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It is generally known that under the generalized Riemann hypothesis one could 
establish the Goldbach conjecture by the circle method provided one could obtain a 
certain estimate for the integral of the representation function over the minor arcs. 
Here it is first shown that the generalized Riemann hypothesis in the above 
statement can be weakened to the assumption that Siegel zeros do not exist. The 
case when Siegel zeros do exist is then considered. 

1. INTRODUCTION 

LetN>NN,andlog’5N<P<NEfor&>0.Letx,=x,(N)=P/N. 
When 0 < h < q <P and (h, q) = 1, let M(q, h) denote the closed interval 

[h/q - xo, h/q + x0], a so-called major arc. 
It is easily shown, for any choice of P, that all the M(q. h) are disjoint and 

contained in the closed interval [x0, 1 +x0]. 
For each N let m(N) be those points in [x0, 1 + x0] which are not in any 

closed neighborhood (major arc) of radius x0 about any rational number h/q, 
where (h, q) = 1 and q < P. 

For each N let m*(N) be those points in [x0, 1 + x0] which are not in any 
closed neighborhood (major arc) of radius x0 about any rational number h/q, 
where (h,q)= 1, (q,N)= 1, and q<P. 
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Let p denote a prime, and let E(a) = exp(2nia). 
Let 

Let 

Let 

Let 

and r(N) = s 1. 
PI .P2 

PI+P~=N 

J(N) = (log N, log NJ - ‘. 
N,,N2>2 

NjtN2=N 

W)=(l +t-1)“) /g3 (l- (pl l)Z) 1 I-& (5). 

and R(N)= -s 
u2w 

plp m cQ(N)G 

In [IO] we established the following two theorems: 

THEOREM 1.1. Under the generalized Riemann hypothesis with P = NE, if 
,f,cNjf2(~, N) E(-Nx) dx = o(N logP2 N), then r(N) > 0 for all euen N > No. 

THEOREM 1.2. Let P = N-’ logI N. If I,.1N)f2(~, N) E(-Nx) dx = 
o(N loge2 N), then r(N) > 0 for all even N > No. 

In Section 3 of this paper we establish 

THEOREM 1.3. Under the assumption that Siegel zeros do not exist with 
P = exp(c log ‘D N) if ~,~N~f2(~, N) E(-Nx) dx = o(N log-* N), then 
r(N) > 0 for all even N > N,. 

In Section 4 of this paper we establish 

THEOREM 1.4. Let P = exp(c log “2 N). If ~m(N)fZ(~, N) E(-Nx) dx = 
o(NP- ‘/32 log -‘N), then r(N) > 0 for all even N > No. 

In Section 6 of this paper we show that a particuIar natural approach for 
eliminating the condition (q, N) = 1 in Theorem 1.2 will not work. 
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2. PRELIMINARY LEMMAS 

LEMMA 2.1. We have Cpln (l/p”“) = O(log3’* n). 

ProoJ Fix y > 0. Then 

vL=d-+v l 
PTn p 5/s - 

Pin p 

- = A(n) + B(n). 
; PSiS 

PCY P z Y  

It is trivial that A(n) = O(y3’*) and 

log n 
l”gp G ’ y5/8 logy ’ 

Let y = log n, and the proof follows. 

LEMMA 2.2. We have C,,, (l/m”‘“) = O(exp(c log3” n)). 

Proof. Let A(n) = Cm,, (l/m 5’8). By the Euler product formula we have 

A(n)<JJ l+F-’ 
( ,r, WY 1 < 1-I (1 + 1oop-5’8), 

Pin Pin 

SO that log A(n) < &,, log(1 + 100p-5’8) < C Cplnp~~“‘, and the proof 
follows from Lemma 2.1. 

LEMMA 2.3. We have Cm,n,mGy 1 = O(y”’ exp(c log”’ n)). 

Proof. This is immediate by Lemma 2.2. 

LEMMA 2.4. We have 4-‘(m) & rn-‘(log log(m + 3)) ifm > 1. 

Proof. This is immediate by [6, Theorem 3281. 

LEMMA 2.5. We have 

\‘ P*(q) 2 C,(N) * Pe3” exp(c log3” N). 
zq 4 (9) 

Proof. It is shown in [ 12, p. 27) that 

p*(k) P(9) ‘,cN)= 2 $2(k) q;,k m=‘l + ‘2, 
(4.N) = 1 
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where 

k<P (c7.N) = 1 

and p’(k) P(4) 
“= kf; 4(k) q:, 4’(q) 

(q.N) = I 

By Lemma 2.4 we have 

z, 6 P(log log@ + 3))3 c 1, 
klN 
k$P 

and by Lemma 2.3 this yields 

C, 4 PV3’*(log log(P + 3))3 exp(c log3” N). 

But (log log(P + 3))3 < exp(c, log3’* P) < exp(c, log3’8 N), so that 

,?Y, < P-3’8 exp(c’ log3’8 N). 

k>P (q,N) = I 

1 k 

’ ;9(k)= $ 4(k) 
-<loglog(k+3) c + 

klN 
k>P k>P k>P 

<loglog(N+3) 6 p- 3’8 log log(N + 3) GN &, 

klN 

so that by Lemma 2.2 

,?Y, < P-3’8 log log(N + 3) exp(c log3’8 N) + Pe3j8 exp(c” log3” N). 

LEMMA 2.6. We have SW) = C,“, cU2G7>14’k7>) C,(W 

ProoJ: This is [4, Lemma 121 with r = 2. 

LEMMA 2.7. We have S(N) s 1. 

Proof This is established in [ 10, p. 181. 

LEMMA 2.8. Let P = exp(c(log N)‘/‘) for any c > 0. Then 

S(N)-R(N)=o(l) 

ProojI Immediate by Lemmas 2.5 and 2.6. 
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LEMMA 2.9. We have 

315 

1 

n:x m = 

r(2) r(3) log x 

t(6) 
logx+A+O - 

i 1 x . 

Proof. This is established in [7, p. 381. 
Let 

IS,(X) = \‘ m”-‘(log m) ‘, 
2 gmg x 

(2.1) 

is x = Is, (X). (2.2) 

LEMMA 2.10. There are positive numbers C,, , C,?, and C,, such that, 
for every suflciently large number N, 

(i) For every q, h such that q < exp((log N)‘j2) and (q, h) = 1 It’e 
have whenever N3’4 < X < N, 

I $X9 4, h) - (Is X/$(q))1 < C,,Xexp(-C,,(logX)“‘), 

or 

(ii) there is just one pair r,/I such that for every q, h with 
q < exP((log N)“‘) and (9, h) = 1, and every X with N”’ < X < N, we hatle 

lW3 4, h) - UsX/#(q))l < C,,Xexp(-C,2(log X)“‘) (r%q) 

and 

fsx 0) n(X- 99 h) - m + ti(q) -Is,(X) < C,, X exp(-C,,(log X)“‘) (rlq). 

where x is the real nonprincipal character module q induced in each case b]- 
the same real nonprincipal primitive character module r. Moreover, 

$ <<lr < 1 - fZ3r-~“’ (2.3) 

and 

r > (log N)3. (2.4) 

Proof. This is established in [ 12, p. 261. 

641’16 3 3 
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3. A PROOF OF THEOREM 1.3 

Let q<P, JyJ<x,,, (h,q)= 1, and N>N,. Then 

where g(x9 u) = CZGmGu (E(mx)/logm) if u > 2 and g(x, u) = 0 if u < 2. 
Hence 

Using the fact that if laJ(N and JbJ<N, then \a’-bZ\<2Nja-b\, it 
follows that 

where 

NV1 
n([u];q, l)-c4o dv. 

II 
(147) = 1 

By a change of variable y = x - (h/q) it follows that 

%q)=E (-y)j;;i’ (~+y,N)E(-NW. (3.1) 
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< ‘xo I F(h, q, N) dy = 2x,F(h, q, N). 
-x0 

Let T,(N) = I”-“,,g’(y, N)E(-Ny) dy, so that by (3.1) it follows that if 
q<P. (h,q)= 1, andN&N,,, then 

< 2x,F(h. q, N). (3.2) 

Let W) = Cm,,,, log-’ m, log-’ m, with the conditions of summation 
m, > 2, m, > 2, and m, + m, = N. It is easy to see that 

and combining this fact with (3.2) it follows that 

< 2x,F(h, q, N) + 
2 

-yo42(d 
. (3.3) 

Adding (3.3) $(q) times for some fixed q <P it follows that 

(h.q)=l 

\‘ 
O<h<9 

T(h, q$ - -$# T(N) x 
O<h<9 

E (-““j / 
4 

(h.9) = I 

O<h<q 
(h.q)=l 

+~,$%I) . 

Now summing over all q < P it follows that 

\> \‘ 
L - 

q<P O<h<q 
T(h, q) - T(N) “ “(‘) C,(N) 

(h,q)=l 
qjP m  

< \’ \’ - - 2x,F(h,q, N) + \’ ---k 
ZP x0 e7) 

(3.4) 
q$P O<h<s 

th.q)=l 
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LEMMA 3.1. We have N log -’ N < r(N). 

ProoJ This is established in [lo, p. 151. 

LEMMA 3.2. We have C,,,, (2/x,$(q)) = o(N logm2 N). 

ProoJ: This is a straightforward consequence of Lemma 2.9. 

LEMMA 3.3. We have F(h, q, N) < (PN)’ exp(-c log N)“‘). 

ProoJ We have F(h, q, N) <A, + A, + A,, where 

u(q) 
----do, N) , 
$47) 

A z = 4nx0 N*q, 

A, = 4nx,N 
j 
N K- NV1 

0 0<%q 
$bhkm du. 

(1.4) = 1 

We estimate A, : 

< q + x C, 1 N exp(-C,,(log N)“*) (by Lemma 2.10) 
O<l<q 

< C,,PNexp(-C,,(log N)“‘), 

so that 

A, < C,,PN’ exp(-C,,(log N)“*). 

We estimate A,: let A, = Aj + A;, where 

s 

NT/8 

A; = 4nx,N 5 WV1 
0 o<xll 

~([ulvd)-do du 
(I,q) = 1 

and 

AS’ = 4zx, N 
i IV8 o<F<q 

ls[vl n([~l; 434 -m dv. 
(1.q) = 1 
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Using the trivial estimates 

319 

it is easy to see that Ai < C,,P’N ‘14. By Lemma 2.10 it follows easily that 
Aj’ < C,, P2N2 exp(-C,,(log N)“‘). Clearly, A, Q C,, P*N, so the proof is 
completed. 

LEMMA 3.4. Let P = exp(c,(log N)“*). It is possible to choose a positive 
c, < 1 small enough such that 

\- \’ 
q<;P cl<hcts 

2x&h, q, N) = o(N log ’ N). 

(h,fJ) = I 

Proof. This follows immediately from Lemma 3.3. 

The proof of Theorem 1.3 follows from (3.4) and Lemmas 2.7, 2.8, 3.1, 
3.2, and 3.4. 

4. A PROOF OF THEOREM 1.4 

Let C,, = min(1, (d/2) CIz, C*), where 0 < C* <co is to be chosen 
later. Let P, = exp(jC,,(log N)“‘) and let P, = P:“. Fix N > No. 

Case 1. r > P,. Let P = P,, so that none of the q’s are divided by r. 
Then the proof is immediate by the same argument used to establish 
Theorem 1.3. 

Case 2. r < P,. Let P = P,. First, consider all q such that rjq. By the 
same argument used in the proof of Theorem 1.3 it follows that 

I1 ‘K- T(h, q) - T(N) x;‘ 
q?P O<h& 

rk (h,q)= 1 

ss 
2 

T 2x&h, q,N) + x‘ F. 
4$-P 0z.Q qyP -w#(q) 

(4.1) 
r& (h.q) = 1 r%o 

Now consider ail q such that r 1 q. It is assumed that / y j S x0, (h, q) = 1, 
and 0 < u <IV. Using the fact that fs[u] = g(0, u), it follows that for any 
Fo(k 9. u) 
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i( 1 f $,v u(q) 
- -km v> + F,(h, q, v) 

!?%I) 

’ G lf(-$v)-p~“E($)~ 

Let 

Ih x(0 Fo@, 4, v> = x E - ( ) - Is,(v). 0<l<q 4 fw (1.4) = 1 
Using the facts that 

it follows that for 0 < v <N 

u(q) - - g(0, v) + Fo(h, 4, v> d(4) 
<q+ 1 ,;<, E(9)]n([v];q,I)-~+~$U(v)I 1 

(Id = 1 

Let F*(h, q, N) = E(Ny) F,(h, q, N) - 2ltiy j! E(vy) F,(h, q, u) do. It is 
easy to see by straightforward calculation that 

E(NY) do, N) + E(NY) Fo(h, 9, N) 

-~~~YJ;E(vY) j/(~,v)-~g(O,v)+F,(h,q,v)j du. 

SO that using the fact that if Ial Q N and lb\ <N, then )a2 - b21 < 2N it 
follows that 

lf’(~+y.N) - [~g(y,N)-F*(h,q,N)]*l <Fl(h,q,Nh 
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where 

Let 

and 

Let 

F,(h,q,N)=2N f +dv -- 

I( ) 

u(q) 
4(q) g(O, w + Fo(k 43 NJ 

T,(N) = T,(h, q, N) =J’” g*(.v, A9 E(-N,) dy, 
-10 

T,(N) = T,(k 4, N) = ix0 F*@, q- w g(.v, NJ Et-M) dy. 
-x0 

7-,(N) = T,(h, q, A’) =jxo F**(h, q, N) E(-N-v) dv. 
-x0 

A(N)= x x 
q<P O<hGq 

rlq (h-q)= 1 

By straightforward calculation it follows from the above, (4. l), and 
Lemma 2.5 that 

\‘ \’ - I T(h, 4, - I W) WV + A w I 
q<P o<h<q 

(h.q)= 1 

<k7 \‘ 

QYP O<h44 

2x,F(h, q, N) + \’ ” 2&)F,(k 49 w 
q?P O<h<q 

rkq (h.q) = 1 rlq (h.q)- I 

+F 
2 

~ + O(CNP-~‘* exp(c log3’8 N). 
ZP x04(q) 

It is not difficult to see using the same methods of proof used to establish 
Theorem 1.3 that it is possible to choose C* small enough such that each 
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term on the right-hand side of the inequality is o(NP-‘/~~ log -?N). Conse- 
quently, Theorem 1.4 follows from 

LEMMA 4.1. We have T(N) S(N) +A(N) $ NP-‘13* log-* N ifN even. 

5. A PROOF OF LEMMA 4.1 

In this section the notation employed in [ 121 is combined with the 
notation of the previous sections of this paper. Also, here we use several 
lemmas from [ 121. In all such lemmas x,/q can be replaced by x,, as far as 
our application of the lemmas is concerned. 

Let 

G&q) = c E 0<l<q (1,fl) = 1 
Then 

x(h) G(h d= c E 
0<I<q 
(id = 1 (l,P) = 1 

(1.4) = 1 

since Ih and 1 run through the same reduced residue classes, so that 

‘W d = & x E 6 x(0 =x(h) 
0<l<q 0 x E f x(0 

0<l<q 0 
(l,q)=l 

Hence, by [ 12, Definition 8.31 

G(h, s> = x(h) W 

Hence by [12, Definition 8.41 we have 

Fo(h, q, v> = &s(v) Q, h), 

so that by [ 12, Eq. (5.6)] it follows that 

Fo(k 4, v) = g,(v, 0) n(s, h). 
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LEMMA 5.1. For any real numbers x, and x1 

g,(v, x, + x2) = E(ux~) gD(Ulxl) - 2xix2 (’ E(ux,) g&u, 3 x,) du. 
-0 

Proof. Confer [3, p. 631. 

By letting x, = 0, x2 =y, and u = N in Lemma 5.1 we have 

g&N, .v> = WY) gB(N, 0) - 2rriy 1’ E(w) g,(u, 0) du 
0 

and 

A(% h) g&V, y> = JWY) A(% h) g,(N, 0) - 2niy f’ E(uy) g,(u, 0) A(q, h) du. 
0 

Hence F*(h, q, N) = A(q, h) g&V, y), so that 

and 

Wl=jx” 4?!, h)g,tN,y)g(y, N)E(-NV)& 
-so 

T,(N) = jx” A’(% h) g;(N, y) E(-Ny) dy. 
-x0 

By a change of variable, x = y + (h/q), it follows that 

T,(N) = j(h’q)txo 
(h/q) -x0 

~‘(q,h)& (N,x-$,E(-N(x-+)) dx, 

so that by [ 12, Eq. (KS)] it follows that 

T,(N) = I'"'") + xo 
(h/s) -xg 

v;‘(N,x,q,h)E (-N [x-a)) dx. 

\‘ y 
6s O<h<q 

rlq (h,q)= 1 

E v \’ 

q> &<q 
v$‘(N, x, q, h) E(--Nx) dx. 

rlq (h.q)= I 
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By a change of variable, x = y + (h/q), it follows that 

so that by [ 12, Eq. (8.5)] it follows that 

QyN x9 4, h) g ( x - $N) E (-N(x-f)) dx. 

Hence by [ 12, Definition 5.71 

2 qTP O<T<, % T*(N)E -y ( ) 49 (h&l = 1 

= zp &, ,:(:,:)I: 2v$(N, x, q, h) v*(N, x, q, h) E(-Nx) dx. 
0 

rl9 (h.9) = 1 

Hence 

A(N) = Jf c J-(h’q)+xo [u,*(N, x, q, h)* 
q(P O<h<q W9)-xo 
rlq (h,q)= 1 

- 2v,*(N, x, q, h) v*@v, x, q, h)] E(-Nx) dx. 

Let 

W(N,x)=ut(N,x,q,h)*-2@(N,x,q,h)v*(N,x,q,h), if xEM(q,h), 

= 0, otherwise. 

Let D(N, a) = J:zX 0 W(N, x) E(--ax) dx, so that A(N) = D(N, N). 

LEMMA 5.1.A. Suppose that n Q 2N. Then 

=i L 5 12(n, q, a) - J,(N, n) G(N, n) % NP-‘r’@(r)-’ Z,, 
9CP a=1 
d9 (U.9) = I 

where 

Z, < log P[log log(N + 3)13 P5’* exp(c log3” N). 
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Proof. By [ 12, Eq. (9.14)] we have 

\’ + 

ZP “i, 
I,(n, q, a) -J&N, n) G(N, n) < NP-‘r2#(r)-’ C,, 

riq (cz.4) - 1 

where 

c, = 1 p(m)’ mqqm>-’ \’ p(k)2 kg(k)-? 
mln k &&I 

cm.rj = 1 (k.rn) :~ I 

= 2 p(m)’ m$(m)- ’ x p(k)* k#(k) - ‘. 
mln k<Plrm 

(m,r) = I (k.rnl: t 
m<P 

since k < P/rm has no solution in positive integers k if m > P, so that 

C, < x m#(m)-’ \’ kd(k)-*. 
mln k?P 

m<P 

The proof now follows from a straightforward application of Lemmas 2.3 
and 2.4. 

LEMMA 5.2. Suppose that n < 2N. Then 

D(N, n) - J,(N, n) G(N, n) < NP-‘r-*$(r)-’ 2, + N log- * Nr-‘I* log log’ N. 

Proof. As in the proof of [ 12, Lemma 9.81 we have 

D(N, n) - J,(N, n) G(N. n) = A - B, 

where 

and 

B=2 \‘ 

4TP 
I,(% 9, a). 

a=, 
rlq (0.q) = 1 

By Lemma 5.lA it follows that A @ NP-‘r’@(r)-’ Z:,, and by 112, Lemma 
9.51 we have B <N log-2Nr1’24(r)-1 n#(n)-‘. 

The proof now follows from a straightforward application of Lemma 2.4 
and [12, Eq. (8.2)). 
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LEMMA 5.3. Ifn < 2iV and n is even, then 

/ G(N, n)l < S(n) + O(r3’8P-3’8(log log N)5 exp(c(log ,)3’8), 

Proof: By Lemma 2.4 and the argument in [ 12, p. 441 

(k,nr)= 1 

+ o(P- ‘rm(log log N)Z) 

me/r 
(m,r)=l 

(k,nr)= I 

+o ( 
Pl”(4 - 

2 9(m) -P ‘rm(log log Iv)2 
1 
, 

m<p/r 
(rn,r)= 1 

and by the Euler product formula and Lemma 2.4, 

s 2 $g In (1 -(p-f 1)2) / +o (‘P-‘&%10gN)’ F’ I), 
(rn.r)=l Ph Z2 m<Plr 

and by the Euler product formula and Lemma 2.3 

n P(P - 2) 5/g 

ptnr (P - 9’ 
+ 0 K’(log logN)3 

Hence by 112, Eq. (lO.l)] it follows that 

+O ( W)4 &) 
@-‘(log logN)3 p 

( 1 

S/8 
r exp(c log 3’8 n) 

1 
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By a straightforward application of Lemma 2.4 

so that the O-term it established. The rest of the proof follows from the 
argument given in [ 12, p. 45) and the easily established fact that 

LEMMA 5.4. Suppose that n < 2N and n is even. Then 

lD(N, n>l< J,(N, n) S(n) + A, t A, + A,, 

where 

A, = C, Nr3’8P-3’R(log log N)’ exp(c log”’ N). 

A,=C,NP-‘r(loglogN)C,, 

A, = C,Nlog-* Nr-“’ log 1og’N. 

Proof: By Lemma 5.2 

D(N, n) =J,(N, n) G(N, n) + O(NP-‘r*#*(r)--’ C, 

+ N log-‘NrP”’ log log’ N). 

Therefore by Lemma 5.3 and using the fact [ 12. Lemma 5.5 ] that 
]J,(N, n)] < N, it follows that 

j D(N, n)l < J,(N, n) S(n) + C, Nr3’*F3”(log log N)’ exp(c log3” N) 

+ C’,NP’r2#(r)- C, + C,Nlog-’ Nr -If’ log 1og’N. 

The proof now follows by application of Lemma 2.4. 

LEMMA 5.5. Suppose that m < 2N and m is euen. Then 

~J(N,m)S(m)+D(N,m)~>C,,r~“8J(N.m)S(m)-A~-A3-A,. 
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ProoJ It is immediate by Lemma 5.4 that 

(J(N,m)S(m)+D(N,m)(~J(N,m)S(m)--J,(N,m)S(m)-A,-A,-A,. 

The proof is completed by application of [ 12, Lemma 10.31. 

LEMMA 5.6. For ;N < m <N and m even 

IJ(N, m) S(m) + D(N, m)] %- NP-“32(log N)-‘. 

Proof Let A, = C,, r -““J(N, m) S(m). By straightforward calculation 
it can be shown that A, (A,/2, A, % mP-1/32 log-‘N, A, = 
o(NP-‘~” log-‘N), and A, = o(NP- 1f32 log-’ N), so that the proof follows 
immediately from Lemma 5.5. 

6. AN IMPORTANT COUNTEREXAMPLE 

The computer results in [9] indicate that the (q, N) = 1 condition in the 
definition of m*(N) in Theorem 1.2 might not be a reasonable one. In [IO] 
we indicate that a very natural way to eliminate this condition would require 
that one show that either S(N) -R(N) = o(1) or S(N) - R(N) = o(S(N)). 

In this section we show that neither of these conditions is true if 
q < 1og”‘N for any integer m > 0. This result follows from the following 
calculations and lemmas: 

Let E(N) = S(N) - R(N). Then 

by [6, Theorem 2721. Hence 

Now write q = aa’, so that 

logmN< au 
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But 

pu’(au’) u(d) 
(.,,L I 4W) W) IogmNioa’ 

logmN<na’ logm.v<na’ 
(a.n’)=l tL7.a’) I 

But if (a, a’) > 1, then au’ is not square-free, so that p(uu’) = 0. Hence 

E(N) = \’ p2(uu’) u(u’) afiN ,a,,;,=, #(uu’)@(u’> = 0% ,.‘.;,I u’(u)p”(u’) 
logmN<ao’ logm.V~-00’ 

(c3.U’) = I (0.d) 1 

\’ P’WP’W = 
- ,A #(a) ti*w . a I N lagmN<aa’ 

Now assume N is square-free: 

a>logmN 1<a 

ZZ 

I<O’ n>logmh 

= B’(N) . B”(N). 

LEMMA 6.1. We have B’(N) * 1. 
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Proof: We have 

LEMMA 6.2. For each n let Q(n) =p, . pz . . . p,, . For each V such that 
c,< V<log zm+3Q(n) the number of square-free integers which are less 
than or equal to V and which divide Q(n) is at least cV. 

Proof: This follows from a suitable modification of the proof of [ 1, 
Lemma on p. 81. 

LEMMA 6.3. For each n let Q(n) =p, . pz . . . p,,. There exists a D > 1 
such that for each W such that CO < W < log “Yj(n) 

a>w 
a&DW 

a square-free 

Proof: We have 

T L>- 1 \‘ 1 
alz’n) a ‘DW - alQ(n) 

a>w 
U<DW 

a square-free 
a > w 

a<DR 
a square-free 

0sW 
a square-free 

The proof now follows immediately from Lemma 6.2. 

LEMMA 6.4. We have B”(Q(n)) * log log Q(n). 

ProoJ We can break B”(Q(n)) into *log log Q(n) sums of the form in 
Lemma 6.3. 

LEMMA 6.5. We have ,S(Q(n)) Q log log Q(n). 
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Proof By straightforward calculation it follows that 

S(Q(n))< n (I-+)-‘, 
PCPn 
P>3 

so that the proof follows by an application of 16, Theorem 429 1. 

LEMMA 6.6. 

ProoJ This 

LEMMA 6.7 

Proof This 

We have 

is immediate by Lemma 6.10. 

We have A(N)< 1. 

follows from Lemma 6.9 and Lemma 6.11: 

a6logmN los’“Nla<a 
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