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Abstract: 

In [BrK3] a common distributional Hilbert space framework is provided to answer the Riemann Hypothesis positively and to prove 
appropriate estimates of the non-linear term of the 3-D NSE ([BrK4]) to solve the related Millennium problems. Additionally, the 
distributional Hilbert space framework is used to define an alternative Schrödinger momentum operator ([BrK5]) (where the 
Hilbert transform resp. the Riesz transforms play a key role), addressing also the YME problem and the related quantum gravity 
modelling problem. In this note we build on the same framework providing an alternative approach to [MaC], [ViC] to prove the 
Landau damping. At the same point in time the usage of the Hilbert transform overcomes the problem of the incorrect Vlasov 
formula 
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which is about the plasma dielectric for the longitudinal oscillation. It is divergent in case of the important physical phenomenon 

of electrons travelling with exactly the same material speed 
𝜔

𝑘
 and the wave speed 𝑣 ([ShF] p. 392). 

 

A comprehensive overview of all related topics of this paper (variational principle /method, Green function, fluctuations and light 
scattering, Schauder / Hölder spaces, transport coefficients, Planck distribution, Hermite polynomials, equilibrium states & 
Maxwellian distributions, Navier-Stokes-Fourier fluids) are provided in  ([CeG]. 
 

The considered distributional Hilbert space framework is enriched with an additional norm enjoying an “exponential decay” 

behavior in the form (𝑡 > 0)  
 

     (𝑥, 𝑦)(𝑡) = ∑ 𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)𝑘    ,   |‖𝑥‖|(𝑡)
2 ≔ (𝑥, 𝑥)(𝑡). 

 

For the linear Vlasov equation the corresponding modes estimates are given in the form 
 

𝜌𝑘

2
(𝑡) ≔ 𝑒−|k|𝑡𝜌𝑘

2(𝑡) ≤ ecgWk
2|k|t 

 

In case of a Coloumb potential (Wk ≈
1

|k|
) this leads to ρk

2
(t) ≤ e

c
t

|k|, which means that for fixed t > 0 the 𝐻𝛼 − norm ( 𝛼 ∈ 𝑅) related 

generalized Fourier term is damped for |k| → ∞. 
 

For the Landau equation the corresponding non-linear Landau collision operator is related to the Oseen operator with the symbol 
([LeN] 
 

𝑎𝑖𝑗(𝑧) =
1

|𝑧|
{𝛿𝑖𝑗 −

𝑧𝑖𝑧𝑗

|𝑧|2
} ≔

1

|𝑧|
[𝐼𝑑 − 𝑄](𝑧)  𝑄(𝑧) ≔ (𝑅𝑖𝑅𝑗)1≤𝑖,𝑗≤𝑁 . 

 

Its eigen-pair solutions (resp. the eigen-pair solution of the Laplacian resp. the Stokes operator ([BrK4])) enable the definition of 
corresponding Hilbert scales with norm ‖𝑥‖𝛼

2  , and an additional norm |‖𝑥‖|𝛼.(𝑡)
2  ([BrK1] [BrK2]). An alternative (weak) Landau 

equation is proposed enabling a Hilbert space based analysis of the Landau damping phenomenon in a problem adequate 
Hilbert space framework, which is in sync with the corresponding solution framework of the 3D nonlinear, non-stationary NSE 
([BrK4]). Putting  h ≔ R∇xf we propose a H−1/2 based variational representation of the Landau equation in the following form 
 

(
∂

∂t
h, w)−1/2 + (v ∙ ∇xh, w)−1/2 + (F ∙ ∇vh, w)−1/2 − (∇v(hL[h]), w)−1/2 = 0     ∀w ∈ H−1/2 . 

 

whereby 𝑳[ℎ] denotes a model collision (integral) operator of order zero (based on the Leray-Hopf operator P(z) of order zero 
([BrK4], [CoP] p. 115ff) given by 

L[h]: = ∫ bij(v − w)h(w)dw
RN

 

 

with symbol bij(z) = z ∙ 𝑎𝑖𝑗(𝑧) As the operator L is of order zero, it holds 

 
(∇v(h𝐋[h]), w)−1/2 ≅ (∇vh2, w)−1/2. 

  

In ([LeN] the action of the Leray-Hopf operator on Gaussian functions is provided. In [WeP], [WeP1] self-adjoint extensions of the 
Laplacian operator with respect to electric and magnetic boundary conditions are provided. In combination with the proposed 
problem adequate norm of the related evolution (heat) equation the correspondingly defined Hilbert space provides the 
appropriate framework for a well-posed (variational) initial-boundary value equation representation of a corresponding Vlasov-
Poisson/Lorentz-Boltzmann system. 
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Plasma is the fourth state of matter, where from general relativity and quantum theory it is 

known that all of them are fakes resp. interim specific mathematical model items. An 

adequate model needs to take into account the axiom of (quantum) state (physical states 

are described by vectors of a separable Hilbert space H) and the axiom of observables (each 

physical observable A is represented as a linear Hermitian operator 𝐴 of the state Hilbert 

space). The corresponding mathematical model and its solutions are governed by the 

Heisenberg uncertainty inequality. As the observable space needs to support statistical 

analysis the 𝐿2 −Hilbert space, this Hilbert space needs to be at least a subspace of H. At 

the same point in time, if plasma is considered as sufficiently collisional, then it can be well-

described by fluid-mechanical equations. There is a hierarchy of such hydrodynamic models, 

where the magnetic field lines (or magneto-vortex lines) at the limit of infinite conductivity 

is “frozen-in” to the plasma. The “mother of all hydrodynamic models is the continuity 

equation treating observations with macroscopic character, where fluids and gases are 

considered as continua. The corresponding infinitesimal volume “element” is a volume, 

which is small compared to the considered overall (volume) space, and large compared to 

the distances of the molecules. The displacement of such a volume (a fluid particle) then is 

a not a displacement of a molecule, but the whole volume element containing multiple 

molecules, whereby in hydrodynamics this fluid is interpreted as a mathematical point. 

Our approach below is based on the common Hilbert space framework in [BrK3] and the 

proposed alternative Schrödinger momentum operator ([BrK5], [BrK9]) given by 
 

𝑢(𝑥) → 𝑃∗[𝑢](𝑥) ≔ −𝑖
𝑑

𝑑𝑥
𝐻[𝑢](𝑥): = −𝑖

𝑑

𝑑𝑥
𝐻𝑥 [𝑢](𝑥) = −𝑖𝐻[𝑢𝑥](𝑥) 

 

with domain 𝐻1/2 = 𝐻1 + 𝐻1
¬ and corresponding quantum state Hilbert space 𝐻−1/2 = 𝐻0 + 𝐻0

¬. 

The Hilbert transform is related to the Laplace equation by the concept of conjugate 

functions. The corresponding generalization with respect to the Yukawan potential is 

provided in [DuR]. 
 

In quantum mechanics, a boson is a “particle” that follows the Bose-Einstein statistics 

(“photon gases”). A characteristic of bosons is that their statistics do not restrict the 

number of them that occupy the same quantum state. All bosons can be brought into the 

energetically lowest quantum state, where they show the same “collective” behavior. Unlike 

bosons, two identical fermions cannot occupy the same quantum state. Fermions follow the 

Fermi statistics (e.g. [AnJ]). With respect to the above extended domain of the Schrödinger 

momentum operator, we propose to identify  𝐻0 as quantum state space for the fermions 

(which is compactly embedded into 𝐻−1/2), and 𝐻0
¬ as quantum state space for the bosons. 

The “fermions quantum state” Hilbert space 𝐻0 is dense in 𝐻−1/2 with respect to the 

𝐻−1/2 −norm, while the (orthogonal) “bosons quantum state” Hilbert space 𝐻0
¬ is a closed 

subspace of 𝐻−1/2, resp. the “mass/energy fermions” Hilbert space 𝐻1 is dense in 𝐻1/2 with 

respect to the 𝐻1/2 −norm, while the “mass/energy bosons” Hilbert space is a closed 

subspace of 𝐻1/2. The concept of “vacuons” (i.e. the vacuum expectation values of scalar 

fields) in the context of “spontaneous” breakdown of symmetry [HiP] then corresponds to 

the orthogonal projection 𝐻1/2 → 𝐻1. For related topics see also [BrK1-5], [BrK6] Notes O58-

O65, O69-O71.  
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In section 4 below, we provide a distributional variational Hilbert space framework for 

Landau type equations being enriched by an additional norm with an “exponential 

decay” behavior in the form (𝑡 > 0) (in line with the statistics above) given by ([BrK5]) 
 

(𝑥, 𝑦)𝛼.(𝑡) = ∑ 𝜎𝑘
𝛼𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)𝑘    ,   ‖𝑥‖𝛼.(𝑡)

2 ≔ (𝑥, 𝑥)𝛼.(𝑡). 
 

It is based on appropriately defined eigen-pair solutions of a problem adequate linear 

operator 𝐴 with the properties (1) 𝐴 selfadjoint, positive definite, (2) 𝐴−1 compact. 
  

An element  𝑥 = 𝑥0 + 𝑥0
¬ ∈ 𝐻−1/2 = 𝐻0 + 𝐻0

¬ with ‖𝑥0‖0 = 1 is governed by the norm of its 

(observation) subspace H0 in combination with the norm  |‖𝑥‖|(𝑡)
2 ≔ (𝑥, 𝑥)(𝑡) ([BrK3], 

[BrK5]) in the form 
 

‖𝑥‖−1/2
2 ≤ 𝜃‖𝑥‖0

2 + ∑ 𝑒1−√𝜎𝑘𝜃𝑥𝑘
2∞

𝑘=1      with   𝜃 ≔ ‖𝑥0
¬‖−1/2

2  , 
 

which is a special case of the general inequality (𝛼 > 0 be fixed) 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝑡/𝛿‖𝑥‖(𝑡)
2 . 

 

Plasma is an ionized gas consisting of approximately equal numbers of positively charged 

ions and negatively charged electrons. One of the key differentiator to neutral gas is the 

fact that its electrically charged particles are strongly influenced by electric and magnetic 

fields, while neutral gas is not. The continuity equation of ideal magneto-hydrodynamics is 

given by ([DeR] (4.1)) 
 

𝜕

𝜕𝑡
𝜌 + ∇ ∙ (𝜌𝒗) = 0 

 

with 𝜌 = 𝜌(𝑥, 𝑡) denoting the mass density of the fluid and 𝒗 denoting the bulk velocity of 

the macroscopic motion of the fluid. The corresponding microscopic kinetic description of 

plasma fluids leads to a continuity equation of a system of (plasma) “particles” in a phase 

space (𝒙, 𝒗) (where 𝜌(𝒙, 𝑡) is replaced by a function 𝑓(𝒙, 𝒗, 𝑡)) given by ([DeR] (5.1)) 
 

𝜕

𝜕𝑡
𝑓 + 𝑣 ∙ ∇𝑥𝑓 +

𝑑𝑣

𝑑𝑡
∙ ∇𝑣𝑓 + 𝑓

𝜕

𝜕𝑣
∙

𝑑𝑣

𝑑𝑡
= 0 . 

 

In case of a Lorentz force the last term is zero, leading to the so-called collisions-less 

(kinetic) Vlasov equation ([ShF] (28.1.2)).  
 

In fluid description of plasmas (MHD) one does not consider velocity distributions (e.g. 

[GuR]). It is about number density, flow velocity and pressure. This is about moment 

or fluid equations (as NSE and Boltzmann/Landau equations). In [EyG] it is proven 

that smooth solutions of non-ideal (viscous and resistive) incompressible magneto-

hydrodynamic (plasma fluid) equations satisfy a stochastic (conservation) law of flux. 

It is shown that the magnetic flux through the fixed surface is equal to the average of 

the magnetic fluxes through the ensemble of surfaces at earlier times for any (unit or 

general) value of the magnetic Prandtl number. For divergence-free 𝑧 = (u⃗⃗, �⃗⃗�) ∈

𝐶([𝑡0, 𝑡𝑓], 𝐶𝑘.𝛼), (u⃗⃗(0), �⃗⃗�(0)) ∈ 𝐶𝑘.𝛼 the key inequalities are given by 
 

- unit magnetic Prandtl number:  
 

𝑒−2𝛾(𝑡𝑓−𝑡0)‖𝑧(𝑡𝑓)‖
2

2
+ 2 ∫ 𝑒−2𝛾(𝑡−𝑡0)[𝜀‖𝑧(𝑡)‖2

2 + 𝜇‖∇𝑧(𝑡)‖2
2]𝑑𝑡 ≤

𝑡𝑓

𝑡0

‖𝑧(0)‖2
2 

- general magnetic Prandtl number (→ stochastic Lundquist formula):  
 

𝑒−2𝛾(𝑡𝑓−𝑡0)‖�⃗⃗�(𝑡𝑓)‖
2

2
+ 2 ∫ 𝑒−2𝛾(𝑡−𝑡0) [𝜀‖�⃗⃗�(𝑡)‖

2

2
+ 𝜇‖∇B⃗⃗⃗(𝑡)‖

2

2
] 𝑑𝑡 ≤

𝑡𝑓

𝑡0
‖�⃗⃗�(0)‖

2

2
 . 
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The corresponding situation of the fluid flux of an incompressible viscous fluid leads to the 

Navier-Stokes equations. They are derived from continuum theory of non-polar fluids with 

three kinds of balance laws: (1) conservation of mass, (2) balance of linear momentum, (3) 

balance of angular momentum ([GaG]). Usually the momentum balance conditions are 

expressed on problem adequate “force” formula derived from the Newton formula = 𝑚 ∙
𝑑𝑣

𝑑𝑡
 . 

For getting any well-posed (evolution equation) system is it necessary to define its 

corresponding initial-boundary value conditions. 
 

The NSE are derived from the (Cauchy) stress tensor (resp. the shear viscosity tensor) 

leading to liquid pressure force  
𝜕𝑝

𝜕𝑥𝑖
= −

𝜕𝑇𝑗𝑖

𝜕𝑥𝑗
+ 𝜇∆𝑣𝑖. In electrodynamics & kinetic plasma physics 

the linear resp. the angular momentum laws are linked to the electrostatic (mass 

“particles”, collision, static, quantum mechanics, displacement related; “fermions”) Coulomb 

potential resp. to the magnetic (mass-less “particles”, collision-less, dynamic, quantum 

dynamics, rotation related; “bosons”) Lorentz potential. 
 

In [PlJ] a mathematical mass element concept is considered, which replaces the 

mathematical “mass” object 𝑥 (real number) by a “differential” object 𝑑𝑥. It leads to 

alternative unit outer normal derivative definition enabling a Newton potential, where a 

density function is replaced by its differential. This goes along with Plemelj’s definition of a 

double layer potential. From a mathematical point in view this means that a Lebesgue 

integral is replaced by a Stieltjes integral. This goes along with Plemelj’s double layer 

potential definition. From a physical interpretation perspective it means that Newton’s “long 

distance test particle” defining a potential function is influenced by the enclosed mass 

elements and no longer by their corresponding density function, only.  
 

When one wants to treat the time-harmonic Maxwell equations with variational methods, 

one has to face the problem that the natural bilinear form is not coercive on the whole 

Sobolev space 𝐻1 ([KiA]). On can, however, make it coercive by adding a certain bilinear 

form on the boundary of the domain (vanishing on a subspace of 𝐻1), which causes a 

change in the natural boundary conditions ([CoM]).  
 

The mathematical tool to distinguish between unperturbed cold and hot plasma is about the 

Debye length and Debye sphere ([DeR]). The corresponding interaction (Coulomb) potential 

of the non-linear Landau damping model is based on the (Poisson) potential equation with 

corresponding boundary conditions. A combined electro-magnetic plasma field model needs 

to enable “interaction” of cold and hot plasma “particles”, which indicates Neumann problem 

boundary conditions. The corresponding double layer (hyper-singular integral) potential 

operator of the Neumann problem is the Prandtl operator P, fulfilling the following properties 

([LiI] Theorems 4.2.1, 4.2.2, 4.3.2): 
 

i) the Prandtl operator P: Hr → Ĥr−1 is bounded for 0 ≤ r ≤ 1 
 

ii) the Prandtl operator P: Hr → Ĥr−1 is Noetherian for 0 < r < 1 
 

iii) for 1/2 ≤ r < 1, the exterior Neumann problem admits one and only one 

generalized solution. 
 

Therefore, the Prandtl operator enables a combined (conservation of mass & (linear & 

angular) momentum balances) integral equations system, where the two momentum 

balances systems are modelled by corresponding momentum operator equations with 

corresponding domains according to 𝐻1/2 = 𝐻1 × 𝐻1
¬. For a correspondingly considered 

variational representation (e.g. for the (Neumann) potential equation or the corresponding 

Stokes equation) it requires a less regular Hilbert space framework than in standard theory. 

Basically, domain 𝐻1of the standard (Dirichlet integral based) “energy” (semi) inner product 

a(u, v) = (∇𝑢, ∇𝑣) is extended to 𝐻1/2 with a corresponding alternative (semi) inner product in the 
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form a(u, v) = (∇𝑢, ∇𝑣)−1/2 = (𝑢, 𝑣)1/2 . It enables e.g. the method of Noble ([VeW] 6.2.4), [ArA] 

4.2), which is about two properly defined operator equations, to analyze (nonlinear) 

complementary extremal problems. The Noble method leads to a “Hamiltonian” function 

W(∙,∙) which combines the pair of underlying operator equations (based on the “Gateaux 

derivative” concept) 
 

𝑇𝑢 =
𝜕𝑊(�́�,𝑢)

𝜕�́�
  ,  𝑇∗�́� =

𝜕𝑊(�́�,𝑢)

𝜕𝑢
   𝑢 ∈ 𝐸 = 𝐻1/2  ,  �́� ∈ �́� = 𝐻−1/2. 

 

The proposed (Hilbert space based) model provides a truly infinitesimal geometry. 

Variational integrators were originally developed for geometric time integration, particularly 

to simulate dynamical systems in Lagrange mechanics. In [StA] the concept of 

(electromagnetic) “variational integrators for the Maxwell equations with sources”, including 

free sources of charge and current in non-dissipative media, is provided in the framework of 

differential form. The correspondence of the inner products of the distributional Hilbert 

spaces 𝐻−1/2 , 𝐻−1 in the context of a proper ground state energy model is provided in 

[BrK9]. 
 

The alternative Hilbert space framework can also be applied for correspondingly modified 

Maxwell equations, which govern the electromagnetic field for given distributions of the 

electric charges and currents. The laws how those charges and currents behave are 

unknown. What’s known, is, that electricity exists within the elementary particles (electron, 

positron), but the appropriate mathematical model, which is consistent with the Maxwell 

equations and the related Einstein field equations, is still missing. Only the energy tensor of 

electromagnetic fields outside of elementary particles is known. Modelling the elementary 

particles as singularities should be considered as interim “solution”, only, as well as applying 

hydrodynamic equations (the classical mechanics approach) to describe “matter” by terms 

like the density of the ponderable substance (and the corresponding “Ruhemasse”) and 

hydrodynamic pressure forces (area forces). The alternative Hilbert space framework 

preserves the electrostatics and magnetostatics equations ([ArA] 3.6, 3.7), while replacing 

Maxwell’s electromagnetic “mass density / flux/flow” density concept (enabled by the 

Maxwell displacement current (density) concept to extend the Ampere law to the Ampere-

Maxwell law) by Plemelj’s “mass element / flux/flow strength” concept ([PlJ] §8). The latter 

one is enabled by Plemelj’s alternative normal derivative concept ([PlJ] §5: space dimension 

n=2 & logarithmic potential), where 𝑑𝑢/𝑑𝑛 is replaced by �̅�(𝜎) ≔ − ∫
𝑑𝑢

𝑑𝑛
𝑑𝑠

𝜎

𝜎0
 (�̅�(𝜎) denotes the 

conjugate potential to 𝑢). The latter one might be well defined, while the standard normal 

derivative might not be defined. We emphasis that �̅�(𝜎) is defined with purely boundary 

values, i.e. it requires no information about the interior or exterior domain of a related 

vector field. For the generalization of the Cauchy-Riemann equations to space dimension 

n=3 and related translation or rotation groups we refer to [StE2]. The corresponding physical 

interpretations are about “source density” or “invertebrate density/rotation” with its related 

mathematical formulas 𝑟𝑜𝑡(𝑢) = 𝑟𝑜𝑡(±𝑔𝑟𝑎𝑑𝜑) = 0 or 𝑑𝑖𝑣(𝑟𝑜𝑡(𝑢)) = 0 (which are the 3-space 

interpretations of the Poincare lemma 𝑑(𝑑𝜔)) = 0). With respect to the below we also 

mention that the replacement of the displacement current concept avoids to “calibration 

(Eichung)” need to ensure well-posed PDE systems. As Plemelj’s flow strength definition 

requires only information from the boundary/surface it can be applied to both, the Gaussian 

law (based on normal directions to the surface) and the Stokes law (based on tangential 

directions to the surface). This enables a new “double layer potentials” concept with two 

different potentials on each side of the double layer of the boundary/surface. The 

corresponding electrostatic and magnetostatic systems are linked by common flow strength 

values at each point of the surface. 
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In [CoM] a coercive bilinear form of the Maxwell equations in combination with appropriate 

boundary conditions is provided. The underlying “energy” inner product is based on the 

standard (energy) Hilbert space 𝐻1𝑥𝐻1. We propose the extended domain 𝐻1/2𝑥𝐻1/2 in 

combination with a “boundary bilinear form” (based on the Prandtl operator 𝑇 above with 

𝑟 = 1/2) in the form 
 

𝑎(𝑢, 𝑣): = (𝑑𝑖𝑣𝑢, 𝑑𝑖𝑣𝑣)−1/2 + 〈P̅𝑢, P̅𝑣〉−1/2+(𝑐𝑢𝑟𝑙𝑢, 𝑐𝑢𝑟𝑙𝑣)−1/2  ∀u, v ∈ 𝐻1/2
°  

  

In section 2 & 4 below, we consider the Leray-Hopf (Helmholtz-Weyl) operator 𝑃 ∶ 𝐻𝛽 → 𝐻𝛽
𝜎 

(whereby 𝐻𝛽
𝜎 denotes the divergence-free (solenoidal) 𝐻𝛽). It is linked to the tensor product 

of the Riesz operators 𝑄 ≔ 𝑅𝑥𝑅 (which is selfadjoint and a projection operator, i.e.  𝑄 = 𝑄2) 

and the curl operator by the following identities ([LeN]): 𝑃 + 𝑄 = 𝐼𝑑, 𝑐𝑢𝑟𝑙 = 𝑐𝑢𝑟𝑙∗, 𝑐𝑢𝑟𝑙2 = −∆𝑃, 
[𝑃, 𝑐𝑢𝑟𝑙]=0, 𝑃𝑐𝑢𝑟𝑙 = 𝑐𝑢𝑟𝑙𝑃 = 𝑐𝑢𝑟𝑙, and 𝑃 is also a projection operator (i.e.  𝑃 = 𝑃2), if 𝑑𝑖𝑣𝑢 = 0. 
 

The physical interpretation is then as above: The “energy” space 𝐻1/2
° = H1 × H1

¬ is built on 

the “charged electrical particles” Hilbert space H1 and its related distributions (which is 

dense in H1/2 with respect to the 𝐻1/2
° − norm), and the “orthogonal” Hilbert space H1

¬ 

generating those “charged electrical particles” (which is a closed subspace of H1/2). The 

Hilbert space H1
¬ “acts” on the “particles” in H1 (governed by the Prandtl operator), but also 

“binary collisions” in H1 acts on H1
¬, giving “back” energy into the Hilbert space H1

¬, w/o 

affecting corresponding (statistical) distribution function in H1. Without additional energy 

from “outside” the “system” the probability, that two “particles” collide, is zero.  
 

The modified Maxwell equations are proposed as non-standard model of elementary 

particles (NMEP). Electromagnetic waves propagation in vacuum can be described by the 

source-free Maxwell equations w/o specifying anything about charges or currents that might 

have produced them. It provides an alternative model for spontaneous symmetry 

breakdown with massless bosons ([HiP]). In [WeP], [WeP1], self-adjoint extensions and 

spectral properties of the Laplace operator with respect to electric and magnetic boundary 

conditions are provided. 
 

The (“Pythagoras”) split of the newly proposed energy norm ‖𝑥‖1/2
2 = ‖𝑥0‖𝐻0

2 + ‖𝑥0
¬‖𝐻0

¬
2  goes 

along with two corresponding groups of transformations, the group of translations and the 

group of rotations.  The corresponding theory of generalized Cauchy-Riemann equations are 

given in [StE1] III, 4.2, and [StE2]. There are basically two characterizations of all possible 

generalizations of the Cauchy-Riemann equations: (1) the existence of a harmonic function 

𝐻 on 𝑅+
𝑛+1 so that 𝑢𝑗 =

𝜕

𝜕𝑥𝑗
𝐻, 𝑗 = 0,1,2, … 𝑛; (2) rotation group theory based, building on the 

(complex unitary) vector space of symmetric tensors of 2𝑥2 matrices. The latter one 

includes the “electron equation of Dirac” in the case w/o external forces, with zero mass, 

and independent of time ([StE2]). 
 

The same (extended Maxwell equations, combined transformation group for kinetic and 

potential energy interaction) concept as above can be applied to the Einstein field 

equations. In this context we note that the gravity “force” is an only attractive one. At the 

same point in time the magnetic field of the earth is the result of the gravity “force”.  The 

electromagnetic waves propagation in vacuum of the Maxwell equations corresponds to the 

Weyl (curvature) tensor, while the Ricci flow equation governs the evolution of a given 

metric to an Einstein metric ([AnM]). The Einstein vacuum field equations allow wave 

solutions describing a propagating gravitation field in a geometrical Minkowski space. The 

wave front of this gravitation field, which is the boundary of the curved and the plane space 

propagates with light speed. 
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The distributional Hilbert space framework above is also proposed as an appropriate 

framework for Wheeler’s geometrodynamics ([WhJ]), which is about the attempt to describe 

space-time and associated phenomena completely in terms of geometry. It especially would 

enable a consistent model for “graviton” quanta dynamics regarding gravitation waves in 

Einstein’s vacuum field equations and corresponding “graviton” quanta properties in 

quantum field theory. 
 

A Hilbert space based variational representation of the Einstein field equations goes along 

with a geometric structure on a 3-manifold, which is a complete, locally homogeneous 

Riemannian metric 𝑔.  

 

A geometric 3-manifold (i.e. a 3-manifold admitting a geometric structure) admits eight 

simply connected geometries with compact quotients 𝐺/𝐻. Those eight geometric structures 

are rigid in that there are no geometries which interpolate continuously between them. 

Among them the constant curvature geometries 𝐻3 and 𝑆3 are by far the most important to 

understand (in terms of characterizing which manifolds are geometric). The stationary 

points of the volume-normalized Ricci flow are exactly the class of Einstein metrics, i.e. 

metrics of constant Ricci curvature. Einstein metrics are of constant curvature and so give 

the geometries 𝐻3, 𝑅3 and 𝑆3 geometries. The Ricci flow is a non-linear heat-type equation 

for 𝑔𝑖𝑗 ([AnM]). 
 

The Ricci curvature is a symmetric bilinear form, as it is the metric. In [GöK] a 4-D space 𝑆 

is provided, where matter everywhere rotates relative to the compass of inertia with the 

angular velocity with the properties: (1) 𝑆 is homogeneous, (2) there exists a one-

parametric group of transformations of 𝑆 into itself which carries each world line of matter 

into itself, so that any two world lines of matter are equidistant, (3) 𝑆 has rotational 

symmetry, (4) a positive direction of time can consistently be introduced in the whole 

solution. 

 

With respect to long term stability questions we note, that both, Euler and NS equations, 

with smooth initial data possess unique solutions which stay smooth forever in case of space 

dimension n=2. For 3D-NSE the question of global existence of smooth solution vs. finite 

time blow up is one of the Clay Institute Millennium problems. Having in mind the setting 

𝑦(𝑡) ≔ ‖𝑣(𝑡)‖2 the ODE  
𝜕

𝜕𝑡
𝑦(𝑡) = 𝑦2(𝑡), 𝑦(0) = 𝑦0, shows the solution 𝑦(𝑡) =

𝑦0

1−𝑡∙𝑦0
, which, for 

some initial data 𝑦0 > 0, becomes infinite in finite times. An 𝐻−1/2 inner product based 

variational representation of the 3D-NSE enjoys a corresponding (evolution) ODE in the 

form 
𝜕

𝜕𝑡
𝑦(𝑡) = 𝑐‖𝑣(𝑡)‖1

∙ 𝑦1/2(𝑡) ([BrK4]).  

 

We note that for an initial value function 𝑎0 ∈ 𝐿∞(𝑅𝑛) there is an unique local in time solution 

for the NSE with 
 

𝑝 = ∑ 𝑅𝑖𝑅𝑗𝑣𝑖𝑣𝑗
𝑛
𝑖,𝑗=1   ,  𝑅𝑖 denotes the Riesz operator. 

 

In [GiY] it is shown that in 𝑅2 this solution can be extended globally in time.  
 

In [HeJ] it is shown for existing solutions of the NSE, for which the Dirichlet norm a(v, v) =

(∇𝑣, ∇𝑣) with domain 𝐻1 of the velocity is continuous as 𝑡 = 0, this is not the case for the 

corresponding normalized 𝐿2norm of the pressure. At the same point in time, the pressure can 

be characterized as solution of a Neumann problem by formally operating with “div” on both 

sides of the NSE ([GaG]). If follows that the prescription of the pressure 𝑝 at the bounding 

walls or at the initial time independently of 𝒗, could be incompatible with the initial-

boundary data from the NSE system, and, therefore, could render the problem ill-posed. 

Both cases above supports the proposed extended Dirichlet norm of the Hilbert space 𝐻1/2.   
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Nonlinear evolution equations are also analyzed in a Schauder/Lipschitz function space 

framework. The space of Lipschitz continuous functions is defined by the norm ([StE] 

V.4, proposition 6) 
 

|⌊𝑓⌋|𝛼 ≔ ‖𝑓‖𝐿∞
+ 𝑠𝑢𝑝|𝑡|>0

‖𝑓(𝑥+𝑡)−𝑓(𝑥)‖𝐿∞

|𝑡|𝛼   (0 < 𝛼 < 1). 

 

Proposition 6: Every Lipschitz continuous function may be modified on a set of 

measure zero so that it becomes continuous.  
 

We note that the spaces 𝐶𝑘.𝛼 are compactly embedded on 𝐶0 and there is a general 

principle bounding the norm in 𝐶𝑘.𝛼 of a linear projection operator by means of the 

norm of in 𝐶0 ([NiJ], [NiJ1]). Hölder- resp. Lipschitz spaces are the adequate ones in 

treating nonlinear elliptic problems ([NiJ]). Hölder space based Cauchy problem 

solution(s) of nonlinear evolutions equations are considered in [HöK].  Integral 

inequalities for the Hilbert transform applied to a nonlocal transport equation are 

provided in [CoA].   
 

The Gromov compactness theorem (in the context of the study of the deformation and 

degeneration of general Riemann metrics with merely bounded curvature in place of 

constant curvature) is based on 𝐶1.𝛼 topology ([AnM]). 
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2. Introduction 

 

In section 3 below, we provided a 𝐻−1/2 − Hilbert norm based estimate for the Fourier 

coefficient of ρ of the linearized Vlasov equation, as an alternative proof technique of 

the nonlinear Landau damping phenomenon as suggested in ([MoC]). In section 4 

below a H−1/2 − Hilbert space based representation of a Landau type equation is 

provided following the described concept above. 
 

The Boltzmann equation is a (non-linear) integro-differential equation which forms the basis 

for the kinetic theory of gases. This not only covers classical gases, but also electron 

/neutron /photon transport in solids & plasmas / in nuclear reactors / in super-fluids and 

radiative transfer in planetary and stellar atmospheres. The Boltzmann equation is derived 

from the Liouville equation for a gas of rigid spheres, without the assumption of “molecular 

chaos”; the basic properties of the Boltzmann equation are then expounded and the idea of 

model equations introduced. Related equations are e.g. the Boltzmann equations for 

polyatomic gases, mixtures, neutrons, radiative transfer as well as the Fokker-Planck (or 

Landau) and Vlasov equations. The treatment of corresponding boundary conditions leads to 

the discussion of the phenomena of gas-surface interactions and the related role played by 

proof of the Boltzmann H-theorem. 
 

The Landau equation (a model describing time evolution of the distribution function of 

plasma consisting of charged particles with long-range interaction) is about the 

Boltzmann equation with a corresponding Boltzmann collision operator where almost 

all collisions are grazing. The mathematical tool set is about Fourier multiplier 

representations with Oseen kernels ([LiP1]), Laplace and Fourier analysis techniques 

(e.g. [LeN]) and scattering problem analysis techniques based on Garding type 

(energy norm) inequalities (like the Korn inequality) (e.g. [AzA]). Its solutions enjoy a 

rather striking compactness property, which is main result of [LiP1]. The collision 

operator of the Landau equation is given by 
 

𝑄(𝑓, 𝑓) =
𝜕

𝜕𝑣𝑖
{∫ 𝑎𝑖𝑗(𝑣 − 𝑤) [𝑓(𝑤)

𝜕𝑓(𝑣)

𝜕𝑣𝑗
− 𝑓(𝑣)

𝜕𝑓(𝑤)

𝜕𝑤𝑗
]

𝑅𝑁

𝑑𝑤} 

with  

𝑎𝑖𝑗(𝑧) =
𝑎(𝑧)

|𝑧|
{𝛿𝑖𝑗 −

𝑧𝑖𝑧𝑗

|𝑧|2} =
𝑎(𝑧)

|𝑧|
𝑃(𝑧) ≔

1−[1−𝑎(𝑧)]

|𝑧|
[𝐼𝑑 − 𝑄](𝑧)  𝑄(𝑧) ≔ (𝑅𝑖𝑅𝑗)1≤𝑖,𝑗≤𝑁 

 

and a(z) symmetric, non-negative and even in z and Ri denote the Riesz operators, and 

with an unknown function f corresponding at each time 𝑡 to the density of particle at 

the point 𝑥 with velocity 𝑣. 
 

The Landau damping (physical, observed) phenomenon is about “wave damping w/o energy 

dissipation by collisions in plasma”, because electrons are faster or slower than the wave 

and a Maxwellian distribution has a higher number of slower than faster electrons as the 

wave. As a consequence, there are more particles taking energy from the wave than vice 

versa, while the wave is damped ([BiJ]). The (kinetic) Vlasov equation is collisions-less 

([ShF] (28.1.2)) and the related “constructive” proof of the (observed) Landau damping 

plasma phenomenon in [MoC] is based on analytic norms. In other words, the Vlasov 

equations are a not appropriate model for this phenomenon.  
 

Vlasov’s mathematical argument against the Landau equation (leading to the Vlasov 

equation) was, that “this model of pair collisions is formally (!) not applicable to Coulomb 

interaction due to the divergence of the kinetic terms”. It is being overcome by the below 

distributions framework. 
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Vlasov’s formula for the plasma dielectric for the longitudinal oscillators is based on the 

integral ([ShF] p. 392)  

𝑊 (
𝜔

𝑘
) = − ∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

∞

−∞
  . 

 

As Landau pointed out, this model overlooks the important physical phenomenon of 

electrons travelling with exactly the same material speed 𝑣𝜑 =
𝜔

𝑘
 and the wave speed 𝑣.   

 

In ([ShF] p. 395) the correct definition (as provided by Landau) for the Vlasov formula is 

given, which is basically a threefold integral definition depending from the value 𝜔𝐼 the 

imaginary part of 𝜔 = 𝜔𝑅 + 𝑖𝜔𝐼: 
 

𝑊 (
𝜔

𝑘
) = − ∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

∞

−∞
      for 𝜔𝐼 < 0 

 

𝑊 (
𝜔

𝑘
) = −𝑝. 𝑣. ∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

− 𝜋𝑖
∞

−∞
𝐹0′ (

𝜔

𝑘
) 𝑠𝑔𝑛(𝑘)   for 𝜔𝐼 = 0 

 

𝑊 (
𝜔

𝑘
) = − ∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

− 2𝜋𝑖
∞

−∞
𝐹0′ (

𝜔

𝑘
) 𝑠𝑔𝑛(𝑘)    for 𝜔𝐼 > 0 

 

If 𝜔𝐼 were to continue and become positive (damped disturbance), then analytical 

continuation yields, in addition to the integral along the real line (which also presents no 

difficulty of interpretation), a full residue contribution.  
 

𝐼𝑚(𝜔) arises from the pole at 𝑣 = 𝑣𝜑, which is about the pole of the above integral, when the path of 

integration lies on the x-axis ([ChF] 7). Consequently, the effect is connected with those particles in 
the distribution that have a velocity nearly equal to the phase velocity – the “resonant particles”. 

These particles travel along with the wave and do not see a rapidly fluctuating electric field: They can, 
therefore, exchange energy with the wave effectively. The easiest way to understand this exchange of 
energy is to picture a surfer trying to catch an ocean wave. If the surfboard is not moving, it merely 
bobs up and down as the wave goes by and does not gain any energy on the average. Similarly, a 
boat propeller much faster than the wave cannot exchange much energy with the wave. However, if 

the surfboard has almost the same velocity as the wave, it can be caught and pushed along by the 
wave; this is, after all, the main purpose of the exercise. In that case, the surfboard gains energy, and 

therefore the wave must lose energy and is damped. On the other hand, if the surfboard should be 
moving slightly faster that the wave, it would push on the wave as it moves as it moves uphill; then 
the wave could gain energy. In plasma, there are electrons both faster and slower than the wave. A 
Maxwellian distribution, however, has more slow electrons than fast ones. Consequently, there are 
more particles taking energy from the wave than vice versa, and the wave is damped. As particles 
with 𝑣 ≈ 𝑣𝜑 are trapped in the wave, 𝑓(𝑣) is flattened near the phase velocity.  

 
In the nonlinear case when the amplitude of an electron or ion wave exited, say, by a grid is followed 

in space, it is often found that the decay is not exponential, as predicted by linear theory, if the 

amplitude is large ([ChF] 8.7). Instead, one typically finds that the amplitude decays, grows again, 

and then oscillates before settling down to a steady state value. Although other effects may also be 

operative, these oscillations in amplitude are exactly what would be expected from the nonlinear effect 

of particle trapping. Trapping of a particle of velocity  𝑣 occurs when its energy in the wave frame is 

smaller than the wave potential. … Small waves will trap only these particles moving at high speeds 

near 𝑣𝜑. .... When the wave is large, its linear behavior can be expected to be greatly modified…. The 

quantity 𝜔𝐵 is called the bounce frequency of oscillation of a particle trapped at the bottom of 

sinusoidal potential well. The frequency 𝜔 of the equation of motion is not constant unless 𝑥 is small. 

The condition 𝜔𝐵 ≥ 𝜔 turns out to define the breakdown of linear theory even when other processes 

besides particle trapping are responsible. Another type of nonlinear Landau damping involves the 

beating of two waves…. 
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In the proof of Mouhot and Villani of the Landau damping ([MoC]) the Laplace transform 

technique (as introduced by Landau) is replaced by a plain Fourier (inverse formula) 

analysis technique. The stability of the linearized Vlasov equation is studied by classical 

Volterra (integral) equation analysis establishing the linear Landau damping under certain 

conditions related to the homogeneous equilibrium function and the governing modes of the 

function ρ. In order to prove the non-linear Landau damping the corresponding Vlasov 

equation is solved by the Newton schema and corresponding (analytical!) norm (stability) 

estimates are provided. Those analytical norms are “hybrid” and “gliding”, i.e. for the latter 

one the norm is changing with time to take into account the transfer of regularity to small 

velocity scales.  This results into corresponding mathematical assumptions to guarantee 

convergent “analytical norms”. The corresponding analytical norm estimates do not provide 

any evidence related to the physical explanation of the Landau damping. 
 

Mathematically, the issues about the Vlasov formula, which are about  
 

- not well defined classical (divergent) integral formula for relevant domain values 
 

- correct Vlasov formula is split into three different formula depending from the sign of 

the value 𝜔𝐼, which is the imaginary part of 𝜔 = 𝜔𝑅 + 𝑖𝜔𝐼, 
 

can be addressed by the “principle-value integral” (which was also the defending argument 

of Vlasov) still neglecting the underlying physical interpretation issue, as long as it is about 

a classical PDE framework. The “principle-value integral” of the Vlasov formula is given by 

the Hilbert transform 𝐻 defined by 
 

𝐻[𝜑](𝜔): = 𝑙𝑖𝑚𝜀→0
1

𝜋
∫

𝜑(𝑦)

𝜔−𝑦
𝑑𝑦

|𝜔−𝑦|>𝜀
 . 

 

It leads to the alternative Vlasov formula in the form 
 

𝐻𝑥 [
𝜕

𝜕𝑣𝑥
𝑔] (

𝜔

𝑘
) : = 𝑙𝑖𝑚𝜀→0

1

𝜋
∫

𝜕

𝜕𝑣𝑥
𝑔(𝑣𝑥,𝑣𝑦,𝑣𝑧)

𝜔

𝑘
−𝑣𝑥

𝑑𝑣𝑥|𝑤−𝑣𝑥|>𝜀
 ,  𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) 

 

with properly (i.e. problem adequate) to-be-defined domain: 
 

Following the ideas of [BrK3-6] we propose to model the collisions of plasma particles 

(which are charged particles with long-range interaction, where almost all collisions 

are grazing) by a weak 𝐻−1/2 –based variational representation with a corresponding 

𝐻1/2 (energy) Hilbert space. The proposed Hilbert space ensures a well-defined Hilbert 

transform. The observable 𝐿2 − Hilbert space (supporting statistical analysis) is a 

compactly embedded subspace of 𝐻−1/2. At the same point in time the model supports 

the PLemelj’s alternative “mass element” concept, based on an alternative normal 

derivative concept ([PlJ] p.12). The normal derivative concept plays a key role to 

model the amount of fluid (mass) streaming in resp. out of a considered volume 

element defining the continuity equation. Plemelj’s alternative normal derivative 

concept allows modelling those streams only based on boundary data w/o requiring 

any additional information from the interior domain.  
 

Mathematically speaking this gains a regularity reduction in the same size as a 

reduction from 𝐶1 → 𝐶0, or (in a variational form representation) from 𝐻𝛼 → 𝐻𝛼−1/2. 
 

The above approach corresponds to the approach to directly deduce equations of gas 

dynamics by calculating moments of the Boltzmann equation for quantities that are 

conserved in collisions of particles composing the gas ([MiD] 3.2). This approach 

provides an independent derivation of the equations obtained not from macroscopic 

arguments, deepening the understanding of the physical meaning of the terms 

appearing in the equations. 
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Considering the corresponding approach for the 3-D NSE equations ([BrK4]) this 

corresponds to the a priori (“new “energy” norm) estimate of the non-linear term of 

the 3-D non-stationary, non-linear NSE. A H−1/2 Hilbert (“fluid”) space enables the 

Sobolevskii-estimate of the non-linear term of the corresponding variational NSE 

representation, leading to the bounded, generalized energy inequality 
 

2

12/12/1

2

2/1

2

2/1
),(

2

1
uucuBuuu

dt

d
−−−

+
 

 

For the correspondingly proposed NMEP we refer to [BrK4].  
 

The corresponding Galerkin-Riesz approximation theory is provided in [BrK].  
 

A combined  L2 − based Fourier wave and (H−1/2 − H0) − based Calderón wavelet (Non-

standard MEP) analysis tool is provided in [BrK3] (see also appendix).  

 

In sufficiently hot plasma, collisions can be neglected. If, furthermore, the force 𝐹 is entirely 

electromagnetic, the Vlasov equation takes the following form ([ChF] 7.2). 
 

𝜕

𝜕𝑡
𝑓 + 𝒗 ∙ ∇𝑥𝑓 +

𝑞

𝑚
(𝑬 + 𝒗 × 𝑩) ∙

𝜕

𝜕𝑣
𝑓 = 0 . 

 

Based on the perturbation split f(x, v, t) = 𝑓0(v) + 𝑓1(x, v, t) the first order Vlasov equation for 

electrons is given by 
 

𝜕

𝜕𝑡
𝑓1 + 𝒗 ∙ ∇𝑥𝑓1 −

𝑒

𝑚
𝑬1

𝜕

𝜕𝒗
𝑓0 = 0 . 

 

If 𝑓0 is a Maxwellian the corresponding dispersion relation (in a weak sense) is given by 
 

1 +
𝜔𝑝

2

𝑘2 𝐻𝑥 [
𝜕

𝜕𝑣𝑥
𝑓0] (

𝜔

𝑘
) = 0 . 

 

There are two nonlinear equations in connection with nonlinear plasma waves, the 

Korteweg-Vries and the nonlinear Schrödinger equations. The latter one is given by ([ChF] 

8.7): 

𝑖
𝜕

𝜕𝑡
𝜑 + 𝑝

𝜕2

𝜕𝑥2 + 𝑞|𝜑|2𝜑 = 0 . 

 

Regarding the proof of the Landau damping in[MoC] we propose an alternative interaction 

potential 𝑊𝑥 (for space dimension n=1) in the form  𝑾𝒙 ≔ 𝐻[𝑊𝑥] = (𝐻[𝑊])𝑥 resp. (for space 

dimension n>1) the related formula, where the derivative with respect to the variable 𝑥 is 

replaced by the ∇ operator, while the Hilbert transform operator 𝐻 is replaced by the Riesz 

transform operator 𝑅. The key differentiator to standard assumptions of Landau damping 

papers with respect to 𝑊𝑘 ≔ �̂�(𝑘) is about the fact, that all Hilbert (resp. Riesz) transformed 

functions and distributions already do have vanishing constant Fourier terms, i.e. �̂�𝑘=0 = 0.  
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3. A Hilbert norm estimate for the Fourier coefficient of ρ 
of the linearized Vlasov equation 

 

 
 

In this section we demonstrate the H−1/2 − Hilbert space solution concept based on the 

linearized Vlasov equation. For the notations of the following we refer to [MoC]. We 

will denote different numerical constants with the same symbol c.   

 

We omit the analysis of the source term (the initial datum contribution) of the defining 

equation of the Fourier coefficients (i.e. the modes) 𝜌𝑘(𝑡) of ρ (see [MoC] (11)), as its 

convergence rate is not problem solution relevant. 
 

In the linearized Vlasov equation the Fourier coefficients (i.e. the modes) of ρ are 

linked by the following (Volterra integral type) term (𝑾 ≔ 𝑅[𝑊]) 
 

𝜌𝑘(𝑡) + 4𝜋2𝑾𝑘|𝑘|2 1

𝑘
∫ 𝑘(𝑡 − 𝜏)𝑓𝑜𝑡

0
(𝑘(𝑡 − 𝜏))𝜌𝑘(𝜏)𝑑𝜏  . 

 

Replacing the interaction potential 𝑊 by its corresponding Riesz transformation 𝑾 ≔
𝑅[𝑊] results into one of the standard assumptions, which is about a vanishing constant 

Fourier term �̂�𝑘=0 = 0. 
 

Putting 𝑔(𝑠) ≔ 𝑠𝑓𝑜(𝑠) , 𝑔 ≔ ∫ 𝑔2(𝑣)𝑑𝑣
∞

0
 it holds 

 

∫ 𝑔2(𝑘(𝑡 − 𝜏))
𝑡

0
𝑑𝜏 = ∫ 𝑔2(𝑘𝑢)

𝑡

0
𝑑𝑢 =

1

𝑘
∫ 𝑔2(𝑣)

𝑘𝑡

0
𝑑𝑣 ≤

1

𝑘
∫ 𝑔2(𝑣)

∞

0
𝑑𝑣 =

𝑔

𝑘
 . 

 

Putting 𝜌
𝑘

2
(𝑡) ≔ 𝑒−𝛼𝑡𝜌𝑘

2(𝑡) (𝜌
𝑘

2
(𝑡) ≔ 𝑒−𝛼𝑡𝜌𝑘

2 (𝛼 ∈ [0, ∞)) this leads to an estimate in the form 
 

𝜌
𝛼.𝑘

2
(𝑡) = 𝑒−𝛼𝑡𝜌𝑘

2(𝑡) ≤ 𝑐𝑒−𝛼𝑡𝑾𝑘
2|𝑘|2 [∫ 𝑔(𝑘(𝑡 − 𝜏))

𝑡

0

𝜌𝑘(𝜏)𝑑𝜏]

2

 

and therefore 

𝜌
𝛼.𝑘

2
(𝑡) ≤ 𝑐𝑔|𝑘|𝑊𝑘

2 ∫ 𝑒−𝛼𝜏𝑡

0
𝜌𝑘

2(𝜏)𝑑𝜏 = 𝑐𝑔|𝑘|𝑾𝑘
2 ∫ 𝜌

𝑘

2
(𝜏)

𝑡

0
𝑑𝜏  . 

 

Applying the lemma of Gronwall (appendix) then results into 
 

𝜌
𝛼.𝑘

2
(𝑡) ≤ 𝑒𝑐𝑔𝑾𝑘

2|𝑘|𝑡. 
 

In case of a Coulomb potential (𝑊𝑘 ≈
1

|𝑘|
) this inequality is governed by 𝜌

𝛼.𝑘

2
(𝑡) ≤ 𝑒

𝑐
𝑡

|𝑘|. In 

case a 𝐻−1/2Hilbert space is chosen this leads to the inequality in the form  
1

|𝑘|
𝜌

𝛼.𝑘

2
(𝑡) ≤

1

|𝑘|
𝑒

𝑐
𝑡

|𝑘| . The counterpart of the critical term of the linearized Vlasov equation ( (∇W ∗ ρ) ∙

∇vf 0 ) in the Vlasov equation is given by the non-linear term F[f] ∙ ∇vf, whereby 
 

𝐹[𝑓](𝑡, 𝑥) ≔ − ∬ ∇𝑊(𝑥 − 𝑦)𝑓(𝑡, 𝑦, 𝑤)𝑑𝑤𝑑𝑦. 
 

Because of the corresponding Vlasov-Poisson model  
 

𝐹 = −∇𝑊, −∆𝑥𝑊 = 𝜌,   𝑊 =
1

4𝜋|𝑥|
∗𝑥 𝜌,    𝜌(𝑥, 𝑡) = ∫ 𝑓(𝑥, 𝑣, 𝑡)𝑑𝑣

𝑅𝑛  
 

the combination of both systems is called the Vlasov-Poisson-Boltzmann (VPB) 

system. The extension of the VPB system, where the Vlasov force 𝐹 (or self-consistent 

force, or mean force …) is replaced by the Lorentz force determined by the electro-

magnetic field created by the particles themselves is described in [LiP2].  
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In first step we consider a H−1/2 based variational representation in the following form 
 

(
𝜕

𝜕𝑡
𝑓, 𝑔)0 + (𝑣 ∙ ∇𝑥𝑓, 𝑔)0 + (𝑭[𝑓] ∙ ∇𝑣𝑓, 𝑔)0 = 0    ∀𝑔 ∈ 𝐻0  

 

The term (v ∙ ∇xf, f)0 is governed by ‖𝑓‖1/2 for 𝐿∞ −bounded 𝑣 ∈ 𝐿∞.  
 

The term (F[f] ∙ ∇vf, g)0 of the VPB system is proposed to be replaced by (𝐅[f] ∙ ∇vf, g)0, i.e. 

the potential W is replaced by its Riesz transform 𝐖 = R[W]. Technically this is 

achieved by introducing an auxiliary function ℎ(𝑥) ≔ 𝐻𝑥 [
𝜕

𝜕𝑣𝑥
𝑓] (𝑥) considering the 

variational representation 
 

(
𝜕

𝜕𝑡
ℎ, 𝑔)−1/2 + (𝑣 ∙ ∇𝑥ℎ, 𝑔)−1/2 + (𝐹[ℎ] ∙ ∇𝑣ℎ, 𝑔)−1/2 = 0    ∀𝑔 ∈ 𝐻−1/2  

 

In the next section this concept is extended in the following way: 
 

- the VPB system is replaced by the VLB system, whereby ([DeR] (1.1)-(1.3)) 
 

o a group of electrons at a given point in time in the plasma will move in 

response to the wave field (wave packages, Lorentz force) 

o the electromagnetic radiation through the Debye sphere is modelled via 

Plemelj’s plasma mass element concept ([DeR] 5.4, [PlJ]) 

 

- an additional term is added to model the binary Coulomb collisions ([DeR] 

(1.4). 

 

We mention that the required well-defined (variational) Lorentz system as part of the 

VLB model above needs proper initial and boundary value conditions in the proposed 

𝐻−1/2 framework. The corresponding electromagnetic radiation model might provide 

opportunities for a Hilbert space based “cycles of time” model ([PeR]). 

 

In this context with respect to the related Maxwell resp. the gravity field equations we 

note that the variational space-time integrators concept for the Maxwell equations 

treats electromagnetic Lagrange density as a discrete differential 4-form in space-time 

([StA]). The concept combines spatial and time discretization in developing geometric 

numerical integrators. The approach preserve, by construction, various geometric 

properties and invariants of the continuous physical systems that they approximate. 
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4. A 𝑯−𝟏/𝟐 − Hilbert space based representation of a Landau type equation 

 

In this section we propose an alternative (H−1/2 − Hilbert space based) approach to 

prove the Landau damping based on the Landau equation. It provides a Fourier 

(modes, wave) analysis in a distributional variational Hilbert space framework being 

enriched by an additional norm with an “exponential decay” behavior in the form (𝑡 >
0) given by ([BrK5]) 
 

(𝑥, 𝑦)𝛼.(𝑡) = ∑ 𝜎𝑘
𝛼𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)

𝑘

   ,   ‖𝑥‖𝛼.(𝑡)
2 ≔ (𝑥, 𝑥)𝛼.(𝑡) 

based on appropriately defined eigen-pair solutions of a problem adequate 

linear operator 𝐴 with the property 
 

o 𝐴 selfadjoint, positive definite 

o 𝐴−1 compact. 
  

The standard model operator related of the potential theory is the Laplacian operator 

−∆ . The example related to hydrodynamic theory is the Stokes operator ([TeR] 

(2.10)-(2.14)), whereby 𝑝 denotes the density (or pressure) of the fluid. In [WeP], 

[WeP1] self-adjoint extensions of the Laplacian operator with respect to electric and 

magnetic boundary conditions are considered. Below we provide the adequate time-

dependent related Hilbert scale norm for the corresponding Cauchy problem. 
 

 An element  𝑥 = 𝑥0 + 𝑥0
¬ ∈ 𝐻−1/2 = 𝐻0 + 𝐻0

¬ with ‖𝑥0‖0 = 1 is governed by the norm of its 

(observation) subspace H0 in combination with the norm  |‖𝑥‖|(𝑡)
2 ≔ (𝑥, 𝑥)(𝑡) ([BrK3], 

[BrK5]) in the form 
 

‖𝑥‖−1/2
2 ≤ 𝜃‖𝑥‖0

2 + ∑ 𝑒1−√𝜎𝑘𝜃𝑥𝑘
2∞

𝑘=1      with   𝜃 ≔ ‖𝑥0
¬‖−1/2

2  , 
 

which is a special case of the general inequality (𝛼 > 0 be fixed) 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝑡/𝛿‖𝑥‖(𝑡)
2 . 

 

The evolution equation with respect to the Laplacian operator −∆ is given by the heat 

equation 𝐴𝑢 ≔ �̇� − ∆𝑢 = ℎ. The Fourier analysis technique is built on the eigen-pairs of 

the Laplacian −∆𝜑𝑘 = 𝜎𝑘𝜑𝑘 leading to the ordinary differential equation �̇�𝑘(𝑡) − 𝜎𝑘𝑢𝑘(𝑡) =

ℎ𝑘(𝑡), which is solved by  
 

𝑢𝑘(𝑡) = ∫ 𝑒−𝜎𝑘(𝑡−𝜏)ℎ𝑘(𝜏)𝑑𝜏
𝑡

0
  in case of 𝑢𝑘(0) = 0. 

 

It enables the proof of an optimal shift theorem of the heat equation in the form 

‖|𝑢|‖𝛼+2.𝑇
2 ≤ 𝑐‖|𝐴𝑢|‖𝛼.𝑇

2  based on the problem adequate norm ‖|𝑢|‖𝛼.𝑇
2 ≔ ∫ ‖𝑢(𝑡)‖𝛼

2𝑇

0
𝑑𝑡. The proof 

of the shift theorem takes advantage of an “exchanging the order of integration” rule 

in the following sense 
 

∫ ∫ 𝑒−𝜎𝑘(𝑡−𝜏)ℎ𝑘
2(𝜏)𝑑𝜏

𝑡

0

𝑑𝑡
𝑇

0

= ∫ ∫ 𝑒−𝜎𝑘(𝑡−𝜏)ℎ𝑘
2(𝜏)𝑑𝑡𝑑𝜏

𝑇

𝜏

𝑇

0

 

 

leading to the following estimates ((𝛽 ∈ [0, 1)) 
 

∫ 𝑡−𝛽𝑢𝑘
2(𝑡)𝑑𝑡 ≤ ∫ 𝑡−𝛽 [∫ 𝑒−𝜎𝑘(𝑡−𝜏)𝑑𝜏

𝑡

0

] ∙ [∫ 𝑒−𝜎𝑘(𝑡−𝜏)ℎ𝑘
2(𝜏)𝑑𝜏

𝑡

0

]
𝑇

0

𝑇

0

 

  

≤ 𝜎𝑘
−1 ∫ 𝑡−𝛽 ∫ 𝑒−𝜎𝑘(𝑡−𝜏)ℎ𝑘

2(𝜏)𝑑𝜏
𝑡

0

𝑑𝑡
𝑇

0

≤ 𝜎𝑘
−2 ∫ 𝜏−𝛽ℎ𝑘

2(𝜏)𝑑𝜏
𝑇

0

 

 

The corresponding shift theorem of the inhomogeneous evolution equation is given by  
 

∫ 𝜏−𝛽‖𝑢(𝜏)‖𝛼+𝛽+1
2 𝑑𝜏

𝑡

0
≤ 𝑐 ∫ 𝜏−𝛽‖𝑢(𝜏)‖𝛼+𝛽−1

2 𝑑𝜏
𝑡

0
 . 
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The term 𝑡−𝛽 is supposed to enable appropriate norm estimates for a corresponding 

Cauchy problem with non-regular initial value function in the following sense 

([BrK2,4]): 
 

In the 1-D case the homogeneous (initial-boundary value) heat equation is given by 

([BrK7]) 
 

𝜕

𝜕𝑡
𝑧 −

𝜕2

𝜕𝑥2
𝑧 = 0 in (0,1) × [0, 𝑇] 

 

𝑧(0, 𝑡) = 𝑧(1, 𝑡) = 0 for 𝑡 ∈ (0, 𝑇] 
 

𝑧(𝑥, 0) = 𝑔(𝑥) for ∈ (0,1) . 
 

In order to ensure appropriate regularity of the solution 𝑧(𝑥, 𝑡) it requires corresponding 

compatibility relations for the initial value function: 𝑔(1) = 0, 
𝜕

𝜕𝑥
𝑔(0) = 0, 

𝜕2

𝜕𝑥2 𝑔(1) =

(
𝜕

𝜕𝑥
𝑔)2(1) etc.. In case of a non-regular initial value function, e.g. 𝑔 ∈ 𝐿2, it holds 

 

‖𝑧(𝑡)‖𝑚
2 ≤ 𝑐𝑡−(𝑚−𝑙)‖𝑔‖𝑙

2  ,  ∫ 𝜏−1/2‖𝑧(𝜏)‖1/2
2 𝑑𝜏

𝑡

0
≤ 𝑐‖𝑔‖0

2
 . 

 

(Proof: For the Fourier coefficients of 𝑧(𝑥, 𝑡) = ∑ 𝑧𝑘(𝑡)𝜑𝑘(𝑥) it holds 𝑧𝑘(𝑡) = 𝑧𝑘(0)𝑒−𝜎𝑘𝑡 with 

𝑧𝑘(0): = (𝑔, 𝜑𝑘). For the critical case 𝑚 > 𝑙 the conditions 
 

(𝑚 − 𝑙)𝜎𝑚−𝑙−1𝑒−2𝜎𝑡 + 𝜎𝑚−𝑙(−2𝑡)𝑒−2𝜎𝑡 = 0 
 

results to 𝜎𝑘 ≈ 𝑡−1.  Putting 𝐶𝑚.𝑙(𝑡) ≔ 𝑠𝑢𝑝𝜎𝑘≥𝑛>0𝜎𝑘
𝑚−𝑙𝑒−2𝜎𝑘𝑡 this leads to 

 

‖𝑧(𝑡)‖𝑚
2 = ∑ 𝜎𝑘

𝑚𝑧𝑘
2(𝑡) = ∑ 𝜎𝑘

𝑚(𝑡)𝑔𝑘
2 𝑒−2𝜎𝑘𝑡 ≤ 𝐶𝑘.𝑗(𝑡) ∑ 𝜎𝑘

𝑙 (𝑡)𝑔𝑘
2 𝑒−2𝜎𝑘𝑡.) 

 
 

For Landau type equation this relates to √|𝜎𝑘| ≈ |𝑘| ≈ 𝑡−1.  
 

In [BrK8] quasi-optimal convergence of FEM Galerkin-Ritz methods for non-linear 

parabolic problems with non-regular initial values are considered. The approach is 

based on the weak one-dimension Stefan model problem with solution 𝑢(𝑥, 𝑡) and 

corresponding auxiliary function 𝑣(𝑥, 𝑡)  
 

- according to 𝑢𝑥(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) in a 𝐿2 −Hilbert space framework, resp.  

 

- according to to 𝐻[𝑢𝑥](𝑥, 𝑡) = 𝑣(𝑥, 𝑡) in a 𝐻−1/2 −Hilbert space framework.  

 

With respect to the following we note that  (𝑢𝑥 , 𝑤)−1/2 = (𝑣, 𝑤)−1/2 = (𝑢, 𝑤)0. 

Putting  h ≔ R∇𝑥𝑓 we propose a H−1/2 based variational representation in the following 

form 
 

(
𝜕

𝜕𝑡
h, 𝑤)−1/2 + (𝑣 ∙ ∇𝑥h, 𝑤)−1/2 + (𝐅 ∙ ∇𝑣h, 𝑤)−1/2 + (∇𝑣(h𝑳[h]), 𝑤)−1/2 = 0     ∀𝑤 ∈ 𝐻−1/2 . 

 

whereby 𝐅 denotes the Lorentz force.   
 

With respect to the chosen (Hilbert space) domain to be in sync with the estimates of 

the previous section we note that ([LiP2]) 
 

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
(

1

|𝑥|
∗ 𝜌) = 𝑐𝑅𝑖𝑅𝑗𝜌 , 

 

where 𝑅𝑖 denotes the Riesz transform 𝜕

𝜕𝑥𝑖
(−∆)−1/2) .  
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With respect to the proposed replacement in the previous section of the potential 

function W by its Riesz transform 𝐖 = R[W] we recall the following identities ([StE] V.2, 

V.3) 
 

[𝑅𝑖 (
𝜕𝑓

𝜕𝑥𝑖
)]

̂

(𝑥) = 2𝜋
𝑥𝑖

2

|𝑥|
𝑓(𝑥) , [(

𝜕𝑓

𝜕𝑥𝑗
)]

̂

(𝑥) = −2𝜋𝑖𝑥𝑗(𝑥). 
 

The Riesz transforms enjoy nice properties as 
 

-  𝑅𝑖
∗ = −𝑅𝑖, ∑ 𝑅𝑖

2𝑛
𝑖=1 = −𝐼, 𝑅𝑖  commutes with translations and homotheties 

 

- It transforms in the same manner as the components of a vector with respect 

to rotation ([StE] III.1), i.e. 
 

𝜃𝑅𝑖𝜃−1𝑔 = ∑ 𝜃𝑖𝑘𝑘 𝑅𝑘𝑔      (𝜃 = 𝜃𝑖𝑘 rotation matrix). 
 
 

The identity 𝑢 = (−∆−
1

2)(∑ 𝑅𝑖
𝜕𝑢

𝜕𝑥𝑖
𝑖 ) in combination with the definition (𝑢, 𝑣)−1/2 = ((−∆−

1

2) 𝑢, 𝑣) leads 

to 

(𝑢, 𝑣) = ((−∆−
1

2) (∑ 𝑅𝑖
𝜕𝑢

𝜕𝑥𝑖
𝑖 ) , 𝑣) = (∑ 𝑅𝑖

𝜕𝑢

𝜕𝑥𝑖
𝑖 ) , 𝑣)−1/2 =: (𝑅∇𝑢, 𝑣)−1/2. 

 

This corresponds to the 1D model identity ([BrK5]) 
 

(−𝐻 [
𝑑

𝑑𝑥
(𝑢)] , 𝑣)

−1/2
= (−𝐻𝐴 [

𝑑

𝑑𝑥
(𝑢)] , 𝑣)

0
= (−𝐴𝐻 [

𝑑

𝑑𝑥
(𝑢)] , 𝑣)

0
= (−𝐻𝐴 [

𝑑

𝑑𝑥
(𝑢)] , 𝑣)

0
= (−𝐻2[𝑢], 𝑣) = (𝑢, 𝑣). 

 

Regarding the fourth term (∇𝑣(𝑓𝑳[ℎ]), 𝑔)−1/2 (modelling cold plasma with particle 

collisions) in the above equation the linear operator 𝑳[ℎ] is defined by 
 

𝑳[ℎ]: = − ∫ 𝑏𝑖𝑗(𝑣 − 𝑤)ℎ(𝑤)𝑑𝑤
𝑅𝑁

: = − ∫ (𝑣 − 𝑤)𝑎𝑖𝑗(𝑣 − 𝑤)ℎ(𝑤)𝑑𝑤
𝑅𝑁

 

 

with symbol 𝑏𝑖𝑗(𝑧) = 𝑧 ∙ 𝑎𝑖𝑗(𝑧), based on the Oseen kernel ([LeN]) 
 

 (*)  𝑎𝑖𝑗(𝑧) =
1

|𝑧|
{𝛿𝑖𝑗 −

𝑧𝑖𝑧𝑗

|𝑧|2} ≔
1

|𝑧|
𝑃(𝑧) ≔

1

|𝑧|
[𝐼𝑑 − 𝑄](𝑧)  𝑄 ≔ (𝑅𝑖𝑅𝑗)

1≤𝑖,𝑗≤𝑁
= 𝑄

2
. 

 

The operator 𝑳[ℎ] is of order zero. It therefore holds 
 

(∇𝑣(ℎ𝑳[ℎ]), 𝑤)−1/2 ≅ (∇𝑣ℎ2, 𝑤)−1/2. 
 

The operator 𝑳[ℎ] is proposed to define a model collision operator. It is built from the 

collision operator  
 

- by splitting the symbol in the form 
 

(
1

|𝑧|
−

[1 − 𝑎(𝑧)]

|𝑧|
)[𝐼𝑑 − 𝑄](𝑧) 

 

whereby the second term can be interpreted as compact perturbation 
 

- by splitting 
ℎ𝑣(𝑣)ℎ(𝑤) = (𝑣 − 𝑤)ℎ(𝑣)ℎ(𝑤) + 𝑙(𝑣, 𝑤) 

 
with (𝑣, 𝑤) ≔ ℎ(𝑤)[ℎ𝑣(𝑣) − 𝑣ℎ(𝑣)] − ℎ(𝑣)[ℎ𝑤(𝑤) − 𝑤ℎ(𝑤)] . 

 

The corresponding model collision operator with corresponding appropriately defined 

domain is then given by   
 

�̃�(ℎ, ℎ) =
𝜕

𝜕𝑣𝑖
ℎ(𝑣) {∬ 𝑏𝑖𝑗(𝑣 − 𝑤)ℎ(𝑤)𝑑𝑤

𝑅𝑁 }. 
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It enables the governance of the collision operator by Garding type inequalities (as 

e.g. Korn’s second inequality for elasticity mathematical models) in combination with 

(Gateaux derivative based) nonlinear functional analysis techniques and variational 

methods (e.g. [AzA], [BrK8], [LeN], [LiP], [LiP2], [VeW]).  A corresponding coercive 

bilinear form for the Maxwell equations is provided in [CoM]).   
 

The Leray-Hopf operator 𝑃(𝑧) is of order zero ([CoP] p. 115 ff.). It is an orthogonal 

projection operator from (𝐿3(𝑅3))3 onto the closed subspace of divergence free vector 

fields. It can be computed through the following identity 
 

𝑃 = (−∆)−1𝑐𝑢𝑟𝑙𝑐𝑢𝑟𝑙. 
 

In ([LeN] the action of on Gaussian functions is provided.  
 

“The uniqueness of Leray’s solutions of the NSE is one of the most fascination problem 

concerning Navier-Stokes equations”. A Leray solution to the NSE satisfies the 

following properties 
 

𝑣 ∈ 𝐿2([0, 𝑇], 𝐻1(𝑅3))   ,  𝑣 ∈ 𝐶0([0, 𝑇], 𝐿𝜔
2 (𝑅3) . 

 

The lack of stability of Leray’s solutions has several meanings. In ([CoP] p. 115 ff.) a 

proof is given that the 𝐿2 −theory is somehow instable. We take this as another 

indicator that the proposed quantum state Hilbert space 𝐻−1/2 is the appropriate one to 

overcome mathematical constraints for stability proof challenges.  
 

Plasma physics is about quantum physics. The key concept of this paper is the quantum 

state Hilbert space H−1/2 = H0 + H0
¬. With respect to the above we propose to identify the 

Hilbert space  H0 as the “cold plasma particle” space (“matter” plasma particles with 

relevant collision energy), while the closed subspace H0
¬ of H−1/2 is being identified with the 

“hot plasma particle” space (“mass-less” plasma particles with relevant “potential” energy). 

In the appendix we provide a corresponding adequate mathematical analysis tool. 

We further mention the relationship of the term 𝑓𝑳[𝑓] to the Constantin-Lax-Majda 

equation (e.g. [MaA]) [SaT]), which is a one-dimensional model for the 3-D Euler 

vorticity equation given by 
 

𝜕𝑓

𝜕𝑡
= 𝑓𝐻[𝑓] ,  𝑥 ∈ 𝑅, 𝑡 > 0. 

 

The non-linear character of the above equation indicates a complementary variational 

technique approach, where the original variational problem is split into two dual or 

complementary problems (with two corresponding operators) leading to a (to be 

minimized) energy functional and a (to be maximized) complementary functional 

([ArA], [VeW]). For electrostatic field problems this is about the principle of 

minimizing the potential energy and its complementary principle, which is the principle 

of Thomson ([VeW] 4). 
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Appendix 

 

A combined  𝐿2 − based Fourier wave and  

(𝐻−1/2 − 𝐻0) − based Calderón wavelet analysis tool 
 

 

 

The trilinear form of the non-linear NSE term is antisymmetric. Therefore the energy 

inequality of the NSE with respect to the physical  𝐻0 − space does not take into account any 

contribution from the non-linear term. At the same time the regularity of the non-linear 

term cannot be smoother than the linear term. An alternative physical space 𝐻−1/2 is the 

baseline of the unique 3D-NSE solution of this page. 
  
Kolmogorov's turbulence theory is a purely statistical model, based on Brownian motion, 

which describes the qualitative behavior of turbulent flows ([FrU]). There is no linkage to 

the quantitative model of fluid behavior, as it is described by the Euler or Navier-Stokes 

equations. 
 

Kolmogorov's famous 4/5 law is based on an analysis of low- and high-pass filtering Fourier 

coefficients. The physical counterpart to this is about a “local Fourier spectrum” which is 

(according to ([FaM]) nonsensical because, as, either it is non-Fourier, or it is nonlocal.  
 

In Kolmogorov's spectral theory the two central concepts of a turbulent flow are 

homogeneous and isotropic flows (unfortunately they never encounter in nature). A flow is 

homogeneous if there is no “space” gradient in any averaged quantity, i.e. the statistics of 

turbulent flow is not a function of space. A flow is isotropic, if rotation and buoyancy are not 

relevant (they can be neglected) and there is no mean flow. 
 

[FaM1] “The definition of the appropriate “object” that composes a turbulent field is still 

missing. It would enable the study how turbulent dynamics transports these space-scale 

“atoms”, distorts them, and exchanges their energy during the flow evolution. If the 

appropriate “object” has been defined that composes a turbulent field it would enable the 

study how turbulent dynamics transports these space-scale “atoms”, distorts them, and 

exchanges their energy during the flow evolution.  
 

Turbulent flows have non-zero vorticity and are characterized by a strong three-dimensional 

vortex generation mechanism (vortex stretching). Brownian motion describes the random 

motion of particles suspended in a fluid resulting from their collision with quick atoms or 

molecules in a gas or a liquid. In mathematics it is described by the Wiener process. It is 

related to the normal density function. A Brownian (=red) noise is produced by a Brownian 

motion (i.e. a random walk noise). It is obtained as the integral of a white noise signal. 
 

[FaM1] “The notion of “local spectrum” is antinomic and paradoxical when we consider the 

spectrum as decomposition in terms of wave numbers for as they cannot be defined locally. 

Therefore a “local Fourier spectrum” is nonsensical because, either it is non-Fourier, or it is 

nonlocal. There is no paradox if instead we think in terms of scales rather than wave 

numbers. Using wavelet transform then there can be a space-scale energy be defined with a 

correspondingly defined scale decomposition in the vicinity of location x and a 

correspondingly defined local wavelet energy spectrum.  By integration this defines a local 

energy density and a global wavelet energy spectrum. The global wavelet spectrum can be 

expressed in terms of Fourier energy spectrum. It shows that the global wavelet energy 

spectrum corresponds to the Fourier spectrum smoothed by the wavelet spectrum at each 

scale.     …   … The concept enables the definition of a space-scale Reynolds number, where 

the average velocity is being replaced by the characteristics root mean square velocity 

 𝑅𝑒(𝑙, 𝑥) at scale l and location x.  
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At large scale (i.e. 𝑙~𝐿) 𝑅𝑒(𝐿) coincides with the usual large-scale Reynolds number, 

where  𝑅𝑒(𝐿) is defined as  
 

=
nR

dxxLL ),Re()Re(

 
A wavelet series of a function 𝑔(𝑥) converges locally to 𝑔(𝑥), even if 𝑔(𝑥) is a distribution as 

long as the order of the distribution does not exceed the regularity of the analyzing wavelet. 

The admissibility condition ensures the validity of the inverse wavelet transform which then 

is valid for all Hilbert scale values. 
 

A L2 − based Fourier wave analysis is the baseline for statistical analysis, as well as for PDE 

and PDO theory. There are at least two approaches to wavelet analysis, both are addressing 

the somehow contradiction by itself, that a function over the one-dimensional space R can 

be unfolded into a function over the two-dimensional half-plane. The Fourier transform of a 

wavelet transformed function f is given by ([LoA], [MeY]): 
 

Wϑ[f]̂(a, ω) ≔ (2π|a|)
1

2cϑ

−
1

2ϑ̂(−aω)f̂(ω)  . 
 

For φ, ϑ ∈ L2(R), f1, f2 ∈ L2(R), 

0 < |cϑφ| ≔ 2π |∫
ϑ̂(ω)φ̅̂(ω)

|ω|
dω

R

| < ∞ 

 

and |cϑφ| ≤ cϑcφ one gets the duality relationship ([LoA]) 
 

(Wϑ 𝑓1, Wφ
∗ 𝑓2)

𝐿2(𝑅2,
𝑑𝑎𝑑𝑏

𝑎2 )
= cϑφ(𝑓1, 𝑓2)𝐿2

 

i.e. 

Wφ
∗ Wϑ [f] = cϑφf   in a L2 −sense.   

 

For φ, ϑ ∈ L2(R), f1, f2 ∈ L2(R), 

0 < |cϑφ| ≔ 2π |∫
ϑ̂(ω)φ̅̂(ω)

|ω|
dω

R

| < ∞ 

 

and |cϑφ| ≤ cϑcφ one gets the duality relationship ([LoA]) 
 

(Wϑ 𝑓1, Wφ
∗ 𝑓2)

𝐿2(𝑅2,
𝑑𝑎𝑑𝑏

𝑎2 )
= cϑφ(𝑓1, 𝑓2)𝐿2

 

i.e. 

Wφ
∗ Wϑ [f] = cϑφf   in a L2 −sense.   

 

This identity provides an additional degree of freedom to apply wavelet analysis with 

appropriately (problem specific) defined wavelets in a (distributional) Hilbert scale 

framework where the "microscope observations" of two wavelet (optics) functions ϑ, φ can 

be compared with each other by the above "reproducing" ("duality") formula. The prize to 

be paid is about additional efforts, when re-building the reconstruction wavelet. We further 

note that for a convenient choice of the two wavelet functions the Gibbs phenomenon 

disappears ([HoM] 2.7). 
 

 

We note the Gaussian function related “Mexican hat” (wavelet) function 
 

𝑔(𝑥) ≔ −
𝑑2

𝑑𝑥2 (𝑒−
𝑥2

2 ) = (1 − 𝑥2)𝑒−
𝑥2

2 . 
 

being successfully applied e.g. in wavelet theory (see also below section D), as well as the 

Poisson wavelet  ([HoM], example 7.0.2).  
 

We further mention that the Hilbert transform of a wavelet is again a wavelet. 
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In [BrK3] an alternative quantum state Hilbert space H−1/2 is provided, which includes an 

alternative concept to the “Dirac function” calculus. This overcomes current handicaps 

concerning the regularity of the Dirac function, which depends from the space dimension, 

i.e. δ ∈ H−s(𝑅𝑛) for s > n/2. 
 

The alternatively proposed Hilbert space H−1/2 provides a truly “microscopic” mathematical 

frame (independently from the space dimension), while still supporting the existing physical 

observation (statistical analysis) subspace. It is also proposed to replace the (continuous & 

differentiable) manifold concept (and exterior products of differential forms) in Einstein’s 

field theory. 
 

The extended admissibility condition above indicates that wavelet “pairs” in the form (𝜑, 𝜗) ∈
𝐿2𝑥𝐻−1 ≅ 𝐻−1/2𝑥𝐻−1/2 would be an appropriate good baseline to start from, when analyzing in 

the Hilbert space frame 𝐻−1/2 = 𝐿2𝑥𝐿2
¬, , resp. 𝐿2

¬, where 𝐿2
¬ denote the complementary space 

of 𝐿2  with respect to the 𝐻−1/2 −norm, while still analyzing the “observation measurement” 

Hilbert space 𝐿2  by Fourier waves. 
 

In line with the proposed distributional H−1/2 −Hilbert space concept of this paper, we 

suggest to define “continuous entropy” in a weak H−1/2 − frame in the form 
 

h(X): = (f, log
1

f
)−1/2 , 

 

where X denotes a continuous random variable with density f(x). In this case it can be 

derived from a Shannon (discrete) entropy in the limit of n, the number of symbols in 

distribution P(x) of a discrete random variable X ([MaC]): 
 

H(X): = ∑ P(xi)log (
1

P(xi)
)i  . 

 

This distribution P(x) can be derived from a set of axioms. This is not the case, in case of the 

standard entropy (which cannot be derived from dynamic laws (!), anyway, [PeR]) in the 

form 
 

h(X): = (f, log
1

f
)0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

Lemmata of Gronwall 

 
 
The lemma of Gronwall is a well-established tool for instance to derive evolution 

equation based classical or variational inequalities. However, applying this tool to 

Hilbert norm base estimates jeopardizes the balance of any problem adequate norm, 

e.g. energy / conservation law equations or related inequality estimate (e.g. Garding 

type inequalities). In this sense, every Gronwall lemma based proof is valid, but related 

to the underlying physical model the proof is not problem adequate, means that there 

is still room of mathematical improvements to fit to purely physical (“ reality”) 

modelling requirements. 

 

 

 

Generalized Lemma of Gronwall (version 1): Let  aCt ,0)( 0  be a real valued 

function and ),0()( 1 aLth   be non-negative function with 
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t
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)()()(       ,    R  . 

Then 





t

dh

et 0

)(

*)(


  . 

 

 

 

Generalized Lemma of Gronwall (version 2): Let  aCt ,0)( 0  be a real valued 

function and ),0()( 1 aLth   be non-negative function with 
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Generalized Lemma of Gronwall (version 3: log type): ([YGi1]) Let ,a  be non-

negative constants. Assume that a non-negative function ),( sta satisfies 

)0((*,*) TtsCa  , ),0(,*)( 1 tLta  for all ( ),0( Tt  . Furthermore, we assume that 

there exists a positive constant  
0  such that  


−



t

tTt

dssta

0

2/1),(sup
0 

      . 

 

 If a non-negative function   ),0( TCf    satisfies 

   ++++

t t

dssfsfdssfstatf
0 0

)())(1log(1)(),()(   

 

for all  Tt ,0 . Then we have 
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for all  Tt ,0 . Here we put 
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Lemma of Gronwall (version 4): Let )(ta  and )(tb  nonnegative functions in  )A,0  and 

10    . Suppose a nonnegative function )(ty  satisfies the differential inequality 

 

)()()()( tyttbty +      on     )A,0   
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