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The Hilbert scale {𝑯𝜶|𝜶 ∈ 𝑹} 

 
Let 𝐻 be a (infinite dimensional) Hilbert space with scalar product (. , . ) and the norm ‖. . ‖. Let 𝐴 be a linear 
operator with the properties 
 

i) 𝐴 is self-adjoint, positive definite 
 

ii) 𝐴−1 is compact. 
 
 Without loss of generality, possible by multiplying 𝐴 with a constant, we may assume 
 

(𝑥, 𝐴𝑥) ≥ ‖𝑥‖       for all 𝑥 ∈ 𝐷(𝐴). 
 
The operator 𝐾 = 𝐴−1 has the properties of the previous section. Any eigen-element of 𝐾 is also an eigen-

element of 𝐴 to the eigenvalues being the inverse of the first. Now by replacing 𝜆𝑖 → 𝜆𝑖
−1 we have : 

 
there is a countable sequence {𝜆𝑖 , 𝜙𝑖} with 
 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖   ,   (𝜙𝑖 , 𝜙𝑘) = 𝛿𝑖,𝑘    and   𝑙𝑖𝑚
𝑖→∞

𝜆𝑖 → ∞ 

 
any 𝑥 ∈ 𝐻 is represented by  
 

(*)     𝑥 = ∑ (𝑥, 𝜙𝑖)
∞
𝑖=1 𝜙𝑖   and    ‖𝑥‖2 = ∑ (𝑥, 𝜙𝑖)

2∞
1 . 

 
Similarly one can define the spaces 𝐻𝛼 , where the case 𝛼 < 0 is related to the theory of distributions. They 
consist of those elements 𝑥 ∈ 𝐻 with scalar product  
 

(𝑥, 𝑦)𝛼 = ∑ 𝜆𝑖
𝛼(𝑥, 𝜙𝑖)

∞
𝑖 (𝑦, 𝜙𝑖) = ∑ 𝜆𝑖

𝛼𝑥𝑖𝑦𝑖
∞
𝑖   

 
and norm  

 
‖𝑥‖𝛼

2 = (𝑥, 𝑥)𝛼. 
 
Because of the Parseval identity we have especially 
 

(𝑥, 𝑦)0 = (𝑥, 𝑦) 
 
and because of (*) it holds 
 

‖𝑥‖2
2 = (𝐴𝑥, 𝐴𝑥)0 , 𝐻2 = 𝐷(𝐴). 
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The set {𝐻𝛼|𝛼 ≥ 0} is called a Hilbert scale. There are certain relations between the spaces {𝐻𝛼|𝛼 ≥ 0} for 
different indices, (NiJ), (NiJ1): 
 
Lemma :  
 

i) Let 𝛼 < 𝛽. Then ‖𝑥‖𝛼 ≤ ‖𝑥‖𝛽 for 𝑥 ∈ 𝐻𝛽  and the embedding 𝐻𝛽 → 𝐻𝛼  is compact. 

 

ii) Let 𝛼 < 𝛽 < 𝛾. Then ‖𝑥‖𝛽 ≤ ‖𝑥‖𝛼
𝜇‖𝑥‖𝛾

𝜈   for 𝑥 ∈ 𝐻𝛾 with 𝜇 =
𝛾−𝛽

𝛾−𝛼
 and  𝜈 =

𝛽−𝛼

𝛾−𝛼
. 

 
iii) Let 𝛼 < 𝛽 < 𝛾. To any 𝑥 ∈ 𝐻𝛽  and 𝑡 > 0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 

 

iv) ‖𝑥 − 𝑦‖𝛼 ≤ 𝑡𝛽−𝛼‖𝑥‖𝛽  

 
v) ‖𝑥 − 𝑦‖𝛽 ≤ ‖𝑥‖𝛽  ,  ‖𝑦‖𝛽 ≤ ‖𝑥‖𝛽 

 

vi) ‖𝑦‖𝛾 ≤ 𝑡−(𝛾−𝛽)‖𝑥‖𝛽 

 
Lemma:  
 

i) Let 𝛼 < 𝛽 < 𝛾. To any 𝑥 ∈ 𝐻𝛽  and 𝑡 > 0 there is a 𝑦 = 𝑦𝑡(𝑥) according to 

 

ii) ‖𝑥 − 𝑦‖𝜌 ≤ 𝑡𝛽−𝜌‖𝑥‖𝛽    for  𝛼 ≤ 𝜌 ≤ 𝛽 

 

iii) ‖𝑦‖𝜎 ≤ 𝑡−(𝜎−𝛽)‖𝑥‖𝛽       for  𝛽 ≤ 𝜎 ≤ 𝛾. 
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Eigen-functions and Eigen-differentials 
 
Let 𝐻 be a (infinite dimensional) Hilbert space with inner product (. , . ), the norm ‖∙‖ and 𝐴 be a linear self-
adjoint, positive definite operator, but we omit the additional assumption, that 𝐴−1 is compact. Then the 
operator 𝐾 = 𝐴−1 does not fulfill the properties leading to a discrete spectrum.  
 
We define a set of projections operators onto closed subspaces of 𝐻 in the following way: 
 

𝑅 → 𝐿(𝐻,𝐻) 
 

𝜆 → 𝐸𝜆: = ∫ 𝜙𝜇(
𝜆

𝜆0
𝜙𝜇 ,∗)𝑑𝜇   ,   𝜇 ∈ [𝜆0, ∞) , 

i.e.                                        
𝑑𝐸𝜆 = 𝜙𝜆(𝜙𝜆,∗)𝑑𝜆 . 

 
The spectrum 𝜎(𝐴) ⊂ 𝐶 of the operator 𝐴 is the support of the spectral measure 𝑑𝐸𝜆. The set 𝐸𝜆 fulfills the 
following properties: 
 

𝐸𝜆 is a projection operator for all 𝜆 ∈ 𝑅 
 
for 𝜆 ≤ 𝜇 it follows 𝐸𝜆 ≤ 𝐸𝜇 i.e. 𝐸𝜆𝐸𝜇 = 𝐸𝜇𝐸𝜆 = 𝐸𝜆 

 
𝑙𝑖𝑚
𝜆→−∞

𝐸𝜆 = 0 and 𝑙𝑖𝑚
𝜆→∞

𝐸𝜆 = 𝐼𝑑 

 
 𝑙𝑖𝑚
𝜇→𝜆
𝜇>𝜆

𝐸𝜇 = 𝐸𝜆 . 

 
Proposition: Let 𝐸𝜆 be a set of projection operators with the properties i)-iv) having a compact support [𝑎, 𝑏]. 
Let  𝑓: [𝑎, 𝑏] → 𝑅 be a continuous function. Then there exists exactly one Hermitian operator 𝐴𝑓: 𝐻 → 𝐻 with 

 

(𝐴𝑓𝑥, 𝑥) = ∫ 𝑓(𝜆)𝑑(𝐸𝜆𝑥, 𝑥)
∞

−∞
 . 

 

Symbolically one writes 𝐴 = ∫ 𝜆𝑑𝐸𝜆
∞

−∞
. Using the abbreviation 

 
𝜇𝑥,𝑦(𝜆): = (𝐸𝜆𝑥, 𝑦)  ,  𝑑𝜇𝑥,𝑦(𝜆): = 𝑑(𝐸𝜆𝑥, 𝑦) 

 
one gets 
 

(𝐴𝑥, 𝑦) = ∫ 𝜆𝑑(𝐸𝜆𝑥, 𝑦) =
∞

−∞
∫ 𝜆𝑑𝜇𝑥,𝑥(𝜆)
∞

−∞
        ,   ‖𝑥‖1

2 = ∫ 𝜆𝑑‖𝐸𝜆𝑥‖
2 =

∞

−∞
∫ 𝜆𝑑𝜇𝑥,𝑥(𝜆)
∞

−∞
 

  

(𝐴2𝑥, 𝑦) = ∫ 𝜆2𝑑(𝐸𝜆𝑥, 𝑦) =
∞

−∞
∫ 𝜆2𝑑𝜇𝑥,𝑥(𝜆)
∞

−∞
 ,  ‖𝐴𝑥‖2 = ∫ 𝜆2𝑑‖𝐸𝜆𝑥‖

2 =
∞

−∞
∫ 𝜆2𝑑𝜇𝑥,𝑥(𝜆)
∞

−∞
 . 

 
The function 𝜎(𝜆): = ‖𝐸𝜆𝑥‖

2 is called the spectral function of 𝐴 for the vector 𝑥. It has the properties of a 
distribution function. It holds the following eigen-pair relations 
 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖      𝐴𝜙𝜆 = 𝜆𝜙𝜆    ‖𝜙𝜆‖
2 = ∞ , (𝜙𝜆, 𝜙𝜇) = 𝛿(𝜙𝜆 − 𝜙𝜇). 

 
The 𝜙𝜆 are not elements of the Hilbert space. The so-called eigen-differentials, which play a key role in 
quantum mechanics, are built as superposition of such eigen-functions.  
 
 
Example: The location operator 𝑄𝑥 and the momentum operator 𝑃𝑥 both have only a continuous spectrum. For positive energies 𝜆 ≥ 0 the 
Schrödinger equation 
 

𝐻𝜙𝜆(𝑥) = 𝜆𝜙𝜆(𝑥) 
 

delivers no element of the Hilbert space 𝐻, but linear, bounded functional with an underlying domain 𝑀 ⊂ 𝐻 which is dense in 𝐻. Only if 
one builds wave packages out of 𝜙𝜆(𝑥) it results into elements of 𝐻. The practical way to find eigen-differentials is looking for solutions of 
a distribution equation. 
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The extended Hilbert space 𝑯𝜶.(𝝉) 

(NiJ), (NiJ1) 
 
The extended Hilbert space 𝐻𝛼.(𝜏) is defined by the following inner product resp. norm 

 

(𝑥, 𝑦)(𝜏) = ∑ 𝑒−√𝜆𝑖𝜏(𝑥, 𝜙𝑖)(𝑦, 𝜙𝑖)𝑖=1 ,   ‖𝑥‖(𝜏)
2 = (𝑥, 𝑥)(𝜏). 

 
The (𝜏)-norm is weaker than any 𝛼-norm, i.e. 
 

‖𝑥‖(𝜏)
2 ≤ 𝑐‖𝑥‖𝛼

2     for any 𝛼-norm 

 
with 𝑐 = 𝑐(𝛼, 𝜏)  depending only on 𝛼  and 𝜏.  
 
The counterpart of the related lemmata of the considered Hilbert scale is 
 
Lemma: Let 𝜏, 𝛿 > 0 be fixed. To any 𝑥 ∈ 𝐻0 there is a 𝑦 = 𝑦𝜏(𝑥) according to 
 

‖𝑥 − 𝑦‖ ≤ ‖𝑥‖  
 

‖𝑦‖1 ≤ 𝛿−1‖𝑥‖ 
 

‖𝑥 − 𝑦‖(𝜏) ≤ 𝑒−𝜏/𝛿‖𝑥‖. 

 
Any Hilbert scale norm with negative index, i.e. ‖𝑥‖𝛼 with 𝛼 < 0, is bounded by the  0-norm and the newly 
introduced (𝜏)-norm:  
 
Lemma: Let 𝛼 > 0 be fixed. The 𝛼-norm of any 𝑥 ∈ 𝐻0 is bounded by 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝜏/𝛿‖𝑥‖(𝜏)
2  

 
with 𝛿 > 0 being arbitrary. 
 
Proof: The inequality is a consequence of the following inequality 
 

𝜆−𝛼 ≤ 𝛿2𝛼 + 𝑒𝜏(𝛿
−1−√𝜆), for any 𝜏, 𝛿, 𝛼 > 0 and 𝜆 ≥ 1. 

 

If 𝜆−1/2 ≤ 𝛿 then obviously 𝜆−𝛼 ≤ 𝛿2𝛼, in case of 𝜆−1/2 ≥ 𝛿 it holds 𝑒𝜏(𝛿
−1−√𝜆) ≥ 1, whereas 𝜆−𝛼 ≤ 1  is a 

consequence of  𝛼 > 0 and 𝜆 ≥ 1. 
 

Putting 𝛿 =
1

𝜃
 and 𝜆 = 𝜗2 ≥ 1 it follows from the lemma above the 

 
Corollary: for any 𝜏, 𝜃, 𝛼 > 0 and 𝜗 ≥ 1 the following inequality is valid 
 

𝜗−2𝛼 ≤ 𝜃−2𝛼 + 𝑒𝜏(𝜃−𝜗). 
 

Lemma: Because of ∫ 𝑒−√𝜆𝑖𝜏𝑑𝜏
∞

0
=

1

√𝜆𝑖
 it holds 

 

∫ ‖𝑥‖(𝜏)
2 𝑑𝜏

∞

0
= ‖𝑥‖−1/2

2 . 
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Strong elliptic and hyperbolic PDO 
 
By construction the Hilbert scales characterized by a polynomial decay in case of 𝜆𝑖

𝛼  enables optimal shift 
theorem for the Laplacian operator in the form, (appendix I) 
 

‖𝑥‖α+2
2 = (𝐴𝑥, 𝐴𝑥)α = ‖𝐴𝑥‖α

2 . 
 
The operator concerned with the time-harmonic Maxwell equation and the radiation problem is the 
D’Alembert (wave) operator related to the wave equation:  
 

𝑤 ≔ �̈� − ∆𝑤 . 
 
The Hilbert space defined by the inner product resp. norm 
 

(𝑥, 𝑦)(𝑡)
2 = ∑ 𝑒−√𝜆𝑖𝑡(𝑥, 𝜙𝑖)(𝑦, 𝜙𝑖)

∞
𝑖=1   𝑡 > 0 

 
‖𝑥‖(𝑡)

2 = (𝑥, 𝑥)(𝑡)
2  

 
provides „optimal“ shift theorems for related strong hyperbolic operators. 
 
Theorem: For the D’Alembert (wave) operator it holds 
 

∫ ‖𝑤‖𝑘+2,(𝑡)
2 𝑑𝑡

𝑇

0
≤ 𝑐 ∫ ‖𝑓‖𝑘,(𝑡)

2 𝑑𝑡
𝑇

0
 . 

 
Proof: Let 𝑤𝑖 : = (𝑤, 𝜙𝑖) resp. 𝑓𝑖: = (𝑓, 𝜙𝑖) being the generalized Fourier coefficient related to the eigen-pairs  

−𝑤𝑖
″ = 𝜆𝑖𝑤𝑖  of the Laplacian operator. Th corresponding solution of ( 𝑤 = 𝑓),  

                      
�̈�𝑖(𝑡) + 𝜆𝑖𝑤𝑖(𝑡) = 𝑓𝑖(𝑡)  and 𝑤𝑖(0) = �̇�𝑖(0) = 0 . 

is given by 

𝑤𝑖(𝑡) =
1

√𝜆𝑖
∫ sin(√𝜆𝑖(𝑡 − 𝜏)
𝑡

0
𝑓𝑖(𝜏)𝑑𝜏. 

It holds for  𝜏 ≤ 𝑡 
 

                   ∫ ‖𝑤‖𝑘+2,(𝑡)
2 𝑑𝑡

𝑇

0
= ∑𝜆𝑖

𝑘+2 ∫ 𝑒−√𝜆𝑖𝑡𝑤𝑖
2(𝑡)𝑑𝑡

𝑇

0
     

 

                                           ≤ ∑𝜆𝑖
𝑘+2 ∫ 𝑒−√𝜆𝑖𝑡 [

1

√𝜆𝑖
∫ sin(√𝜆𝑖(𝑡 − 𝜏)
𝑡

0
𝑓𝑖(𝜏)𝑑𝜏]

2

𝑑𝑡
𝑇

0
  

 

                            ≤ ∑𝜆𝑖
𝑘+1 ∫ 𝑒−√𝜆𝑖𝑡(∫ sin(√𝜆𝑖(𝑡 − 𝜏)𝑑𝜏

𝑡

0
) [∫ sin(√𝜆𝑖(𝑡 − 𝜏)𝑑𝜏

𝑡

0
𝑓𝑖
2(𝜏)𝑑𝜏] 𝑑𝑡

𝑇

0
    

 

                         ≤ ∑𝜆𝑖
𝑘+1/2

∫ 𝑒−√𝜆𝑖𝑡 [∫ 𝑓𝑖
2(𝜏)𝑑𝜏

𝑡

0
] 𝑑𝑡

𝑇

0
 . 

 
Exchanging the order of integration gives 
 

∫ ∫ 𝑒−√𝜆𝑖𝑡
𝑡

0
𝑓𝑖
2(𝜏)𝑑𝜏𝑑𝑡

𝑇

0
= ∫ ∫ 𝑒−√𝜆𝑖𝑡

𝑇

𝑡
𝑓𝑖
2(𝜏)𝑑𝑡𝑑𝜏

𝑇

0
  

 

           = ∫ 𝑓𝑖
2(𝜏)𝑑𝑡 [∫ 𝑒−√𝜆𝑖𝑡

𝑇

𝑡
𝑑𝜏]

𝑇

0
 

 

                                          ≤
1

√𝜆𝑖
∫ 𝑓𝑖

2(𝜏)𝑑𝑡
𝑇

0
 . 
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Theorem: In general there exists no „optimal“ hyperbolic shift theorem in the standard Sobolev space 
framework in the form 
 

‖𝑤‖𝑘+2
2 ≤ 𝑐‖𝑓‖𝑘

2  
 
Proof: the counter example is given by the function 
 

𝛷(𝑥, 𝑡) ≔ 𝑒−(
1

2
−(𝑥−𝑡))2, 𝑢(𝑥, 𝑡) ≔ 𝑡2𝛷(𝑥, 𝑡), 𝑓(𝑥, 𝑡) ≔ 2𝛷(𝑥, 𝑡) − 4𝑡𝛷′(𝑥, 𝑡) 

 
fulfilling the relationships 
 

�̇�(𝑥, 𝑡) = −𝛷′(𝑥, 𝑡), �̈�(𝑥, 𝑡) = 𝛷′′(𝑥, 𝑡), �̈�(𝑥, 𝑡) − 𝑢′′(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) 
 
and      
 

                                        ‖𝑢′′‖𝐿2(𝐿2)~‖𝛷
′′‖𝐿2(𝐿2)     but    ‖𝑓‖𝐿2(𝐿2)~‖𝛷

′‖𝐿2(𝐿2). 
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Calculus of variations: the energy method 
(VeW) p. 44 

 
Let 𝐸 denote a linear space, and 𝑈 a linear subspace of 𝐸. We consider the boundary value problem as 
operator equation in the half-homogeous form 
 

𝐴𝑢 = 𝑓, 𝑢 ∈ 𝑈 
 

with a solution �̅� ∈ 𝑈. Additionally we assume 
 

i) (𝐴𝑢, 𝑣) = (𝑢, 𝐴𝑣),   ∀𝑢, 𝑣 ∈ 𝑈 
 

ii) (𝐴𝑢, 𝑢) > 0,              ∀𝑢 ∈ 𝑈, 𝑢 ≠ 0. 
 

This means, that the operator 𝐴 ∶ 𝑈 → 𝐸 is symmetric and positive. Then it follows that 𝐴𝑢 = 0  in 𝑈 posseses 
only the solution 𝑢 = 0, i.e., �̅� ∈ 𝑈 becomes the unique solution of 𝐴𝑢 = 𝑓. 
 
Obviously, by 
 

[𝑢, 𝑣] ≔ (𝐴𝑢, 𝑣), ‖|𝑢|‖ ≔ (𝐴𝑢, 𝑢)1/2 
 
There is an additonal inner product defined in 𝑈 accompanied by an additional corresponding norm, which is 
denoted as „energy norm“ (in applications this norm often represents the physical notions „work“ or „energy“) 
Correspondingly, the inner product [∙,∙] is called energetic inner product.  
 
We now consider the so-called energy functional 
 

𝐼(𝑢) = (𝐴𝑢, 𝑢) − 2(𝑓, 𝑢). 
 
As above, �̅� ∈ 𝑈 denotes the solution of 𝐴𝑢 = 𝑓, 𝑢 ∈ 𝑈. Then it holds for all 𝑢 ∈ 𝑈 it holds 
 

𝐼(𝑢) = ‖|𝑢 − �̅�|‖2 − ‖|�̅�|‖2. 
 
For the right side it holds 
 

‖|𝑢 − �̅�|‖2 − ‖|�̅�|‖2 = ‖|𝑢|‖2 − 2[�̅�, 𝑢] = (𝐴𝑢, 𝑢) − 2(𝑓, 𝑢) = 𝐼(𝑢). 
 

From 𝐼(𝑢) = ‖|𝑢 − �̅�|‖2 − ‖|�̅�|‖2 it follows that 𝐼(�̅�) = −‖|�̅�|‖2 and  𝐼(𝑢) = 𝐼(�̅�) + ‖|𝑢 − �̅�|‖2. 
 
Therefore, it holds 𝐼(𝑢) > 𝐼(�̅�) für 𝑢 ≠ �̅�. In summary this means 
 
Theorem: The operator equation 𝐴𝑢 = 𝑓, 𝑢 ∈ 𝑈, is equivalent to the extrmal problem  
 

𝐼(𝑢) → 𝑚𝑖𝑛, 𝑢 ∈ 𝑈. 
 

The characterization of the solution �̅� as a solution of the extremal problem defined by the energy functional is 
called the energy method. 
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Quadratic extremal problems for linear variational equations 
(VeW) p. 48 

 
Let 𝐸 denote a linear space, and 𝑈 a linear subspace of 𝐸. Additionally, let 𝑙(∙) ∶ 𝐸 → 𝑅  denote a linear 
functional, and 𝑎(∙,∙) ∶ 𝐸 × 𝐸 → 𝑅 a bilinear form with the following properties 
 

1. 𝑎(𝑢, 𝑣) = 𝑎(𝑣, 𝑢),   ∀𝑢, 𝑣 ∈ 𝐸 
2. 𝑎(𝑢, 𝑢) ≥ 0,              ∀𝑢 ∈ 𝐸 
3. 𝑎(𝑢, 𝑢) > 0,              ∀𝑢 ∈ 𝑈, 𝑢 ≠ 0 

 

Then, by  ‖|𝑢|‖ ≔ 𝑎(𝑢, 𝑢)1/2 there is a half-norm defined in 𝐸, which is a norm in 𝑈 (again called energy 
norm).  
 
The extremal problem: For a given 𝑢0 ∈ 𝐸 we look for a 𝑢 ∈ 𝐸 as a solution of 
 

𝐽(𝑢) = 𝑎(𝑢, 𝑢) − 2𝑙(𝑢) → 𝑚𝑖𝑛,  𝑢 − 𝑢0 ∈ 𝑈. 
 

In order to enable the existence of such a solution it requires additional assumptions. However, the uniqueness 
of such a solution is guaranteed. Besides, the extremal problem is equivalent to the variational equation in the 
form 

𝑎(𝑢, 𝜑) = 𝑙(𝜑) ∀𝜑 ∈ 𝑈,  𝑢 − 𝑢0 ∈ 𝑈. 
 

The generalizations for physical relevant problems (Boltzmann equations, NSE equations, ..) is accompanied by 
the constructio of an operator-algebra consistent of integral and differential operators, leading to the concept 
of pseudo-differential operators. The counterpart of the symmetric and positive linear operator (accompanied 
by the energy norm) is Garding’s inequality for strong elliptic pseudo-differential operators. In simple words, 
there is no conceptually difference regarding the application of the „energy method“ for nonlinear strong 
elliptic or strong hyperbolic pseudo-differential operators. The non-linear terms of such operators may be 
interpreted as compact disturbances of the linear operator, defining the energy norm. 
 

Non-linear minimization problems 
 
Non-linear minimization problems can be analyzed as saddle point problems on convex manifolds in the 
following form (VeW): 
 

(*)    𝐽(𝑢): 𝑎(𝑢, 𝑢) − 𝐹(𝑢) → 𝑚𝑖𝑛 ,    𝑢 − 𝑢0 ∈ 𝑈. 
 
Let 𝑎(⋅,⋅) ∶ 𝑉 × 𝑉 → 𝑅 a symmetric bilinear form with energy norm ‖𝑢‖2: = 𝑎(𝑢, 𝑢). Let further 𝑢0 ∈ 𝑉 
and𝐹(⋅): 𝑉 → 𝑅 a functional with the following properties:  
 
 𝐹(⋅): 𝑉 → 𝑅 is convex on the linear manifold 𝑢0 + 𝑈, i.e. for every  𝑢, 𝑣 ∈ 𝑢0 + 𝑈 it holds  𝐹((1 − 𝑡)𝑢 + 𝑡𝑣) ≤
(1 − 𝑡)𝐹(𝑢) + 𝑡𝐹(𝑣) for every  𝑡 ∈ [0,1] 
 

𝐹(𝑢) ≥ 𝛼 for every  𝑢 ∈ 𝑢0 + 𝑈 
 
 𝐹(⋅): 𝑉 → 𝑅 is Gateaux differentiable, i.e. it exits a functional 𝐹𝑢(⋅): 𝑉 → 𝑅 with  
 

𝑙𝑖𝑚
𝑡→0

𝐹(𝑢+𝑡𝑣)−𝐹(𝑣)

𝑡
= 𝐹𝑢(𝑣). 

 
 Then the minimum problem (*) is equivalent to the variational equation 
 

𝑎(𝑢, 𝜙) + 𝐹𝑢(𝜙) = 0  for every  𝜙 ∈ 𝑈 
 
and admits only an unique solution.  
In case the sub-space 𝑈 and therefore also the manifold 𝑢0 + 𝑈 is closed with respect to the energy norm and 
the functional 𝐹(⋅): 𝑉 → 𝑅 is continuous with respect to convergence in the energy norm, then there exists a 
solution. We note that the energy functional is even strongly convex in whole 𝑉. 



9 
 

The Hilbert transform operator & the mean ergotic theorem 
 
Let (𝜆𝑛, 𝜑𝑛) be the orthogonal set of eigen-pairs of a linear self-adjoint & positive definite operator 𝐴, with 𝐴−1 
compact. Then Hilbert spaces {𝐻𝛼|𝛼 ∈ 𝑅} and 𝐻𝜏 are spanned by the finite norms 
 

‖𝑥‖𝛼
2 = ∑ 𝜆𝑛

𝛼𝑥𝑛
2∞

1 < ∞ , ‖𝑥‖(𝜏)
2 = ∑ 𝑒−√𝜆𝑛𝜏𝑥𝑛

2∞
𝑛=1 , 𝑥𝑛 ≔ (𝑥, 𝜑𝑛). 

 
The Hilbert transform of the orthogonal system 𝛷𝑛 ≔ 𝜑𝑛

𝐻 ≔ 𝐻[𝜑𝑛], where (𝛷𝑛, 𝜑𝑛) = 0 provides an unitary 
operator 𝑈 on those Hilbert spaces and theory Hilbert sub-space. 
 
Mean ergotic theorem (HaP), (HoE): Let 𝑈 be an isometry on a Hilbert space 𝐻; let 𝑃 be the projection on the 
space of all 𝑥 invariant under 𝑈, then 
 

1

𝑛
∑ 𝑈𝑗𝑥𝑛−1
𝑗=0 → 𝑃𝑥 in a weak 𝐿2 sense for all 𝑥 ∈ 𝐻. 

 

Note: If 𝑥 = 𝑦 − 𝑈𝑦 for some 𝑦, then 
1

𝑛
∑ 𝑈𝑗𝑥𝑛−1
𝑗=0  is a telescoping sum equal to 𝑦 − 𝑈𝑛𝑦 and ‖

1

𝑛
∑ 𝑈𝑗𝑥𝑛−1
𝑗=0 ‖ ≤

2

𝑛
‖𝑦‖ → 0. 

 
 

Quadratic and complementary „least energy“ Riesz-Galerkin methods 
 
Hilbert-Krein space based least energy variational pseudo-differential equation representations enable the full 
power of quadratic and complementary „least energy“ Riesz-Galerkin methods accompanied by FEM, BEM, and 
wavelet approximation methods, (BrK). 
 
In (NiJ2) an extension of the stndard „inf-sup-condition“ in the FEM is provided, in case applications where the 
underlying Banach spaces  coincide and ar the cartesian product of two Hilbert spaces  𝑋 = 𝑌 = 𝐻 × 𝐻. 
 
The construction of an operator algebra consisting of integral and differential operators leads to the concept of 
pseudo-differential operators. The PDO theory provides the appropriate framework for affected physical 
differential and (singular) integral equations. In order to apply „least energy“ Riesz-Galerkin methods it requires 
strong elliptic pseudo-differential operators, (BrK1). The hyperbolic wave equation operator (the D’Alembert 
operator) with domain in a 𝐻(𝜏) framework defines a strong hyperbolic pseudo-differential operators (BrK1). 

This allows to revisit the current concept of „wave front sets“ of the standard pseudo-differential operator 
theory, (PeB). 
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Complementary variational principles and the method of Noble 
 
The method of Noble ((VeW) 6.2.4), (ArA) 4.2), is about two properly defined operator equations, to analyze 
(nonlinear) complementary extremal problems. The Noble method leads to a “Hamiltonian” function W(∙,∙) 
which combines the pair of underlying operator equations (based on the “Gateaux derivative” concept) 
 
Let (𝐸, ⟨, ⟩) and (𝐸′, (, )) be Hilbert spaces and  𝑇: 𝐸 → 𝐸′ , 𝑇∗: 𝐸′ → 𝐸 linear operators fulfilling (𝑢′, 𝑇𝑢) =
⟨𝑇∗𝑢′, 𝑢⟩ and let 𝑊:𝐸′𝑥𝐸 → 𝑅 a functional fulfilling 
 

𝑇 =
𝜕𝑊(𝑢′,)

𝜕𝑢′
    and    𝑇∗ =

𝜕𝑊(.,𝑢)

𝜕𝑢
 

 
i.e., the operators 𝑇 and 𝑇∗ are deviations from  𝑊(. , . )  in the sense of Gateaux, i.e. 
 

𝑙𝑖𝑚
𝐹(𝑢+𝑡𝑣)−𝐹(𝑣)

𝑡
= 𝐹𝑢(𝑣) for all 𝑣 ∈ 𝐸 . 

 

Putting  𝑊(𝑢′, 𝑢): =
1

2
(𝑢′, 𝑢′) − 𝐹(𝑢)  the minimization problem 

 
(*)        𝐽(𝑢): = (𝑇𝑢, 𝑇𝑢) + 2𝐹(𝑢) → 𝑚𝑖𝑛   ,   𝑢 ∈ 𝑈 ⊂ 𝐸 

 
leads to 𝑇𝑢 = 𝑢′ and (𝑇∗𝑢′, . ) = −𝐹𝑢(. ) and therefore to 
 
Lemma A.2 (method of Noble): If 𝐹(. ) is a convex functional it follows that 𝑊(𝑢′, 𝑢) is convex concerning  𝑢′ 
and concave concerning 𝑢. The minimization problem (*) is equivalent to the variational equation 
 

(𝑣′, 𝑇𝜙) + 𝐹𝑢(𝜙) = 0  for all 𝜙 ∈ 𝑈   resp.   (𝑇∗𝑣′, 𝜙) = −𝐹𝑢(𝜙) for all 𝜙 ∈ 𝑈. 
 
i.e., there is a characterization of the solution of (*) as a saddle point. 
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The Hilbert spaces 𝑯𝜶, 𝑯(𝝉), 𝑯𝛂 ⊗𝑯𝜶.(𝝉) 

 
For the technical details we refer to the appendix B. Let (𝜆𝑛, 𝜑𝑛) be the orthogonal set of eigen-pairs of a linear 
self-adjoint & positive definite operator 𝐴, with 𝐴−1 compact. Then Hilbert spaces {𝐻𝛼|𝛼 ∈ 𝑅} are spanned by 
the finite norms 
 

‖𝑥‖𝛼
2 = ∑ 𝜆𝑛

𝛼𝑥𝑛
2∞

1 < ∞ , 𝑥𝑛 ≔ (𝑥, 𝜑𝑛).  
 
In case of 𝛼 = 0 we skip the subscript.The bilinear form 𝑎(𝑥, 𝑦) ≔ (𝐴𝑥, 𝑦) defines an inner (kinetic energy) 
product in 𝐷(𝐴) = 𝐻1 and the operator equation 𝐴𝑥 = 𝑓 is equivalent to, (BrK), 
 

(𝑥, 𝑦)1 = (𝑓, 𝑦), ∀𝑦 ∈ 𝐻1. 
 
For 𝛼 < 0 the Fourier coefficients 𝑥𝑛 contribute to the 𝛼 -norm with a polynomial decay. For 𝜏 > 0 the inner 
product resp. norm in the form 
 

(𝑥, 𝑦)(𝜏) = ∑ 𝑒−√𝜆𝑛𝜏𝑥𝑛𝑦𝑛
∞
𝑛=1  , ‖𝑥‖(𝜏)

2 = (𝑥, 𝑥)(𝜏) 

 
spanning the Hilbert space 𝐻(𝜏) have an exponential decay with 

 
‖𝑥‖(𝜏)

2 ≤ 𝑐(𝛼, 𝜏)‖𝑥‖𝛼
2 , ∀𝑥 ∈ 𝐻𝛼 . 

 
The 𝛼-norm of any 𝑥 ∈ 𝐻0 is bounded by 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝑡/𝛿‖𝑥‖(𝜏)
2   with 𝛼, 𝛿 > 0 being arbitrary. 

 
Especially for 𝛼 = 1/2 one get 
 

‖𝑥‖−1/2
2 ≤ 𝛿‖𝑥‖0

2 + 𝑒𝜏/𝛿‖𝑥‖(𝜏)
2   with 𝛿 > 0 being arbitrary. 

 
Putting 
 

‖𝑥‖α.(𝜏)
2 ≔ ∑ 𝜆𝑛

𝛼𝑒−√𝜆𝑛𝜏𝑥𝑛
2∞

𝑛=1   

 
one gets 
 

i) ∫ ‖𝑥‖(𝜏)
2 𝑑𝜏

∞

0
= ∑ 𝜆𝑛

−1/2
𝑥𝑛
2 = ‖𝑥‖−1/2

2 ≤ 𝛿‖𝑥‖0
2 + 𝑒𝜏/𝛿‖𝑥‖(𝜏)

2∞
𝑛=1  for 𝛿 > 0 

 

ii) (�̈�, 𝑥)(𝜏) = ‖�̇�‖(𝜏)
2 = ∑ 𝜆𝑛𝑒

−√𝜆𝑛𝜏𝑥𝑛
2∞

𝑛=1 = ‖𝑥‖1.(𝜏).
2   

 

iii) ∫ ‖�̇�‖(𝜏)
2 𝑑𝜏

∞

0
= ∑ 𝑥𝑛

2 = ‖𝑥‖0
2∞

𝑛=1  . 

 

Remark: We note that the D’Alembert operator with domain 𝐿2(𝐻𝛼.(𝜏)) is a strongly hyperbolic operator. 
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Let 𝛷𝑛 ≔ 𝜑𝑛
𝐻 denote the Hilbert transform of 𝜑𝑛 with (𝜑𝑛, 𝛷𝑛) = 0, (BrK1). The Hilbert space 𝐻α of the 

composition 𝐻α ⊗𝐻𝛼.(𝜏) is  built by the orthogonal system {𝜑𝑛} while the Hilbert space 𝐻(𝜏) is built by the 

orthogonal system {𝛷𝑛}equipped with the related inner products resp. norms in the form 
 

(𝑥, 𝑦)𝛼 = ∑ 𝜆𝑛
𝛼𝑥𝑛

𝑘𝑖𝑛𝑦𝑛
𝑘𝑖𝑛∞

𝑛=1  ,               ‖𝑥‖α
2 = (𝑥, 𝑥)𝛼,  𝑥𝑛

𝑘𝑖𝑛 ≔ (𝑥, 𝜑𝑛),   𝛼 ∈ 𝑅 
 

(𝑥, 𝑦)α.(𝜏) = ∑ 𝜆𝑛
𝛼𝑒−√𝜆𝑛𝜏𝑥𝑛

𝑝𝑜𝑡
𝑦𝑛
𝑝𝑜𝑡∞

𝑛=1  ,    ‖𝑥‖α.(𝜏)
2 = (𝑥, 𝑥)α.(𝜏),  𝑥𝑛

𝑝𝑜𝑡
≔ (𝑥,𝛷𝑛),   𝜏 > 0. 

 
In the following we shall omit the Fourier coefficient indices refering to the related kinetic and potential energy 
norm case.  

Then, the system {𝜓𝑛.𝛼.𝜏
(1)

, 𝜓𝑛.𝛼.𝜏
(2)

} with 

 

𝜓𝑛.𝛼.𝜏
(1)

≔ 𝜆𝑛
𝛼/2

𝜑𝑛 − 𝑖𝜆𝑛
𝛼/2

𝛷𝑛𝑒
−
1

2
√𝜆𝑛𝜏 ,    𝜓𝑛.𝛼.𝜏

(2)
≔ 𝜆𝑛

𝛼/2
𝜑𝑛 + 𝑖𝜆𝑛

𝛼/2
𝛷𝑛𝑒

−
1

2
√𝜆𝑛𝜏 

 
defines an orthogonal system of the Hilbert space composition 𝐻α ⊗𝐻𝛼.(𝜏). For 

 

𝑥𝛼.𝜏
(1)

≔ ∑ 𝑥𝑛𝜓𝑛.𝛼.𝜏
(1)∞

𝑛=1  ,   𝑥𝜏
(2)

≔ ∑ 𝑥𝑛𝜓𝑛.𝛼.𝜏
(2)∞

𝑛=1  
 
the corresponding inner product of 𝐻α ⊗𝐻𝛼.(𝜏) is given by 

 

(𝑥𝛼.𝜏
(1)
, 𝑥𝛼.𝜏

(2)
) = (𝑥, 𝑦)𝛼 + (𝑥, 𝑦)𝛼.(𝜏). 

 
The relationship between the norms above and there relationship to the statistical 𝐿2 norm is given by 

 

∫ ‖𝑥‖𝛼.(𝜏)
2 𝑑𝜏

∞

0
= ∑ 𝜆𝑛

𝛼𝜆𝑛
−1/2

𝑥𝑛
2 = ‖𝑥‖𝛼−1/2

2 ≤ 𝛿2𝛼‖𝑥‖0
2 + 𝑒𝜏/𝛿‖𝑥‖(𝜏)

2∞
𝑛=1  for 𝛿 > 0 

 
which is a consequence from 

 
Lemma: Let 𝛼 > 0 be fixed. The 𝛼-norm of any 𝑥 ∈ 𝐻0 is bounded by 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝜏/𝛿‖𝑥‖(𝜏)
2  

 
with 𝛿 > 0 being arbitrary. 
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The Krein space 𝑯(𝝉) = 𝑯𝜿.(𝝉)
+ ⊗𝑯𝜿.(𝝉)

−  

 
The Hilbert space 𝐻(𝜏) decomposition in the form 

 
𝐻(𝜏) = 𝐻𝜅.(𝜏)

+ ⊗𝐻𝜅.(𝜏)
−  

 
is supposed to be a quanta potential Hilbert-Krein space framework, where the parameter 𝜅 relates to 
correspondingly defined quantum number sequences in the form  
 

𝜅𝜏.𝑛
+ ≔

1

2

𝑒𝜅𝑛𝜏

cosh(𝜅𝑛𝜏)
 , 𝜅𝑛

− ≔
1

2

𝑒−𝜅𝑛𝜏

cosh(𝜅𝑛𝜏)
  with 𝜅𝑛 ∈ 𝑅. 

 
For   

𝑥(𝜏): = ∑ 𝑒−
1

2
√𝜆𝑛𝜏𝑥𝑛𝛷𝑛 ∈ 𝐻(𝜏)

∞
𝑛=1   

 

𝑥𝜅.(𝜏)
+ : = ∑ 𝜅𝜏.𝑛

+ 𝑒−
1

2
√𝜆𝑛𝜏𝑥𝑛𝛷𝑛 ∈ 𝐻𝜅.(𝜏)

+∞
𝑛=1   

 

𝑥𝜅.(𝜏)
− : = ∑ 𝜅𝜏.𝑛

− 𝑒−
1

2
√𝜆𝑛𝜏𝑥𝑛𝛷𝑛 ∈ 𝐻𝜅.(𝜏)

−∞
𝑛=1   

 
it follows (*) 

𝑥(𝜏) = 𝑥𝜅.(𝜏)
+ + 𝑥𝜅.(𝜏)

−  . 

 
The Hilbert space decomposition 𝐻(𝜏) = 𝐻𝜅.(𝜏)

+ ⊗𝐻𝜅.(𝜏)
−  is accompanied by the indefinite inner products resp. 

metric 
 

[𝑥, 𝑦]𝜅.(𝜏) ≔ (𝑥𝜅.(𝜏)
+ , 𝑦𝜅.(𝜏)

+ ) − (𝑥𝜅(𝜏)
− , 𝑦𝜅.(𝜏)

− )  

 

=
1

2
∑

𝑠𝑖𝑛ℎ(2𝜅𝑛𝜏)

𝑐𝑜𝑠ℎ2(𝜅𝑛𝜏)
𝑒−√𝜆𝑛𝜏𝑥𝑛𝑦𝑛

∞
𝑛=1   

 

= ∑ 𝑡𝑎𝑛ℎ(𝜅𝑛𝜏)𝑒
−√𝜆𝑛𝜏𝑥𝑛𝑦𝑛

∞
𝑛=1   

 
where  

(𝑥𝜅.(𝜏)
+ , 𝑦𝜅.(𝜏)

+ ): = ∑ (𝜅𝜏.𝑛
+ )2𝑒−√𝜆𝑛𝜏𝑥𝑛𝑦𝑛

∞
𝑛=1    

 

 (𝑥𝜅(𝜏)
− , 𝑦𝜅.(𝜏)

− ): = ∑ (𝜅𝜏.𝑛
− )2𝑒−√𝜆𝑛𝜏𝑥𝑛𝑦𝑛

∞
𝑛=1  . 

 
We note the corresponding relations in the form 

 

𝑥𝜅.(𝜏)
+ − 𝑥𝜅.(𝜏)

− = ∑ 𝑡𝑎𝑛ℎ(𝜅𝑛𝜏)𝑒
−
1

2
√𝜆𝑛𝜏𝑥𝑛𝛷𝑛

∞
𝑛=1   

 

‖𝑥𝜅.(𝜏)
+ ‖

2
− ‖𝑥𝜅(𝜏)

− ‖
2
= ∑ tanh(𝜅𝑛𝜏) 𝑒

−√𝜆𝑛𝜏𝑥𝑛
2∞

𝑛=1 = [𝑥, 𝑥]𝜅.(𝜏) . 

 
From the equivalent formulas 
 

(𝑥, 𝑦)(𝜏) = [𝑥𝜅.(𝜏)
+ , 𝑦𝜅.(𝜏)

+ ] − [𝑥𝜅.(𝜏)
− , 𝑦𝜅.(𝜏)

− ] 

 

[𝑥, 𝑦]𝜅.(𝜏) ≔ (𝑥𝜅.(𝜏)
+ , 𝑦𝜅.(𝜏)

+ ) − (𝑥𝜅(𝜏)
− , 𝑦𝜅.(𝜏)

− ) 

 
it follows the characterization of  „positive“, „negative“, and „neutral“ vectors 𝑥 ∈ 𝐻(𝜏) by the relations 

 

‖𝑥𝜅.(𝜏)
+ ‖ > ‖𝑥𝜅(𝜏)

− ‖  ,  ‖𝑥𝜅.(𝜏)
+ ‖ < ‖𝑥𝜅.(𝜏)

− ‖  ,  ‖𝑥𝜅.(𝜏)
+ ‖ > ‖𝑥𝜅(𝜏)

− ‖ . 
 

(*) appendix:     𝜅𝜏.𝑛
+ + 𝜅𝜏.𝑛

− = 1 , 𝜅𝜏.𝑛
+ − 𝜅𝜏.𝑛

− = tanh(𝜅𝑛𝜏),  (𝜅𝜏.𝑛
+ )2 − (𝜅𝜏.𝑛

− )2 =
𝑠𝑖𝑛ℎ(2𝜅𝑛𝜏)

𝑐𝑜𝑠ℎ2(𝜅𝑛𝜏)
= tanh(𝜅𝑛𝜏) .  
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The potential operator of a Krein space  
 
The canonical 𝐽-symmetric operator of a Krein space may be intepreted as a „potential“ operator 𝑊 (VaM) p. 
90. In our case it is defined by 
 

𝑊𝜅.𝜏𝑥 ≔
1

2
𝑔𝑟𝑎𝑑𝜑𝜅.𝜏(𝑥): = 𝑥𝜅.(𝜏)

+ − 𝑥𝜅.(𝜏)
− = ∑ 𝑡𝑎𝑛ℎ(𝜅𝑛𝜏)𝑒

−
1

2
√𝜆𝑛𝜏𝑥𝑛𝛷𝑛

∞
𝑛=1  . 

 
It is complete, invertible, isometric ( 𝑊𝜅.𝜏 = 𝑊𝜅.𝜏

−1) and symmetric. Thus, the bilinear form 
 

((𝑥, 𝑦))𝜅.(𝜏) ≔ [𝑊𝜅.𝜏𝑥, 𝑦]𝜅.(𝜏) = ∑ 𝑡𝑎𝑛ℎ2(𝜅𝑛𝜏) 𝑒
−√𝜆𝑛𝜏𝑥𝑛𝑦𝑛

∞
𝑛=1   

 
defines an inner product on all of the Hilbert space 𝐻(𝜏) with related norm 

 

‖|𝑥|‖𝜅.(𝜏)
2 : = [𝑊𝜅.𝜏𝑥, 𝑥]𝜅.(𝜏) = ∑ 𝑡𝑎𝑛ℎ2(𝜅𝑛𝜏) 𝑒

−√𝜆𝑛𝜏𝑥𝑛
2∞

𝑛=1  . 

 
The definition of the potential (canonical symmetry) operator enables a treatment of the results of its action as 
the „mirror reflection“ of the space 𝐻(𝜏) in the subspace 𝐻𝜅.(𝜏)

+ . The sub-space 𝐻𝜅.(𝜏)
+  is an eigen-subspace of the 

operator 𝑊𝜅.𝜏 corresponding to the eigenvalue 𝜆 = 1. The sub-space 𝐻𝜅.(𝜏)
−  is an eigen-subspace of the operator 

𝑊𝜅.𝜏 corresponding to the eigenvalue 𝜆 = −1. The whole spectrum of 𝑊𝜅.𝜏 lies on the join of the points 𝜆 =
±1.  
 
We note that the operator norm of the potential operator with respect to the inner product (𝑥, 𝑦)(𝜏) is 

equivalent to the ‖|𝑥|‖𝜅.(𝜏)
2 , i.e., it holds 

 

(𝑊𝜅.𝜏𝑥,𝑊𝜅.𝜏𝑦)(𝜏) = ∑ 𝑡𝑎𝑛ℎ2(𝜅𝑛𝜏) 𝑒
−√𝜆𝑛𝜏𝑥𝑛𝑦𝑛

∞
𝑛=1 = ((𝑥, 𝑦))𝜅.(𝜏) . 

 
 

The potential and hyperboloids of a Krein space 
 
The indefinite metric (functional) of the considered Krein space 
 

𝜑𝜅.𝜏(𝑥) ≔ [𝑥, 𝑥]𝜅.(𝜏) = ‖𝑥𝜅.(𝜏)
+ ‖

2
− ‖𝑥𝜅(𝜏)

− ‖
2
= ∑ 𝑡𝑎𝑛ℎ(𝜅𝑛𝜏)𝑒

−√𝜆𝑛𝜏𝑥𝑛
2∞

𝑛=1  . 

 

in combination with the functional ((𝑥)): = √𝜑𝜅.𝜏(𝑥) generates hyperboloids 𝐻𝑐 , hyperbolic regions 𝑉c, and 

conical region 𝑉0 in the form  
 

𝐻𝑐 ≔ {𝑥 ∈ 𝐻(𝜏)|𝜑𝜅.𝜏(𝑥) = 𝑐 > 0}, 𝑉𝑐 ≔ {𝑥 ∈ 𝐻(𝜏)|((𝑥)) ≥ 𝑐 > 0} , 𝑉0 ≔ {𝑥 ∈ 𝐻(𝜏)|((𝑥)) ≥ 0}. 

 
Evidently 𝑉𝑐  is a subspace of 𝑉0.  
 
(VaM) p. 91: „If 𝑥 is an exterior point of the conical region 𝑉0, then those points of the ray 𝑡𝑥, 𝑡 ∈ [0,∞) for 
which 𝑡 ≥ 𝑐/𝑎 belong to the hyperbolic region 𝑉𝑐, and those for which 0 ≤ 𝑡 < 𝑐/𝑎 do not belong to 𝑉𝑐. If 𝑥 is 
not an element of 𝑉0, then the ray 𝑡𝑥, 𝑡 ∈ [0,∞) does not have any point in common with 𝑉𝑐. Thus, every 

interior ray of the conical region 𝑉0 intersects the hyperbolid ((𝑥)) = 𝑐 > 0 in a single point. We denote by𝐾 

the boundary of the conical region 𝑉0. The manifold 𝐾 is defined by the condition ((𝑥)) = 0. If we look at the 

unit sphere 𝑆1 (‖𝑥‖2 = 1), then those points of 𝑆1 for which ‖𝑥𝜅.(𝜏)
+ ‖ = ‖𝑥𝜅(𝜏)

− ‖ belong to 𝐾, and those points of 

𝑆1 for which ‖𝑥𝜅.(𝜏)
+ ‖ > ‖𝑥𝜅(𝜏)

− ‖ intersect the hyperboloid ((𝑥)) = 𝑐 > 0 at the point whose distance from 𝜃 is 

given by   
 

𝑡 = 𝑐(‖𝑥𝜅.(𝜏)
+ ‖

2
− ‖𝑥𝜅(𝜏)

− ‖
2
)−1/2. 

 

From this it is seen that 𝑡 → ∞ if ‖𝑥𝜅.(𝜏)
+ ‖

2
− ‖𝑥𝜅(𝜏)

− ‖
2
→ 0, i.e. the manifold 𝐾 is an asymptotic conical manifold 

for the hyperboloid ((𝑥)) = 𝑐 > 0.“ 
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The angular and dissipative operators of a Krein space  
 
 

The counterparts of 𝑊-norms ‖|𝑥|‖𝜅.(𝜏)
2 : = [𝑊𝜅.𝜏𝑥, 𝑥]𝜅.(𝜏) with respect to the 𝐻𝛼  Hilbert spaces norms ‖𝑥‖𝛼

2 =

∑ 𝜆𝑛
𝛼𝑥𝑛

2∞
1 < ∞ are given by the norms 

 
‖|𝑥|‖𝛼.𝜅

2 : = ∑ 𝑡𝑎𝑛ℎ2(𝜅𝑛𝜏) 𝜆𝑛
𝛼𝑥𝑛

2∞
𝑛=1  . 

 
Let 𝐿:= 𝐻𝛼.𝜅 ⊂ 𝐻(𝜏) = 𝐻𝜅.(𝜏)

+ ⊗𝐻𝜅.(𝜏)
−  and 𝑃± be the canonical projectors. Then the bounded linear operator 

 
𝐾+ = 𝐾𝜅.(𝜏)

+ ≔𝑃−(𝑃+|𝐻𝛼.𝜅)
−1 ∶ 𝑃+|𝐻𝛼.𝜅 → 𝐻𝜅.(𝜏)

−  

 
is called the angular operator for 𝐻𝛼.𝜅 with respect to 𝐻𝜅.(𝜏)

+ . Then, the set of vectors of the sub-space 

 
𝐿:= 𝐻𝛼.𝜅: = {𝑥𝛼.𝜅

+ + 𝐾𝑥𝛼.𝜅
+ }𝑥+∈𝐻𝜅.𝛼+  

 
gives the general form of all 𝐻𝜅.𝛼

+ ⊂ 𝐻𝜅.(𝜏)
+  of the Krein space 𝐻 = 𝐻𝜅.(𝜏)

+ ⊗𝐻𝜅.(𝜏)
− . 

 
Theorem 11.7 ((BoJ) p. 54, (PhR)): A subspace 𝐿 ⊂ 𝐻(𝜏) = 𝐻𝜅.(𝜏)

+ ⊗𝐻𝜅.(𝜏)
−  is positive if and only if the angular 

operator 𝐾+ of 𝐿 with respect to 𝐻𝜅.(𝜏)
+  exists and satisfies the condition 

 

‖|𝐾𝜅.(𝜏)
+ 𝑥𝜅.(𝜏)

+ |‖
𝜅.(𝜏)

2
≤ ‖|𝑥𝜅.(𝜏)

+ |‖
𝜅.(𝜏)

2
 , 𝑥𝜅.(𝜏)

+ ∈ 𝐷(𝐾𝜅.(𝜏)
+ ). 

 
In particular, positive definite subspaces are characterized by the property 
 

‖|𝐾𝜅.(𝜏)
+ 𝑥𝜅.(𝜏)

+ |‖
𝜅.(𝜏)

2
< ‖|𝑥𝜅.(𝜏)

+ |‖
𝜅.(𝜏)

2
, 𝑥𝜅.(𝜏)

+ ∈ 𝐷(𝐾𝜅.(𝜏)
+ ), 𝑥𝜅.(𝜏)

+ ≠ 0, 

 
and neutral subspaces by  
  

‖|𝐾𝜅.(𝜏)
+ 𝑥𝜅.(𝜏)

+ |‖
𝜅.(𝜏)

2
= ‖|𝑥𝜅.(𝜏)

+ |‖
𝜅.(𝜏)

2
, 𝑥𝜅.(𝜏)

+ ∈ 𝐷(𝐾𝜅.(𝜏)
+ ). 

 
The inclusion 𝐻𝜅.𝛼

+ ⊂ 𝐻𝜅.(𝜏)
+  is accompanied by related inclusions 𝐻𝜅.𝛼

− ⊂ 𝐻𝜅.(𝜏)
− . The related Krein space concept 

is called alternating (maximal) pairs and alternating extensions. 
  
The physical application of maximal positive and negative sub-spaces is concerned with the concept of of 
maximal dissipative (and maximal accretive) operators accompanied with spectra of unitary and self-adjoint 
operators, (BoJ) p. 114 ff. 
 
The concept of alternating pairs can be applied to prove the existence of maximal dissipative operators 

𝑇1
(0)
, 𝑇2

(0)
 of dissipative operators 𝑇1, 𝑇2 with dense domains 𝐷(𝐿1), D(𝐿2) in 𝐻0 (i.e., dissipative operators 

having no dissipative proper extension) satsifying 
 

[𝑇1𝑥1, 𝑥1] + [𝑥1, 𝑇1𝑥1] ≤ 0, 𝑥1 ∈ 𝐷(𝑇1) 
 

[𝑇2𝑥2, 𝑥2] + [𝑥2, 𝑇2𝑥2] ≤ 0, 𝑥2 ∈ 𝐷(𝑇2). 
 

 
Mean ergotic theorem: If 𝑈 is an isometry on a complex Hilbert space and if 𝑃 is a projection on the space of all 

vectors invariant under  𝑈, then 
1

𝑛
∑ 𝑈𝑗𝑥𝑛−1
𝑗=0  converges to 𝑃𝑥 for every 𝑥 in the space. 
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Krein spaces, potentials and potential operators 
(AzT), (BoJ) 

 
A Krein space is a Hilbert space 𝐻 with inner product (𝑥, 𝑦), which can be written in the form 𝐻 = 𝐻+ ⊗𝐻−. 
There are two equivalent approaches defining Krein spaces based on  
 
the concept of an indefinite metric (also called a 𝑄-metric) 𝑄(𝑥, 𝑦) ≔ [𝑥, 𝑦] , ∀𝑥, 𝑦 ∈ 𝐻 
 
a self-adjoint operator 𝐵 defined on all of the Hilbert space 𝐻 inducing the decomposition of 𝐻.  
 
A canonical decomposition of 𝐻 = 𝐻+ + 𝐻− enables the (positive definite) inner product of 𝐻 according to 
 

(*)  (𝑥, 𝑦) = [𝑥+, 𝑦+] − [𝑥−, 𝑦−], 𝑥 = 𝑥+ + 𝑥−, 𝑦 = 𝑦+ + 𝑦−. 
 
For vectors 𝑢, 𝑣 ∈ 𝐻+ we have (𝑢, 𝑣) = [𝑢, 𝑣]; for vectors 𝑢, 𝑣 ∈ 𝐻− we have (𝑢, 𝑣) = −[𝑢, 𝑣]. If 𝑢 ∈ 𝐻+ and 
𝑣 ∈ 𝐻−, then it follows from (*) that (𝑢, 𝑣) = [𝑢, , 𝜃] − [, 𝜃, 𝑣]. 
 
The formula (*) can be inverted in the following way 
 

[𝑥, 𝑦] = (𝑥+, 𝑦+) − (𝑥−, 𝑦−) resp. [𝑥, 𝑥] = (𝑥+, 𝑥+) − (𝑥−, 𝑥−) 
 
from which it follows 
 
„Positivity, negativity, and neutrality of a vector 𝑥 ∈ 𝐻 are equivalent to the relations 
 

‖𝑥+‖ > ‖𝑥−‖, ‖𝑥+‖ < ‖𝑥−‖, or ‖𝑥+‖ > ‖𝑥−‖ respectively.“ 
 
In short, a Krein space can be looked on as an arbitrary Hilbert space decomposed into usual orthogonal sums 
of two subspaces, equipped in addition to the original Hilbert metric (i.e., the inner product (𝑥, 𝑦)) with an 
additional indefinite metric [𝑥, 𝑦]. 
 
The decomposition of a Krein space generates two mutually complementary projectors 𝑃+ and 𝑃− mapping 𝐻 
on to 𝐻+ and 𝐻− respectively. Those orthogonal projection operators 𝑃+ and 𝑃− are linked to the indefinite 
metric by, (VaM) chapter IV, 
 

𝜑(𝑥): = [𝑥, 𝑥] = ‖𝑃+𝑥‖2 − ‖𝑃−𝑥‖2 . 
 
The indefinite metric 𝜑(𝑥) can be interpreted as a „potential“. The related „potential operator“ (in 
mathematics it is called „the canonical symmetry“ 𝐽, (AzT) §3, (BoJ) p. 52) is then given by, (VaM) (10.7), (12.6) 
 

𝑾(𝑥):=
1

2
𝑔𝑟𝑎𝑑𝜑(𝑥) = 𝑃+𝑥 − 𝑃−𝑥 = 𝑥+ − 𝑥−. 

 
The fundamental properties of the potential operator𝑾(𝑥) are completeness, invertibility, (𝑾 =𝑾−1) 
isometry, and symmetry. Thus, the bilinear form (𝑥, 𝑦)𝑊 ≔ (𝑾(𝑥), 𝑦) defines an inner product, (BoJ) p. 52. 
 
The sub-space 𝐻+ is an eigen-subspace of the operator 𝑾 corresponding to the eigenvalue 𝜆 = 1. 
 
The sub-space 𝐻− is an eigen-subspace of the operator 𝑾 corresponding to the eigenvalue 𝜆 = −1. 
 
The whole spectrum of 𝑾 lies on the join of the points 𝜆 = ±1.  
 
The definition of the potential (canonical symmetry) operator enables a treatment of the results of its action as 
the „mirror reflection“ of the space 𝐻 in the subspace 𝐻+ .   
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Krein spaces and angular (dissipative and accretive) operators 
(AzT), (BoJ) 

 
By the aid of 𝐽-norms a description of semi-definite subspaces 𝐿 can be given enabling the definition of an 
angular operator 𝐾+: 𝐻+ → 𝐻− with domain 𝐷(𝐾+) = 𝑃+(𝐿) and range 𝑅(𝐾+) = 𝑃−(𝐿), (BoJ) p. 54. For the 
following we refer to (AzT) p. 48 ff. and (BoJ) p. 54.  
 
Let 𝐿 ⊂ 𝐻 in a Krein space 𝐻 = 𝐻+ ⊗𝐻− and 𝑃± the canonical projectors (. Then the bounded linear operator 

𝐾+ ≔𝑃−(𝑃+|𝐿)−1 ∶  𝑃+|𝐿 → 𝐻− 
 
is called the angular operator for 𝐿 with respect to 𝐻+. The meaning of this nomenclature is explained by the 
following picture, (AzT) p. 61: 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 8.2 ((AzT) p. 49; see also Theorem 11.6, (BoJ) p. 54): The set of vectors 
 

𝐿 = {𝑥+ + 𝐾𝑥+}𝑥+∈𝐿+ 
 
in which 𝐿+ is an arbitrary lineal from 𝐻+, and 𝐾 ∶  𝐿+ → 𝐻− is an arbitrary compression (‖𝐾‖ ≤ 1), gives the 
general form of all 𝐿 ⊂ 𝐻 of the Krein space 𝐻 = 𝐻+ ⊗𝐻−, and 𝐿+ = 𝑃+(𝐿)  and 𝐾 is the angular operator for 
𝐿 with respect to 𝐻+. 
 
Let ‖𝑥‖𝑊

2 = ‖𝑥‖𝐽
2 = ‖𝑥+‖2 − ‖𝑥−‖2 denote the 𝐽 = 𝑊-inner product related (potential) norm. 

 
Theorem 11.7 ((BoJ) p. 54): A subspace 𝐿 ⊂ 𝐻 is positive if and only if the angular operator 𝐾+ of 𝐿 with 
respect to 𝐻+ exists and satisfies the condition 
 

‖𝐾+𝑥+‖𝑊
2 ≤ ‖𝑥+‖𝑊

2  , 𝑥+ ∈ 𝐷(𝐾+). 
 
In particular, positive definite subspaces are characterized by the property 
 

‖𝐾+𝑥+‖𝑊
2 < ‖𝑥+‖𝑊

2  , 𝑥+ ∈ 𝐷(𝐾+), 𝑥+ ≠ 0, 
 
and neutral subspaces by  
  

‖𝐾+𝑥+‖𝑊
2 = ‖𝑥+‖𝑊

2  , 𝑥+ ∈ 𝐷(𝐾+). 
 

 

In the figure above a non-negative (even positive) subspace 𝐿 ⊂ 𝐻 is shown. For any 𝑥 ∈ 𝐿 
we have 𝑥 = 𝑥+ − 𝑥−, and 𝑥− = 𝐾𝑥+, where 𝐾 is the operator of rotating the vector 𝑥+ 
through an angle 𝜋/2 (in the positive direction), and then multiplying by a scalar 𝑘 = 𝑡𝑎𝑛𝜑 - 

the angular coefficient of the „line“ 𝐿  . … 
 

If 𝜑 is always understood to be the minimal angle between 𝐿 and „the axis“ 𝐻+, then tan(𝜑) =
‖𝐾‖. In the general case too (𝑑𝑖𝑚𝐻 ≤ ∞) for the angular operator 𝐾 of a non-negative 
subspace 𝐿 we have 𝑡𝑎𝑛(𝜑(𝐿, 𝐻+) = ‖𝐾‖, if the (minimal) angle 𝜑 is defined by the equality 
𝑠𝑖𝑛(𝜑(𝐿, 𝐻+) = 𝑠𝑢𝑝𝑒∈𝑆(𝐿)‖𝑒 − 𝑍𝑃+𝑒‖, where 𝑆(𝐿) is the unit sphere of the lineal 𝐿 (‖𝑒‖ = 1). 
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For negative subspaces similar statements, involving 𝐾− instead of 𝐾+, are valid.  
 
Theorem 8.2‘ ((AzT) p. 49): The set of vectors 
 

𝐿 = {𝑄𝑥− + 𝑥−}𝑥−∈𝐿−  
 
in which 𝐿− is an arbitrary lineal from 𝐻−, and 𝑄 ∶  𝐿− → 𝐻+ is an arbitrary compression (‖𝑄‖ < 1), gives the 
general form of all 𝐿+ ⊂ 𝐻 of the Krein space 𝐻 = 𝐻+ ⊗𝐻−, and 𝐿− = 𝑃−(𝐿)  and 𝑄 is the angular operator 
for 𝐿 with respect to 𝐻−. 
 
 

Alternating pairs and dissipative operators in Hilbert space 
(BoJ) 

 
 
(BoJ) p. 39: Let 𝐻0 denote a Hilbert space with with inner product (𝑥, 𝑦)0, 𝑥, 𝑦 ∈ 𝐻0 and norm ‖𝑥‖ and let 𝑊 
be an arbitrary bounded self-adjoint operator (𝑊 = 𝑊∗) given on 𝐻0. Then the Hermitian sesquilinear form 
[𝑥, 𝑦] = (𝑊𝑥, 𝑦)0 = 𝑄(𝑥, 𝑦) defines in 𝐻0 an indefinite metric which we shall call the 𝑊-metric, and we shall 
call the space 𝐻0 itself with the 𝑊-metric a 𝑊-space. 𝑊 is called the Gram operator of the space 𝐻0. 
 
(BoJ) p. 91: A linear operator 𝐴  with an arbitrary domain of definition 𝐷(𝐴), operating in a 𝑊-space 𝐻0, is said 
to be  𝑊-dissipative if 𝐼𝑚[𝐴𝑥, 𝑥] ≥ 0  for all 𝑥 ∈ 𝐷(𝐴), and to be maximal 𝑊-dissipative if it is 𝑊-dissipative 
and coincides with any 𝑊 -dissipative extension of it. 
 
An ordered pair of subspaces  {𝐿1, 𝐿2} of the Krein space 𝐻 will be called an alternating pair provided 𝐿1 is 
positive, 𝐿2 is negative, and 𝐿1 ⊥ 𝐿2 . If, in addition, 𝐿1 is maximal positive and 𝐿2 is maximal negative, the pair 
{𝐿1, 𝐿2} is called alternating maximal pair.  
 
By an alternating extension of the alternating pair {𝐿1, 𝐿2} we mean an alternating pair {𝐿1

′ 𝐿2
′ } such that 𝐿1 ⊂

𝐿1
′ , 𝐿2 ⊂ 𝐿2

′ . 
 
Theorem 9.1 (BoJ) p. 115: Every alternating pair in the Krein space 𝐻 can be extended to an alternating 
maximal pair. 
 
The concept of alternating pairs can be applied to prove the existence of maximal dissipative operators 

𝑇1
(0)
, 𝑇2

(0)
 of dissipative operators 𝑇1, 𝑇2 with dense domains 𝐷(𝐿1), D(𝐿2) in 𝐻0 (i.e., dissipative operators 

having no dissipative proper extension) satsifying 
 

[𝑇1𝑥1, 𝑥1] + [𝑥1, 𝑇1𝑥1] ≤ 0, 𝑥1 ∈ 𝐷(𝑇1) 
 

[𝑇2𝑥2, 𝑥2] + [𝑥2, 𝑇2𝑥2] ≤ 0, 𝑥2 ∈ 𝐷(𝑇2). 
 

Theorem (BoJ) p. 118: If {𝐿1
(0)
, 𝐿1

(0)
} is an alternating maximal pair extending {𝐷(−𝑇1), 𝐷(−𝑇2)}, then the 

operators 𝑇1
(0)
, 𝑇2

(0)
 defined by the relations 𝐿1

(0)
= 𝐷(−𝑇1

(0)
), 𝐿2

(0)
= 𝐷(−𝑇2

(0)
) are maximal dissipative 

operators of the dissipative operators 𝑇1, 𝑇2, and every solution can be obtained in this way. 
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Krein spaces and hyperboloids 
accompanied by hyperbolic and conical regions 

(VaM) p. 89 ff. 
 
Putting 𝑥+ ≔ 𝑃+𝑥, 𝑥− ≔ 𝑃−𝑥 the corresponding potential 𝜑(𝑥+ + 𝑥−) defined by 
 

𝜑(𝑥+ + 𝑥−) = ‖𝑥+‖2 − ‖𝑥−‖2 = 𝑐 > 0 
 
generates hyperboloids in the form  
 

𝐻𝑐 ≔ {𝑥 ∈ 𝐻|(𝑥+ + 𝑥−) = ‖𝑥+‖2 − ‖𝑥−‖2 = 𝑐 > 0}. 
 
A hyperbolic region 𝑉c is defined by 
 

((𝑥)) = √‖𝑥+‖2 − ‖𝑥−‖2 ≥ 𝑐 > 0 

 
A conical region 𝑉0 is defined by 
 

((𝑥)) = √‖𝑥+‖2 − ‖𝑥−‖2 ≥ 0 . 

 
Evidently 𝑉𝑐  is a subspace of 𝑉0.  
 
If 𝑥 is an exterior point of the conical region 𝑉0, then those points of the ray 𝑡𝑥, 𝑡 ∈ [0,∞) for which 𝑡 ≥ 𝑐/𝑎 
belong to the hyperbolic region 𝑉𝑐, and those for which 0 ≤ 𝑡 < 𝑐/𝑎 do not belong to 𝑉𝑐. If 𝑥 is not an element 
of 𝑉0, then the ray 𝑡𝑥, 𝑡 ∈ [0,∞) does not have any point in common with 𝑉𝑐. Thus, every interior ray of the 

conical region 𝑉0 intersects the hyperbolid ((𝑥)) = 𝑐 > 0 in a single point. We denote by𝐾 the boundary of 

the conical region 𝑉0. The manifold 𝐾 is defined by the condition ((𝑥)) = 0. If we look at the unit sphere 𝑆1 

(‖𝑥‖2 = 1), then those points of 𝑆1 for which ‖𝑃+𝑥‖ = ‖𝑃−𝑥‖ belong to 𝐾, and those points of 𝑆1 for which 

‖𝑃+𝑥‖ > ‖𝑃−𝑥‖ intersect the hyperboloid ((𝑥)) = 𝑐 > 0 at the point whose distance from 𝜃 is given by   

 

𝑡 = c(‖𝑥+‖2 − ‖𝑥−‖2)−1/2. 
 
From this it is seen that 𝑡 → ∞ if ‖𝑥+‖2 − ‖𝑥−‖2 → 0, i.e. the manifold 𝐾 is an asymptotic conical manifold for 

the hyperboloid ((𝑥)) = 𝑐 > 0. 

 
Lemma: If the (proper) subspace 𝐻1 ⊂ 𝐻 is finite dimensional, then the region 𝑉𝑐  (𝑐 ≥ 0) is weakly closed. 

 

Remark: Ellipsoids are defined by the condition 
‖𝑥+‖

2

𝑎+
2 +

‖𝑥−‖2

𝑎−
2 = 1. The related elliptical region is defined by 

 

𝐸𝑐 ≔ {𝑥 ∈ 𝐻|
‖𝑥+‖

2

𝑎+
2 +

‖𝑥−‖2

𝑎−
2 ≤ 𝑐, 𝑐 > 0} . 

 
Theorem (ZaC) p. 291: Let 𝐻 denote a Hilbert space with inner product (∙,∙) and 𝐾 ⊂ 𝐻 be a closed convex 
cone. For every 𝑥 ∈ 𝐻 let 𝑃𝐾𝑥 (which is uniquly defined) denote the projection of 𝑥 on 𝐾. Putting 𝐾− ≔
−𝐾+ ≔ {𝑦 ∈ 𝐻⌉(𝑥, 𝑦) ≤ 0, ∀𝑥 ∈ 𝐻} it holds   ∀𝑥 ∈ 𝐻 𝑥 = 𝑃𝐾𝑥 + 𝑃𝐾

−
𝑥 and (𝑃𝐾𝑥, 𝑃𝐾

−
𝑥) = 0. Conversely, if 

𝑥 = 𝑥1 + 𝑥2 with 𝑥1 ∈ 𝐾, 𝑥2 ∈ 𝐾− and (𝑥1, 𝑥2) = 0 then 𝑥1 = 𝑃𝐾𝑥 and 𝑥2 = 𝑃𝐾
−
𝑥. 
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Hyperboloids generated by operators 
(VaM) p. 92 

 
Let 𝐵 be self-adjoint operator defined on all of the Hilbert space 𝐻. Since it follows that 𝐵 is bounded, then 
 

𝑖𝑛𝑓{(𝐵𝑥, 𝑥) = 𝑎|‖𝑥‖ = 1} > ∞ , 𝑠𝑢𝑝{(𝐵𝑥, 𝑥) = 𝑏|‖𝑥‖ = 1} < ∞  . 
 

We shall assume that 𝑎 < 0, 𝑏 > 0. Further, let 𝐸𝑡 be the resolution of the odentity corresponding to B; then 
𝐸𝑏 − 𝐸0 = 𝑃1 is a projection operator onto  subspace 𝐻1 ⊂ 𝐻 which reduces 𝐵. Thus, the operator  induces a 
decomposition of  into the direct sum of subspaces 𝐻1 and 𝐻2 (𝐻 = 𝐻1 ⊗𝐻2) and thereby generated a 
hyperboloid 
 

𝜑(𝑥) = 𝜑(𝑥+ + 𝑥−) = √‖𝑃1‖
2 − ‖𝑃2‖

2 = 𝑐 > 0 , 

 
where 𝑃2 is the projection onto 𝐻2.  
 
In this case where the positive part of the spectrum of 𝐵  lies in an interval [𝑚, 𝑏], where 𝑚 > 0, then the 
inequality 
 

‖𝐵𝑥‖ ≥
𝑚

√2
√𝜑2(𝑥) + ‖𝑥‖2 ≥

𝑚

√2
√𝑐2 + ‖𝑥‖2  

 
holds for every x in the hyperbolic region 𝑉𝑐  defined by 
 

𝜑(𝑥) = √‖𝑃+𝑥‖2 − ‖𝑃−𝑥‖2 ≥ 𝑐 > 0 , 
 
as well as in the conical region 𝑉0 defined by 
 

𝜑(𝑥) = √‖𝑃+𝑥‖2 − ‖𝑃−𝑥‖2 ≥ 0 . 
 

Remark: It should be remarked that in some cases the operator 𝐵 leaves invariant the hyperbolic regions 𝑉𝑐, 
which it generates. This is the case, for example, when the positive part of the spectrum of 𝐵 lies in the interval 
[1, 𝑏] and the negative part lies in [−1,0] . In fact, we then have 
 

((𝐵𝑥)) = ‖𝑃+𝐵𝑥‖2 − ‖𝑃−𝐵𝑥‖2 = ‖𝐵𝑃+𝑥‖2 − ‖𝐵𝑃−𝑥‖2 

 

= ∫ 𝑡2𝑑(𝐸𝑡
𝑏

1
𝑃+𝑥, 𝑃+𝑥) − ∫ 𝑡2𝑑(𝐸𝑡

0

−1
𝑃−𝑥, 𝑃−𝑥)  

 
≥ ‖𝑃+𝑥‖2 − ‖𝑃−𝑥‖2 ≥ 𝑐2.  
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The telegraph equation 
(CoR) p. 192 ff. 

 
 
For the wave equation 
 

1

𝑐2
�̈� − ∆𝑢 = 0 , 

 
progressing undistorted plane waves with speed 𝑐 and the arbitrary form 
 

𝛷(∑ 𝛼𝑖𝑥𝑖 − 𝑐𝑡)𝑛
𝑖=1 , ∑ 𝛼𝑖

2 = 1𝑛
𝑖=1  

 
are possible in every direction. A more general example is given by the telegraph equation 
 

�̈� − 𝑐2𝑢′′ + (𝛼 + 𝛽)�̇� + 𝛼𝛽𝑢 = 0, 
 
satisfied by the voltage or the current 𝑢 as a function of the time 𝑡 and the position 𝑥 along a cable; here 𝑥 
measures the length of the cable from an initial point. Unless  this equation represents dispersion. If we 

introduce 𝑣:= 𝑒
1

2
(𝛼+𝛽)𝑡𝑢, we obtain the simpler equation 

 

�̈� − 𝑐2𝑣′′ + (
𝛼−𝛽

2
)2𝑣 = 0  

  
for the function 𝑣. This new equation represents the dispersionless case if and only if 𝛼 = 𝛽. In this case the 
original telegraph equation, of course, possesses no absolutely undistorted wave solutions of arbitrarily 
prescribed form. However, our result may be stated in the following way:  
 

If condition 𝛼 = 𝛽 holds, the telegraph equation posses damped, yet „relatively“ 

undistorted, progressing wave solutions of the form 𝑢 = 𝑒−
1

2
(𝛼+𝛽)𝑡𝑓(𝑥 ± 𝑐𝑡), with 

arbitrary 𝑓, progressing in both directions of the cable. 
 
The telegraph equation 
 

�̈� − 𝑐2𝑢′′ + (𝛼 + 𝛽)�̇� + 𝛼𝛽𝑢 = 0, 
 
is derived by elimination of one of the unknown functions from the following system of two differential 
equations of first order for the current 𝑖 = 𝑖(𝑥, 𝑡) and the voltage 𝑢 = 𝑢(𝑥, 𝑡) as functions of 𝑥 and 𝑡: 
 

𝐶�̇� + 𝐺𝑢 + 𝑖′ = 0 
 
𝐿𝑖�̇� + 𝑅𝑖 + 𝑢′ = 0. 

 
Here 𝐿 is the inductance of the cable, 𝑅 its resistence, 𝐶 its shunt capacity, and, finally, 𝐺, its shunt 
conductance (loss of current divided by voltage). The constants in the telegraph equation, which arise in the 
elimination process, have the meaning 
 

1

𝑐2
= 𝐿𝐶, 𝛼 =

𝐺

𝐶
, 𝛽 =

𝑅

𝐿
 

 
where 𝑐 is the speed of light and 𝛼 the capacitive and 𝛽  the inductive damping factor. 
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Global boundedness of the 3D-Navier-Stokes equations 
in a variational 𝑯−𝟏/𝟐 based Hilbert space framework 

(BrK1) 
www.navier-stokes-equations.com 

 
It turned out that based on the physical modelling assumption of a variational representation of the 3D NSE in 
a  𝐻−1/2 Hilbert space framework (interpreted as a fluid element test space) the 3D NSE enjoy global solutions. 

Its a consequence of the well-known Sobolevskii-estimates for the 3D case. Those estimates fail in case of a 𝐻0 
test space. 
 

Lemma (Sobolevskii):  For  0 ≤ 𝛿 < 1/2 + 𝑛 ⋅ (1 − 1/𝑝)/2 it holds 
 

|𝐴−𝛿𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑣|
𝑝
≤ 𝑀 ⋅ |𝐴𝜃𝑢|

𝑝
⋅ |𝐴𝜌𝑢|𝑝 

 
with a constant 𝑀:= 𝑀(𝛿, 𝜃, 𝜌, 𝑝) if 𝛿 + 𝜃 + 𝜌 ≥ 𝑛/2𝑝 + 1/2, 𝜃, 𝜌 > 0, 𝜃 + 𝜌 > 1/2.   

 
The NSE initial-boundary equation is given by 
 

𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 + 𝐵𝑢 = 𝑃𝑓 , 𝑢(0) = 𝑢0 

 

where 𝐵(𝑢): = 𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢) and 𝑃𝑢0 = 𝑢0. Multiplying this homogeneous equation with 𝐴−1/2𝑢 leads to 
 

(�̇�, 𝑢)𝛼 + (𝐴𝑢, 𝑢)α + (𝐵𝑢, 𝑢)α = 0, (𝑢(0), 𝑣)𝛼 = (𝑢0, 𝑣)𝛼 for all  𝑣 ∈ 𝐻−1/2. 

 
For α:= −1/2 one gets the generalized “energy” inequality in the form 
 

1

2

𝑑

𝑑𝑡
‖𝑢‖−1/2

2 + ‖𝑢‖1/2
2 ≤ |(𝐵𝑢, 𝑢)−1/2| ≤ ‖𝑢‖−1/2‖𝐵𝑢‖−1/2 ≅ ‖𝑢‖−1/2‖𝐴

−1/4𝐵𝑢‖
0
. 

 

Putting 𝑝:= 2 , 𝛿:= 1/4 ,𝜃:= 𝜌:= 1/2 fulfilling 𝜃 + 𝜌 ≥
1

4
(𝑛 + 1) = 1 one gets from the Sobolevskii-lemma 

above 
 

‖𝐴−𝛿𝑃(𝑢, 𝑔𝑟𝑎𝑑)𝑢‖ ≤ 𝑐‖𝐴𝜃𝑢‖ ⋅ ‖𝐴𝜌𝑢‖ = 𝑐‖𝑢‖2𝜃 ⋅ ‖𝑢‖2𝜌 = 𝑐‖𝑢‖1
2 

 
and therefore 
 

1

2

𝑑

𝑑𝑡
‖𝑢‖−1/2

2 + ‖𝑢‖1/2
2 ≤ |(𝐵𝑢, 𝑢)−1/2| ≤ 𝑐 ⋅ ‖𝑢‖−1/2‖𝑢‖1

2. 

 

Putting  𝑦(𝑡):= ‖𝑢‖−1/2
2  one gets 𝑦′(𝑡) ≤ 𝑐 ⋅ ‖𝑢‖1

2 ⋅ 𝑦1/2(𝑡), resulting into the a priori estimate 

 

‖𝑢(𝑡)‖−1/2 ≤ ‖𝑢(0)‖−1/2 + ∫ ‖𝑢‖1
2(𝑠)𝑑𝑠

𝑡

0
≤ 𝑐{‖𝑢0‖−1/2 + ‖𝑢0‖0

2}, 

 
which ensures global boundedness by the a priori energy estimate provided that 𝑢0 ∈ 𝐻0. 
 
Remark: We note that the pressure 𝑝 in the variational representation 
 
                             (𝐴𝑢, 𝑣)

−
1

2

≔ (𝛻𝑢, 𝛻𝑣)
−
1

2

+ (𝛻𝑝, 𝑣)
−
1

2

= (𝑢, 𝑣)1
2

+ (𝑝, 𝑣)0       for all  𝑣 ∈ 𝐻−1/2 

 
(𝑢(0), 𝑣)−1/2 = (𝑢0, 𝑣)−1/2  

                                         . 
can be expressed in terms of the velocity by the formula       
 

𝑝 = −∑ 𝑅𝑗𝑅𝑘(𝑢𝑗𝑢𝑘)
3
𝑗,𝑘=1   

 
with (𝑅1, 𝑅2, 𝑅3) is the Riesz transform.  
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The real & complex Lorentz groups 
(StR) 

 
The Lorentz transformation in special relativity is a simple type of rotation in hyperbolic space. 
 
The Lorentz group 𝐿 has four components, each of which is connected in the sense that any point can be 
connected to any other, but no Lorentz transformation in one component can be connected to another in 
another component. One of this components is the restricted Lorentz group, which is the group of 2𝑥2 
complex matrices of determinant one, 𝑆𝐿(2, 𝐶). It is isomophic to the symmetry group 𝑆𝑈(2) ≅ 𝑆𝐿(2, 𝐶), 
containing as elements the complex-valued rotations, which can be written as a complex-valued matrix of type 
 

(
𝑎 + 𝑖𝑏 𝑐 + 𝑖𝑑
−𝑐 + 𝑖𝑑 𝑎 − 𝑖𝑏

)   with determinant one. 

 
It is important in describing the transformation properties of spinors. In SMEP the group 𝑆𝑈(2) ≅ 𝑆𝐿(2, 𝐶) 
describes the weak force interaction with 3 bosons 𝑊+, 𝑊−, 𝑍. 
 
Another group associated with the Lorentz group 𝐿 is the complex Lorentz group 𝐿(𝐶), (*). It has just two 
connected components, 𝐿+(𝐶) and 𝐿−(𝐶). The transformations 1 and −1, which are disconnected in 𝐿 are 
connected in 𝐿(𝐶). In other words, the complex Lorentz transformation connects  
 

- the two components containing the 1-transformation and space-time inversion 
- the two components containing the space inversion and the time inversion. 

 
Just as the restricted Lorentz group is associated with 𝑆𝐿(2, 𝐶), the complex Lorentz group is associated with 
𝑆𝐿(2, 𝐶) ⊗ 𝑆𝐿(2, 𝐶) ≅ 𝑆𝑈(2) ⊗ 𝑆𝑈(2). There is also a two-to-one homomorphism from 𝑆𝐿(2, 𝐶) × 𝑆𝐿(2, 𝐶) 
onto 𝐿(+, 𝐶). 
 
The spin of an elementary particle is its eigen-rotation with exactly two rotation axes, one parallel and one anti-
parallel axis to a magnetic field. This is the 2 × 2 complex number scheme, where every „normal“ rotation is 
contained twice. Consequently, an electron has a charge only half of the Planck’s quantum of action. 
 
 
 
 
 
(*) The complex Lorentz group is composed of all complex matrices satisfying  
 

Λ
𝜅
𝜇Λ𝜅𝜈 = 𝑔𝜇𝜈 or  Λ

𝑇𝐺Λ = 𝐺,                  (1-5). 
 

It has just two connected components, 𝐿+(𝐶) and 𝐿−(𝐶) according to the sign of det(Λ). The transformations 1 and -1, which are 
disconnected in 𝐿 are connected in 𝐿(𝐶). In other words, the complex Lorentz transformation connects  
 

- the two components containing the 1-transformation and space-time inversion, i.e. the pair 
 

{det(Λ) = +1 , det(Λ0

0
= +1)}, {det(Λ) = +1 , det(Λ0

0
= −1)}, 

 

- the two components containing the space inversion and the time inversion, i.e. the pair 
  

{det(Λ) = −1 , det(Λ0

0
= +1)}, {det(Λ) = −1 , det(Λ0

0
= −1)}. 

 
Summary:  
 

While two (real) Lorentz transformations need to be connected to one another by an appropriately defined 
continuous curve of Lorentz transformations, there are two pairs of components of the complex Lorentz 
transform, which are both already connected by definition.  
 

 

Just as the restricted Lorentz group is associated with 𝑆𝐿(2, 𝐶), the complex Lorentz group is associated with 𝑆𝐿(2, 𝐶) ⊗
𝑆𝐿(2, 𝐶). The latter group is the set of all pairs of 2𝑥2 matrices of determinants one with the multiplication law 
 

{𝐴1, 𝐵1} ∙ {𝐴2, 𝐵2} = {𝐴1𝐴2, 𝐵1𝐵2}. 
 

Is is easy to see that only matrix pairs which yield a given Λ(A, B) are (±A,±B). In particular,  
 

Λ(−1,1) = Λ(1,−1) = −1. 
 

The corresponding complex Poincare group admits complex translation but also the multiplication law  
 

{𝑎1,Λ1} ∙ {𝑎2,Λ2} = {𝑎1 + Λ1𝑎2,Λ1Λ2}. 
 

It has two components P±(𝐶), which are distinguished by det(Λ) and a corresponding inhomogeneous group to 𝑆𝐿(2, 𝐶). 
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Wavelets 
(HoM), (LoA), (MeY) 

 
 
The decomposition of the quantum element space 𝐻−1/2 = 𝐻0 ⊗𝐻0

⊥ resp. its related quantum element 

energy space decomposition 𝐻1/2 = 𝐻1 ⊗𝐻1
⊥ = 𝐻−1/2

∗  is very much related to the Calderón wavelet tool. In 

contrst to the one-parameter depending Fourier wave the Calderón wavelet depends from two parameters. It 
may be interpreted as a mathematical microscope analysing Fourier wave behavior beyong their statistical 𝐿2 
domain: 
 

(HoM) 1.2: „The idea of wavelet analysis is to look at the details are added if one goes from scale 𝑎 to scale 𝑎 − 𝑑𝑎 
with 𝑑𝑎 > 0 but infinitesimal small. … Therefore, the wavelet transform allows us to unfold a function over the one-
dimensional space 𝑅 into a function over the two-dimensional half-plane 𝑯 of positions and details (where is which 
details generated?). … Therefore, the parameter space 𝑯 of the wavelet analysis may also be called the position-scale 
half-plane since if 𝑔 localized around zero with width ∆ then 𝑔𝑏,𝑎 is localized around the position 𝑏 with width 𝑎∆. 

The wavelet transform itself may now be interpreted as a mathematical microscope where we identify  
 

𝑏 ↔  position;  (𝑎∆)−1 ↔  enlargement; 𝑔 ↔ optics. “ 
 

While the Fourier waves enable an analysis of the test space 𝐻0, wavelets enable an alternative analysis tool 
for a specific densely embedded subspace of 𝐻0, as the (wavelet) admissibility condition for a 𝜓 ∈ 𝐻0 is a weak 

one, as for each 𝜓, �̂� ∈ 𝐻0: it holds ‖𝜓𝜀 − 𝜓‖𝐿2
2 → 0 for  

 

�̂�𝜀 ≔ {
�̂�(𝜔),|𝜔| ≥ 𝜀
0,𝑒𝑙𝑠𝑒

 

 
There are at least two approaches to wavelet analysis, both are addressing the somehow contradiction by 
itself, that a function over the one-dimensional space 𝑅 can be unfolded into a function over the two-
dimensional half-plane. The Fourier transform of a wavelet transformed function 𝑓 is given by, (LoA), (MeY), 
 

𝑊𝜗[𝑓]̂ (𝑎,𝜔) ≔ (2𝜋|𝑎|)
1

2𝑐
𝜗

−
1

2�̂�(−𝑎𝜔)𝑓(𝜔) .  

 
For 𝜑, 𝜗 ∈ 𝐿2(𝑅), 𝑓1, 𝑓2 ∈ 𝐿2(𝑅), 
 

0 < |𝑐𝜗𝜑| ≔ 2𝜋 |∫
�̂�(𝜔)�̅̂�(𝜔)

|𝜔|
𝑑𝜔

𝑅
| < ∞  

 

and |𝑐𝜗𝜑| ≤ 𝑐𝜗𝑐𝜑 one gets the duality relationship, (LoA) 

 

(𝑊𝜗 𝑓1,𝑊𝜑
∗𝑓2)𝐿2(𝑅2,

𝑑𝑎𝑑𝑏
𝑎2

)
= 𝑐𝜗𝜑(𝑓1, 𝑓2)𝐿2  

i.e. 

𝑊𝜑
∗𝑊𝜗 [𝑓] = 𝑐𝜗𝜑𝑓   in a 𝐿2 −sense.   

 
For 𝜑, 𝜗 ∈ 𝐿2(𝑅), 𝑓1, 𝑓2 ∈ 𝐿2(𝑅), 
 

0 < |𝑐𝜗𝜑| ≔ 2𝜋 |∫
�̂�(𝜔)�̅̂�(𝜔)

|𝜔|
𝑑𝜔

𝑅
| < ∞  

 

and |𝑐𝜗𝜑| ≤ 𝑐𝜗𝑐𝜑 one gets the duality relationship (LoA) 

 

(𝑊𝜗 𝑓1,𝑊𝜑
∗𝑓2)𝐿2(𝑅2,

𝑑𝑎𝑑𝑏
𝑎2

)
= 𝑐𝜗𝜑(𝑓1, 𝑓2)𝐿2  

i.e. 

𝑊𝜑
∗𝑊𝜗 [𝑓] = 𝑐𝜗𝜑𝑓   in a 𝐿2 −sense.   

 
This identity provides an additional degree of freedom to apply wavelet analysis with appropriately (problem specific) defined wavelets in a 
(distributional) Hilbert scale framework where the "microscope observations" of two wavelet (optics) functions 𝜗, 𝜑 can be compared with 
each other by the above "reproducing" ("duality") formula. 
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Some formulas 
(GrI) 

 
 

i) 𝑐𝑜𝑠ℎ(𝑥) ± 𝑠𝑖𝑛ℎ(𝑥) = 𝑒±𝑥  
 

ii) 𝑐𝑜𝑠ℎ2(𝑥) − 𝑠𝑖𝑛ℎ2(𝑥) = 1  
 

iii) 𝑡𝑎𝑛ℎ(𝑥) = 1 + 2∑ (−1)𝑘𝑒−2𝑘𝑥∞
𝑘=1 , 𝑥 > 0    (GrI) 1.232 

 

iv) 𝑡𝑎𝑛ℎ(𝑥) = ∑
22𝑘(22𝑘−1)

(2𝑘)!
𝐵2𝑘𝑥

2𝑘−1∞
𝑘=1  

 

v) 𝑒𝑎𝑥 − 𝑒𝑏𝑥 = (𝑎 − 𝑏)𝑥𝑒
1

2
(𝑎+𝑏)𝑥∏ (1 +

(𝑎−𝑏)2𝑥2

4𝑘2𝜋2
∞
𝑘=1    (GrI) 1.223 

 
vi) 𝑠𝑖𝑛ℎ(2𝑥) = 2 𝑠𝑖𝑛ℎ(𝑥) 𝑐𝑜𝑠ℎ(𝑥), 𝑐𝑜𝑠ℎ(2𝑥) = 2𝑐𝑜𝑠ℎ2(𝑥) − 1  (GrI) 1.334 

 

vii) 𝑡𝑎𝑛ℎ(𝑥)
𝑠𝑖𝑛ℎ(2𝑥)

𝑐𝑜𝑠ℎ2(𝑥)
= 𝑡𝑎𝑛ℎ(𝑥)

2 𝑠𝑖𝑛ℎ(𝑥)𝑐𝑜𝑠ℎ(𝑥)

𝑐𝑜𝑠ℎ2(𝑥)
= 2 𝑡𝑎𝑛ℎ2(𝑥)   

 

viii) ∫ 𝑠𝑖𝑛ℎ(𝑎𝑥)𝑑𝑥 =
1

𝑎
𝑐𝑜𝑠ℎ(𝑎𝑥)    ,  ∫ 𝑐𝑜𝑠ℎ(𝑎𝑥)𝑑𝑥 =

1

𝑎
𝑠𝑖𝑛ℎ(𝑎𝑥)    (GrI) 2.414      

 

ix) ∫
𝑑𝑥

𝑐𝑜𝑠ℎ2(𝑥)
= 𝑡𝑎𝑛ℎ(𝑥)   , ∫

𝑑𝑥

𝑠𝑖𝑛ℎ2(𝑥)
= −𝑐𝑜𝑡ℎ(𝑥)    (GrI) 2.422 

 

x) ∫ 𝑡𝑎𝑛ℎ(𝑥)𝑑𝑥 = 𝑙𝑛(𝑐𝑜𝑠ℎ(𝑥))    , ∫ 𝑐𝑜𝑡ℎ(𝑥)𝑑𝑥 = 𝑙𝑛(𝑠𝑖𝑛ℎ(𝑥))   (GrI) 2.423       
 

xi) ∫
sinh(2𝑛𝑥)

cosh(𝑥)
𝑑𝑥 = 2∑ (−1)𝑘

cosh((2𝑛−2𝑘−1)𝑥)

2𝑛−2𝑘−1

𝑛−1
𝑘=0       (GrI) 2.433 

 

xii) ∫
𝑠𝑖𝑛ℎ(2𝑥)

𝑐𝑜𝑠ℎ(𝑥)
𝑑𝑥 = 2𝑐𝑜𝑠ℎ(𝑥) 

 

xiii) ∫ 𝑒−𝛼𝑥 𝑡𝑎𝑛ℎ(𝑥) 𝑑𝑥
∞

0
= 𝛽 (

𝛼

2
) −

1

𝛼
    ,   𝑅𝑒(𝛼) > 0     (GrI) 3.541 

 
xiv) 𝑎2 ≠ 𝑏2,         (GrI) 2.481 

 

∫ 𝑒𝑎𝑥𝑠𝑖𝑛ℎ(𝑏𝑥 + 𝑐)𝑑𝑥 =
𝑒𝑎𝑥

𝑎2−𝑏2
[𝑎 ∙ 𝑠𝑖𝑛ℎ(𝑏𝑥 + 𝑐) − 𝑏 ∙ 𝑐𝑜𝑠ℎ(𝑏𝑥 + 𝑐)]  

 

∫ 𝑒𝑎𝑥𝑐𝑜𝑠ℎ(𝑏𝑥 + 𝑐)𝑑𝑥 =
𝑒𝑎𝑥

𝑎2−𝑏2
[𝑎 ∙ 𝑐𝑜𝑠ℎ(𝑏𝑥 + 𝑐) − 𝑏 ∙ 𝑠𝑖𝑛ℎ(𝑏𝑥 + 𝑐)]  

 
xv) 𝑎2 ≠ 𝑏2,         (GrI) 2.484 

 

∫ 𝑒𝑎𝑥𝑠𝑖𝑛ℎ(𝑏𝑥)
𝑑𝑥

𝑥
=

1

2
{[𝐸𝑖(𝑎 + 𝑏)𝑥] − [𝐸𝑖(𝑎 − 𝑏)𝑥]}  

 

∫ 𝑒𝑎𝑥𝑐𝑜𝑠ℎ(𝑏𝑥)
𝑑𝑥

𝑥
=

1

2
{[𝐸𝑖(𝑎 + 𝑏)𝑥] + [𝐸𝑖(𝑎 − 𝑏)𝑥]}  

 

xvi) 𝑡𝑎𝑛ℎ(𝑥) = 1 + 2∑ (−1)𝑘𝑒−2𝑘𝑥∞
𝑘=1       (GrI) 1.232 

 

xvii) 𝑒𝑎𝑥 − 𝑒𝑏𝑥 = (𝑎 − 𝑏)𝑥𝑒
1

2
(𝑎+𝑏)𝑥∏ (1 +

(𝑎−𝑏)2𝑥2

4𝑘2𝜋2
∞
𝑘=1    (GrI) 1.223 

 

xviii) ∫ 𝑒−𝑧𝑥 tanh(𝑥) 𝑑𝑥
∞

0
= 𝛽 (

𝑧

2
) −

1

𝑧
 , 𝛽(1) = 𝑙𝑜𝑔2, 𝛽 (

1

2
) =

𝜋

2
 ,  𝑅𝑒(𝑧) > 0 (GrI) 3.541 
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