. O
n the other hand,

one can only speculate about conservation law
s w

hich could be attrib-
uted to the dynam

ic group of general relativity. A
gain, it appears reason-

able to assum
e that the conservation law

s for baryons and leptons can
be deduced by m

eans of the groups of the strong and of the w
eak inter-

action.'4 If true, this w
ould im

ply that the proper groups of these inter-
actions have not yet been recognized. O

ne can adduce tw
o pieces of

evidence for the last statem
ent. First, so far, the conservation law

s
in question'5 could not be deduced from

 the sym
m

etry properties of
these interactions, and it is unlikely that they can be deduced from

Y

+
n

A
 and

0
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@
1°
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+
E
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I

I

F
ig.

2

13 For the strong
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uci. Phys., 26, 222 (1961), and

M
. C

ell-M
ann, Phys. R

ev., 125, 1067 (1962). For the w
eak

interaction, R
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m
an and M

. C
ell-M

ann, Phys. R
ev., 109, 193 (1958), and E

. C
. G

. Sudarshan and
R

. E
. M

arshak, Phys. R
ev,, 109, 1960 (1958); also

J. J. Sakurai, N
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ento,

7, 649 (1958), and C
. S. C

ershtin and A
. B

. Z
eldovitch, 1. E

xptl. T
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U
SSR

, 29, 698 (1955).

14 F
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riter, Proc. A
m
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Soc., 93, 521 (1949), and these Proceedings,

38, 449 (1952). T
he baryon conservation law
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elv. Phys. A
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or
the experim

ental verification of these and the other conservation law
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C
. Feinberg and M

. C
oidhaber, these Proceedings, 45, 1301 (1959). T

he conserva-
tion law

 for leptons w
as proposed by C

. M
arx in A

cta Phys. H
ung., 3, 55 (1953);

also A
. B

. Z
eldovitch, D

oki. A
kad. N

auk U
SSR

, 91, 1317 (1953), and E
J. K
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ski and H

. M
. M

ahm
noud, Phys. R

ev., 92, 1045 (1953). It seem
ed to be definitely

established by T
. D

. L
ee and C

. N
. Y

ang, Phys. R
ev., 105, 1671 (1957). See also

Ferm
i's observation m

entioned by C
. N

. Y
ang and J. T

iom
no, Phys. R
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them
.1° Second, the

sym
m

etry properties in question
are not rigorous

but are broken by the other
interactions. It is not clear how

rigorous
conservation law

s could follow
 from

approxim
ate sym

m
etries—

and all
evidence indicates that the baryon

and lepton conservation law
s

are
rigorous.17 A

gain, w
e are rem

inded thatour ideas on the dynam
ical prin-

ciples of invariance
are not nearly as firm

ly established
as those on the

geom
etrical ones.

L
et m

e m
ake a last rem

ark
on a principle w

hich I w
ould not hesitate

to call a sym
m

etry principle and
w

hich form
s a transition betw

een
the

geom
etrical and dynam

ical
principles. T

his is given by the
crossing

relations.18 L
et us consider the

am
plitude for the probability of

som
e

collision, such as

(3)
T

his w
ill be a function of the

invariants w
hich can be form

ed from
 the

m
om

enta four-vectors of the incident
and em

itted particles. It then
follow

s from
 one of the reflection

principles w
hich I did not discuss, the

"tim
e reversal invariance," that

the am
plitude of (3) determ

ines
also

the am
plitude of the inverse

reaction

(4)
in a very sim

ple fashion. If
one reverses all the velocities and also inter-

changes past and future
(w

hich is the definition of "tim
e

reversal"),
(4) goes over into (3) so that the am

plitudes
for both are essentially equal.

Sim
ilarly, if w

e denote the
antiparticle of A

 by A
, that of B

 by
B

, and
so on, and consider the reaction

(5)
its am

plitude is im
m

ediately
given by that of (3) because (according

to the interpretation of L
ee and

Y
ang), the reaction (5) is obtained from

(3) by space inversion. T
he am

plitudes
for

(6)
16

F
or

the baiyon conservation and
strong interaction, this w

as em
phatically

pointed out in a very interesting article
by J.

j. Sakurai, A
nn. Phys. (N

.Y
.),

11, 1
(1960). C

oncerning the conservation of lepton
m

em
bers, see C

. M
arx, Z

. N
atur-

/orsch., 9a, 1051 (1954).
17

S
ee
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can be obtained in a sim
ilar w

ay. T
he relations betw

een the am
plitudes

of reactions (3), (4), (5), and (6) are consequences of geom
etrical prin-

ciples of invariance.
H

ow
ever, one can go further. T

he crossing relations tell us how
 to

calculate, for instance, the am
plitude of

(7)

from
 the am

plitude system
 of (3). T

o be sure, the calculation, or its
result, is not sim

ple any m
ore. O

ne has to consider the dependence of
the reaction am

plitude for (3) as an analytic function of the invariants
form

ed from
 the m

om
enta of the particles in (3), and extend this analytic

function to such values of the variables w
hich have no physical sig-

nificance for the reaction (3) but w
hich give the am

plitude for (7).
E

vidently there are several other reactions the am
plitudes of w

hich
can be obtained in a sim

ilar w
ay; they are all obtained by the analytic

continuation of the am
plitude for (3), or any of the other reactions. T

hus,
rather than exchanging A

 and X
 to obtain (7), A

 and Y
 could be ex-

changed, and so on.
T

he crossing relations share tw
o properties of the geom

etrical prin-
ciples of invariance: they do not refer to any particular type of interac-
tion and m

ost of us believe that they have unlim
ited validity. O

n the
other hand, though they can be form

ulated in term
s of events, their

form
ulation presupposes the establishm

ent of a law
 of nature, nam

ely,
the m

athem
atical, in fact analytic, expression for the collision am

pli-
tude for one of the aforem

entioned reactions. O
ne m

ay hope that they
w

ill help to establish a link betw
een the now

 disjoint geom
etrical and

dynam
ical principles of invariance.


