⁵ J. M. Cummings, L. Goldstein, and A. F. Blakeslee, these PROCEEDINGS, in press.

⁶ R. S. Caldecott, E. F. Frolik, and R. Morris, these Proceedings, 38, 804-809, 1952.

⁹ E. F. Frolik, TID-5098, United States Atomic Energy Commission, pp. 81-87, 1953.

A CLOSURE PROBLEM RELATED TO THE RIEMANN ZETA-FUNCTION

By Arne Beurling

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY

Communicated by Herman Weyl, March 14, 1955.

It is rather obvious that any property of the Riemann zeta-function may be expressed in terms of some other property of the function $\rho(x)$ defined as the fractional part of the real number x, i.e., $x = \rho(x) \mod 1$. This note will deal with a duality of the indicated kind which may be of some interest due to its simplicity in statement and proof. In the sequel, C will denote the linear manifold of functions

$$f(x) = \sum_{1}^{n} c_{\nu} \rho\left(\frac{\theta_{\nu}}{x}\right), \ 0 < \theta_{\nu} \leq 1, \qquad n = 1, 2, \ldots,$$

where the c_{ν} are constants such that $f(1 + 0) = \sum_{1}^{n} c_{\nu} \theta_{\nu} = 0$.

THEOREM. The Riemann zeta-function is free from zeros in the half-plane $\sigma > 1/p$, $1 , if and only if C is dense in the space <math>L^{p}(0, 1)$.

Let C^p denote the closure of C in the space $L^p = L^p(0, 1)$, and let $T_a, 0 < a \leq 1$, be the operator which takes a function f(x) defined over (0, 1) into the function which is equal to f(x/a) for $0 \leq x \leq a$ and equal to 0 for $a < x \leq 1$. This semigroup of operators has the following properties which will be important for our problem: Each T_a carries C into itself and is norm-diminishing in each space L^p . From this we easily conclude that C is dense in L^p if and only if C^p contains the function kwhich is equal to 1 over the unit interval. For, if k belongs to C^p , the same must be true of the characteristic function of any subinterval (a, b) of (0, 1), this function being equal to $T_b k - T_a k$.

We next point out that, for $\sigma > 0$,

$$\int_0^1 \rho\left(\frac{\theta}{x}\right) x^{s-1} dx = \frac{\theta}{s-1} - \frac{\theta^s \zeta(s)}{s}.$$
 (1)

For $f \in C$ we will have

$$\int_0^1 f(x) x^{s-1} dx = -\frac{\zeta(s) \sum_{1}^n c_{\nu} \theta_{\nu}^s}{\frac{1}{s}}, \qquad \sigma > 0. \quad (2)$$

Assume first that $C^p = L^p$. We can then find an $f \in C$ such that $||1 + f||_p < \epsilon$, where ϵ is a given positive number. By equation (2),

⁷ J. S. Kirby-Smith and C. P. Swanson, Science, 119, 42-45, 1954.

⁸ A. D. Conger, Science, 119, 36-42, 1954.

Vol. 41, 1955

$$\int_0^1 (1+f(x)) x^{s-1} dx = \frac{1}{s} \left(1 - \zeta(s) \sum_{1}^n c_\nu \theta_\nu^s \right), \qquad \sigma > 0. \quad (3)$$

If $\sigma > 1/p$, Hölder's inequality yields the following majorant of equation (3):

$$||1 + f||_{p}||x^{s-1}||_{q} < \epsilon \left\{\frac{1}{q(\sigma - 1/p)}\right\}^{1/q}$$

Consequently,

$$\left|1 - \zeta(s)\sum_{1}^{n} c_{\nu}\theta_{\nu}{}^{s}\right|^{q} < \frac{\epsilon^{q}|s|^{q}}{q(\sigma - 1/p)}, \qquad \sigma > 1/p. \quad (4)$$

This proves that $\zeta \neq 0$ in the region $D_{p,\epsilon}$ where the right-hand member of relation (4) is < 1, i.e., for

$$\sigma > \frac{1}{p} + \frac{\epsilon^q |s|^q}{q}.$$

As $\epsilon \downarrow 0$, $D_{p,\epsilon}$ increases and exhausts the half-plane $\sigma > 1/p$. We should also observe at this instance that $D_{p,\epsilon}$ is convex and that its boundary intersects the line $\sigma = 1$ at the two points where $|s| = 1/\epsilon$.

The proof of the necessity of the condition $C^p = L^p$ is less trivial. If C is not dense in L^p , we know by a classical theorem of F. Riesz and Banach that the dual space L^q must contain a nontrivial element g which is orthogonal to C in the sense that

$$0 = \int_0^1 g(x)f(x) \, dx, \qquad \qquad f \epsilon C. \tag{5}$$

Since T_a takes C into itself, it follows that

$$0 = \int_0^1 g(x) T_a f(x) \, dx = a \int_0^1 g(ax) f(x) \, dx, \qquad f \epsilon C, \qquad 0 < a \le 1.$$
(6)

Let E_{g}^{r} , $1 \leq r \leq q$, be the closed linear subset of L^{r} spanned in the topology of that space by the set $\{g(ax), 0 < a \leq 1\}$. From equation (6) and the fact that C consists of bounded functions, we conclude that each $f \in C$ is orthogonal to each function belonging to any of the sets E_{g}^{r} . We now recall that the positive reals ≤ 1 form a semigroup S under multiplication and that each continuous (and normalized) character of S has the form $\varphi = x^{\lambda}$, where λ is an arbitrary complex or real number. Clearly $\varphi \in L^{q}$ if and only if $\mathfrak{R}_{e}(\lambda) > -1/q$. The problem of whether or not a set of the kind E_{g}^{p} contains a character is of considerable complexity. It has been studied earlier by the author^{1, 3} and by Nyman.² However, the following result³ can be proved by elementary function theoretic means: Let g(x) belong to a space $L^{q}(0, 1), 1 < q < \infty$, and have the property

$$\int_0^x |g(x)| \, dx > 0, \qquad x > 0. \quad (7)$$

Then there exists at least one character x^{λ} , $\mathfrak{R}_{e}(\lambda) > -1/q$, which is contained in each set E_{g}^{r} for $1 \leq r < q$ (but not necessarily in E_{g}^{q}).

In order to apply this theorem, we have first to show that condition (7) is satisfied by our function g. For this pupose assume that g vanishes a.e. on some interval (0, a), a > 0. Choose b such that $a < b < \min(1, 2a)$, and $f(x) = b\rho(a/x) - b\rho(a/x)$

313

 $a\rho(b/x)$. This f belongs to C; it vanishes for x > b and takes the value a for a < x < b. Therefore,

$$0 = \int_0^1 f(x)g(x) \, dx = a \int_a^b g(x) \, dx, \qquad a < b < \min(1, 2a), \tag{8}$$

and it follows that g = 0 a.e. for $x < \min(1, 2a)$. On repeating the same argument a finite number of times, we find that g = 0 a.e. over (0, 1), which is a contradiction. The cited theorem may thus be applied to g and yields the existence of a number λ , $\mathfrak{R}_{\epsilon}(\lambda) > -1/q$, such that x^{λ} is orthogonal to C. On defining $s_0 = 1 + \lambda$, we will have, in particular

$$0 = \mathbf{\int}_0^1 \left(\rho\left(\frac{1}{x}\right) - \left(\frac{1}{\theta}\right) \rho\left(\frac{\theta}{x}\right) \right) x^{s_0 - 1} dx = \frac{(\theta^{s_0 - 1} - 1)}{s_0} \zeta(s_0), \ 0 < \theta < 1.$$
(9)

Obviously, $s_0 \neq 1$. Since θ can be chosen such that, at any given point $\neq 1$, $\theta^{s-1} - 1 \neq 0$, it follows that s_0 is a zero of ζ . We also have $\Re_e(s_0) > 1 - 1/q = 1/p$, and this concludes the proof.

We finally point out that the problem of how well k = 1 can be approached by functions ϵC has a direct bearing on the distribution of the primes even in case ζ does have zeros arbitrary close to the line $\sigma = 1$.

¹ A. Beurling, "On Two Problems concerning Linear Transformations in Hilbert Space," Acta Math., Vol. 81, 1949.

² B. Nyman, "On Some Groups and Semi-groups of Translations" (thesis, Uppsala, 1950).

³ A. Beurling, "A Theorem on Functions Defined on a Semi-group," Math. Scand., Vol. 1, 1953.

INTEGRABLE AND SQUARE-INTEGRABLE REPRESENTATIONS OF A SEMISIMPLE LIE GROUP

By HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by Paul A. Smith, March 11, 1955

Let G be a connected semisimple Lie group. We shall suppose for simplicity that the center of G is finite. Let π be an irreducible unitary representation of G on a Hilbert space \mathfrak{H} . We say that π is integrable (square-integrable) if there exists an element $\psi \neq 0$ in \mathfrak{H} such that the function $(\psi, \pi(x)\psi)$ $(x \in G)$ is integrable (square-integrable) on G, with respect to the Haar measure. Assuming that the Haar measure dx has been normalized in some way once for all and that π is squareintegrable, we denote by d_{π} the positive constant given by the relation¹

$$\int_{G} \left| \left(\psi, \ \pi(x)\psi \right) \right|^{2} dx = \frac{1}{d_{\pi}},$$

where ψ is any unit vector in \mathfrak{H} . Let $C_c^{\infty}(G)$ denote the set of all complex-valued functions on G which are everywhere indefinitely differentiable and which vanish outside a compact set. Then the following result is an easy consequence of the Schur orthogonality¹ relations.