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Some challenges of Standard Model of Elementary Particles (SMEP) 

 
Quantum gravity is a field of theoretical physics that seeks to describe the force of gravity according to 
the principles of quantum mechanics. Ground state (or vacuum) energy modeling is concerned about 
necessarily “existing” “empty space” energy in the absence of matter. 
 
Light consists of particles. The current of electrons increases with the increase of its frequency. In the 
same way it does for the current of light. But the current of light does not increase with the increase of the 
intensity (the "force" of the light). This phenomenon leads Einstein to the concept of photons with minimal 

quantum energy. But photons have no mass; nevertheless it holds the Einstein equation 2cmE  . In 

addition the light is an electro-magnetic wave in the sense of Maxwell equations. 
 
The Higgs boson combines the existence of mass together with the action of the weak force. But why it 
provides especially to the quarks that much mass, is still a mystery.  
 
The state of the art assumption is, that quantum fluctuation was the first mover in the early state of the 
universe; the 4 Nature forces arise at a later state after inflation. Energy breaking & phase transition are 
the current concepts to explain mass generation out of purely massless “particles” (photons). 
 
 

 
 
 
[BlD]. Preface:  “There is a standard way to compute the field strength (or curvature) of a gauge potential 
(or connection). In case where )1(UG    (or equivalent the group of rotations in the plane), the gauge 

potential is essentially the 4-vector potential of electromagnetism and the field strength is the 
electromagnetic field. H. Weyl introduced the concept of gauge transformation and gauge invariance. 
Yang and Mills introduced gauges prescribing a point-dependent choice of isotopic spin axis. In this case 
the group is SU(2) (or equivalent, the unit of quaternions).The Yang-Mills model was a precursor to the 
apparently successful model of Weinberg/Salam for weak interactions. The mechanism of spontaneous 
symmetry breaking allows gauge fields to acquire mass (consider, e.g. the massive “intermediate vector 
bosons” in the Weinberg-Salam model). In spite of these refinements, the basic fact remains that the 
existence of gauge fields is a consequence of the existence of gauge-invariant action densities for particle 
fields. …. The action density is a measure of the superfluous manifestations of the fields involved. Nature 
obeys the principle of least action.” 
 
 

[BlD] Bleecker D., Gauge Theory and Variational Principles, Dover Publications, Inc., Mineola, 
New York, 1981 



Comparison table: current vs. proposed 
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equation 
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Planck’s action quantum 

 
smallest action quantum, which can 
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smallest action quantum, which can be 
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photon dies not realize that times 
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R. Penrose, The Emperor’s New Mind: 

“the time of our perception does not 
“really” flow in quite the linear forward-
moving way that we perceive it to do. 

The temporal ordering that we 
“appear” to perceive is, …, something 
that we impose upon our perceptions 

in order to make sense of them in 
relation to the uniform forward time-
progression of an external physical 

reality” 
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“a closed vacuum space cannot be 
diluted” 

(causing inflation/mass generation 
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Heisenberg uncertainty 
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Generation of mass of 
sub-atomic particles and 

its mass value 

 
energy breaking, phase transition; 
Lagrange (Klein-Gordon) density 

and potential of the Higgs field  , 
which is a kind of ether existing 

throughout the universe 
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D  covariante derivative 

 

phase transition between 
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Casimir, Lamb effect verification in test space 
0H  verification in test space 
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Elementary particles and 
the options 
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
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Einstein-Podolsky-Rosen 
paradoxon 

0HH  ,  
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gauge/Higgs/(hypothetical) graviton 
bosons with only symmetric 
Schrödinger wave function 

solutions 
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anti-symmetric Schrödinger wave 

function solutions 
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Single and double layer 
potential 

Lebesgue integrals, 
 

mass density  
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and existing normal derivative with 
corresponding (mathematically 

required) regularity assumptions  
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Stieltjes integrals, 

 
Plemelj’s concepts of an mass 
element  

sd  

and related “current of a force” on the 
boundary through the boundary 
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Quantum theory of 
radiation, 

intensity = surface force 
density 
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regularity requirement/assumptions 
of an existing normal derivative with 

exterior/interior domain w/o 
physical meaning  

very poor regularity assumptions in the 
form 
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to ensure continuous single layer 
potential;  

concept of an apparent size of the 
element ds as “seen” from the interior 
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Maxwell-Lorentz 
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potentials and 
corresponding field 
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Vector field A is not completely 
determined by the magnetic field H  

 

Vector field A is completely 
determined by the magnetic field H ; 

no differentiability assumption 
required; no calibration required due to 
this purely mathematical assumptions 
(w/o physical meaning; same situation 

as for the “differential manifolds” 
assumptions for the Einstein field 

equations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
[PlJ] Plemelj J., Potentialtheoretische Untersuchungen, B. G. Teubner Verlag, Leipzig, 1911  
 
[ShF] Shu F. H., The Physics of Astrophysics, Volume I, Radiation, University Science Books, 
Mill Valley, California,1991 



Appendix 
 

The Eigenvalue problem for compact symmetric operators 
 

 

In the following H denotes an (infinite dimensional) real Hilbert space with scalar product  .,.  

and the norm ... . We will consider mappings HHK : . Unless otherwise noticed the 

standard assumptions on K are: 
 

i)  K is symmetric, i.e. for all Hyx , it holds    KyxKyx ,, 

 ii)  K is compact, i.e. for any (infinite) sequence  
nx  bounded in H contains a 

subsequence  
nx   

such that  
nKx   

is convergent, 

iii)  K is injective, i.e. 0Kx  implies 0x  . 

 
 
A first consequence is 
 
Lemma: K is bounded, i.e. 

x

Kx
K

x 0

sup:



   . 

 
Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two other 

condition ii) and iii). Then K  equals 
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x

,
sup)(

0


   . 

 

Theorem: There exists a countable sequence  
ii  ,

 
of eigenelements and eigenvalues 

iiiK    with the properties 

 
i)  the eigenelements are pair-wise orthogonal, i.e.

  

 
kiki ,,  

 ii)  the eigenvalues tend to zero, i.e. 
i

i

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 iii)  the generalized Fourier sums 
 

                              xxS i
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i

in 

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iv)  the Parseval equation 
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
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holds for all Hx . 

 
 

 
 
 



Hilbert Scales 
 

Let H be a (infinite dimensional) Hilbert space with scalar product  .,. , the norm ...  and A be 

a linear operator with the properties 
 

i)  A is self-adjoint, positive definite 

ii)  
1A is compact. 

 

 Without loss of generality, possible by multiplying A with a constant, we may assume 
 

  xAxx ,

       

for all )(ADx  
 

The operator 1 AK has the properties of the previous section. Any eigen-element of K is also 
an eigen-element of A to the eigenvalues being the inverse of the first. Now by replacing 

1 ii  we have from the previous section 

 
i) there is a countable sequence  

ii  ,  with 
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 ,
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ii) any Hx is represented by  
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Lemma:  Let )(ADx , then  
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
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Because of (*) there is a one-to-one mapping I of H to the space Ĥ of infinite sequences of 
real numbers 
 

 ,...),(ˆˆ:ˆ
21 xxxxH   

defined by 
 

Ixx ˆ    with    
ii xx ,  .    

If we equip Ĥ with the norm  
 

 



1
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then I is an isometry.  
 
 



By looking at (**) it is reasonable to introduce for non-negative the weighted inner products 
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 
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Let Ĥ denote the set of all sequences with finite  norm. then Ĥ is a Hilbert space. The 

proof is the same as the standard one for the space 
2l . 

 

Similarly one can define the spaces
H : they consist of those elements Hx such that 

HIx ˆ  with scalar product  
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and norm   

 
xxx ,

2
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Because of the Parseval identity we have especially 
 

   yxyx ,,
0
  

and because of (**) it holds 
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2

2
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)(2 ADH  . 

 
The set  0H  is called a Hilbert scale. The condition 0  is in our context necessary for 

the following reasons: 
 
Since the eigen-values

i tend to infinity we would have for 0 : 0lim i
. Then there exist 

sequences ,...),(ˆ
21 xxx  with 

 


2

2
x̂  , 

2

0
x̂  . 

 

Because of Bessel’s inequality there exists no Hx   with xIx ˆ . This difficulty could be 

overcome by duality arguments which we omit here. 
 
 
There are certain relations between the spaces 0H

 
for different indices: 

 
Lemma: Let   . Then 


xx   

and the embedding 
 HH  is compact. 

 
 
 



Lemma: Let   . Then 
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Lemma: Let   . To any 

Hx  and 0t  there is a )(xyy t according to 
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Corollary: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 
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Remark: Our construction of the Hilbert scale is based on the operator A with the two 

properties i) and ii). The domain )(AD of A equipped with the norm  
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turned out to be the space
2H which is densely and compactly embedded in 

0HH  . It can be 

shown that on the contrary to any such pair of Hilbert spaces there is an operator A with the 
properties i) and ii) such that 
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Extensions and generalizations 
 
 
For 0t we introduce an additional inner product resp. norm by 
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Now the factor have exponential decay 
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 instead of a polynomial decay in case of 
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with ),( tc  depending only from  and 0t . Thus the normt )(  is weaker than any norm . 

On the other hand any negative norm, i.e. 
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with 0 being arbitrary. 

 
Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of the 

norm , which can be reformulated in the form ( 0,  , 1 ) 
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applying Young’s inequality to 
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The counterpart of the fourth lemma above is 
 

Lemma: Let 0, t be fixed. To any 
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
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In this paper we are especially concerned with the  2/1H  Hilbert space, as the proposed 

alternative framework to model quantum states. With respect to the above lemma this means, 
that for any bounded  

0Hx  it holds with   :: t  
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one therefore gets 
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Eigen-functions and Eigen-differentials 
 

Let H be a (infinite dimensional) Hilbert space with inner product  .,. , the norm ...  and A be 

a linear self-adjoint, positive definite operator, but we omit the additional assumption, that 
1A

compact. Then the operator 1 AK does not fulfill the properties leading to a discrete spectrum.  
We define a set of projections operators onto closed subspaces of H in the following way: 
 

),( HHLR   

 





 dE ,*)(:

0

    
,
     ,0  , 

i.e.                                        

  ddE ,*)(  . 

 

The spectrum CA )(  of the operator A is the support of the spectral measure dE . The 

set E  fulfills the following properties: 

 

i) E  is a projection operator for all R  

ii) for    it follows 
 EE   i.e. 

 EEEEE   

iii) 0lim 





E  and IdE 




lim  

iv) 





EE 




lim  . 

 

Proposition: Let E  be a set of projection operators with the properties i)-iv) having a compact 

support  ba, . Let    Rbaf ,:  be a continuous function. Then there exists exactly one 

Hermitian operator HHA f :  with 






 ),()(),( xxEdfxxA f   . 

Symbolically one writes       






 dEA  . 

Using the abbreviation 
 

),(:)(, yxEyx     
, 

 ),(:)(, yxEdd yx    
one gets 
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



 )(,

2222
  xxdxEdAx  . 

 

The function
 

2
:)( xE   is called the spectral function of A  for the vector x . It has the 

properties of a distribution function. 
 



It hold the following eigen-pair relations 
 

iiiA          A     
2

  
,
 )(),(     . 

 

The   are not elements of the Hilbert space. The so-called eigen-differentials, which play a 

key role in quantum mechanics, are built as superposition of such eigen-functions.  
 

Let I be the interval covering the continuous spectrum of A . We note the following 
representations: 
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Example: The location operator 

xQ  
and the momentum operator 

xP  both have only a continuous 

spectrum. For positive energies 0  the Schrödinger equation 

 
)()( xxH     

 

delivers no element of the Hilbert space H , but linear, bounded functional with an underlying 

domain HM  which is dense in H . Only if one builds wave packages out of )(x it results 

into elements of H . The practical way to find Eigen-differentials is looking for solutions of a 
distribution equation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Definition: Let   with , i.e. is the boundary of the unit disk. Let  being a 

periodic function and denotes the integral from  to  in the Cauchy-sense. Then for 

 with  and for real  Fourier coefficients and norms are defined by      
 

 ,   . 

 
 
The Fourier coefficients of the convolution operator 
 

 

 

are given by                  
 

 . 

 

The operator  enables characterizations of the Hilbert spaces  and  in the form 

 

 ,    . 

 
This requires “differentiating / momentum building” of “less regular” “functions than  .  

It holds 
 

 ,    ,   , 

 
whereby  

 . 

 
 
Lemma: It holds 
 

i) if  is an orthogonal system of , then  is also an orthogonal 

system of  
 

ii)   
 

iii)  is an orthogonal system of  
 

iv) for  it holds 
 

 . 
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Some key properties of the Hilbert transform  
 

      

 

are given in 
 
 
Lemma:          i)        The constant Fourier term vanishes, i.e.  
 

ii)                    

 
iii)

         
For odd functions it hold

     
 

 
iv)         If   then  and

  
 are orthogonal, i.e.  

 

                              

 

v)              ,
 

 ,
 

, 
 
  

 

vi)                   
 

vii)          If   is an orthogonal system, so it is for the system  ,          

              i.e.         
                                     
 

viii)                     , i.e. if  ,   then . 

 
 
Proof:    
 

       ii)      Consider the Hilbert transform of   
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          The insertion of a new variable 
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iv)                       whereby  is even .   
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An ‘optimal order‘ shift theorem for the heat equation 

 
For the parabolic model problem 
 

fuu           in   T,0  

          0u           on   T,0  

0)0( uu  ,     in    . 

 
an ‘optimal order’ shift theorem in the Sobolev Hilbert space framework analogue to the Laplace 
equation is given in the form  

 

Lemma:           i)         
 


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k
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ii) 
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



 
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k
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Proof: Let ),(: ii ww   resp. ),(: ii ff   being the generalized Fourier coefficient related to the 

eigen pairs  
iii vv  . Then it holds      

                   

)()()( tftwtw iiii     and 0)0( iw  . 

with the solution 
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By changing the order of integration one gets 
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For the initial value problem it holds 
 

0 zz                     in  T,0)1,0(   

0),1(),0(  tztz     for  Tt ,0  

)(),( xgoxz    for )1,0(x  . 
 

The compatibility relations  
 

0)1( g  , 0)0( g  , )1()1( 2gg   , etc. 

 
ensure corresponding regularity of the solution z  
 
In case the initial value function has reduced regularity the following estimates are valid 
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An unusual ‘optimal order‘ shift theorem for the wave equation 

 
We consider the hyperbolic model problem 
 

fuu               in   T,0  

          0u                on   T,0  

0)0( uu  ,  
1)0( uu    in    . 

 

An ‘optimal order’ shift theorem in the Sobolev Hilbert space framework analogue to the Laplace 
and the heat equation is not necessarily ensured for hyperbolic problems. This can be proven 
by a simple counter example:  
 

Let  
2))(

2

1
(

:),(
tx

etx


  
and   ),(4),(2:),( txttxtxf 

 
 

then, because of 0  and   , it holds 

 

Lemma: The function ),(:),( 2 txttxu   is a solution of the wave equation with 010  uu  

fulfilling  
 

)()( 2222 LLLL
u    

 

while, at the same time, it holds  
 

)()()( 222222 LLLLLL
Auf   . 

 
 

The situation changed in case of the Hilbert space framework 
)( tH 
 with the exponential decay 

tie
  (and also for the related Hilbert scale 

).( tH 
): 

 

 
Theorem: The hyperbolic self-adjoint, positive definite wave equation operator fulfills an ‘optimal 
order’ shift theorem in the form 
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Proof: The Fourier coefficients of the solution of the wave equation are given by 
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Applying the formula ([GrI] Gradshteyn/Ryzhik, table of integrals, 2.663) 
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this leads to (by changing the order of integration) 
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Harmonic music “noise” signals  
“exactly” “between” red (Brownian) and white noise 

 

Brownian noise or red noise is the kind of signal noise produced by Brownian motion. A Brownian 
motion (i.e. a Wiener process) is a continuous stationary stochastic process having independent 

increments, i.e. )0()( BtB   is a normal random variable with mean t  and variance t2 , 2, constant 

real numbers. The density function of a Brownian motion is given by 
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The sample paths of Brownian motion are not differentiable, a mathematical fact explaining the highly 

irregular motions of small particles. The total variation of Brownian motion over a finite interval  T,0  is 

infinite. It holds 
 

tt
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2)( 
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


 . 

 

If )(tW  is a Wiener process on the interval  ,0 , then, as well the process 
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 . 

 
White noise can be defined as the derivative of a Brownian motion (i.e. a Wiener process) in the 
framework of infinite dimensional distribution theory, as the derivative )(tB of )(tB , does not exist in the 

ordinary sense. Not only )(tB , but also all derivatives of Brownian motion are generalized functions on 

the same space. For each t , the white noise )(tB  is defined as a generalized function (distribution) on 

an infinite dimensional space. A Brownian motion is obtained as the integral of a white noise signal 

)(tdB , i.e.  


t

dBtB
0

)()( 
 

 
meaning that Brownian motion is the integral of the white noise )(tdB whose power spectral density is 

flat 

  constBFourierS 
2

0 )( . 

 

This means, that the spectral density 
0S for white noise is flat, i.e. cS 0

0 /   i.e. it is inversely 

proportional to 0 . It holds     )()(  BFourieriBFourier  . Therefore the power spectrum of Brownian 

noise is given by 
 

 
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S
BFourierS  . 

 

This means, that the spectral density of Brownian (red) noise is 2

0 /S , i.e. it is inversely proportional to 

2 , meaning it has more energy at lower frequencies, even more so than pink noise. 

The above indicates a spectral density for harmonic music “noise” signals given by 
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Distribution solution of the 1D wave equation 

 
The „vibration string“ equation 

02  xxtt uku  

 

has a solution )(),( ktxftxu   for any function of one variable f , which has the physical 

interpretation of a „traveling wave“ with „shape“ )(xf  moving at velocity k . 

 
There is no physical reason for the “shape” to be differentiable, but if it is not, the differential 
equation is not satisfied at some points. In order to not through away physically meaningful 
solutions because of technicalities, the concept of distributions can be applied. 
 
If the equation above is also meaningful, if u is a distribution, then u is called a weak solution of 
it. If u is twice continuously differentiable and the equation holds, one calls u a strong or 
classical  solution. Each classical solution is a weak solution. In case of the equation above it’s 
also the other way around. The same is NOT TRUE for the elliptic Laplace equation (counter 
example is the classical solution )log(:).( 22 yxyxu  , but not a weak solution as it holds there 

4)log( 22  yx ). In order to see this we show that for )()(:).( 21 RLktxfyxu loc  it holds 

 

(*)             0),( 2  xxtt uku  . 

From the following identities 
 

i) dxdttkxfuu tttttt     )(),(),(

 
ii) dxdttkxfuu xxxxxx     )(),(),(  

 
it follows 

 dxdtktkxfuku xxttxxtt  22 )(),(     . 

 

Substituting the variable in the form ktxy   and ktxz   means 
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From this it follows 
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this proves (*) above.  

 
 

 

 



The time-symmetry of the classical wave equation 
 

 
The time-symmetry of the classical wave equation is one of the main challenges of the big bang 
theory. It is linked to the miss-understanding that the ground state energy is fixed and uniquely 
defined: 
 
The definition of the Hamiltonian 
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defines the non-measurable ground state energy as the state of the lowest energy, i.e. at the 
point  )0,0(  px  in the phase space, and defines this energy as zero. 
 

The kinetic energy of strings with mass   are given by 
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The internal forces of strings (being looked at as mechanical systems) are built on strains, 
depending proportionally from its lengths 
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For small displacements this is replaced by 
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Correspondingly the potential energy )(xV  is approximately defined by 
 

lL
dL

dV
llVllVLV  )()()(  . 

 

Putting as the “strain constant”=”tension” 
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(the latter one in order to just simplify the algebraic term) the potential energy is then given in 
the form 
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Defining the corresponding “string velocity” by 
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then gives the wave equation of strings in the form 
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Complementary variational principles 

 

The topic is about „saddle point problems and non-linear minimization problems on convex 

manifolds”. The scope is about saddle point problems and non-linear minimization problems on 

sub Hilbert space  
2/10  HHU  . 

Let RVVa  :),(  a symmetric bilinear form with energy norm  
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Let further Vu 0

 and RVF  :)(  a functional with the following properties: 

 
i) RVF  :)(  is convex on the linear manifold  Uu 0

 , 

   i.e. for every  Uuvu  0,  it holds  )()()1())1(( vtFuFttvutF   for every   1,0t  

ii) )(uF  for every  Uuu  0
  

iii) RVF  :)(  is Gateaux differentiable, i.e. it exits a functional RVFu  :)(  with 
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Then the minimum problem  
 

min)(),(:)(  uFuuauJ  ,    Uuu  0
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  is equivalent to the variational equation 
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and admits only an unique solution.  
 
In case the sub space  U  and therefore also the manifold Uu 0

is closed with respect to the 

energy norm and the functional RVF  :)(  is continuous with respect to convergence in the 

energy norm, then there exists a solution. 
 
We note that the energy functional is even strongly convex in whole V . 

 
 
 
 
 
 
 
 
 
 



The method of Noble provides the link of the Hamiltonian function to the complementary 
variational principles:  
 

Let )),(,( E  and ),,( E  be Hilbert spaces and  EET :  , EET :*  linear operators fulfilling 
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Let further RxEEW :  be a functional fulfilling 
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i.e. the operators  and  derivatives from   in the sense of Gateaux. Putting 
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the minimization problem 
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leads to   
 

uTu   and )(),( *  uFuT . 

 
 
Lemma: If )(F is a convex functional it follows that ),( uuW   is convex concerning u   and 

concave concerning u . Then the minimization problem (*) is equivalent to the variational 

equation 
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resp. 
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In other words, there is a characterization of the solution of (*) as a saddle point. 
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Non Linear Problems and optimal FEM  L error estimates 

 
Let the problem be given by 
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with the (roughly) regularity assumptions: 
 

i) there is a unique solution 
 

ii)  
uFF ,  are Lipschitz continuous. 

 
The approximation problem is given by:  
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Error analysis  
 
Put   
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Then   
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with a remainder term 
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Let 
hP  denote the  2L projection related to ),(),( Rf  , then 
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Therefore the difference eue   is a fix point of T .  

 
For the following we use the abbreviations 
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Key properties of the operator  T  
 

 
Lemma: 
 

i) There is a 0  such that for  sufficiently small, then T maps the ball
B  into itself. 

 

ii) for  sufficiently small, T is a contradiction in B . 

 

Proof: i) Because of hP  and 
1f are being bounded it holds 
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with  3c being the Lipschitz constant of uF  . Therefore 
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Now fixing 
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and                
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then proves ii). 
 

Consequence: The operator T  has a unique fix-point in the ball 
B  

From this it follows the  

Theorem: The FEM admits the error estimate 
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With respect to “The regularity of piecewise defined functions with respect to scales of Sobolev spaces” 

we refer to the corresponding paper of J. A. Nitsche. 


