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A certain subspace of L2((0, 1), dt) has been considered by Nyman, Beurling,

and others, with the result that the constant function 1 belongs to it if and

only if the Riemann Hypothesis holds. I show that the product

∏

ζ(ρ)=0,Re(ρ)> 1

2

∣∣∣∣
1 − ρ

ρ

∣∣∣∣

is the norm of the projection of 1 to this subspace. This provides a quanti-

tative refinement to Nyman’s theorem.
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Let ρα(t) =
{

α
t

}
− α

{
1
t

}
, for 0 < α < 1, and t ∈ (0, 1) (with {u} the frac-

tional part of the real number u). Let K be the closed span in L2((0, 1), dt)

of the functions ρα. We also consider both K and L2((0, 1), dt) as closed

subspaces of L2((0,∞), dt). Note that K is invariant under the semi-group

of unitary contractions defined as U(λ) : f(t) 7→
√

λf(λt), λ ≥ 1, t > 0.

So, it will contain the constant function 1 if and only if it actually coincides

with all of L2((0, 1), dt).

Theorem 1.1 (Nyman, 1950 [1]) The constant function 1 belongs to K

if and only if the Riemann Hypothesis holds.

This statement was extended by Beurling ([2]) to a characterization (where

L2 is replaced with Lp) of the absence of zeros with real part (strictly)

greater than 1
p
. Bercovici and Foias ([3]) have shown how the L2–properties

of the contraction semi–group U(λ), λ ≥ 1 (obviously central to the case

considered by Nyman) can also be the basis of a proof in the Lp–case. The

paper by Balazard and Saias ([4]), which motivates the present note, gives

further emphasis to the use of Hardy spaces and of fundamental results of

Beurling ([5]) and Lax ([6]) in this context. In this note I deduce from these

methods of proof the following quantitative refinement of 1.1:

Theorem 1.2 Let P be the orthogonal projector of L2((0, 1), dt) onto K.

Then

‖P (1)‖ =
∏

ζ(ρ)=0, Re(ρ)> 1

2

∣∣∣∣
1 − ρ

ρ

∣∣∣∣

Note 1.3 In this product, and others to follow, each zero is counted accord-

ing to its multiplicity. The most basic estimates concerning the imaginary
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parts of the zeros imply that the product (perhaps an empty one . . . ) con-

verges to a non-zero value. Also, note that the map s 7→ z = 1−s
s

is a

conformal representation of the half-plane Re(s) > 1
2 onto the open unit

disc, so that (1.2) clearly implies (1.1).

2

As in the papers cited above on this subject the main tool is the Fourier

Transform, here in its multiplicative version:

( 2.1 ) f(t) ∈ L2((0,∞), dt) 7→ f̂(s) =

∫
∞

0
f(t) ts−1 dt

The integral is to be understood in the L2–sense, with Re(s) = 1
2 . Indeed

we really want to look at
√

tf(t) in L2((0,∞), dt
t
) and at its transform in

the dual group
∫
∞

0

√
tf(t) tiτ dt

t
, τ ∈ R. With s = 1

2 + iτ we end up with

the formula above.

The proof of (1.2) requires some classical results of harmonic analysis (Hardy

spaces, the factorization theorem, the Beurling–Lax description of invariant

subspaces) explained in the books by Dym–McKean ([7]) and Hoffman ([8]).

As the paper by Balazard and Saias ([4]) gives a useful résumé, I will only

give a brief discussion.

If f(t) actually belongs to L2((0, 1), dt), then

f̂(s) =

∫
∞

0
f(t) ts−1 dt

makes sense as an analytic function in the half–plane Re(s) > 1
2 and the set

of such f̂ is characterized by the Paley–Wiener Theorem ([7, Chapter 3]) as

the Hardy space H
2 of analytic functions h(s) whose L2–norms on vertical

lines
1

2π

∫

Re(s)=σ> 1

2

|h(s)|2 |ds|
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are bounded independently of σ. Such an analytic function h(s) = f̂(s)

has (pointwise almost everywhere) non-tangential limits h(1
2 + iτ) which

are obtained as the Fourier–Mellin Transform (2.1) of f of L2((0, 1), dt).

Furthermore, for Re(s) > 1
2 :

( 2.2 ) h(s) =
1

2π

∫ +∞

−∞

h(1
2 + iτ)

s − 1
2 − iτ

dτ

The zeta–function appears in this story thanks to

∫ 1

0

{
1

t

}
ts−1 dt =

1

s − 1
− ζ(s)

s

∫ 1

0

{α

t

}
ts−1 dt =

α

s − 1
− αs ζ(s)

s

( 2.3 ) ρ̂α(s) =
α − αs

s
ζ(s)

We note in passing that

( 2.4 ) 1̂(s) =
1

s

According to the general theory recalled in ([4]) the identity (2.3) already

implies the (absolute) convergence for any s in the half-plane Re(s) > 1
2 of

the Blaschke product

B(s) =
∏

ζ(ρ)=0, Re(ρ)> 1

2

s − ρ

s − (1 − ρ̄)

1 − ρ̄

ρ

∣∣∣∣
ρ

1 − ρ

∣∣∣∣

whose value at 1 is

( 2.5 ) B(1) =
∏

ζ(ρ)=0, Re(ρ)> 1

2

∣∣∣∣
1 − ρ

ρ

∣∣∣∣
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Note 2.6 It is known that such a product built from the zeros of an element

of H
2 is an inner function, that is an analytic function bounded by 1 in the

half-plane whose non-tangential limits on the critical line have modulus 1

(almost everywhere). The expression as an infinite product might cease to

make sense (pointwise) for the boundary values, but in the case at hand it

is absolutely convergent for all s in C, except at the possible poles 1 − ρ̄.

Furthermore Balazard and Saias ([4], section 4) prove that the Mellin Trans-

form of the subspace K considered in the Introduction is B(s)H2. At this

stage, adapting an argument of Beurling ([5, Theorem II]) enables us to show

that the orthogonal projection of 1
s

to B(s)H2 is simply B(1)B(s)
s

. Hence its

norm is given by (2.5), as stated in (1.2). The argument runs as follows:

Proof 2.7 We check that 1
s
− B(1)B(s)

s
is perpendicular to B(s)h(s), for

any h(s) ∈ H
2 :

1

2π

∫

Re(w)= 1

2

(
1

w
− B(1)

B(w)

w

)
B(w)h(w) |dw|

=
1

2π

∫

Re(w)= 1

2

(B(w) − B(1)) h(w)

w
|dw|

=
1

2π

∫

Re(w)= 1

2

(B(w) − B(1)) h(w)

1 − w
|dw|

= (B(1) − B(1)) h(1) = 0

where |B(w)| = 1 on Re(w) = 1
2 and then (2.2) were used. With this the

proof is complete •

To conclude let us mention the following closely related theorem:

Theorem 2.8 (Balazard, Saias and Yor [9])

1

2π

∫

Re(s)= 1

2

log |ζ(s)|
|s|2 |ds| =

∑

ζ(ρ)=0, Re(ρ)> 1

2

log

∣∣∣∣
ρ

1 − ρ

∣∣∣∣
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