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ON THE ORIGIN OF INERTIA 

D. W. Sciama 

(Received 1952 August 20)* 

Summary 

As Einstein has pointed out, general relativity does not account satis- 
factorily for the inertial properties of matter, so that an adequate theory of 
inertia is still lacking. This paper describes a theory of gravitation which 
ascribes inertia to an inductive effect of distant matter. In the rest-frame 
of any body the gravitational field of the universe as a whole cancels the 
gravitational field of local matter, so that in this frame the body is “ free ”. 
Thus in this theory inertial effects arise from the gravitational field of a 
moving universe. For simplicity, gravitational effects are calculated in 
flat space-time by means of Maxwell-type field equations, although a 
complete theory of inertia requires more complicated equations. 

This theory differs from general relativity principally in the following 
respects : 

(i) It enables the amount of matter in the universe to be estimated 
from a knowledge of the gravitational constant. 

(ii) The principle of equivalence is a consequence of the theory, not 
an initial axiom. 

(iii) It implies that gravitation must be attractive. 
The present theory is intended only as a model. A more complete, but 

necessarily more complicated theory will be described in another paper. 

I. Introduction.—In this paper we construct a tentative theory to account 
for the inertial properties of matter. These properties imply that at each point 
of space there exists a set of reference frames in which Newton’s laws of motion 
hold good—the so-called ‘‘inertial frames”. If other frames are used, 
Newton’s laws will no longer hold unless one introduces “fictitious” (inertial) 
forces which depend on the motion of these frames relative to an inertial frame. 

The question then arises: what determines the inertial frames? Newton 
asserted that they were determined by absolute space. However, absolute 
space is not observable in any other way, and it has been suggested that it is 
more satisfactory to attempt to correlate the inertial frames with observable 
features of the universe. In particular, Berkeley (1) and Mach (2) maintained 
that inertial frames are those which are unaccelerated relative to the “fixed 
stars”, that is, relative to a suitably defined mean of all the matter in the universe. 
This statement is usually known as Mach’s principle. As this principle will 
be used as a guide in constructing our theory, we shall first discuss its general 
implications. 

The view that the problem of motion can be completely discussed in terms 
of observables implies that a kinematical description of all the relative motions 
in the universe completely specifies the system, so that kinematically equivalent 
motions must be dynamically equivalepf. For instance, the statement that the 
Earth is rotating and the universe is at rest should lead to the same dynamical 
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consequences as the statement that the universe is rotating and the Earth is at 

rest, whereas this is not true in a scheme based on absolute space. Using Mach’s 
principle we can predict that the angular velocity of the Earth, as deduced from 
a local dynamical experiment (such as the motion of a Foucault pendulum), will 
be the same as that deduced kinematically from the apparent motion of the fixed 
stars. This prediction cannot be made in Newton’s theory, because there is 
then no causal connection between the motion of the stars and the existence of 
inertial forces at the Earth; the two observations give the same result only 
because, as it happens, the stars are not rotating relative to absolute space. 

If the rest of the universe determines the inertial frames, it follows that 
inertia is not an intrinsic property of matter, but arises as a result of the 
interaction of matter with the rest of the matter in the universe. This immediately 
raises the problem of how Newton’s laws of motion can be so accurate despite 
their complete lack of reference to the physical properties of the universe, such 
as the amount of matter it contains. It was largely this problem which originally 
prevented the general acceptance of Mach’s ideas, and one of the requirements 

of a theory of inertia that is consistent with Mach’s principle is that it should 
account for the apparent irrelevance of the properties of the universe. 

The observed fact that a gravitational force is locally indistinguishable 
from an inertial force, in that each induces the same acceleration in all bodies, 
suggested to Einstein that it is the gravitational influence of the whole universe 
which gives rise to inertia. General relativity was devised to incorporate this 
idea, but, as emphasized by Einstein (3, 4, cf. 5, p. 97), it failed to do so. Einstein 
showed that his field equations imply that a test-particle in an otherwise empty 
universe has inertial properties. In view of this it seems to be worth while 
searching fof theories of gravitation which imply that matter has inertia only 
in the presence of other matter. In this paper we describe what appears to be 
the simplest possible theory of gravitation that has this property, though this 
theory is incomplete in other respects. 

2. General formalism,—Our problem is to construct a formalism in which 
the motion of a body is influenced by the presence of other bodies, but in which 
the concepts of “inertia” and “inertial frames” do not have to be introduced 
a priori. We shall represent the influence of the bodies on each other by a set 
of quantities defined at all points of space and time. As we are ignoring 
electromagnetic effects in this paper, we say that these quantities describe the 
gravitational field. The field is determined by the bodies (the sources) by means 

of a set of differential equations, together with suitably chosen boundary 
conditions. These equations show how the field can be determined from the 
motion (and other properties) of the sources. 

In addition we must know how the field affects the motion of the sources. 
For this purpose we introduce the following postulate: in the rest-frame of any 
body the total gravitational field at the body arising from all the other matter in the 
universe is zero. In Newtonian language we could say that the universe moves 
relative to any body in such a way that the body never experiences a force—the 
difference from the ordinary Newtonian theory being that the forces acting on 
the body are here derived entirely from the matter in the universe. 

We must now set up the equations relating the gravitational field to its sources. 
In the rest-frame of any particle we assume the field to be derivable from a 
potential in Minkowski space, that is, we do not describe it in terms of a curved 
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space. Kinematical considerations (Section 6) show that the potential should 
be a tensor of the second rank, but the use of such a potential leads to rather 
involved mathematics which tends to obscure the physical significance of the 
theory. It seems advisable to begin by working with the simplest mathematical 
scheme which contains the physically important aspects of the problem. The 
simplest type of potential we could use is a scalar, but as we shall see ( Section 4 (ii)), 
this would not give rise to inertia. The next simplest possibility is a vector 
potential, and with a theory based on such a potential we can reproduce the main 
properties of inertia. In this paper we shall confine our attention to such a 
potential. This simplification is useful for gaining insight into the problem, 
but naturally it has its limitations, some of which are mentioned in Section 6. 
The more elaborate equations that are needed for a tensor potential will be 
described in a subsequent paper (hereafter called II). 

In a theory based on a vector potential, the field is an antisymmetrical tensor 
—the curl of the potential. The only linear second-order differential tensor 
equations for a field of this type that imply the conservation of source are (6) 
Maxwell’s equations, which accordingly we shall adopt. We emphasize that 
although our equations have the same formal structure as Maxwell’s, they 
describe purely gravitational effects, electromagnetic phenomena being outside 
the scope of this paper. 

In order to apply the theory to even as simple a problem as the motion of a 
particle in the gravitational field of the Earth, we must know the distribution 
of matter in the universe. In practice we shall have to approximate to this 
distribution in some way. The type of approximation that will be most useful 
depends on the relative importance of near and distant matter. Since the amount 
of matter at a given distance increases roughly with the square of the distance, 
it follows that if the influence of matter falls off more slowly than the inverse 
square of the distance, then very distant matter is of predominant importance. 
It is convenient to anticipate that this is indeed the case (Section 4(hi)). This 
means that a smoothed-out model of the universe should be a good first 
approximation, local irregularities having only a small effect which can easily 
be estimated. It also means that local phenomena are strongly coupled to the 
universe as a whole, not just to local conditions. This in turn means that local 
experiments, if interpreted by means of this theory, can give us information 
about the structure of the universe as a whole {cf. 5, 7). The correctness of this 
information can, in principle, be tested by independent and more direct 
considerations. 

We shall take as our smoothed-out model a homogeneous and isotropic 
distribution of matter of density p expanding (relative to any point as origin) 
according to the Hubble law v = r/r, where v is the velocity of matter at distance r, 
and T is a constant. This neglects certain relativistic difficulties such as the 
significance of velocities exceeding that of light, but for the tentative theory 
developed in this paper we shall not concern ourselves with these problems; 
a consistent treatment will be given in II. This model is one of those in which 
there is a natural state of rest at each point, namely, that in which the observed 
distribution of the red-shifts of distant matter is isotropic. Thus we can speak 
of a body being at rest relative to the universe. 

3. Inertia-induction.—In order to show how inertia arises in this formalism, 
we consider the behaviour of a test-particle in the presence of a single body 
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superposed on the smoothed-out universe. The problem is to determine what 
motion of the system universe-plus-body relative to the test-particle makes the 
total gravitational field at the particle zero. 

It is convenient to begin by calculating the potential at a test-particle that is 
at rest in a universe containing no irregularities. Since our field equations have 
the same form as Maxwell’s, we can use electrodynamic formulae to calculate 
the potential, and to bring out the analogy with electrodynamics we use a similar 
notation and terminology, but we emphasize that in this paper we shall be 
concerned with purely gravitational phenomena. 

Retardation effects are taken to arise in the same way as in electrodynamics, 
so that the contribution of any region of the universe to the potential at a 
point P at time t is computed by ascribing to that region just the properties that 
are observed at P at time t. 

We thus have for the scalar potential (8) 

<5 = - Í P-dV. (I) 
J vr 

We use the minus sign in (1) because inertial mass then turns out to be positive, 
but in fact either sign can be used (Section 4(vii)). The vector potential A 
vanishes by symmetry. 

We shall assume that matter receding with velocity greater than that of light 
makes no contribution to the potential, so that the integral in (1) is taken over 
the spherical volume of radius cr. An assumption of this sort is necessary since 
we have naively extrapolated the Hubble law without considering relativistic 
effects, and should give the correct order of magnitude. A relativistic treatment 
is given in II. 

Since the density is supposed uniform, (1) gives 

(£ = — 27TpC2T2. (2) 

Owing to our assumptions, the numerical factor 277 is only approximate. 
We now calculate the potentials for the simple case when the particle moves 

relative to the smoothed-out universe with the small rectilinear velocity — v(¿). 
In the rest-frame of the particle the universe moves rectilinearly with velocity v(i). 
Now at time t there will be observable at the particle, in addition to the Hubble 
effect, a Doppler shift corresponding to v(i) from all parts of the universe. 
Hence, in computing the potential in the rest-frame of the particle at time ty 

we must ascribe to every region of the universe the velocity that is observed at 
time ty that is, v(¿) + r/r. 

Neglecting terms of order v2jc2
y we have 

O = — 2TrpC2r2 

as before. The vector potential no longer vanishes, but has the value 

a—0^. (3» 

Since v is independent of r, we can take it outside the integral. We then 
obtain 

<D 
A=-v(i). 

c v 7 
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Since the change of p with time is very small, the gravelectric part of the 
held is approximately 

_ ,, i3A 
E=-grad(D--w 

O dv 
= ~^dt9 

while the gravomagnetic held is 
H = curl A = o. 

So far we have been concerned with a universe that has no irregularities. 
We now suppose that a body of gravitational mass M is superposed on this 
universe and is at rest relative to it. The held of this body in the rest-frame of 
the test-particle is then 

cf> dv , . 

~ r2 r~ c2 dt ’ ^ 

where r is the distance of the body from the test-particle, </>(= — M/r) is the 
potential of the body at the test-particle, and 

A dv _ dv 
r ' dt dt' 

The total held at the particle is zero if 

M cf> dv O dv 

c1 dt c1 dt 

or 

(5) 
M /í> + <Aúfo 

r2 \ c* ) dt ' 

This equation asserts that the system universe-plus-body accelerates relative 
to the test-particle at a rate determined by the mass and distance of the body. 
In accordance with the discussion of Section i, we may re-interpret this result 
by saying that the particle accelerates towards the body, which is at rest relative 
to the universe, and thereby make contact with the Newtonian view-point. 
Indeed we obtain for rectilinear motion a combination of Newton's laws of motion 
mid of gravitation, with the inertial frame determined by Mach's principle. 

Furthermore, the gravitational constant satisfies the equation 

0 + <£ i 

or, since (cf. Section 4(iii)), 

GO=-c2. (6) 

4. Consequences of the theory.—(i) Equation (6) implies that the total energy 
(inertial plus gravitational) of a particle at rest in the universe is zero. It can in 
principle be tested observationally, for, in conjunction with (2), it implies that 

277Gpr2 = I 
or 

Gpr2 ^ I, (7) 
since the numerical factor is only approximate. 

Equation (6) implies that the gravitational constant at any point is determined 
by the total gravitational potential at that point, and so by the distribution of 
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matter in the universe. This illustrates the fact mentioned above that if local 
phenomena are strongly coupled to the universe as a whole, then local observations 
can give us information about the universe as a whole. With our assumption 
about the structure of the universe, a laboratory determination of G, combined 
with an astronomical determination of r, enables us to deduce the mean density 
of matter in space (apart from the uncertainty in the numerical constant). 

Taking G = 6 x io~8 c.g.s. units and r = 6 x io16 sec we have from (7) 

p ^ 5 x io-27 g cm-3. (8) 

A mean density of this amount is much larger than the usual observational 
estimates (^io-30 gem-3), but these values refer only to matter condensed into 
nebulae, and the mean density of internebular material may well exceed the 
overall density of material condensed into nebulae (5, p. 45). Indeed, if the 
nebulae are supposed to have condensed from an internebular medium, there is 
no reason why the medium should have been exhausted in the process. It is 
probable that p has an upper limit of ~io-25 gem-3, as this appears to be the 
mean density within some nebulae. Hence (8) is not inconsistent with observation. 

(ii) We see from the argument leading to (5) that “inertia-induction” arises 
from the term dA/dt, that is, from the “radiation-field” of the universe. Had 
we used a scalar potential such a term would not have arisen, there would have 
been no inertia-induction, and we would not have been able to obtain Newton’s 
law of motion (5). 

(hi) The contribution of matter to local inertia falls off only inversely as 
the distance, since dA/dt is proportional to the scalar potential (cf. the radiation 
field of an accelerating charge (8, p. 22)). This means that the main contribution 
comes from distant matter—(1) shows that 99 per cent of local inertia arises 
from matter further away than io8 light-years. The fractional contributions 
of the Earth, Sun and Milky Way are io-9, io-8, io-7 respectively (taking the 
mass of the Milky Way as io44 g) ; this justifies the neglect of <£ in (6). According 
to our theory, then, local phenomena are strongly coupled to the universe as a 
whole, but owing to the small effect of local irregularities this coupling is practically 
constant over the distances and times available to observation. Because of this 
constancy, local phenomena appear to be isolated from the rest of the universe. 

(iv) As has already been pointed out, a theory of inertia that is consistent 
with Mach’s principle must account for the fact that Newton’s methods were 
so successful despite their complete lack of reference to the properties of the 
universe. The work of Section 3 shows that our theory satisfies this requirement. 
The universe affects local phenomena at just the two points where Newton’s 
work contains arbitrary elements, namely (a) in the choice of inertial frames, 
and (6) in the value of the gravitational constant. 

(v) Relation (7) is a consequence of many general relativistic models (5, 
cf also 9) as well as of our theory. However, our theory is disproved if (6) 
disagrees with observation, whereas general relativity is not, since it leads to 
many models in which (6) is false. Hence in general relativity the observed 
value of the gravitational constant gives no information about the amount of 
matter in the universe. For instance, if the Milky Way was thought to be the sole 
occupant of the universe, general relativity would still be consistent with the 
observed value of G, whereas in our theory there would be a discrepancy of 

,a factor ~io7. Indeed, if we accepted Mach’s principle for the reasons given 
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in Section 1, we would, on the basis of our theory, predict that the universe 
contained vastly more matter than had yet been observed. 

(vi) The principle of equivalence asserts that the phenomena occurring in 
a gravitational field are the same as those occurring in the absence of the field 

if observations are made from a suitably chosen accelerating frame. For 
instance, consider an observer confined to a closed laboratory. According to the 
principle of equivalence the observer cannot distinguish between the following 
two events : 

{a) a gravitating mass is suddenly placed near the laboratory ; 
(b) the laboratory is suddenly accelerated, e.g. by being pulled by a rope. 

In our theory this is explained by the fact that in case {b) the motion of the universe 
relative to the observer produces the same gravitational field at the laboratory as 
that of the mass in case (a) {cf. the argument leading to (5)). 

General relativity has difficulty in explaining the principle of equivalence 
because it predicts that one gravitating mass in an otherwise empty universe 
produces effects similar to those calculated with a full universe in Section 3. 
Since there is no universe to act as the source of the field in case (é), it is difficult 
to see why the principle of equivalence should be true. 

(vii) It follows from our equations that gravitation is attractive, whereas 
in general relativity the sign of the field is not determined. This result arises 
because our equations imply that the field at a point P due to a mass is decreased 
in absolute magnitude if the mass has a component of acceleration towards P, 
and increased if it has a component away from it, whichever the sign of the field 
{cf. (4)). Thus the field of the universe can only cancel the field of a local mass 
if the universe moves so that the mass, which is at rest relative to it, accelerates 
towards the particle. This is why the sign in equation (1) is arbitrary : had we 
chosen a plus sign, gravitation would have been repulsive and inertial mass 
negative (corresponding to changing the sign of both sides of (5)), so that the 
particle would still accelerate towards the body. 

5. Uniform rotation.—In Section 3 we assumed that the universe-plus-body 
moved in a straight line relative to the test-particle. We shall now derive another 
possible motion of the system in which the universe and body rotate with constant 
angular velocity about an axis through the centre of the body perpendicular to 
the line joining it to the particle. 

In the rest-frame of the particle we set up a Cartesian system of axes with 
origin at the body and s-axis along the axis of rotation. If the universe were 
non-rotating, its gravitational potential near the origin would be 

Ax = Ay = Az = o; 0= — i, (9) 

choosing units so that G = c = i. If it rotates, its potential in the x,y plane near 
the origin is 

Ax = ojy, 

Ay= — COX, 

Aa = o; 

= — [1 + 6o2(#2 +y2)]1/2 

==_(!+^2)1/2. 

This follows from the transformation properties of four-vectors (10). It is only 
true for distances from the origin for which the potential of a non-rotating 
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universe differs negligibly from (9), since Rosen’s result was derived for a 
four-velocity which has the values (9) everywhere in the non-rotating frame. 
This restriction is of no importance for phenomena on a galactic scale since the 
potential of the universe at the centre of the galaxy differs from that at the edge 
by less than one part in 1010. 

We thus get 

E = — grad O — 
3A 

dt 

oj2r 

(i + aA-2)1'2 

^a>2r, for a>r<^i. 

The field of the body, neglecting its rotation, is 

The total field is zero if 

M 2 =a,2r. (10) 

In the rest-frame of the universe, this is the usual Newtonian equation for 
circular motion. In the rest-frame of the particle, however, Newton’s law of 
motion only holds if we introduce a fictitious centrifugal force-field. Equation (10) 
shows that in our theory this field is not fictitious, but arises from the gravitational 
effect of a rotating universe, in agreement with Mach’s principle. 

In contrast to the case of Section 3, the gravomagnetic field is not zero (c/. 
the magnetic field of a rotating charge-distribution). In fact, we have 

H =curl A = 2C0. 

Since the test-particle is at rest, this field has no effect; but for another test- 
particle constrained to move relative to the first with uniform velocity v, there 
would be in its rest-frame a gravelectric field 

V a H = 2V aCO (ii) 

acting on it. This can be seen directly by taking this particle to be at rest and 
determining E in the new frame. (C/*. the relativistic deduction of the Lorentz 
force <E + va H) from the expression ¿E.) 

The field (11) just corresponds to the Coriolis field of Newtonian theory, • 
and like the centrifugal field it is here ascribed to the rotating universe. Thus, 
in our theory, we can regard the Earth as stationary and a Foucault pendulum 
as pulled around by the gravomagnetic field of the rotating universe. 

Another feature of this interpretation of the Coriolis field is that the bending 
of light in a gravitational field is observable in the laboratory. In fact, the 
experiments of Sagnac (11) and Michelson and Gale (12) showed that in a 
rotating frame of reference light does not travel in straight lines. If we interpret 
this phenomenon according to our theory, we may suppose the frame to be at 
rest and the universe to be rotating around it. The resulting gravitational field 
then bends the path of the light. According to this point of view the Sagnac 
effect is of the same nature as the refraction of light passing through the 
gravitational field of the Sun. A quantitative treatment of the motion of light 
in a gravitational field requires, however, the more elaborate equations of II. 
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The results of this section enable us to reconsider the problem of absolute 
rotation from the standpoint of our tentative theory. In fact, rotation does not 
give rise to any problems not already raised by translation, but the conflict 
between absolute and relative motion has usually been discussed in terms of 
rotation. The main argument for the view that there is an absolute standard 
of rotation has been the fact that local experiments can detect rotation— 

experiments in which the rest of the universe has not appeared to play an 
essential part. The present theory answers this argument by showing how 
the rest of the universe can play an essential part in local phenomena. The 
results of local experiments can be interpreted as giving us information about 
the universe as a whole—an interpretation which is verifiable by direct observation. 

6. Limitations of the theory.—We have so far derived Newton’s law of motion 
for two special cases : rectilinear motion and uniform rotation. A satisfactory 
theory of inertia must, of course, derive Newton’s law for all possible motions. 
Now it follows from the relativistic form of Newton’s law (13) that for general 
motions inertial forces are derived from a tensor potential and not from a vector 
potential. This means that the gravitational field of the moving universe, which 
in our theory gives rise to inertial forces, must also be derived from a tensor 
potential, so that our present theory is incomplete. 

Furthermore, in a theory based on a vector potential it is difficult to give a 
consistent relativistic discussion of the structure of the universe as a whole. It is 
also difficult to describe the motion of light in a gravitational field. In paper II 
we shall describe a theory, using a tensor potential, in which these difficulties do 
not arise. 

I am grateful to my colleagues for commenting on the manuscript, to the 
referees for their valuable and detailed criticisms of the first draft of this paper, 
and to Mr H. Bondi and Mr T. Gold for their constant advice and encouragement. 

Trinity College, 
Cambridge : 

1952 August 19. 
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