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I. I~R~DuCTI~N 

The following considerations are motivated by the initial and boundary 
value problem of perfect reflection in the theory of electromagnetic wave 
propagation: 

(EM) Find a pair (E, H) of wector jields satisfying 

(i) the Maxwell equations 

vxE+~% a H==O, 

V x H-E&E-WE= J 

in the exterior !2 of a finite collection of disjoint bounded bodies with smoth (say 
C3) boundaries S, ,..., S,; 

(ii) the boundary condition 

nxE=O on al2 = s, -+ ... + s, 

where n denotes the exterior normal unit wector on 22; 

(iii) the initial conditions 

(I.31 

E(x, 0) = E,(x), H(x, 0) = H,,(x) for x ~a. (1.4) 

E(x, t) and H(x, t) are the electric and the magnetic field produced by a given 
current distribution J(x, t) in the presence of n perfectly conducting bodies with 
boundaries S, ,..., S, . We assume in this paper that IR is filled by a homogeneous 
isotropic medium. In this case the dielectricity t, the permeability p and the 
electric conductivity o are real numbers with E > 0, p > 0, o > 0. 

As we shall show in Section 2, problem (EM) can be reduced to each of the 
following two problems, by eliminating either the magnetic field H or the 
electric field E: 
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(E) Find a vector $eld E to given data I; , yl , E,, , El such that 

AE=ep-$E+p&Ej- J1 in Q, 

nx E=O, V’ E = y1 on 82, 

E(x, 0) = 4,(x), ; E(x, 0) = E,(x) for x EL?. 

(H) Find a vector field H to given data Jz , c, yz , H,, , HI such that 

az a 
AH=.~.L~H+~u~H+ Jz in Sz, 

n x (V x H) = c, n. H = yz on X2, 

H(x, 0) = Ho(x), & H(x, 0) = H,(x) for x E 0. 

(1.5) 

U-6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

Initial and boundary value problems of this type can be treated by extending 
the differential operator to a suitable self-adjoint operator and using the func- 
tional calculus for unbounded self-adjoint operators. This method has been 
applied with great success to boundary and initial value problems for the scalar 
wave equation with Dirichlet and Neumann boundary data by several authors, 
including Eidus [3], Shenk [7] and Wilcox [13]. The spectral-theoretical approach 
seems to be most appropriate to the discussion of the relations between the time- 
dependent theory and the corresponding time-independent problems arising in 
the investigation of time-harmonic wave fields and governed by the reduced 
wave equation (compare, for example, the proof of the limiting amplitude 
principle for the scalar wave equation by Eidus [3]). The purpose of this paper 
is to develop the foundations for a similar approach to the initial and boundary 
value problems (E) and (M) for th e vector wave equation. The main step 
consists in the construction of concrete self-adjoint extensions A and A’ of the 
vector Laplacian with respect to the electric boundary conditions 

nxE=O, V-E=0 on i?Q 

and to the magnetic boundary conditions 

(1.11) 

n x (V x H)=O, n.H=O on aQ. (1.12) 

By applying the functional calculus for self-adjoint operators to A and A’, 
we obtain weak solutions of the problems (E) and (M) which can be represented 
by spectral integrals employing the spectral sets of A and A’. 

The plan of this paper is as follows: In Section 2 we discuss the relation 
between the classical solutions of the electromagnetic problem (EM) and the 
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problems (E) and (M). In Section 3 we introduce the operators A and A’. The 
proof of their self-adjointness is based on a weak existence theory for the time- 
independent equation (--A + A) G = F with respect to the boundary data (1.11) 
and (1.12) for sufficiently large real A. Weak solutions of these boundary value 
problems are constructed in Sections 4 and 5, by giving equivalent formulations 
by means of bilinear forms and proving coerciveness properties. In the last 
section we discuss weak versions of the time-dependent problems (E) and (M) 
in the case of homogeneous boundary data. 

It is planned to treat the following topics in subsequent papers: 

(a) regularity properties of the vector Laplacian with respect to the 
boundary conditions (1.11) and (1.12); 

(b) discussion of the spectral properties of the operators A and A’; 
(c) a more detailed investigation of the time-dependent problems (E), 

(M), (EM) including regularity properties of the solutions and asymptotic 
estimates as t --+ co. 

It can be shown that the spectrum of A and A’ consists of an eigenvalue at 
h = 0 which corresponds to electrostatics and to magnetostatics, respectively, 
and of a continuous part covering the half axis [0, co). The dimensions of the 
null spaces of A and A’ are n and p = p, + ... + p, where n is the number of 
reflecting bodies and pj denotes the topological genus of the boundary Si of the 
j-th reflector. For h > 0, the projection operators Ph and Pi in the spectral sets 
of A and A’ can be expressed by outgoing and incoming solutions of the time- 
independent boundary value problems with frequency N2. In contrast to this, 
the spectrum in the scalar case studied in [3], [7] and [13] contains only a 
continuous part. 

The presence of the eigenvalue A = 0 leads to the consequence that, again 
in contrast to the scalar situation, the principle of limiting amplitude does not 
hold in general for the initial and boundary value problem (EM) with time- 
harmonic current distribution J(x, t). By using the spectral-theoretical approach 
which will be developed here and in the following papers, it is possible to 
derive necessary and sufficient conditions for the validity of the principle of 
limiting amplitude. It turns out that a full discussion of the asymptotic behavior 
of the solution (E, H) of problem (EM) as t + cc requires the investigation of 
the spectral properties of both operators A and A’. In fact, by applying the 
functional calculus for self-adjoint operators to A and A’, we obtain two integral 
representations for (E, H) the first one of which employs the spectral set of A 
and the second one the spectral set of A’. The first representation allows a 
complete discussion of the asymptotic behavior of E while the second representa- 
tion is appropriate for the discussion of H as t ---f 00. This remark shows that it is 
desirable to discuss both problems (E) and (M) and the corresponding self- 
adjoint operators A and A’ in order to get sufficient insight into the asymptotic 
properties of the solution of problem (EM). 
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Some parts of this paper result from cooperation with A. Fetzer (compare [4]). 
The proof of Lemma 5.1 is related to investigations of R. Leis on the time- 
independent boundary value problem with electric boundary conditions for 
non-homogeneous anisotropic media [5]. Different approaches to a weak 
existence theory for problem (EM) have been discussed by C. H. Wilcox [12], 
G. Schmidt [8], G. Duvaut and J. L. Lions [2], and R. Picard [(jl. 

The methods of this paper can be extended to non-homogeneous and aniso- 
tropic media and to interface problems (compare C. Weber [lo]). 

2. RELATIONS BETWEEN THE PROBLEMS (EM), (E) AND (AZ) 

In this section we study relations between the initial and boundary value 
problems (EM), (E) and (M) which were formulated in Section 1. We shall use 
the notation Ck := Ck x Ck x Ck. 

First we show: 

LEMMA 2.1. Let (E, H) be a solution of (EM) where E, H, / E c(o x [0, co)) 
and E, , H, E Cp@). Then E is a solution of(E) with 

J1(x, t) := e+W(V * E,,(x)) + p f J(x, t) 

1 t -- 
I f 0 

e-“(t-T)W(V * J(x, T)) dr fOTXEi2, 

yl(x, t) := ePt/‘V * E,(x) - f J^b e-o(t-T)W . J(x, T) dr for x E ZJ, 

E,(x) := +- [V x H,(x) - uE,(x) - J(x, 0)] for x ED 

and H is a solution of(H) with 

Jz := V(V * Ho) - v x J, c:=n x J, 

yz:=n.Ho, HI:=-&xE,. 
P 

Remarks 1. It is possible to weaken the regularity requirements for the 
solution and the data in Lemma 2.1 and in the remaining part of this section to a 
certain extent. It is not our intention to give “best” results in this respect. 

2. The assumptions on E, H in Lemma 2.1 impose certain restrictions 
(“compatibility conditions”) on the data E, , Ho and J, such as n x E, = 0 and 
nx(VxH,)=nxJ(.,O) on X?. Here and in the following we do not state 
these restrictions explicitely. 
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Proof of Lemma 2.1. Set y(t) = V * E(x, t) for fixed x E a. Since -•y’ - uy 
= V . J and y(B) = V * EO, we obtain 

V . E(x, t) = edotlPV - E,(x) - f lt e-“(t--7)‘cV - J(x, 7) &. 

Furthermore, (1 .l) and (1.2) imply that 

E~~E=~~(VXH-UE- J) 

=-vx(VxE)--o$E--;J 

=AE-v(V.E)--c$E-&J. 

By inserting the above expression for V . E, it follows that E is a solution of (E) 
with the required data. The statement on H can be proved in the same way. 
The boundary condition n * H = n * H0 follows from 

w;H=-+(V x E)=-+(n x E)=O 

where V, * a denotes the surface divergence of the tangential field a. 
Now we prove the following converse of Lemma 2.1: 

LEMMA 2.2. Assume that JE ca(G x [0, co)) and EO, H, E Q(a). Let 
E E C”(LiT x [0, 00)) b e a solution of probkm (E) with data JI , y1 and E1 defined 
as in Lemma 2.1, and set, according to (1. l), 

H(x, t) = H,,(x) - + jot V x E(x, 7) dr. 

Then (E, H) is a solution of (EM). 

(2.1) 

LEMMA 2.3. Assume that J E C3@ x [0, oo)), n x E, = 0 on aSa, and E, , 
H, E p(o). Let HE C”(D x [0, a~)) b e a solution of problem (M) with data Jz , c, 
y2 and HI defined as in Lemma 2.1, and set, according to (1.2), 

E(x, t) = e-OtlcEo(x) + f Joi e-U(t-f)‘C[V x H(x, T) - J(x, T)] dr. (2.2) 

Then (E, H) is a solution of (EM). 

The proofs of Lemma 2.2 and Lemma 2.3 are based on the following uni- 
queness statement for the scalar wave equation: 

409/70/I-IO 
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LEMMA 2.4. Assume that v E C@? x [0, to)) is a solution of the homogeneous 
problem 

(ii) p=o(~~$v=O) 01~ ai2, 

(iii) ~(x, 0) = $ ~(x, 0) = 0 for x Ei2. 

Then we haoe q = 0 in D x [0, CD). 

Note that no assumptions on the behavior of CJI at infinity are required, 
according to the boundedness of the domains of dependence for hyperbolic 
problems. The proof of Lemma 2.4 is elementary and can be obtained by a 
slight modification of the uniqueness argument described in [14], Section 179 
for 2-dimensional bounded domains Sz in the case a = 0. 

Proof of Lemma 2.2. The first Maxwell equation (1.1) and the initial condi- 
tions (1.4) are satisfied by the definition of H in (2.1). Hence it suffices to verify 
the second Maxwell equation (1.2). By (2.1) we have 

v x H(x, t) - E & E(x, t) - uE(x, t) 

= v x H,(x) - + Jy V x [V x E(x, T)] dr - t ; E(x, t) - uE(x, t) 

= v x H,,(x) + t lot [AE(s, 7) - V(V . E(x,T)) 

- l /L T$ E(x, T) - up f E(x, T)] dr - E ; E(x, 0) - uE,,(x). 

By using (1.5), (1.7) and the definitions of Jr and Er in Lemma 2.1, we obtain 

v x qx, t) - E g E(x, t) - uE(x, t) 

with 

= t s,t [J&G T) - VP - E(x, 41 d7 + I@, 0) 

1 

9,(x, t) = I' [coTW . E,,(x) - V + E(x,T) - f J: e-"-o(T-p)/FV * J((x, p) dp] dT. 
0 

(2.3) 
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We show that q satisfies the assumptions of Lemma 2.4. The boundary condi- 
tion ‘p = 0 on a0 follows immediately from V * E = yr on 8s and the definition 
of yr in Lemma 2.1. By differentiating (2.3), we get 

& y(x, t) = e- ot/EV . E,,(x) - V * E(x, t) - f Lt e-“(t-D)lfV . /(x, p) dp, (2.4) 

$ y(x, t) = - 5 e+‘T7 . E,(x) - V . [& E(x, t)] 

(2.5) 

- f V . 1(x, t) + 3 1’ ~c’(~-~)‘~V . J(x, T) d7. 
0 

The initial conditions do, 0) = (a/at) ~(x, 0) = 0 follow from (2.3) and (2.4). By 
(2.4) and (2.5) we have 

=--- v . [c ; E(x, t) + aE(x, t) + .h t)] 

t 

zz- 

f [ 
V . 

0 
6 & E(x, T) + u $ E(x, T) + ; J(x, T)] dT 

since V * [c(a/at) E + UE + J] vanishes for t = 0 by the definition of El in 
Lemma 2.1. Hence we obtain by (1.5) and the definitions of Jr and v 

=I [ V . e-uTW(V . E,(x)) - dE(x, T) 
0 

1 -- 1’ e-o(7--P)‘Ev(v . 1(x, p)) dp] d7 
E 0 

= flcp(x, t). 

Here we have used that V . (LIE) = V . [V(V . E) - V x (V x E)] = d(V . E). 
This shows that ‘g satisfies all assumptions of Lemma 2.4. Hence q vanishes in 
0 x [0, cc) by Lemma 2.4, and the formula preceding (2.3) implies that (E, H) 
satisfies the second Maxwell equation (1.2). This concludes the proof of Lemma 
2.2. 
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Proof of Lemma 2.3. Since n x (V x H) = c = n x J, it follows imme- 
diately from (2.2) and n x E,, = 0 on 80 that (E, H) satisfies the second Maxwell 
equation (1.2), the boundary condition (1.3) and the initial conditions (1.4). 
Hence it suffices to verify the first Maxwell equation (1 .l). First we show that 

t,b=V.H-V.H, (2.6) 

satisfies the assumptions of Lemma 2.4 with lhj/an = 0 on XJ. By (2.6) we have 
I,@, 0) = 0. Th e second initial condition (a/at) #(x, 0) = 0 follows from 
(a/at) +(x,0) = v *HI and HI = -p-W x E, . The definition of Jz in 
Lemma 2.1 implies that V * Jz = d(V . H,,). Hence we obtain by (1.8) 

Thus 4 satisfies the homogeneous wave equation. Since n x (V x H) = n x J, 
we have on XJ 

n . [V x (V x H)] = V, * [n x (V X H)] = V,, * (n x J) = n * (V X J) 

and hence 

$z,b=n.V#=n.[V(V.H)-V(V.H,)] 

= n * [V x (V x H) + AH - V(V * H,)] 

=n*[V x J+dH-V(V*H,)]. 

Since n-H=y,:=n*H,, we have (a/at) n . H = 0 on asZ and hence by 

0.8) 

Thus we obtain 

n-AH=n* Jz. 

$=n.[V x J+ Jz-V(V*H,,)]=O 

by the definition of Jz . This proves that # satisfies all assumptions of Lemma 2.4. 
Therefore we have # = 0 and hence by (2.6) 

V.H=V*H,, in ST x [O, co). (2.7) 
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It follows from (2.2) and (1.8) that 

= e--ot’V x E,(x) + p ; H(x, t) 

+ f lt e-“(t-T)/f[V(V * H(x, T)) - dH(x, T) - V x J(x, T)] d7 
0 

= e-ot47 X E,(x) + p t H(x, t) + f 6 e-“(t-T)/r [V(V * H(x, T)) 

- G/.L ; H(x, T) - pff ; H(X, 7) - ]&, T) - v x ](X, T)] dT. 

Since ]a := V(V * Ho) - V x J = V(V * N) - V x J by (2.7) we obtain, by 
integrating by parts, 

v x -qx, t) + CL g H(x, t) 

= e-ut/EV x E,(x) + p k H(x, t) 

= e-utW X E,(x) + pe-ut/cHl(x) = 0 

since H1 = -p-lV x E, . Hence also the first Maxwell equation (1.1) holds. 
This concludes the proof of Lemma 2.3. 

As a corollary of Lemma 2.1 and Lemma 2.4 we obtain the following uni- 
queness theorem for problem (EM): 

LEMMA 2.5. Assume that (E, H) is a solution of (EM) with J = 0, E, = 0, 
Ho = 0 and that E, HE @(g x [0, 00)). Then we hawe E = 0 in a x [0, 00). 

3. THE OPERATORS A AND A’ 

Now we turn to the main topic of this paper, the discussion of the vector 
Laplace operator with respect to the electric and magnetic boundary data (1 .l 1) 
and (1.12). First we introduce the relevant linear spaces. 
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As in [ll] we interpret the elements of Lebesgue and Sobolev spaces as 
distributions. In particular, we define L, = L&2) as the linear space consisting 
of all functionals F on C,,a = COm(J2) such that 

llFll:=supr~lFp,/:~~C,“,~/~~~dr=l~ <co. (3.1) 

L, is a Hilbert space with norm (3.1). Every u E C(Q) with s 1 u I2 dx < CO 
generates a functional F, ELM by 

Fug, = tq dx 
s 

for p E CO*, (3.2) 

and since asZ is smooth, it can be shown that 

Ilull := IIF~II = [j-- I ~l~dx]~” (3.3) 

(compare [I 11, Lemma 2.5). In the following we identify u and F, . In this sense 
C,, is a dense subspace of L, (compare [ll], Theorem 2.1). The K-th Sobolev 
space Hh = H%(Q) is defined by 

H,:={FEL,:DPFEL~~~I~/ <k} (3.4) 

where the derivative DpF with p = (pi , p, , p,), I p 1 = p, + p, + p, , DP = 
8~8~8~ are understood in the sense of the theory of distributions: 

(DpF)p, := (-1)1~‘1 F(Dpy) for v E Corn. (3.5) 

H, is a Hilbert space with the inner product 

(F, G)k := C (DPF, DpG). (3.6) 
fJ<lPl@ 

Furthermore, we shall use the space &, := L, x L, x L, and Iii, := Hk x 

Hk x Hk consisting of all triples F = (Fl , F, , F,) with Fi EL, or Fi E HIc . 
k2 and IJk are Hilbert spaces with the inner products 

and 
(F, G) := (8 , G) + (3’2 , G,) + V’s, Gs) (3.7) 

(K (3, := (Fl> G&c + (F2 7 G2h + PC, , G&c . (3.8) 

Note that we use the same notation ( , )k and II Ilk for the inner product and the 
corresponding norm in Hk and &lk . 
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Now we introduce the following linear spaces: 

a:= EEP(Q):s x E=OandV-E=QonaQ; 
I 

E, cYiE, aiakE = 0(&j fori,k=1,2,3andr=)x)-+cc , 
1 

$I:= 
I 
HEC~(~):~ x (V x H)=Oandn*H=OonaQ; 

H,aiH,aiaeH=O fori,k=1,2,3andr=/r[-+m~, 

The spaces _S and _S’ consist of classical vector fields which satisfy the electric 
or magnetic boundary conditions and which, together with their derivatives of 
order up to order 2, belong to L,(Q). We denote the completions of _S and _S’ 
in HI with _V and _V,. In particular, we have 

_V = {E E @r: There exists a sequence {E,} in _S such that // E - E, /I1 -+ 0). 

After these preparations we can define operators A and A’ with domains of 
definition D(A) and D(K) by 

D(A) := (E E _V: AE EL, and (AE, F) = (E, AF) for everyF E _S}, 

AE := -AE if E E D(A) 
(3.9) 

and 

D(A’) := (HE y’: AH E& and (AH, F) = (H, AF) for everyF E S’}, 

A’H:= -AH if HE D(A’). 
(3.10) 

The Laplace operator in (3.9) and (3.10) has to be unterstood in the sense of 
distribution theory: AE := (AE, , AE, , AE,) with (AE$) 9 = Ei(A~) for every 
g, E co=. 

The principal aim of the next sections is the proof of the following theorem: 

THEOREM 3.1. The operators A and A’ de$ned by (3.9) and (3.10) are self- 
adjoint in the Hilbert space L, . 

As a first step we shall prove in this section that A and A’ are symmetric and 
positive. For this purpose we introduce the bilinear form 

B(F,G):=(V xF,V x G)+(V.F,V.G) (3.11) 

in llT, and show: 

LEMMA 3.1. -(AF, G) = B(F, G) if F, G E _S or F, G E _S’. 
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COROLLARY 1. (AF, G) =(F, AG) ifF, GES or F, GE$. 

COROLLARY 2. 8 C D(A) and 8’ C D(A’). 

Proof of Lemma 3.1. By the integral theorem of Gauss we obtain for F, G E _S 
orF, GE$’ 

(AF,G)+B(F,G)=~n[AF.G+(V xF).(V x G)+(VF)(VG)]dx 

= 
! 

{[V(V.F)-V x (V xF)].G+(V xF).(V x G) 
a 

+(VF)(V*G)}dx 

= oV[(V*F)&(V xF) x qdx s 

=- 
I son*[(V.F)G-(V xF) x c;idS=O 

sinceeitherV*F=OandnxG=Oorn*G=Oandnx(VxF)=Oon -- 
aQ. Corollary 1 follows from (AF, G) = --B(F, G) = --B(G,F) = (AG, F) = 
(F, AG). Corollary 2 is an immediate consequence of (3.9), (3.10) and Corollary 1. 

Now we prove the following generalisation of Lemma 3.1: 

LEMMA 3.2. Assume that either F E D(A) and G E _V or F E D(A’) and G E _yl. 
Then we have 

-(AF, G) = B(F, G’). (3.12) 

Proof. Assume first that FE D(A) and GE 8. Consider a sequence {Fk} in 
_S such that ]I F - Fk II1 -+ 0. By using the definition of D(A) in (3.9) and 
Lemma 3.1, we obtain 

-(AF, G) = -(F, AG) = -;IigFk , AG) = j$ B(F, > G) = B(F, G). 

This proves (3.12) for F E D(A) and GE _S. Since 8 is dense in y with respect 
to the norm of HI , (3.12) holds also forF E D(A) and G E ,V. The case F E D(A’), 
GE p’ can be treated by a similar argument. 

As an immediate consequence of Lemma 3.2, we obtain: 

LEMMA 3.3. The operators A and A’ are positive and symmetric. 

Proof. A and A’ are positive since -(dF, F) = B(F, F) > 0 if F E D(A) v 
D(A’). The symmetry of A, 

(AF, G) = (F, AG) for F, G E D(A), (3.13) 



VECTOR LAPLACE OPERATOR 

follows from 
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(AF, G) = -(dF, G) = B(F, G) = B(G, F) = -(dG, F) 

= -(F, dG) = (F, AG). 

4. WEAK BOUNDARY VALUE PROBLEMS 

Consider a complex number h and a prescribed F E &s . In order to prove that 
A is self-adjoint, we discuss the following two problems: 

(DA) Find E E D(A) such that 

AE- hE=F. (4.1) 

(B,) Find E E _V such that 

88 G) - X(4 G) = (F, G) (4.2) 
for every G E _V. 

Recall that the bilinear form B is defined by (3.11). The aim of this section 
is the proof of the following equivalence theorem: 

LEMMA 4.1. E is a so&tion of (DA) if and onb ;f E is a solution of (BJ. 

(DA) and (BJ can be considered as weak boundary value problems for the 
equation -AE - AE = F with respect to the electric boundary conditions (1.11). 
Lemma 4. I says that the differential operator version (DA) and the bilinear form 
version (B,) are equivalent. 

Pmof of Lemma 4.1. (a) Consider a solution E of (DA). Lemma 3.2 implies 
that (AE, G) = B(E, G) f or every GE _V. Hence (4.2) holds for every G E _V. 
Since D(A) C y it follows that E is also a solution of (B,). 

(b) Now assume that E is a solution of (B,). Since 8 C D(A) by Corollary 2 
of Lemma 3.1 and since E E _V, Lemma 3.2 implies -(E, AG) = -(dG, E) = 
B(G, E) = B(E, G) for every GE ,S and hence by (4.2) 

-9, dG) - WC G) = (K G) for every G E 8. (4.3) 

Set G = Qei where ‘p E C,, and e, denotes the i-th unit vector (i = 1,2,3). Then 
(4.3) implies 

-6% ,A+) - XEi , q) = (Fi , q) 

with E = (Er , E, , EJ and F = (F1 , Fa ,Fa). By using [ll], Lemma 2.3 and 
the definition of derivatives in the sense of distribution theory (compare (3.5)), 
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we obtain (Ei , A+) = Ed(Arp) = (AEi) Q and hence (-AEd - hEi) p = Fip, for 
every F E Corn. This yields 

-AE-M?=F. (4.4) 

In particular, it follows that AE E& . In order to prove that E E D(A), it 
remains to show that 

(AE, G) = (E, AG) for every G E _S. (4.5) 

Since Csa is dense in& , there exists a sequence {Gk} in &=o” such that 11 G - GR 11 
-+ 0. Since G - Gk E 8, it follows from (4.3) that 

-(E, A(G - G,)) = (M + F, G - Gk) 

and hence 

I(& AG) - (E, GJ d II MT + F It + II G - G II - 

This implies 
(E, AG) = lii(E, AGk). (4.6) 

Set Gk = (Glcl , Gk2 , Gk3). Since Gkj E Corn and AE E La, we obtain by (3.5) 
and [ll], Lemma 2.3 

(E, AG*) = i (Ej , AG,j) = i EdA’%) 
j=l j=l 

= i (AE,)G,j = i (AEj , Gki) = (AE, Gk) 
j=l j=l 

and hence by (4.6) 

(E, AG) = h&E, AGJ = l$(AE, GrJ = (AEY G). 

This completes the proof of (4.5). Hence we obtain E E D(A). By (4.4) we 
have AE - hE = F so that E is a solution of (DA). This concludes the proof of 
Lemma 4.1. 

In a similar way we can consider a weak boundary value problem with respect 
to the magnetic boundary conditions (1.12). We use the following formulations: 

(D;) Find HE D(A’) such that 

A’H--H=F. (4.7) 

(B’J Find HE _V’ such that 

for every G E _V’. 

B(H, G) - h(H, G) = (F, G) (4.8) 
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The argument used in the proof of Lemma 4.1 implies: 

LEMMA 4.2. H is a solution of (Dl) if and onZy if H is a solution of (Bl). 

5. COERCIVENESS PROPERTIES 

In order to obtain existence theorems for the weak boundary value problems 
(D,) and (DL), we study coerciveness properties of the bilinear form B. We show: 

LEMMA 5.1. The bilinear form 

B(E, G) = (V x E, V x G) + (V . E, V . G) 

is coercive on _V and r. This means that there exist constants cl > 0 and c2 >, 0 such 
that 

B(G, G) 3 cl II G IIf - c2 il G II2 (5.1) 

for ewery G E _V u _V’. 

Proof. Since _S and _S’ are dense in _V and _V’, respectively, with regard to the 
l-norm, it suffices to prove (5.1) for every G E ,S u 8’. By using Lemma 3.1 
and the integral theorem of Gauss, we obtain with G = (Gi , G, , Ga) and 
n = (n, , n2 , n3> 

B(G, G) = -(dG, G) = - i j” (ar2Gi) ci dx 
i.k=l Q 

= - & II, [&(~iWG) - I U-5 I”1 dx 

and hence 

B(G,G)=IIGIl:-lIGll”+S G-&GdS for G E &’ v 8’. (5.2) as2 

Our next aim is to find a constant a, > 0 such that 

(5.3) 
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for every G E &’ u 8’. We decompose 8Q into a finite number of surface elements 
s r ,..., S, with smooth parameter representations 

2 = P(U~ 2 G), (~1, ~2) E Bj > j = l,..., na 

and choose a sufficiently small 8 > 0 such that 

?J = @I 9 u2 , %) + 44 := 4% 9 4 + wM~ 9 us>) 

is a smooth injective mapping of the cylinder Zj = B, x [0, 81 into a for every 
j = I,..., m. Set for u E Z, and i, k = 1,2,3 

&(U) := 2 x(u), gik := ti ’ t, , g := det(gd 

(gik> I= (gdk)-l, c%.f) (4 :=Mu)). 

Let Gi be the (contravariant) components of SsG in the curvilinear coordinate 
system defined by the vectors tl , t2 , t3: 

S,,G = Giti (5.4) 

where we employ the usual summation convention and sum over i from 1 to 3. 
By forming inner products with tk in (5.4), we obtain 

G” = giktl, * S,G. (5.5) 

In the following we use the sign % to indicate that equality holds if us = 0. 
Since t3 A S,,n, we have 

gi, A gsi h 0 if i=l,Z, gss&l 

and hence 

glS & gSi & 0 if i= 1,2, g=A 1. 

We use the following elementary formulas: 

Ss(V * G) = & 4(PaGi), (5.8) 

(5.6) 

(5.7) 

h &a ts 

S,(VxG)=-$ a 
a a 

x au, au,’ (5.9) 

tl - S,,G t2 * S,G ts - S,G 
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Assume first that G E _S. The boundary condition n x G = 0 implies t, * S,G A 
t, - S,,G A 0 and hence, by (5.5) and (5.7) 

G’ & G2 A 0, G3 A t, . S,,G. (5.10) 

This implies by (5.4) 

S,,G S= (t3 . S,-,G) t, . (5.11) 

Furthermore, we have 

S&G) S& &G I $ ((&) 2% Gi & ti + (& Gi) ti . 

Note that at3/au3 = 0 since t3(u) = n(z(uI , u2)). This, together with (5.10), 
yields 

S, (&G) 4 (& G”) ti . (5.12) 

By (5.11) and (5.12) we obtain 

s,, (G . g) A S&7) - S,, (; G) A (t, * S,G) & G3. (5.13) 

Now we apply the second boundary condition V . G = 0. Since (5.10) implies 
a(g112Gi)/aui * 0 for i = 1, 2, it follows from (5.8) that 

s,(v . G) % --& & (gl’2G3) A 6 G3 + -& (&la) G3 + 0. 

Recall that Gs = t, . S,,G. Hence (5.13) implies 

S, (G . ; G) A - --& ($g112) (t, - SoG)2. 
3 

(5.14) 

By (5.14) we can find a constant a > 0 such that every G E S satisfies 

Now we consider the case G E 8’. The boundary condition n * G = 0 implies 

t, . S,G = 0 (5.16) 

and hence a(t, * S,,G)/&, = 0 for i = 1,2. 
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Therefore (5.9) yields 
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SdV x G) A & [ - & ( t2 * W) t, + ; ($1. SoG) t, 

+ (-&- (tz - SoG) - & Pl - W) $1. 

The second boundary condition n x (V x G) = 0 implies 

t,xSo(W)$+ & (tz * SoG) (ts x td + 

and hence 

& (tl . S,G) A 2 (t, - S,,G) = 0. 

By (5.5) (5.7) and (5.16) we have Ga A 0 so that (5.4) implies 

S,G ” G’t, + G2t2 . 

Furthermore, we obtain by (5.4) and (5.5) 

S&G) -&S,c- 3 y& (Giti) & &“(t, - S,G) ti 

A (tk * S,G) & (giktl) + gikt, 2 (tk - S,G) 

and hence by (5.17) and (5.7) 

So(;G) e (trc . S,G) & (gikti) + t, & (t, - S,G). 

Since t1 - t, A t, * t3 A 0, (5.18) and (5.19) imply 

s,(~.~G)“(G1t1+~2t.).(tx.S,G)~~g~~ti). 

(5.19) 

This formula, together with (5.5), h s ows that a constant (z’ can be found such that 
every G E _S’ satisfies 

Thus (5.3) holds for every GE &’ LJ _S’ with al = max(a, 0’). 
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In order to complete the proof of Lemma 5.1, we choose a vector field b E C’(a) 
with bounded support such that b = n on a&‘. Then we obtain 

ja, ) G I2 dS = s,, (n . b) (G . e) dS = - i j &(b,G,&) dx 
i,k-1 S2 

=- j (V - b) ( G I2 dx - 2 t 1 bi Re(G,a& dx. 
R i,k=l f2 

By applying Schwarz’s inequality, we can find a constant a2 such that 

I I G I2 ds < a2(ll G /I2 + 2 II G II - il G IId 
an 

for every G E 8 u 8’. By using 

243 < ia2 + $ 
with 

a = (2a,a2)1/2 // G I/ and B = (2alWi2 II G II1 1 

we obtain 

s I G I2 ds < a,(1 + ha,) !I G II2 + & II G II”, . (5.21) 
an 1 

By (5.2), (5.3) and (5.21) we have 

B(G, G) > B II G II: - Ii1 + w,(l + ‘%a,)1 . II G II2 

for every G E _S u _S’. This concludes the proof of Lemma 5.1. 

6. THE SELF-ADJOINTNESS OF A AND A' 

In this section we complete the proof of Theorem 3.1 on the selfadjointness 
of A and A’. Furthermore, we shall prove the following uniqueness and existence 
theorem for the weak boundary value problems (D,) and (D’J introduced in 
Section 4: 

LEMMA 6.1. The problems (DA) and (Dl) have a uniquely determined solution 
for every prescribed F E &, and every complex number h with )\ $ [O, co). 

First we prove Lemma 6.1 for X = -c2 where c2 is chosen as in Lemma 5.1. 
Consider the bilinear form 

&,(G,, Gz>:= W,, G) + c,(G> G2). (6.1) 
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By Lemma 5.1 we have 

Bo(G ‘7 2 cl II G II; (6.2) 

for every G E _V u _vl. Furthermore, by the definition of B in (3.1 l), there exists 
a constant cs > 0 such that 

for all Gr , G, E _Y u y’. Since ((G, F)( < 1) G II * (IF II < II G (II * JJF )I for every 
G E _V, the mapping G + (G, F) is a b ounded linear functional on the Hilbert 
space _V. 

By (6.2) and (6.3) the bilinear form B, satisfies the assumptions of the repre- 
sentation theorem of Lax and Milgram. Hence there exists an E E _V such that 

B,(E, G) := B(E, G) + c,(E, G) = (F, G) 

for every G E _V. By (4.2) E is a solution of (BJ and hence, by Lemma 4.1, also a 
solution of (DA) for X = -ca . 

In order to show that E is uniquely determined, we consider a solution E of 
(DA) for F = 0 and X = -c, . By Lemma 4.1, E is also a solution of (B,) for 
F=OandX=-c,. Hence we have B,(E, G) = B(E, G) + c,(E, G) = 0 for 
every G E _V. By setting G = E, we obtain B,(E, E) = 0 and hence E = 0 by 
(6.2) since c, > 0. The same argument shows that also problem (Dl) has a 
uniquely determined solution H for X = -ca . This concludes the proof of 
Lemma 6.1 in the case h = -cs . 

Now we prove that A is self-adjoint. Denote the uniquely determined solution 
of (D,,) with h = -ca by KF. Then we have 

KF E D(A) and (A + c,)KF=F (6.4) 

for every F E La . Recall that the adjoint operator A* of A is defined by D(A*) : = 
{F E &: There exists a F* E &. such that (AG, F) = (G, F*) for every G E D(A)}, 
A*F : = F*. Note that F* is uniquely determined by F since D(A) is dense in & 
by Corollary 2 to Lemma 3.1. Since A is symmetric by Lemma 3.3, we have 
D(A) C D(A*) and A*F = AF for FE D(A). Hence it suffices to show that 
D(A*) CD(A). A ssume that F E D(A*). By (6.4) and the symmetry of A we have 
for every G E D(A) 

(AG + c,G, F) = (G, A*F + czF) 
= (G, (A + c2) K(A*F + c,F)) = (AG + c,G, K(A*F + c,F)) 

and hence F = K(A*F + c$) E D(A) since {AG + c,G: GE D(A)} = &, (by 
Lemma 6.1 with X = -~a). This shows that D(A*) C D(A) so that A is self- 
adjoint. A similar argument shows that A’ is self-adjoint. This completes the 
proof of Theorem 3.1. 
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Since A and A’ are self-adjoint and positive (compare Lemma 3.3) the inverse 
operators (A - A)-’ and (A’ - X)-l are defined on the whole Hilbert space &s 
if h $ [0, co). Hence problems (DA) and (D:) are uniquely solvable if X + [0, co). 
This concludes the proof of Lemma 6.1. 

7. WEAK INITIAL AND BOUNDARY VALUE PROBLEMS 

In this section we apply Theorem 3.1 to weak versions of the initial and 
boundary value problems (E) and (M) ( see Section 1) and prove uniqueness and 
existence statements. We shall consider vector-valued functions t -+ F(t) 

defined on the real half line I?,+ : = [0, co) with values in the Hilbert space &a _ 
The basic concepts of calculus, such as continuity, derivatives and Riemann 
integration, can be easily extended to this situation (compare, for example, [l], 
Section 2). We consider the following weak variant of problem (E): 

(E*) Find a vector-valued function E: R,f + Lz to given data E0 , El E &, 
such that 

E E CW,+, Lz), (7.1) 

AE = yE” + puE’ + J1 for t > 0, (7.2) 

E(t) E WI fort 20, (7.3) 

E(O) = Eo , E’(0) = E, . (7.4) 

Here E’ and E” denote the first two derivatives of the &valued function E 
while the Laplacian AE(t), for fixed t, is understood in the sense of the theory of 
distributions as in the previous sections. Note that (7.3) and (7.4) impose the 
compatibility condition E, E D(A). The property (7.3) can be interpreted as a 
weak formulation of the electric boundary conditions (1.11). 

First we discuss uniqueness and show: 

LEMMA 7.1. Assume that E is a solution of (E*) with E0 = El = 0 and J1 = 0. 
Then we have E = 0 in R,f. 

Proof. Let B be the bilinear form introduced in (3.11). Lemma 3.2 and (7.3) 
imply for t, t + h E R,+ 

$ [B(E(t + h), E(t + h)) - W(t), E(t))1 

= + [B(E(t + h), E(t + h) - E(t)) + B(E(t + h) - E(t), E(t)) 

:- jAE(t + h), $ [E(t + h) - E(t)]) - ($ [E(t + h) - E(t)], A-W) . 
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Since AE E C(Ro+, &J by (7.1) and (7.2), we can perform the limit h + 0 and 
obtain 

2 B(E, E) = -(AE, E’) - (E’, AE) = -2Re(AE, E’) 

and hence by (7.2) (with J1 = 0) 

$ B(E, E) = -2~p Re(E”, E’) - 2110 I( E’ 112. (7.5) 

In particular, the real valued function t -+ B(E(t), E(t)) is continuously dif- 
ferentiable in Ro+. Since 

$ (E’, E’) = (E’, E”) + (E”, E’) = 2Re(E”, E’), 

(7.5) can be rewritten as 
p’ = -/La 11 E’ 112 (7.6) 

where p is the real-valued function defined by 

~(4 := iW@W~ WN + v II EWl”l 
= B[ll V x Wll” + II V * Wll” + EP II W)ll”l. 

(7.7) 

In particular, we have p(t) > 0 for t > 0. On the other hand, since E, = El = 0, 
(7.4) implies p(0) = 0 and h ence, by (7.6) p(t) < 0 for t 2 0. Thus we obtain 
p = 0 and hence E’ = 0 in R,+ by (7.7). Since the fundamental theorem of 
calculus can be extended to vector-valued functions (see [l], Section 2), we 
conclude that 

E(t) = E,, + s” E’(T) d7 = E, = 0 
0 

for t > 0. This completes the proof of Lemma 7.1. 
The construction of a solution E of problem (E*) will be based on the func- 

tional calculus for unbounded self-adjoint operators. For convenience, we col- 
lect the main facts which are used in the following (see, for example, [9], Sections 
19-20 for detailed proofs). Since A is self-adjoint and positive, there exists a 
uniquely determined set of projection operators Pn , h > 0 in L, such that 
PO = 0, PAP, = PuPA = Pmin&J , P,G+P,,G for every GsL2 as Xt,, 
P,G+GforeveryGEL,ash+oo,and 

D(A) = {GE&~: $A2 d([l PhG(12) < co/ , 

(7.8) 
AG = j-m X d(P,G) for every G E D(A). 

0 
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The set {I’,,: /\ > 0) is called the spectral set of A. Consider a complex-valued 
function f E CIO, cc). The operator f(A) is defined by 

f(A) G := f-f@) Wd3 for G E D(A). 
0 

The properties of the operators Ph mentioned above imply that h -+ Ij P,G II2 
is an increasing function with 11 P,G \I2 -+ I/ G II2 as X -+ co and that 

jl j+b.~(4 WAG) /I2 = j-” If(Y” d(ll PAG II”> 
a a 

(7.10) 

for every G E &, and every pair a, b of real numbers with 0 < a < b < co. 
Hence the convergence of the first integral in (7.9) is equivalent to the conver- 
gence of the second integral. Formulas (7.8) and (7.9) imply A = id(A) where id 
denotes the identity: id(h) = h for X 2 0. Set jr(X) := hf(h) for X >, 0. Then 
G E~~(A) implies f(A) G E D(A) and 

4fW Gl = f,(A) G = j-cc Aff(4 WAG) for G E D(f,(A)). (7.11) 
0 

After these preparations we continue the discussion of problem (E*). 
First we study the special case Jr = 0. We try to determine real-valued func- 

tions f and g such that 

(7.12) 

is a solution of (E*) with Jr = 0. According to (7.11), we consider the initial 
value problems 

and 

(7.13) 

(7.14) 
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Note that the required initial conditions for f and g ensure that the vector-valued 
function E defined by (7.12) satisfies (7.4). The solutions f and g of (7.13) and 
(7.14) are given by 

f(h, t) = e-ot’2c cash t 
(( 

-& - +)““) 

= ,-.t:q1 + $) 

= e-otl2 cos t 
u 

x u-2 l/2 
- - - 
CP 62 1 1 

l/2 

1 1 
and 

&A, t> = e+‘2r (a2,4E2 A AlEp)1,2 sinh t &2 (( 
u2 

ci 
l/2 

--- 
) ) 

= te-dl2r 

These formulas imply that 

if 

if 

if 

if 

if 

if 

( 1 & kf (A, t) = O(P’2) and 
( ) 
& kg(A, t) = O(h(‘c-19 (7.15) 

as X --f co uniformly with regard to t. By (7.12) and (7.15) we have E E Ck(&+, 
&.) and 

E”‘(t) = Is (&)‘f (A, t) WA&,) + Jrn (+)‘g(“. t) W’&) (7.16) 
0 0 

fori < k if E, E D(A”/a) and El E D(A(*--1)12). In fact, the integral 

s 
m hk 411 P,Eo II”) + x”-l d(ll PA II”>1 

0 

exists under these assumptions by (7.9) so that we conclude from (7.10), (7.15) 
and the monotonicity of the functions h + 11 PAEo /I2 and X -+ 11 P,E, II2 that the 
integrals in (7.16) converge uniformly with regard to t. Hence the Stieltjes 
integration and the differentiation with respect to t can be interchanged. 
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Now assume that E0 E D(A) and El E D(Al/r). Then we have E E Cz(R,+, ;Ii,). 
Since f(h, t) = O(1) and g(h, t) = O(A-1/2) as X -+ cc, it follows as above that 
the integral 

I m Wf(k tj2 d(ll P,Eo II”) + MA t)” d(l! PA II”)] 
0 

converges. Hence (7.11) and (7.12) imply E(t) E D(A) for every t 3 0 and 

-‘J-W) = Irn Af(k t) @Jo) + ja MA t) d(P&). 
0 0 

(7.17) 

This, together with (7.13), (7.14) and (7.16) shows that 

a2 a 
AE+Q++/““~~=~. 

Hence E is a solution of problem (E*) in the case Ji = 0. We collect the results 
in the following theorem: 

LEMMA 7.2. Assume that E, E D(A), El E D(A1i2) and J1 = 0. Then problem 
(E*) has a uniquely determined solution E. E is given by (7.12) where f and g are the 
solutions of the initial value problems (7.13) and (7.14). If, in addition, E, E D(Ak/2) 
and El E D(A(lc-l)IP) then E E Ck(Ro+, L,). 

Note that the assumptions E. E D(Aki2) and El E D(A(k-1)/2) are satisfied if 
E. , El E Cok(s2) for even k and E, E C,k+‘(Q), El E Ct-l(L?) for odd k. If u = 0 
then we have 

and hence 

E(t) = Jam [co, (t-&r” t) d(P,E,) + (F)“‘sin (($r” t) d(PhEI)]. 

(7.18) 

Now we reduce the general case to the case J1 = 0 by applying Duhamel’s 
principle. We need the following preparations. 

LEMMA 7.3. Assume that h E C[O, oo), FE D(Av) and 

)I h iI,* := max 1 h(h)/ + supr A-” I h(X)1 < co 
o<w A>1 

with real y > 0. Then we have 

11 j-k) VP) )/ G II h II; (UFI + I’ A’Fl~)- 
0 
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The proof follows from the estimates 

/I 1’ W W’J9 11’ = s,’ I W”d(ll P,F II”) d (II h Ii:,” s,’ 411 PP II”) 
0 

and 

= (II h II:,” II PP 112 < (II h IlY*12 IIF II2 

/I Lrn W dP,F) Ii2 = llm I WI2 4 PP II”) < (II h II,*>” IO2 h2’ 41 P,F II21 

= (II h II:>” /I Iom XY4PJ) II2 = (II h 11,*j2 II AYFI12. 

LEMMA 7.4. Suppose that p E C(R,+ x R,+) and that 

Wp(A, t) --f 0 as h-to2 (7.19) 

uniformly in [0, T] for every T > 0 (with real y > 0). Furthermore, assume that 
J E wo+, LJ, J(t) E w4 f or every t > 0 and AYJE C(R,+, L,). Then the L,- 
valued function 

Q(t, T) : = jam ~(4 t) W,J(~)l 

is continuous in R,+ x R,+: Q E C(R,+ x R$, L,). 

Proof. Let E > 0 and T > 0 be given. Set 

Ml := oma> II J(~)li 9 

442 := oy;s, II A’Jk)ll 9 -. 
M, := max{lp(A, t)l: 0 < h < 1,0 < t < T}, 

M,:=supr{h-YIp(h,t)l:l <h<oo,O<t<T}, 

M : = max(M, , M2 , M3 , M4). 

Note that M4 < co since (7.19) holds uniformly in [0, T]. Furthermore, choose 
6, , 6,) 6, , S, > 0 such that 

(i) II J(T~) - J(~-311 < GM if 71 , 72 E I?, Tl ad I 71 - 72 I < 6, , 
(ii) I/ ~J(T~) - A’J(T~)II < E/~M if 71 , 72 E [0, T] and I 71 - 72 I < 6,) 

(iii) I p(A, tl) - p(h, t2)l < </8Mif t, , t, E [0, T], h E [0, l] and I t, - t, ( < 
8 31 

(iv) I A--~p(h, tl) - A-yp(h, t,)] < </8M if t, , t, E [0, T], X E [l, co) and 
I 5 - t, I < 6, * 
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The choice of 6, is possible since (7.19) holds uniformly in [0, T]. Set 

and consider two points (tl , TV), (ta , ~a) E [0, T] x [0, T] such that (tr - t,)2 + 
(TV - ~s)~ < S2. Then it follows from Lemma 7.3 that 

This estimate shows that Q is continuous in every square [0, T] x [0, T] and 
hence in R,+ x R,+. This concludes the proof of Lemma 7.4. 

Now we discuss problem (E*) under the assumptions Jr E C(R,,+, L,), 
Jr(t) E D(A) for every t 3 0 and AJ, E C(R,+, I,,). By Lemma 7.2 there exists 
for every 7 3 0 a uniquely determined L,-valued function G, with the properties 

G, E C2(&+, Lzh 

G,(t) E W) for t 3 0, 

-AG, + ERG: + FUG: = 0 for t > 0, 

G(O) = 0, G:(O) = 6 JdT). 

By (7.12) we have 

Since jl(T) E D(A) C D(A1/2), it follows from (7.16) that 

(7.20) 

(7.21) 

(7.22) 

for j = 1, 2. The formula preceding (7.15) h s ows that p(h, t) := (a/at)jg(X, t) 
satisfies the assumptions of Lemma 7.4 with y = 1 if j < 2. Hence Lemma 7.4, 
with y = 1, implies that G,(t), G:(t) and G,“(t), as &,-valued functions of t and 
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7, are continuous in R,+ x R,+. By (7.20), also dG,(t) is continuous in R,+ x 

Ro+. 
According to Duhamel’s principle, we set 

E(t) = Lt G,(t - T) dT. (7.23) 

Since G,(t - T), G:(t - T) and G:(t - ) 7 are continuous in the set {(t, 7): t >, 0, 
0 < 7 < t} by the consideration above, we can form E’ and E” by the usual rules 
which are valid also for vector-valued functions (see [l], Section 2): 

E’(t) = G,(O) + Lt G;(t - T) dT, 

E”(t) = G;(O) + It G:(t - T) dr. 
0 

(7.24) 

We show that E(t) E D(A) for t 3 0 and that 

dE(t) = 1” dG,(t - T) dT. 
0 

(7.25) 

Since G,(t - T) and dG,(t - T) depend continuously on 7 in [0, t] and since 
G,(t - T) E D(A) for 0 < T < t, we obtain by (3.9) for every F E _S 

(E(t), AF) = (I” G,(t - T) dr, dF) 

= 
s 

t (G,(t - T), dF) dT 
0 

= 
s 

t (dG,(t - T),F) d7 
0 

and hence 

VW “F) = (1 dG,(t - T) dT, F) for F E 8. (7.26) 

By setting F = qer with p E Corn and E = (4 , Es, J%), G, = (Cl , G , GA 
we conclude from (7.26) that 

4(t) cp = J-G(t) (&) = @i(t), 43 = (E(t), 4PiN 

= (1” dG,(t - T) dT, qef) = [s,” AGJt - T) dT] v 
0 
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for i = 1,2,3 and every y E C’sm. Hence (7.25) holds. Formulas (7.25) and 
(7.26) imply dE(t) ELM and 

for every F E _S. (7.27) 

This, together with (3.9), yields 

for t > 0. (7.28) 

It follows from (7.20), (7.23), (7.24), (7.25) and (7.28) that E has the following 
properties: 

E E C”(R,+, LA, 

-AE + +E” + HUE’ = J1 

E(t) E D(A) 

E(0) = E’(0) = 0. 

for t >, 0, 

for t > 0, 
(7.29) 

Now assume in addition that X(t) E D(A”i2) for every t > 0 and AL/2 J1 E 
C(R+, La) where K is an integer with K > 2. Then p(h, t) : = (a/at)jg(h, t) 
satisfies the assumptions of Lemma 7.4 with y = k/2 ifj < k. Hence it follows 
from Lemma 7.4 that the &,-valued functions G?)(t), j = 0, l,..., K are continu- 
ous in R,+ x R,,+. Thus we obtain by (7.23) E E Ck(R,,+, L,). These considera- 
tions, together with Lemma 7.2, imply: 

THEOREM 7.1. Assume that E, E D(A), E1 E D(A’/‘), J1 E C(R,+, L,), 
X(t) E D(A) for every t > 0, and A JE C(&+, L2). Then problem (E*) has a 
uniquely determined solution which can be obtained as the sum of the righthand-sides 
in formulas (7.12) and (7.23) where G is dejined by (7.21) and f and g are the solu- 
tions of (7.13) and (7.14). If, in addition, E, E D(A’“i2), E1 E D(Afh-l)12), JI(t) E 
D(Akj2) for every t >, 0, and Akl2 JI E C(R,+, L,), then we have E E C&(R,,+, L2). 

In the same way we can discuss the corresponding weak version (H*) of 
problem (H). In this case we have to replace the generalized boundary condition 
(7.3) by HE D(A’) and PA by the spectral set Pi of A’. The solution is given by 

H(t) = j”f@, f) WX,) + jk, t) d(P;H,) + j” G;(t - T) d7 (7.30) 
0 0 0 

with 

G:(t) = +; jam g(k t) W,Jd~)l (7.31) 

where f and g are defined as above. 
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