Ulli Steltzer

SYMMETRIES AND REFLECTIONS

Scientific Essays of Eugene P. Wigner

Indiana University Press . Bloomington & London . 1967




2

Symmetry and Conservation Laws

Introduction

Symmetry and invariance considerations, and even conservation laws,
undoubtedly played an important role in the thinking of the early
physicists, such as Galileo and Newton, and probably even before them.
However, these considerations were not thought to be particularly im-
portant and were articulated only rarely. Newton’s equations were not
formulated in any special coordinate system and thus left all directions
and all points in space equivalent. They were invariant under rotations
and displacements, as we now say. The same applies to his gravitational
law. There was little point in emphasizing this fact, and in conjuring up
the possibility of laws of nature which show a lower symmetry. As to
the conservation laws, the energy law was useful and was instinctively
recognized in mechanics even before Galileo.! The momentum and
angular momentum conservation theorems in their full generality were
not very useful even though in the special case of central motion they
give, of course, one of Kepler’s laws. Most books on mechanics, written
around the turn of the century and even later, do not mention the gen-
eral theorem of the conservation of angular momentum.2 It must have

Reprinted by permission from the Proceedings of the National Academy of Sci-
ences, Vol. 51, No. 5 (May, 1964).

! G. Hamel, in his Theoretische Mechanik (Stuttgart: B. G. Teubner, 1912)
mentions (p. 130) Jordanus de Nemore (~1300) as having recognized essential
features of what we now call mechanical energy and Leonardo da Vinci as having
postulated the impossibility of the Perpetuum Mobile.

2F. Cajori’s History of Physics (New York: Macmillan Company, 1929) gives
exactly half a line to it (p. 108).
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been known quite generally because those dealing with the three-body
problem, where it is useful, write it down as a matter of course. How-
ever, people did not pay very much attention to it.

This situation changed radically, as far as the invariance of the equa-
tions is concerned, principally as a result of Einstein’s theories. Einstein
articulated the postulates about the symmetry of space, that is, the
equivalence of directions and of different points of space, eloquently.?
He also re-established, in a modified form, the equivalence of coordinate
systems in motion and at rest. As far as the conservation laws are con-
cerned, their significance became evident when, as a result of the in-
terest in Bohr’s atomic model, the angular momentum conservation
theorem became all-important. Having lived in those days, I know that
there was universal confidence in that law as well as in the other con-
servation laws. There was much reason for this confidence because
Hamel, as early as 1904, established the connection between the con-
servation laws and the fundamental symmetries of space and time.!
Although his pioneering work remained practically unknown, at least
among physicists, the confidence in the conservation laws was as strong
as if it had been known as a matter of course to all. This is yet another
example of the greater strength of the physicist’s intuition than of his
knowledge.

Since the turn of the century, our attitude toward symmetries and
conservation laws has turned nearly full circle. Few articles are written
nowadays on basic questions of physics which do not refer to invariance
postulates, and the connection between conservation laws and invari-
ance principles has been accepted, perhaps too generally.5 In addition,
the concept of symmetry and invariance has been extended into a new
area—an area where its roots are much less close to direct experience
and observation than in the classical area of space-time symmetry. It
may be useful, therefore, to discuss first the relations of phenomena, laws
of nature, and invariance principles to each other. This relation is not
quite the same for the classical invariance principles, which will be
called geometrical, and the new ones, which will be called dynamical.

3 See, for instance, his semipopular booklet Relativititstheorie (Braunschweig:
Friedr. Vieweg und Sohn, various editions, 1916-1956).

* G. Hamel, Z. Math. Phys., 50, 1 (1904); F. Engel, Ges. d. Wiss. Gdttingen, 270
(1916).

5 See the present writer’s article, Progr. Theoret. Phys., 11, 437 (1954); also
Y. Murai, Progr. Theoret. Phys., 11, 441 (1954); and more recently D. M. Green-
berg, Ann. Phys. (N.Y.), 25, 290 (1963).



16 Symmetries and Reflections

Finally, I would like to review, from a more elementary point of view
than customary, the relation between conservation laws and invariance
principles.

Events, Laws of Nature, Invariance Principles

The problem of the relation of these concepts is not new; it has occu-
pied people for a long time, first almost subconsciously. It may be of
interest to review it in the light of our greater experience and, we hope,
more mature understanding.

From a very abstract point of view, there is a great similarity between
the relation of the laws of nature to the events on one hand, and the
relation of symmetry principles to the laws of nature on the other. Let
me begin with the former relation, that of the laws of nature to the
events.

If we knew what the position of a planet will be at any given time,
there would remain nothing for the laws of physics to tell us about the
motion of that planet. This is true also more generally: if we had a
complete knowledge of all events in the world, everywhere and at all
times, there would be no use for the laws of physics, or, in fact, of any
other science. I am making the rather obvious statement that the laws
of the natural sciences are useful because without them we would know
even less about the world. If we already knew the position of the planet
at all times, the mathematical relations between these positions which
the planetary laws furnish would not be useful but might still be inter-
esting. They might give us a certain pleasure and perhaps amazement to
contemplate, even if they would not furnish us new information. Perhaps
also, if someone came who had some different information about the
positions of that planet, we would more effectively contradict him if his
statements about the positions did not conform with the planetary laws—
assuming that we have confidence in the laws of nature which are em-
bodied in the planetary law.

Let us turn now to the relation of symmetry or invariance principles
to the laws of nature. If we know a law of nature, such as the equations
of electrodynamics, the knowledge of the subtle properties of these
equations does not add anything to the content of these equations, It
may be interesting to note that the correlations between events which
the equations predict are the same no matter whether the events are
viewed by an observer at rest, or an observer in uniform motion. How-
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ever, all the correlations between events are already given by the equa-
tions themselves, and the aforementioned observation of the invariance
of the equations does not augment the number or change the character
of the correlations.

More generally, if we knew all the laws of nature, or the ultimate law
of nature, the invariance properties of these laws would not furnish us
new information. They might give us a certain pleasure and perhaps
amazement to contemplate, even though they would not furnish new
information. Perhaps also, if someone came around to propose a dif-
ferent law of nature, we could more effectively contradict him if his
law of nature did not conform with our invariance principle—assuming
that we have confidence in the invariance principle.

Evidently, the preceding discussion of the relation of the laws of
nature to the events, and of the symmetry or invariance principles to
the laws of nature is a very sketchy one. Many, many pages could be
written about both. As far as I can see, the new aspects which would
be dealt with in these pages would not destroy the similarity of the
two relations—that is, the similarity between the relation of the laws of
nature to the events, and the relation of the invariance principles to
the laws of nature. They would, rather, support it and confirm the func-
tion of the invariance principles to provide a structure or coherence
to the laws of nature just as the laws of nature provide a structure and
coherence to the set of events.

Geometrical and Dynamical Principles of Invariance

What is the difference between the old and well-established geometri-
cal principles of invariance, and the novel, dynamical ones? The geo-
metrical principles of invariance, though they give a structure to the
laws of nature, are formulated in terms of the events themselves. Thus,
the time-displacement invariance, properly formulated, is: the corre-
lations between events depend only on the time intervals between the
events, not on the time at which the first event takes place. If P, P», P,
are positions which the aforementioned planet can assume at times
t1, ta, 13, it could assume these Ppositions also at times ¢, + ¢, {2 + ¢, £3 + ¢,
where £ is quite arbitrary. On the other hand, the new, dynamical prin-
ciples of invariance are formulated in terms of the laws of nature. They
apply to specific types of interaction, rather than to any correlation be-
tween events. Thus, we say that the electromagnetic interaction is



18 Symmetries and Reflections

gauge invariant, referring to a specific law of nature which regulates the
generation of the electromagnetic field by charges, and the influence of
the electromagnetic field on the motion of the charges.

It follows that the dynamical types of invariance are based on the
existence of specific types of interactions. We all remember having read
that, a long time ago, it was hoped that all interactions could be derived
from mechanical interactions. Some of us still remember that, early in
this century, the electromagnetic interactions were considered to be
the source of all others. It was necessary, then, to explain away the
gravitational interaction, and in fact this could be done quite success-
tully. We now recognize four or five distinct types of interactions: the
gravitational, the electromagnetic, one or two types of strong (that is,
nuclear) interactions, and the weak interaction responsible for beta
decay, the decay of the w meson, and some similar phenomena. Thus,
we have given up, at least temporarily, the hope of one single basic
interaction. Furthermore, every interaction has a dynamical invariance
group, such as the gauge group for the electromagnetic interaction.

This is, however, the extent of our knowledge. Otherwise, let us not
forget, the problem of interactions is still a mystery. Utiyama® has stimu-
lated a fruitful line of thinking about how the interaction itself may be
guessed once its group is known. However, we have no way of telling
the group ahead of time; we have no way of telling how many groups
and hence how many interactions there are. The groups seem to be
quite disjointed, and there seems to be no connection between the
various groups which characterize the various interactions or between
these groups and the geometrical symmetry group, which is a single,
well-defined group with which we have been familiar for many, many
years.

Geometrical Principles of Invariance and Conservation Laws

Since it is good to stay on terra cognita as long as possible, let us first
review the geometrical principles of invariance. These were recognized
by Poincaré first, and I like to call the group formed by these invariables
the Poincaré group.” The true meaning and importance of these prin-

8 R. Utiyama, Phys. Rev., 101, 1597 (1956); also C. N. Yang and R. L. Mills,
Phys. Rev., 96, 191 (1954).

7 H. Poincaré, Compt. Rend., 140, 1504 (1905); Rend. Circ. Mat. Palermo, 21,
129 (1906).
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ciples were brought out only by Einstein, in his special theory of rela-
tivity. The group contains, first, displacements in space and time. This
means that the correlations between events are the same everywhere
and at all times, that the laws of nature—the compendium of the correla-
tions—are the same no matter when and where they are established. If
this were not so, it might have been impossible for the human mind to
find laws of nature.

It is good to emphasize at this point the fact that the laws of nature,
that is, the correlations between events, are the entities to which the
symmetry laws apply, not the events themselves. Naturally, the events
vary from place to place. However, if one observes the positions of a
thrown rock at three different times, one will find a relation between
those positions, and this relation will be the same at all points of the
Earth.

The second symmetry is not at all as obvious as the first one: it postu-
lates the equivalence of all directions. This principle could be recog-
nized only when the influence of the Earth’s attraction was understood
to be responsible for the difference between up and down. In other
words, contrary to what was just said, the events between which the
laws of nature establish correlations are not the three positions of
the thrown rock, but the three positions of the rock with respect to the
Earth.

The last symmetry—the independence of the laws of nature from the
state of motion in which it is observed as long as this is uniform—is not
at all obvious to the unpreoccupied mind.® One of its consequences is
that the laws of nature determine not the velocity but the acceleration
of a body: the velocity is different in coordinate systems moving with
different speeds; the acceleration is the same as long as the motion of
the coordinate systems is uniform with respect to each other. Hence,
the principle of the equivalence of uniformly moving coordinate sys-
tems, and their equivalence with coordinate systems at rest, could not
be established before Newton’s second law was understood; it was at
once recognized then, by Newton himself. It fell temporarily into dis-

8 Thus, Aristotle’s physics postulated that motion necessarily required the con-
tinued operation of a cause. Hence, all bodies would come to an absolute rest if
they were removed from the cause which imparts them a velocity. [Cf., e.g., A. C.
Crombie’s Augustine to Galileo (London: Falcon Press, 1952), p- 82 or 244.] This
cannot be true for coordinate systems moving with respect to each other. The co-
ordinate systems with respect to which it is true then have a preferred state of
motion.
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repute as a result of certain electromagnetic phenomena until Einstein
re-established it in a somewhat modified form.

It was mentioned already that the conservation laws for energy and
for linear and angular momentum are direct consequences of the sym-
metries just enumerated. This is most evident in quantum-mechanical
theory, where they follow directly from the kinematics of the theory,
without making use of any dynamical law, such as the Schridinger
equation. This will be demonstrated at once. The situation is much more
complex in classical theory, and, in fact, the simplest proof of the con-
servation laws in classical theory is based on the remark that classical
theory is a h'miting case of quantum theory. Hence, any equation valid
in quantum theory, for any value of Planck’s constant h, is valid also
in the limit A = 0. Traces of this reasoning can be recognized also in the
general considerations showing the connection between conservation
laws and space-time Symmetry in classical theory. The conservation
laws can be derived also by elementary means, using the dynamical
équation, that is, Newton’s second law, and the assumption that the
forces can be derived from a potential which depends only on the dis-
tances between the particles. Since the notion of a potential is not a very
natural one, this is not the usual procedure. Mach, for instance, assumes
that the force on any particle is a sum of forces, each due to another
particle.® Such an assumption is implicit also in Newton’s third law,
otherwise the notion of counterforce would have no meaning. In addi-
tion, Mach assumes that the force depends only on the positions of the
interacting pair, not on their velocities. Some such assumption is indeed
necessary in classical theory.1® Under the assumptions just mentioned,
the conservation law for linear momentum follows at once from New-
ton’s third law, and, conversely, this third law is also necessary for the
conservation of linear momentum. All this was recognized already by
Newton. For the conservation law of angular momentum, which was,
in its general form, discovered almost 60 years after the Principia by
Euler, Bernouilli, and d’Arcy, the significance of the isotropy of space
is evident. If the direction of the force between a pair of particles were
not directed along the line from one particle to the other, it would not
be invariant under rotations about that line. Hence, under the assump-

® E. Mach, The Science of Mechanics ( Chicago: Open Court Publ. Co., various
editions), Chap. 3, Sec. 3.
10 See footnote 5.
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tions made, only central forces are possible. Since the torque of such
forces vanishes if they are oppositely equal, the angular momentum law
follows. It would not follow if the forces depended on the positions of
three particles or more.

In quantum mechanics, as was mentioned before, the conservation
laws follow already from the basic kinematical concepts. The point is
simply that the states in quantum mechanics are vectors in an abstract
space, and the physical quantities, such as position, momentum, etc.,
are operators on these vectors. It then follows, for instance, from the
rotational invariance that, given any state ¢, there is another state o
which looks just like ¢ in the coordinate system that is obtained by a
rotation « about the Z axis. Let us denote the operator which changes
¢ into ¢a by Zo. Let us further denote the state into which ¢ goes over
in the time interval - by H:¢ (for a schematic picture, cf. Fig. 1). Then,
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Zz Zz

x ¢ x Za®
Fig. 1

because of the rotational invariance, ¢ will g0 over, in the same time
interval, into the state H,¢o, which looks, in the second coordinate
system, just like H.¢. Hence, it can be obtained from H:¢ by the oper-
ation Z,. It follows that

H:Zop = ZoH. ¢, (1)
and since this is valid for any ¢,
H:Zo=Z.H.. (2)

Thus the operator Z, commutes with H,, and this is the condition for
its being conserved. Actually, the angular momentum about the Z axis
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is the limit of (1/a)(Za — 1) for infinitely small .. The other conservation
laws are derived in the same way. The point is that the transformation
operators, or at least the infinitesimal ones among them, play a double
role and are themselves the conserved quantities.

This will conclude the discussion of the geometrical principles of
invariance. You will note that reflections which give rise inter alia to
the concept of parity were not mentioned, nor did I speak about the
apparently much more general geometric principle of invariance which
forms the foundation of the general theory of relativity. The reason for
the former omission is that I will have to consider the reflection oper-
ators at the end of this discussion. The reason that I did not speak about
the invariance with respect to the general coordinate transformations
of the general theory of relativity is that I believe that the underlying
invariance is not geometric but dynamic. Let us consider, hence, the
dynamic principles of invariance.

Dynamic Principles of Invariance

When we deal with the dynamic principles of invariance, we are
largely on terra incognita. Nevertheless, since some of the attempts to
develop these principles are both ingenious and successful, and since
the subject is at the center of interest, I would like to make a few com-
ments. Let us begin with the case that is best understood, the electro-
magnetic interaction,

In order to describe the interaction of charges with the electromag-
netic field, one first introduces new quantities to describe the electro-
magnetic field, the so-called electromagnetic potentials. From these,
the components of the electromagnetic field can be easily calculated,
but not conversely. Furthermore, the potentials are not uniquely deter-
mined by the field; several potentials (those differing by a gradient)
give the same field. It follows that the potentials cannot be measurable,
and, in fact, only such quantities can be measurable which are invariant
under the transformations which are arbitrary in the potential. This
invariance is, of course, an artificial one, similar to that which we could
obtain by introducing into our equations the location of a ghost. The
equations then must be invariant with respect to changes of the coor-
dinate of that ghost. One does not see, in fact, what good the introduc-
tion of the coordinate of the ghost does.
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So it is with the replacement of the fields by the potentials, as long as
one leaves everything else unchanged. One postulates, however, and
this is the decisive step, that in order to maintain the same situation,
one has to couple a transformation of the matter field with every transi-
tion from a set of potentials to another one which gives the same electro-
magnetic field. The combination of these two transformations, one on
the electromagnetic potentials, the other on the matter field, is called
a gauge transformation. Since it leaves the physical situation unchanged,
every equation must be invariant thereunder. This is not true, for in-
stance, of the unchanged equations of motion, and they would have, if
left unchanged, the absurd property that two situations which are com-
pletely equivalent at one time would develop, in the course of time, into
two distinguishable situations. Hence, the equations of motion have
to be modified, and this can be done most easily by a mathematical
device called the modification of the Lagrangian. The simplest modi-
fication that restores the invariance gives the accepted equations of
electrodynamics which are well in accord with all experience.

Let me state next, without giving all the details, that a similar pro-
cedure is possible with respect to the gravitational interaction. Actually,
this has been hinted at already by Utiyama.!* The unnecessary compli-
cation that one has to introduce in this case is, instead of potentials,
generalized coordinates. The equations then have to be invariant with
respect to all the coordinate transformations of the general theory of
relativity. This would not change the content of the theory but would
only amount to the introduction of a more flexible language in which
there arc several equivalent descriptions of the same physical situation.
Next, however, one postulates that the matter field also transforms as
the metric field so that one has to modify the equations in order to pre-
serve their invariance. The simplest modification, or one of the simplest
ones, leads to Einstein’s equations.

The preceding interpretation of the invariance of the general theory
of relativity does not interpret it as a geometrical invariance. That this
should not be done had already been pointed out by the Russian physicist
Fock.’? With a slight oversimplification, one can say that a geometrical
invariance postulates that two physically different situations, such as

11 See footnote 6.
12V. Fock, The Theory of Space, Time and Gravitation (New York: Pergamon
Press, 1959). See also A. Kretschman, Ann. Phys., 53, 575 (1917).
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those in Figure 1, should develop, in the course of time, into situations
which differ in the same way. This is not the case here: the postulate-
is merely that two different descriptions of the same situation should
develop, in the course of time, into two descriptions which also describe
the same physical situation. The similarity with the case of the electro-
magnetic potentials is obvious.

Unfortunately, the situation is by no means the same in the case of
the other interactions. One knows very little about the weaker one of
the strong interactions. The strong one, as well as the weak interac-
tion, has a group which is, first of all, very much smaller than the gauge
group or the group of general coordinate transformations.!3 Instead of
the infinity of generators of the gauge and general transformation
groups, they have only a finite number, that is, eight, generators. They
do suffice, nevertheless, to a large extent to determine the form of the
interaction, as well as to derive some theorems, similar to those of
spectroscopy, which give approximate relations between reaction rates
and between energies, that is, masses. Figure 2 shows the octuplet of
heavy masses—its members are joined to each other by the simplest
nontrivial representation of the underlying group which is equivalent
to its conjugate complex.

Y
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Fig. 2

13 For the strong interaction, cf. Y. Ne’eman, Nucl. Phys., 26, 222 (1961), and
M. Gell-Mann, Phys. Rev., 125, 1067 (1962). For the weak interaction, R. P. Feyn-
man and M. Gell-Mann, Phys. Rev., 109, 193 (1958), and E. C. G. Sudarshan and
R. E. Marshak, Phys. Rev., 109, 1960 (1958); also J. J. Sakurai, Nuovo Cimento,
7, 649 (1958), and G. S. Gershtin and A. B. Zeldovitch, J. Exptl. Theoret. Phys.
USSR, 29, 698 (1955).
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Another difference between the invariance groups of electromagnet-
ism and gravitation on one hand, and at least the invariance group of
the strong interaction on the other hand, is that the operations of the
former remain valid symmetry operations even if the existence of the
other types of interactions is taken into account. The symmetry of the
strong interaction, on the other hand, is “broken” by the other inter-
actions, ie., the operations of the group of the strong interaction are
valid symmetry operations only if the other types of interactions can be
disregarded. The symmetry group helps to determine the interaction
operator in every case. However, whereas all interactions are invariant
under the groups of the electromagnetic and gravitational interactions,
only the strong interaction is invariant under the group of that inter-
action.

We have seen before that the operations of the geometric symmetry
group entail conservation laws. The question naturally arises whether
this is true also for the operations of the dynamic symmetry groups.
Again, there seems to be a difference between the different dynamic in-
variance groups. It is common opinion that the conservation law for
electric charge can be regarded as a consequence of gauge invariance,
i.e., of the group of the electromagnetic interaction. On the other hand,
one can only speculate about conservation laws which could be attrib-
uted to the dynamic group of general relativity. Again, it appears reason-
able to assume that the conservation laws for baryons and leptons can
be deduced by means of the groups of the strong and of the weak inter-
action.! If true, this would imply that the proper groups of these inter-
actions have not yet been recognized. One can adduce two pieces of
evidence for the last statement. First, so far, the conservation laws
in question' could not be deduced from the symmetry properties of
these interactions, and it is unlikely that they can be deduced from

14 For the baryon conservation law and the strong interaction, this was sugge.sted
by the present writer, Proc. Am. Phil. Soc., 93, 521 (1949), and these Proceedings,
38, 449 (1952). The baryon conservation law was first postulated by E. C. G.
Stueckelberg, Helv. Phys. Acta, 11, 299 (1938).

15 For the experimental verification of these and the other conservation laws, see
G. Feinberg and M. Goldhaber, these Proceedings, 45, 1301 (1959). The conserva-
tion law for leptons was proposed by G. Marx in Acta Phys. Hung., 3, 55 (1953 );
also A. B. Zeldovitch, Dokl. Akad. Nauk USSR, 91, 1317 (1953}, and E. J. Konopin-
ski and H. M. Mahmoud, Phys. Rev., 92, 1045 (1953). It seemed to be definitely
established by T. D. Lee and C. N. Yang, Phys. Rev., 105, 1671 (1957). See also
Fermi’s observation mentioned by C. N. Yang and ]. Tiomno, Phys. Rev., 79, 497
(1950).
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them.*® Second, the symmetry properties in question are not rigorous
but are broken by the other interactions. It is not clear how rigorous
conservation laws could follow from approximate symmetries—and all
evidence indicates that the baryon and lepton conservation laws are
rigorous.'” Again, we are reminded that our ideas on the dynamical prin-
ciples of invariance are not nearly as firmly established as those on the
geometrical ones.

Let me make a last remark on a principle which I would not hesitate
to call a symmetry principle and which forms a transition between the
geometrical and dynamical principles. This is given by the crossing
relations.’® Let us consider the amplitude for the probability of some
collision, such as

A+B+.. . > X+Y+.. . (3)

This will be a function of the invariants which can be formed from the
momenta four-vectors of the incident and emitted particles. It then
follows from one of the reflection principles which I did not discuss, the
“time reversal invariance,” that the amplitude of (3) determines also
the amplitude of the inverse reaction

X+Y+...oA+B+... (4)

in a very simple fashion. If one reverses all the velocities and also inter-
changes past and future (which is the definition of “time reversal”),
(4) goes over into (3) so that the amplitudes for both are essentially equal.
Similarly, if we denote the antiparticle of A by A, that of B by B, and
so0 on, and consider the reaction

A+B+...>X+Y+..., (5)

its amplitude is immediately given by that of (3) because (according
to the interpretation of Lee and Yang), the reaction (5) is obtained from
(3) by space inversion. The amplitudes for

X+Y+...»A+B+... (6)

18 For the baryon conservation and strong interaction, this was emphatically
pointed out in a very interesting article by J. ]. Sakurai, Ann, Phys. (N.Y.), 11, 1

(1960). Concerning the conservation of lepton members, see G. Marx, Z. Natur-
forsch., 9a, 1051 (1954).

17 See footnote 15.

18 M, L. Goldberger, Phys. Rev., 99, 979 (1955); M. Gell-Mann, and M. L.
Goldberger, Phys. Rev., 96, 1433 (1954). See M. L. Goldberger and K. M. Watson,
Collision Theory (New York: John Wiley and Sons, 1964), chap. 10.
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can be obtained in a similar way. The relations between the amplitudes
of reactions (3), (4), (5), and (6) are consequences of geometrical prin-
ciples of invariance.

However, one can go further. The crossing relations tell us how to
calculate, for instance, the amplitude of

X+B+... »A+Y+... ()

from the amplitude system of (3). To be sure, the calculation, or its
result, is not simple any more. One has to consider the deper'lden(‘:e of
the reaction amplitude for (3) as an analytic function of the 1nvar1an'ts
formed from the momenta of the particles in (3), and extend this analytic
function to such values of the variables which have no physical sig-
nificance for the reaction (3) but which give the amplitude for (7).
Evidently there are several other reactions the amplitudes of whic'h
can be obtained in a similar way; they are all obtained by the analytic
continuation of the amplitude for (3), or any of the other reactions. Thus,
rather than exchanging A and X to obtain (7), A and Y could be ex-
changed, and so on. : ' '

The crossing relations share two properties of the geometrlc?ll prin-
ciples of invariance: they do not refer to any particular tyI')e‘ of interac-
tion and most of us believe that they have unlimited validity. On th‘e
other hand, though they can be formulated in terms of events, their
formulation presupposes the establishment of a law of natl'lr'e, namel)‘f,
the mathematical, in fact analytic, expression for the collision ampli-
tude for one of the aforementioned reactions. One may hope that they
will help to establish a link between the now disjoint geometrical and
dynamical principles of invariance.



