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PREFACE

This booklet reproduces with slight changes a
course of lectures delivered in Princeton during the
Spring term 1946. It would be misleading to call it a
theory of transcendental numbers, our knowledge con-
cerning transcendental numbers being narrowly restricted.
The text deals with a few special transcendency problems
of some interest, but it is more than a mere collection
of scattered examples, since it involves a method which
might be useful in the search of more general results.

Carl ILudwig Siegel.

April, 1949
Princeton, New Jersey.
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CHAPTER I

THE EXPONENTIAL FUNCTION

The most widely known result on transcendental
numbers is the transcendency of = proved by Lindemann
in 1882. His method is based on Hermite's previous work
who discovered the transcendency of e in 1873. Both
results are contained in the general Lindemann-
Welerstrass theorem which will be proved in §12. We
shall start with some simpler problems, namely the
irrationality of e and * and related questions.

§1. The irrationality of e
The usual proof of the irrationality of e runs as

follows. From the series

1
e=> i
k=o ¥
we get the decomposition
> a—
e=8_+r s_ = =y, r_ = =
n n’ R P k! D k=ne '

Since

(1 +

n- (n+1 [l h_ (rn+2)(n+3) ) < (n+1 )' ’
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we find that

e-1
e=18, +rT <2+—2—, e(j;l
therefore
2
o< Tn < (n+1) !
Put
1 P [] —_
n!s =a,, nlr = b

then the number a, is integral and

0 (b, <z <

forn=1,2,.... This proves that n! e = a, + bn and,
a fortlori,n e 1s never an integer. In other words, e
is irrational.

The proof is still simpler, if we use the series
1

for e ' instead of e. Then
o k
‘1_ ) _ o} -1 k - = -1
(n=1,2,...)
and
_q1 D41 = 1 _ 1 1
O (=) ey T m T T et S meoT
Defining
nte =ea, n! pn--Bn

we see that @y is integral and



§1. THE IRRATIONALITY OF e. 3
Y 1
0 < (1) gy <

Therefore nle | = a_ +8

R -1,
n n and,a fortiori,n e is never

an integer.

We can prove a little more, namely that e is rot
the root of a quadratic equation axe + bx + ¢ = 0 with
integral a, b, ¢, not all 0. Consider the expression

with integral a and ¢, not both 0. Then

E =8, +R; 8,=8a, +cCao, R =ab, +chy,
where Sn is integral and the absolute value

| Ry | < 1aby |+ oBy | ¢ 2lalelel

n+1 ’

so that

IR, | <1

for all n > 2lal+|c|. On the other hand we have the

recursion formula

nR _, - R =a(mb,_, -b))+ c(nf__, - B,)

a + (-1)%.

It follows that at least one of the three numbers

Rn—1’ Rn, Rn+1 ig different from 0, since otherwise
a+c=0, a-c=0 and a=0, c=0. This shows the existence of
a positive integer v such that Ev is not integral, and

therefore the number
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b + %% =ae + b + ce_]

is different from 0, for all integral b. This means
that

362 +be+cFo0

for arbitrary integers a, b, ¢, not all 0. In other
words, e 1s not a quadratic irrationality.

§2. The operator f£(D)
We denote by D the differentiation with respect

to the variable x. If

f(t) =a, + a1t + agt2 + .

0

is a power series with real or complex coefficients

a4 8, and ¢ = ¢ (x) a function of x, we define
00 o) n

(1) f(D)e = E anDn¢== E a, Q—g.
n=0 n=0 dx

In order to avoid questions of convergence and differ-
entiability, we shall apply the operator f(D) only in
two cases: eithere¢ is a polynomial, or f is a poly-
nomial and ¢ possesses derivatives of all orders. In
both cases, the series (1) is finite.

It is clear that, for two power series f1(t) and

(f1(D) . fg(D))o

(2) (f1(D)f‘2(D))‘p

£,(t),

£,(D)g + £,(D)e

£, (D) (f'z(D)qa) .
Moreover, if a, + 0, then

£71(t) = by + byt + ... by =2, )
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exists and, by (2),

£ (D)(F(De)=¢

for polynomials ¢ .
If the power series f and the polynomial ¢ have
integral coefficients, then also (D)e¢ does, and the

same holds for £ ' (D)e , in case a,. = + 1.

0
We define
J‘P =/¢(t)dt,
0
so that
DJe =¢ (X), JDe=¢ (X) - p(0)
and
~\: - n
(3) = [ bl ()at
0
(n=0,1,...).

In particular we are interested in the case
¢ = e)‘XP, where N 1is a constant and P = P(x) a poly-
nomial. Since

D(eM P) = ¥ +D)P,

we have

(%) D (eM*P) = M\ +D)"p (n=1,2,...)
and

(5) ™ +D)"P = Q(x)



6 I. THE EXPONENTIAL FUNCTION

agaln is a polynomial. Vice versa, if A+ 0 and a
polynomial Q are arbitrarily given, then (5)implies

P=(+D)"Q

and this is the unique polynomial solution of the
differential equation

Dn(exXP) = ekXQ.

In case A= + 1, the polynomial P has integral coeffi-
cients if Q has.

§3. Approximation to e* by rational functions
We are going to determine two polynomials
A = A(x), B = B(x) of degree n, such that the sum

& 4 %-vanishes at x = 0 of order 2n + 1. This

condition implies
(6) BeX + A=R=cx*™" 4+ ...,

where R = R(x) 1s a power series starting with a term
of order 2n + 1. Writing A and B with indeterminate’
coefficients and equating the terms of order o, 1, ... ,
2n in (6), we obtain 2n+1 homogeneous linear equations
for the 2n+2 unknown coefficients in A and B. This
proves that(6)has a non-trivial sdlution A, B. It will
turn out that c # o.

In order to obtain an explicit formula for A and
B, we differentiate (6) n+1 times; then

Dn+1(BeX) _ Dn+1R

(7) eX(1+D)™'B = D*'R = ¢ x©

N
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where
Cy = (2n+1) ... (n+1)c.
Therefore
(8) (1+D)™'B = e_x(coxn+...) = coxn+... = coxn,

n+1

because (1+D)"" B is a polynomial of degree n at most,

and
B = co( 1 +D)_n—1xn.
To find A, we get in the same manner

Dn+1 (Ae—x) — Dn+1 (Re_x)

e X(-14D) A =

= CX +
(-14D)™A = e x™M...) =cxP 4 ... = ¢ xP
0 0 0
A= cy(-14D) k"

This proves that A and B are unique, up to the arbitrary

constant factor Coe Choose c0=1, then

(9) A(x) = (-14D) "%, B(x) = (1+D) D7 xR
have integral coefficlents. Moreover, by (7) and (8),
DR*IR = xTeX

Since R and its first n derivatives are 0 at x + 0, we
obtain, by (3),
V'Y

R= I R= o [ (x-t PePetat
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2n+1
(10) R(x) = / (1 -t ) e Xat
for n=0,1,.... Replacing t by 1-t we find

2111
R(x) = B / £ (1 -t )Re (170 )%4y

so that

(11) R(x)

1
e 4 tnu—t)ncosh{(t—;—)x;dt

§4. The irrationality of e® for rational a + 0
By (10),

2n+1
(12) IR(x)| X I
n!

for all complex x, and
(13) R(x) > o,

for all positive x.

Now let x == m be a positive integer; then the
numbers A(m) and B(m) are integers. Suppose that e
were rational and denote by q > 0 the denominator of

e™. By (6), the number

qR(m) =
is integral. Because of (12) and (13),

2n+1 2n
0<r<q e™ = qme™ B— (1
n!




§4. IRRATIONALITY OF e FOR RATIONAL a + 0 ¢
for all sufficiently large n. This is a contradiction.
Therefore all powers e™ (m=1,2,...) are irrational.
If a 1is any rational number # 0, we write a=% with
integral myo, r+0. Since eT=(e®)¥, it follows that e
is irrational, for all rational a#o0.

a

§5. The irrationality of =
We know that the polynomials A(x) and B(x) of
degree n are uniquely determined by the formula

(14) B(x)eX + A(x) = R(x) = cx 2+ + oeee,

where c40 is given. Replace x by -x and multiply by
eX; then

A(-x)e® + B(=x) = e*R(-x) = -cx°™*' 4 ...,
whence
(15) A(-x) = -B(x).

This can also be proved by using the expressions (9) for
A and B.
Choose x=ri and apply (11), (14) and (15); then
X
e® = 1, cosh {(t-%)x} = cos {(t- %)rl = sinwt

(16) A(™ 1)+ A(-%1) = R(x1)

2n+1 1
(17)  R(ri) = (-1)2* 1———/ t2(1-t)Psinrt dt.
n! 0

The integrand is positive in the interval o { t < 1,
so that
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(18) R(*i) 4 o.

The function A(x) + A(-x) is a polynomial of
degree v = [%] in the variable x> with integral coeffi-
cients. If = is a rational number and q > 0 its
denominator, then the number

@’ R(xri) = j
is integral, by (16). However, it follows from (17) and
(18) that
n
2 _2n+1

o< il ¢ &F— (1
n!.

for all sufficiently large values of n.
This contradiction proves that e and, a fortiori,

n itself are irrational.

§6. The irrationality of tg a for rational a # 0
Define

A(x) - A(=x) = x P(x°),  A(x) + A(-x) = Q(x°),

so that P=P(x2), Q=Q(x2) are polynomials in x° of degrees

[Qél], [g] = v, with integral coefficients, and

2A(x) = Q+xP, 2A(-x) = Q-xP.
X
Multiply (14) by e © and use (11), (15); then
X X X

A(x) e - A(-x)ee = R(x) e 2
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X

xP cosh }2% -Q sinh ;—(= R(x)e

(19)
2n+1 1
- X / £%(1-t)%coshi(t-1)x] dt = S(x),
n! 0

say.
Now let ae=¢b be a rational number #0 and assume

that also ngg is ratiomal. Put x=2a and denote by

q » 0 the denominator of x2=ha2=ihb. Then

X cosh §-='yr, sinh §-= Ys,
where r, s are integers andv + 0. The numbers
¢ P(x%), 0’ Q(x?) are integral, and (19) shows that also
v s(x) =
is an integer, whereas
Ix1

n
2 2n

BRI Q—J-’il— —0  (n—oo).
n

We obtain the desired contradiction if we can
prove that R(x)#+0. This inequality is obvious in case
x° > - 2, since then the integrand in (19) is positive
for 0 { t < 1. 1In order to complete the proof in the
remaining case, we write more explicitly A=An, B=Bn’
R=Rn’ C=C, 3 then
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)
o
>
o
1
>
e
|

n-1 -n nPn-1 = Rp-Bp - RyBry

2n-1
+ ...=C Bn(O)X ,

on-1
)x n-1

= cnr1Bn(O
because An—1 Bn - An Bn-1 is a polynomial in x of degree
2n-1. If Bn(o) = 0, then also An(o) = Bn(o) - Rn(o) = 0,
and the formula

-1 X -1 _
(Bn._‘|+x Bn)e + (An_-|+x An) = Cn_.'x + ..
would contradict the unicity of An—1’ B Therefore

n-1°
-n—1xn,

Bn(o)+0. This also follows from B(x)=(1+D)
namely Bn(o)=(_n;1)n!+o.

Now we infer from (20) that Rn—1Bn - Ran_1+o for
all x+0, so that at least one of the two numbers
Rn_1(x), Rn(x) is different from 0. This suffices for
the completion of the proof.

Separating the real and imaginary case, we see
that tghvd /V b and tg\/B—/vrg_are irrational, for
all rational positive numbers b. In particular, tg a
is irrational for all rational a+0. This contains the

irrationality of =, since tg [ = 1 is rational.
. Py P
§7. The function Ple + e+ Pme

We are going to solve the following problem: let
m different complex constants P,s.--sPy and m non-
negative integers L be given and put

' m
(21) 1g:(r)k+1)=N+1;
=1

to determine m polynomials P1(x),..., Pm(x) of degrees

n - Ty such that the function

17"
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pix )
(22) R=Pe + ...+ Pel

vanishes at x=0 of order N. For the special case m=2,

=y, Py

given in §3.

=1, p,=0, the solution of this problem was

Writing P1""’Pm with indeterminate coefficients
and considering the terms of degree 0,1,..., N-1 in the
power series expansion of R, we obtain N homogeneous
linear equations for the (n1+1)+...+(nm+1) unknown
coefficients. These equations have a non-trivial
solution, because of (21). This provez the existence
of m polynomials Pk(x) (k=1,...,m), not all identically
0, of degrees { n,, suth that the power series of R
takes the form

(23) R=c¢c— +

with some comstant c.
In case m=1 the solution clearly is

so that c#0. It will turn out that, for every m, the
constant ¢ in (23) 1s different from 0 and that, for any
given c40, the solution is unique.

Write more explicitly N=Nm and suppose m » 1. By
(%) and (22),
(Re_pmx) _ Zm—: Dl’lm+1(e(p k'pm)X
k=1

(2k) D P.)

m-1 (p =p )}{ +1
=2 e KM (»ok-pm+D)nTn P

by (23),
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N
+1 _P X +1 m _p X
(25) D" (™M) = cp W Fve ™)
m
N
m-1
= cX +
N !

Since the m-1 polynomials

nm+1
Q, = (P -p+D) P (k=1,...,m-1)

have exactly the same degress as Pk’ they do not all
vanish identically. If follows from (24) and (25) that
the function

nm+1(Re_pmx) (p 1= py)X (ppy—q ~Pp)X

S =D = Q1e + oee. + Qm_1e

golves the vroblem for m-1 and L R TY S

of m andp R with the same constant c.- We now
obtain

] %llnstead

-n_-1
P = (P - p D) " Q (k=1,...,m-1)

and, because of (3),

p_X +1 p. X X _ Dy
(26) Re=c ™ gm g_m / () gt at.
o M
Applying induction with respect to m, we see that
we can prescribe c=1 and that then

2
=

-ni-1
o (91-91+D) —

A
=
I —]

more generally
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- ‘111‘1 n,
(1) B =]l D) x5 (k=1 0,m).
14k !

In order to determine R explicitly we consider
first the case m=2. By (26),

P X X n, (91—92)t n,
R=e / (x-t) 2 e £ g
0 n ! n,!
2 1
n n
1, o
t. 't pt. o +p. t
1 o 171 b
- e e at, (x0)-
1 e
t1+t2=x
t1>o,t2>o

Suppose that the formula

2t "k P,
(28) R(x) = //1|<='1 (n%—e <Kyag,...dt__, (x>0)

t1+...+tnfx
t1>o,...,tm>o

is true for m-121, instead of m. Then

P )t

m-1 (Pk— K
S(t) / ; mK)at, L..dt
[k‘ (t>0).

t1+...+tm_1=t

t1>o,...,tm_1>o

Substituting in (26) and defining tm=x—t, we obtain (28)
for m.

We shall call R=P1e“
form.

+ ,,+pmepmx an_approximation
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§8. Estimation of R(1).
From (28) we can draw two important conclusions:

For arbitrary complex Piseeesp WE have the upper
estimate

|91l+...+|pm|
(29) IR(1)I £ € ,

n1! . nm!

and for real PiseeesP WE have the lower estimate

m

(30) R(1) > o.

§9. Estimation of Pk(1) and its denominator

We apply the expansion

o]
(31) @+D) ™71 =0 TN ST (TR @ TTDY (@#0)
=0

to find an estimate of Pk in (27). Denote by M the

maximum of the m(m-1) numbers ' 1 (1<k<1<{m). Then
2 PP
-1 -N
'Pk(x)lg (M ’D)nk %‘k—! (X>0),

gince the right-hand side, as a polynomial in Xx,
ma jorizes Pk(x). Furthermore,

n, -N Xnk MN—nk % (N—nk+r-1> o &

-1

M "-D — =
( ) : r=0 r nk‘
X N-n +r ny -r N N N
<s—Mm x & eVl = (eme2x)¥ (x>0,
=0
so that

(32) IPk(1)| < (2M+2)N (k=1,...,m).
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1
IfP1,...,Pm are algebraic numbers, then also
Pk(1) is algebraic. To find an estimate of the denomin-
ator of PK(1) we choose a positive rational integer ¢

such that the T{m=1) algebraic numbers E_%7r (1<k<1<m)
k "1

all are integral. It follows from (27) and (31), that
the number nk! qNPk(1) is integral. '

§10. The transcendency of e? for real algebraic a+0

Let a+0 be a real algebraic number gnd suppose
that also e? were algebraic. We introduce the algebraic
number field K generated by a and ea, and we denote by

h its degree over the rational number field. If & is
(1) ¢(h)

any number in K, the norm % (¢) =& means
the product of all h conjugates 5(1),...,£(h) of £, and

we define
TEl=max (184, ..., g,

Take m=h+1, Pk=(k-1)a (k=1,..,m), n,=n,=...=n.=

n)>1. The number n will be arbitrarily large, and we
shall denote by Cys Cphs voee positive rational integers
which are independent of n.

Now the number Pk(1) lies in K. Using (27) for
the h conjugate fields we obtain from (32) that

s n
(33) [P <7,
since N=m(n+1)-1=mn+h<c2nu Also
P

R(1) =P (1) e + ...+ P (1) e

lies in K. In virtue of our former estimate for the
denominator of Pk(1) we can determine a number
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(34) T=c, n!

such that

oee
Il

TR(1)

is an integer in K. By (30), this integer is not 0;
therefore

(35) IR (&) > 1.

On the other hand, by (29) and (34), we have
lgl < e, Mnn)™

for one conjugate, % =€(1) say, but not necessarily for
any other conjugate 5(2),...,$(h), since the h-1 numbers
ex(x=pk(2),...,pk(h))are perhaps not conjugate to e
However, by (33) and (34), we obtain for all conjugates
of £ the estimate

el < c5n n! .

Hence

n
_ _ Cc
19 (5)1 < ¢, Mnt) (e, = L,

for all sufficiently large n, contradictory to (35).
This proves that e® is a transcendental number for
all real algebraic a$0. In particular, the number e

itself is transcendental.

§11. The determinant of m approximation forms
The essential point in the preceding proof was the
fact that the algebraic integer & is not 0, and this
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followed from (3%0). If PseeesPy again are arbitrary
different complex numbers, we can no longer assert that
R(1)#+0. To overcome this difficulty we proceed in the
following way.

For any fixed k=1,2,...,m we choose m=n)1
(1=1,...,k) and n,=n-1 (1=k+1,...,m) and denote the
corresponding approximation form by

R =P el 4+ ... 42 & (k=1,...,m).

k k1 km ’ ?
The degree of the polynomial Pkl is nqg, and this number
equals n or n-1, according to k>1 or k(1. Now consider
the determinant 4 = A (x) of the Pkl' Its m! terms are
polynomials in x, and all of them have a degree <{mn,
except the term corresponding to the main diagonal which
has the degree mn. It follows that the polynomial A has
the exact degree mn.

Denoting the minors of the elements of the first
column of A by A 1"'°’Azn’ we have

-P1X
(36) A==(A1m+.“+Am%He

The function Rk vanishes at x=0 of order
(n1+...+nm) + m-1 =mn + k-1.> mn;

therefore A vanishes at x=0 at least of order mn. This
proves that

A (x) =vx™, A1) = 7+ o.
Now (36) implles that at least one of the m

numbers Rk(1) (k=1,...,m) is not 0, and this suffices,
in particular, for the extension of the proof of §10 to
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the case of a complex algebraic a#o0.

§12. Algebraic independence
Suppose that p algebraic numbers a1,...,ap are

related by a homogeneous linear equation g1a1+...+gpap=o
with rational 1ntegralacoefflclents g1,...,gp, not all o.
Then the p numbersnk—e (k=1,...,p) satisfy the
algebraic equation n1g1...npgpb1 with rational co-
eff'icients. We are going to prove the converse: If
a1,...,ap are algebraic numbers such that g1a1+...+gpap
40 for all rational integers g1é...,gp except for g,=0,

.,2 =0, then the p numbers . X are not related by an
algebraic equation with algebraic coefficients. This
means in case p=1 that e® is transcendental for algeoraic
a+0. In particular, 7 is transcendental, since e2”1=1.

Assume that the statement is not crue; then there
exists a polynomial G=G(y1,...,yp) in p variables
Tyseeesy and with integral algebraickcoefficients, not
all 0, such that G vanishes for V.= (k=1,...,p). Let
d be the total degree of G(y1,..,,yp) and denote by h
the degree of the algebraic number field K generated by
8y5e-058 and the coefficients of G. We choose a
rational integer f)>d such that
p p
(37)  TT (£-d+k) > (1= L) TT (£4k);
k=1 k=1

this is possible because the difference of these two
polynomials in £ has a positive highest coefficient,
namely h g,
The number of all monomlals ¥, y p of total
degree { £ or £ f-d is HF( p) or r= (f- %+p), respect-

ively. Denoting them by Y1,...,Ym and Z. 45 Zps
we obtain
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Y O+ ... +ay Y (k=m-r+1,...,m)

k1 M mm ’

ZkG=a
where @ is 0 or a coefficient of G. It is clear that
the r-rowed coefficient matrix (akl) has the rank r,
since the polynomials ZKG are not related by any homo-
geneous linear equation with constant coefficients, not
all o.

Let

- g -
1= 7, v yp D, Pl = 8,8, + ...+ gpgp
(1=1,...,m).

Then.p1,...,pm are m different numbers in K and

[4 pm
L +ay e =0 (k=m-r+1,...,m).

a
m

k1€

Now consider the m approximation forms

p
R (x) = B (x) ePF 4 L4 B (x) o1
(k=1,...,m)
of §11. We know that the m-rowed matrix (Pk1(1) has a

non-vanishing determinant A (1), so we can find m-r rows,
say for k=k1""’km—r’ which together with the r rows of
the matrix (akl) constitute a non-vanishing determinant.

Write

PKT-‘L(") =at1, Rkt(]) =3t (t=1,...,m—r);
then
P P K=1,...,m
@ e +...+akmem=ﬁk ( s o)
where Bk=0 for k=m-r+1,...,m. Let A be the determinant
of the<1k1 and A1"“’Am the minors corresponding to the
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first colum. It follows that

(38) 0% A = (A B, +...+A B ) e "l

Now we shall apply the results of §9. Since
nq= n or n-1 we can determine a number

= 1
T cTnn.

such that the (m-r)m numbers Takl (k=1,...,m-r;1=1,...

are integers in K. This implies that also T A g
integral, whence

(39) I® (A > TR oo Tpyh(zm),
Moreover, by (32),
(40) E;;IT < 02 (k=1,...,m; 1=1,...,m)
(41) a1l <e ot
On the other hand, by (29),
1Bl < epnm)™ ey Mmn)™
(t=1,...,m-r),
so that, by (38) and (Lko0),
(¥2) AT <eptmn™.
The estimates (41) and (42) imply

In (A)] < e ™

,m)
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Letting n— % and comparing with (39) we see that

m < h(m-r)
r < (1-%)m.

Because of the definitions of m and r, this contradicts
(37)-

The result can be formulated in another way.
Suppose that b1"“’br are different algebraic numbers.
If p of these r numbers, and not more, are linearly
independent in the field of rational numbers, then we
can find p linearly independent algebraic numbers
a1,...,ap, such that

b (k=1,...,r)

k= 8@y *oeee ¥ gkpap
with rational integral coefficients &1 Now consider
the rational funétion

of the variables yl,...,yp with arbitrary algebraic
190+ +2Cps not all 0. It cannot vanish
identically in y1,...,yp, since the sequences of ex-

coefficients ¢

ponents Bqreee ,gk are different, for k=1,...,r. Now
a
our result shows that f cannot vanish for yl—e 1,...,yp
=e p’ hence
b by
(43) c,e |+ ... +ce 4o,
This is the Lindemann-Weierstrass theorem: If b1""’br

b
are different algebraic numbers, then e 1,...,ebr are not
related by a homogeneous linear equation with algebraic
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coefficients, not all o.

Vice versa, this theorem contains our previous
result, since an algebraic equation between ea1,...,eap
with algebraic coefficients would mean thgt a certaig
polynomial f(y1,...,yp) vanishes for y,=e 1,...,yp=e P,
Since &,,...,a, are linearly independent in the rational

number field, we would obtain a contradiction to (43).

§13. Another expression
for the remainder term R(x)
We shall devote the rest of this chapter to study
more closely the analytical properties of approximation
forms. We start from the complex integral

Xz
(z)

nk-f-'l
: (Z-pk) ’

0]

dz, Q(z) =

O
=

1
(k) J=—./
2% 1 c

where the I and . have their former meaning and C is a
simply closed curve in positive direction which contains
<Py in its interior. Inserting

» 1 1
P X (z-py)
o 1!

Pisre-

we see that tpgxresidue of the integrand at z=P, takes
the form Qe k , Wwhere Qk=Qk(X) is a polynomial in x of
degree < nk. Then, by the residue theorem,

#)x P

J = Q1e + e+ Qme

On the other hand,

o] 1 1
=5 - X = — Z__ dz.
J = = 81 1T’ 81 2wl /CQ(z) z
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If we take for C a curve which contains the whole
circles lzlgpk (k=1,...,m) in its interior, we may use
the descending power series expansion

-N-1 & -1y -1 -N-
Qréj = N ll} (1-35) S e R

This proves that

8.1 = 0 (1=0,1,...,N—1), aN=1.
Now the uniqueness theorem of §7 shows that Qk=Pk(x)
and J=R(x).

The expression

(5 o0 = gy [ ey

of the remainder term as a simple complex integral is
more elegant than the expression as an (m-1)-fold
real integral in (28), but it is inconvenient if one
wants to prove the results of §8. Without using the
uniqueness theorem we can transform (45) into (28) in
the following way. Suppose x)0, then C can be deformed
into a straight line L from c-iec to c+ieco , where c is
a real number greater than the real parts of the P
Substitute

(z-p,) S ﬁiT .émtkm'{e(pk Z)tkdt

K (k=1,...,m-1)

and interchange the order of integration; then
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R(x) =[°...£°9

e(x—t1-...-tm 1)z met o, n. Pty
(1 — dzy IT *k__e  dt,
271 /L, (z-pm) m k=1 nk!
But .
P
tz QE e 1 (t>0)

‘l’}£ _42____5:1 dz = ¢n!
ori (z-P) o (t<0),

and (28) follows immediately.
It is simple to get rid of the restriction x)0 in
(28): Substitute th for tk’ then

m otk p ot x
(46)  R(x) = xN //LIZI (—lﬁ—'ekk )at,...dt_ .,
t1 + oee. + tm =1
t, > o, ...,tm>o

and this holds for arbitrary complex x. Since R(x) = 2—

N!
+ ..., the integral in (46) has for x=0 the value ﬁ,;
hence

IR < J—’;?'E Xl o= max(le, e o),
which 1s a refinement of (29).

It remains to prove formula (27) for Pk from our
present point of view. We know that Pk(x) is the co-
efficient of (z-pk)nk in the power series expansion of
the function .
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- m -n- -1
1=1
"1k
at the point z=P) ,
P (x) = =+ (D, K, (2)]
k nk! z k z =Pk
Putting
n -nq -1
{_'_1 (Z-pl) 1 = g(Z),
1+k
we obtain

D, ks, (z) = {27k (x4D,) Kg(z).

Now consider more generally the expression ¢(x+DZ)g(z),
for any polynomial ¢ (x). Then, by Taylor's formula,

1 1
i‘o—_— DX @(X)DZ g(Z)

¢(x+DZ)g(z) = = g(z+DX)f(x).

1=0
It follows that

Py m o
14k

g.e.d.

§14. The interpolation formula
The integral J of §13 also appears in the solution
of the following interpolation problem: ILet an analytic
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function f(z) be regular in a domain D of the complex

z-plane, and let n points Zysee 2y of D be given; to
determine a polynomial Hn—1 of degree < n-1 such that the
fraction

f(z)-H_ _.(z)

?
(z-2,.)
k=1 K

is regular in D.

It is clear that there cannot be more than one
solution, since the difference of two solutions Hn—1
would be a polynomial of degree { n and divisible by
the polynomial TT 5;1(Z_Zk) of degree n.

Put

Fi.(z) = (z-2,) ... (z-2) (k=0,...,n),
so that
Fk(z) = (Z_Zk)Fk—l(Z) (k=1,..,n)

(z=z) JF, _, (8) - F (8) = (z2-0F, _, (¥)

(47) P18 B R, ()
s\ B, (2) ~ F(z)) T R (z)

Suppose that also { lies in D and consider a simply
closed curve C in D whose interior lies in D and con-

tains the n+1 points z .,zh,f. Define

-l)

_f(z) 4z,
k-1 = 2zl F (z)

(48)

o
H

[®]
r
—
)
-
|

J_/c () 2(z) az;

T oowi k(z) z- ¢
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then Go(§) = £(1)

and, by (47),

G, 6) - G (&) =8 B (§)  (k=1,...,n);

whence

£(§) = aF(3) +aF (§) + ... +a (5) + G (£).

n1n1

Therefore the solution of the interpolation problem is
given by ‘

Fo(§) +aF (§)+ ... +a |F (¢)

n-1"n-1

Ho_, ()

G, (%)
n 1 f(z) dz
W) =FEy = [ F(z) 2T

Now consider an infinite sequence of points

in D and suppose that lim G (z)=0 for all z

Z 32y s
172 n— 0

in a domain DOC D. Then
f(z) = aOFO(z) + a1F1(z) + e (z in DOL

and it follows that an%o for infinitely many n except
when f(z) is a polynomial.

We apply this to the special case f(z)= e*? and
take for Zysee e s 2N the set consisting of nk+1 times
the point pk(k=1 ,...,m). By (4k) and (48), we see
that the coefficient ay is exactly the integral
J=R(x) of §13. 1In particular, choose n,=n (k=1,...,r+1)
and n, =n-1 (k=r+2,...,m) and take n=0,1,...; r=0,1,...,
m-1, so that N=mn+r=0,1,... . It is easy to see from
the expression for GN(K) that ljmGN(z) o for all z.
Since e is not a polynomial, th is implies that R(1)%0
for infinitely many N. The finer algebraical approach
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of §11 showed that for every n)o the interval mn{N<{m(n+1)
contains at least one N with R(1)40; but this fact is

not needed for the proof of the transcendency of e® for
algebraic a0, though it is important for the more
general problem solved in §12.

§15. Concluding remarks

It should be mentioned that the preceding proofs of
the transcendency of e and ®* and of the algebraic in-
dependence of e 1,...,e%P, for linearly independent
algebraic a1,...,ap, are not the simplest to be found in
literature. Our proofs are related to the original
work of Hermite; however, our procedure in constructing
the approximation forms is somewhat more algebraic, and
this has been decisive for the generalization which we
shall investigate in the next chapter.

Two characteristic properties of the exponential
function y= e* were used in our proof's, namely the
differential equation y'=y and the addition theorem
ex+t=exet. Our generalizations will go in two different
directions: ZEither we consider solutions of linear
differential equations without assuming an addition
theorem, or we deal with functions satisfying an alge-
braic addition theorem. In the first case we are led
to the problems considered 1n the second chapter. The
second case brings us to the study of elliptic functions
from the arithmetic point of view, in the last chapter,
and of the function a* for algebraic 40, in the third
chapter.




CHAPTER II
SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

The irrationality of t—%'-—-a*for rational ae#o, which
includes the irrationality of = , was discovered by
Lambert nearly two hundred years ago. Lambert's work
was generalized by legendre who considered the power

series
n

v =fyx) = g n'aax+1 )).(..(a+n—1)

(@40,-1,-2,...)

satisfying the linear differential equation of second

order

" 1

Xy +ay =Y.

He obtained the continued fraction expansion

X
Y =a+ X

]
¥ a+1+ a+2+.

and proved the irrationality of y/y' for all rational
x40 and all rationala#0,-1,-2,... In the special case

a= %—we have

y = cosh (2VX), y' = sinh (2yX)/ /X,

so that Legendre's theorem contains the irrationality of
tg a/a for rational a2+0. In more recent times,

31
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Stridsberg proved the irrationality of y and of y',
separately, for rational x+0 and rationala #0,-1,...,
and Maier showed that neither y nor y' 1s a quadratic
irrationality. Maier's work suggested the idea of in-
troducing more general approximation forms which en-
abled me to prove that the numbers y and y' are not
connected by any algebraic equation with algebraic
coefficients, for any algebraic x+0 and any rational
a+0, + %, -1, + %,... . The excluded case of an
integer o + %-really is an exception, since then the
function f4(x) satisfies an algebralic differential
equation of first order whose coefficients are poly-
nomials in x with rational numerical coefficients; this

follows from the explicit formulas

2 (k- %—) DXcosh (2vTX),
-1 kxk-l-'e' K+1
(k=0,1,2,...).

For instance, in casea = %, the differential equation is

y2 - xy'2 = 1.

In the excluded case, however, Lindemann's theorem shows
that y and y' are both transcendental for any algebraic
x+0.

We are now going to develop a general method for
transcendency proofs involving solutions of linear
differential equations and to apply it to the function
y=fg(x).
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A function y= f(x) is called of type E, or an
E-function, if

n

£(x) = 3 Chiy

n=0

is a power series satisfying the following three condi-
tions:

1) All coefficients c,, belong to the same
algebraic number field of finite degree over the
rational number field.

2) If ¢ is any positive number, then TE;T=O(nn°)4
as n—- o, .

3) There exists a sequence Qgs Qqse-- of positive
rational integers such that c K is integral for
k=0,1,...,n and n=0,1,2,..., and that ap= O(n €.

We shall recall to memory that the symbol rE;n
désignates the maximum of the absolute values of all
conjugates of the algebraic number Che The second
condition means that f_—W, as a function of n, increases
less rapidly than any positive power of n™. This implies,
in particular, that y 1s an entire function of x. The
third condition states that the least common rational
denominator of CisevesCy increases less rapidly than
any positive power of nl.

Obviously, any polynomial with algebraic -co-
efficients and the exponential function e* are examples
of E-functions.

It is clear that the derivative y' of an E-
function again is an E-function. It is also clear that
the sum of two E-functions is an E-function. The same
is true for the product: If also

g(x) = Zd ’ri—
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is an E-function and rh denotes the least positive
rational integral common denominator of do,d1,...,d
then

rl)

f(x)g(x) =5 e

il
5

a n
ey = ZO ()eydp >

so that

ﬁ%;] < (1+1)n E?? FEEEE:ET — Eno;nzne) _ O(ane),
n

and the positive rational integer

a1, = 0(x™) ‘

is common denominator of €gscesCp- This shows that the
E-functions constitute a ring. Finally, also f(ax) is
of type E, for any algebraic constant a.

Later we shall study E-functions y1=E1,...,
ym=Em which satisfy a system of homogeneous linear

differential equations of the first order

m
(49) q=§%wwl (k=1,...,m)

whose coefficients le are rational functions of x. ILet
the polynomial T(x) be the least common denominator of the

m2 rational functions le(x) and consider the numerical

coefficients of T(x) and the T(x) le(x) as unknown
quantities. If we insert the power series E1,...,Em,
then the differential equations (49) become a system of

countably many homogeneous linear equations for these
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finitely many unknown quantities, with algebraic co-
efficients. Therefore we may assume that the numerical
coefficients of the le are integers in K, the alge-
braic number field generated by all coefficients of
E1,...,Em together.

It is not hard to show that for power series
solutions of (49) the first condition concerning
functions of type E, namely, that the coefficients Cy
belong to the same algebraic number field K of finite
degree, could be weakened to the condition that all
coefficients of E1,...,Em are algebraic numbers. It
could be proved, as a consequence of (49), that the
field K generated by all coefficients is of finite
degree. However, we do not need this property, and we
omit the proof.

It is well known that the system (49) possesses
a basis of m solutions yk=Ek1 (k=1,..,m), for 1=1,...,m.
0f course, not all Ekl are in general of type E; but all
Ekl are regular at all finite complex points x=a
which are different from the zeros of the polynomial
T(x), and the determinant of the Ekl does not vanish
at x=a. Any solution of (49) takes the form
yk=c1Ek1+"'+cmEkm (k=1,...,m) with constant CysevvsCpoe

§2. Arithmetical lemmas

Consider p homogeneous linear equations with g
unknown quantities XypeeesX and integral rational
coefficients. They have a non-trivial integral rational
solution, 1f pd{g. It is useful, for different purposes,
to obtain an upper estimate of the absolute values of
..,xq in terms of bounds for the coefficients.

Xy

LEMMA 1. Let

(50) Ve = BqXq * oo akqxq (k=1,...,p)
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be p linear forms with integral rational coefficients
and a variables, where 0<{p<{q, and suppose that the
absolute values of all 8. are not greater than a given
positive rational integer A; then there exists a non-
trivial integral rational solution x1,...,xq of ¥,=0,...,
yp=o satisfying the conditions
D
Ix | <1+ (@) dP (k=1,....q).

PROOF: Let H be a positive rational integer and
insert in (50) for XyseenXg independently the 2H+1
values 0, + 1, ..., + H. We obtain (2H+1)% points with
integral coordinates y1,...,yp, all lying in the cube

-qAH < ¥, < qAH (K=1,...,D).

Since there are exactly (cgAH + 1)p different points
with integral coordinates in this cube, it follows that

at least two different systems X1,...;xq have the same
image point y1,...,yp, if
(51) (20AH+1)P  (2H+1)9.

Under this condition we obtain by subtraction a non-

trivial integral rational solution x1,...,xq of

y1=0,...,yp=o satisfying the inequalities

(52) !xk! { 2H (k=1,... q).

Now choose for 2H the even number in the interval
_b_ D

(qA)q-p -1 { 2H < (gA)97P + 1

of length 2; then (51) is fulfilled, because of
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(2qAH+1)P < (qAP (2H+1)P

{ (2H+1)97P(2H+1)P = (2H+1)4,

and the lemma follows from (52).
Now we generalize lemma 1 to algebraic number
fields K.

LEMMA 2: Suppose that the coefficients of the p
linear forms V=B Xy + e A Xy (k=1,...,p; p<q) are
integers in K, and let akl' { A; then there exists in
K a non-trivial integral solution XiseeesX of y1=0,

a
..,yp=0 such that

b__
(53) K] < c +c(can)dP (k=1,...,q),

where ¢ is a positive constant which only depends upon K.

PROOF': Choose a basis b1""’bh of the integers
in K relative to the rational number field. Then any
integer a in K has the form a=g1b1+...+ghbh with
rational integral EpseeesBp- Solving for 8150058y
from the h equations for the conjugates of a, it
follows that ngl <'y1 fal, where v, only depends upon
the choice of the basis. Now write Xk=xk1b1+"'+xkhbh
with rational integral Keqs oo X¥pn and express also
all pgh products aklbr in terms of the basis; then the

p ecuations =0,...,y,=0 for x.,...,x_  become ph
- I D q

I 1’
homogeneous linear equations for the gh rational integers

x11,...,th with rational integral coefficients of
absolute value less than ¥, max fa 10,1 <,72A’ where
D is a positive rational integer depending upon the

basis. Applying lemma 1 we obtain a non-trivial solution
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satisfying
b_
Izl <1+ (v hqA) TP

(k=1,...,q 1=1,...,h),
and this implies (53).

§3. Approximation forms

Consider m power series E1,...,Em and m poly-
nomials P1(x),...,Pm(x) of degree { v with indeterminate
coefficients. Obviously, we can choose the m(v+1) co-
efficients, not all 0, such that the approximation
form P1E1+...+PmEm vanishes at x=0 of order m(v +1)-1
at least. For our further purposes we are interested
in the case that E1,...,Em are of type E; then the
coefficients of P1,...,Pm can be taken as integers in
the algebralc number field K generated by the coefficients
of E1,...,Em. Lemma 2 gives us an upper estimate of the
absolute values of the coefficients of P1,...,Pm and
thelr conjugates; however, the estimate in Lemma 2 is
useful only In case the ratio p/q 1s not too near to its
upper bound 1. Therefore we now weaken the condition
that the approximation form vanishes at x=0 of the

highest possible order.

ILEMMA 3: let E1,...,Em be E-functions with co-
efficients in K, and let an Integer n=1,2,... be glven.
There exist m polynomials P1(x),...,Pm(x) of degree
{2n-1 with the following.three properties:

1) The coefficients of P1,...,Pm are integers
in K, not all 0, and the maximum of the absolute values
of all their conjugates 1is O(n(2+‘)n), for every glven

positive ¢ and n— oo .
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2) The approximation form

fo

X
(54) R = PE + ... +PE = ;=o a, 5
vanishes at x=0 of order (2m-1)n at least, so that
(55) a,=0 (v=0,1,..., 2mm-n-1).

3) The coefficients a, of R satisfy the con-
dition

a,=v¢’ o(n°™) (v > 2mm-n)
uniformly inv .
PROQOF: Put
o) v
= X
Be = 2 %, (k=1,...,m)
and
2n-1 xV
—_ - 1 —t N,
(56) Pk = (2n-1)! Ey =:O gkll b !

with integral &y in K, so that Pk is a polynomial of
degree <2n-1 with integral coefficients in K. Com-
puting the coefficients a, in the expression (54) we
find

X‘l
(57) RE = (emo)t 36y, T,
2n-1 Y
dy,, = g (0) BkpCk,v-p

(58) a, = (2n-1)!(d,, +...4d ) (v=0,1,...).

mv
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The condition (55) yilelds (2m-1)n homogeneous linear
equations for the 2mm unknown quantities 8o

(k=1,...,m; P=0,...,2n-1). Determine a positive
rational integer an such that AnCry is integral for
k=1,...,m andv =0,...,2mnn-n-1; because of condition 3)
in the definition of a function of type E, we may choose
On=0(nfn). Multiply the equations a,=0 by'qn/(en—1)!;
then the coefficient qn(z)ck,V'P of Ep lies in K, and
all its conjugates again are o(n*™), because of

(59) (51 <2”, Mep,] = 0we”)

andv < (2m-1)n. Applying lemma 2 with p=(2m-1)n,
q=2mn, A=O(n€n), we find integral S v (k=1,...,m;
v=0,...,2n-1) in K, not all 0, such that (55) is ful-
filled and

ngvl = O(ntn),

because of rg—-= 2m-1=0(1). The remaining statements of
the lemma readily follow from (56), (57), (58), (59),
together with the estimate (2n-1)! = O(nen).

§4. Normal systems

Suppose that the E-functions E1,...,Em satisfy a
system of homogeneous linear differential equations of
first order (49) whose coefficients le are rational
functions of x, with integral numerical coefficients in
the algebraic number field K generated by the coeffi-
cients of E1,...,Em. It may happen that the matrix
Q=(Qk1) decomposes into a number r of quadratic boxes
Qt=(Qk1,t)’ where t=1,...,r, with m,,...,M, rows, SO
that k,l=1,...,mt and m, +...+m =m. ‘This means that the
boxes are arranged in the diagonal of Q and that all
elements of Q outside of the boxes are 0. The decompo-
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sition is unique 1if we choose r a3 large as possible;
then we call Q1,...,Qr the primitive parts of Q. Of
course, it can happen that r=1 and Q itself is primitive.

Corresponding to the decomposition of Q into
primitive parts the system (49) breaks into r separate
systems

My
(60) y&’t = %;; le,t(x)yl,t (k=1,...,m ;t=1,...,r).

let Yk,t=yk1,t(k=1""’mt)’ for l=1,...,mt, be a bagis
for the solutions of (60); then the m-rowed matrix Y
consisting of the r boxes Yt=(yk1,t) is a solution matrix
for (L49).

Now consider any solution ELERERF of (49) and
introduce the sum

(61) R=Py, + ... + Py

whose coefficients P1,...,Pm are arbitrary polynomials
in x. We are interested in the case that R vanishes
identically in x. Using the box decomposition of Q we
write P*k,t(k=1""’mt5 t=1,...,r) instead of P1,...,Pm.
Expressing the solution RLERERF in terms of the basis
we then obtain

%
(62) R = kzl = Ple,tC1,t i, e
s )
where k,1=1,.. <My and t=1,...,r, the P*k,t being poly-

nomials and the c1 £ constant The sum R trivially
equals 0 if all products ¥ k, +C 1,t are 0, or, in other
words, if for each t=1,...,r either all polynomials
P*k,t are identically 0 or all constants cl,t are O.

We shall say that the boxes Yf are independent, if R
does not vanish identically in x, except in the trivial
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case. If the box Qt is given, then the solution box
Yt only is determined up to a factor Ct to the right,
where Ct is an arbitrary mt-rowed non-singular constant
matrix; but the passage from Yt to tht does not affect
the independence property.

We shall study the algebraical meaning of inde-
pendence of the solution boxes. Define R1=R by (61) and

(63) R, =TR! (k=1,2,...)

where T(x) 1s the least common denominator of the le(x).
Because of (L4S) we can write

(64) R, = P ¥y, + -ov + Py (k=1,2,...),
where
m
— 1 —
(65) Pk+1,1 = T(Pkl + é=1 Pnggl) (1=1,...,m)
and
(66) P,y = Py

Clearly, all Pkl are polynomials in x. Denote by

b = A(x) the determinant with the elements Pkl
(k,1=1,...,m) and by A 1Kk the minor of Pkl; then (64)
implies

m
(67) Ayk=1Z1Ak1R1 (k=1,...,m).

There are two cases when we can immediately assure that
A (x) vanishes identically in x: If in (62) all P*k,t’
for k=1,...,mt and at least one t, are identically O,

then the box decomposition of Q shows, because of (65),
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that my columms of A are 0; 1if R is identically o,
but not all Vqyse++s¥y, then (63) and (64) imply
4 =0. Exclude the first case; then the assumption of
the second case, because of (62), means that the boxes
are not independent. Now we prove that, in all other
cases, the polynomial A (x) does not vanish identically.

LEMMA 4: Suppose that the boxes Yt are independent
and that, for each t=1,...,r, not all P*k t (k=1,...,mt)
b
vanish identically; thend (x) is not identically o.

PROOF: If 8 =0, then we could determine p <{m
polynomials A1,...,A“ such that

A1P11 + e+ Auﬁll =0 (1=1,...,m), Ap*o.

Let Vool be a completely arbitrary solution of (49)
and use the notation (61) and (62). It follows from
(63) and (65) that

A1R1 + e +A,‘ R“=O

(s¢) B,R* ") LB R, . .B, R= o0,

where B =A, T* 71 and B,,...,B, are polynomials in x.
Taking for ViV the m basic solutions, we see that
each of the m functions

M«

1,t = E;% Pt Yk, (1=1,...,m; t=1,...,T)

R

satisfies the homogeneous linear differential equation
(68) of order ¢ -1 {m. Therefore we have a non-trivial
homogeneous linear relationship
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(69) > ¢ R =0
Tt 1,t "1,t

with constant cl,t‘ But the r boxes Y£ are independent,
and not all products P*k,t Cy ¢ (k,1=1,...,m; t=1,...,r)
are 0, because at least one P*k,t+°’ for each t. So
(69) is 1mpossible.

We shall say the m functions E1,...,Em of type E
form a normal system if they all are not identically o
and satisfy the m differential equations (49), with
rationdl le(x) and algebraic numerical coefficients,
whose solutions boxes Y% are independent. This condi-
tion of normality will be decisive in the proof of an
extension of the result of §11, Chapter I, which led
to the Lindemamm-Weierstrass theorem.

§5. The coefficient matrix

of the approximation forms
From now on we shall assume that the E-functions

E1,...,Em form a normal gystem and that P1,...,Pm are
the polynomials in the approximation form (54). Again
the polynomials Pkl(k=1,2,...; 1=1,...,m) will be de-
fined as in (64) and (66), so that the approximation
forms

Rk = Pk1 E1 + oee. + PkmEm (k=1,2,...)
satisfy the equations
(70) R1 = R, Rk+1 = TR& .
None of the functions E . Em is identically oO.

Suppose that the derivatives E (k)(x), fork=1,...,p-1
and 1=1,...,m, vanish at x=0, But not a1l £, P)(0)
(1=1,...,m). Of course, p may be 0. We denote by
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q the maximum of the degrees of the m2+1 polynomials
T and T le (k,1=1,...,m), and we define

t=n+p+a4a miglll - 1.

LEMMA 5: ILet @ be any complex number different
from 0 and the zeros of the polynomial T(x) and suppose
that

(71) nYp+qo=t),

then the matrix

(72) (Prr () ey L met
1=1,...,m

has the rank m.

PROOF: We use the box decomposition of the system
(49) and write again more explicitly P*k,t(k=1,...,m 3
t=1,...,r) instead of P,,...,P . DNot all P*k,t are
identically 0, because of lemma 3. We may choose the
notation such that P*k +=0 for k=1,...,m and t=p+1,...,13
whereas for every t<p at least one P K, t+O Put

m, +. =y ; then 1{p { m. We shall first prove that

1 P
po=m.

We apply lemma 4 with ¥ 1instead of m. The
assumptions are satisfied, since E1,...,E“ form a
normal system, a fortiori. Denoting by A =A (x) the
determinant of the Pkl (k,1=1,...,» ), we see that A

does not vanish identically in x. By (67),
(73) a .Yk = ;éAkl (P11y1+...+P1“ yll' ) (k=1,-o.,# )

identically in x and ViseeosVy o and in particular
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M
(74) AF'k:lZAklRl'
=

Because of lemma 3 the power series R vanishes at x=0
of order (2m-1)n at least, so that Rl’ in view of (70),
vanishes there of order >(2m-1)n-1+1. Choose k such
that E(E)(O)+o; then (74) implies

(75) A(x) = x(BETTINTE Dy (o,

where A O(x) again is a polynomial and not identically o.
On the other hand, Pkl has a degree < 2n-1+(k-1)q, by
(65) and lemma 3; therefore the » -rowed determinant A
has a degree {(2n-1)u +q &iﬁill——. If b denotes the

2
degree of A O,then

(76) 0 { b < (2n-1)¥ + QL‘;"il— (2m-1)n + B -1 + p -

(k1)

= -2n(m-K) + n + P + q >

Because of the condition (71), the right-hand side in
(76) would be negative in case m-# > 1. This proves
that ¥ =m and

(77) b§n+p+qm12“—il—1=t.

The number @ in the statement of the lemma satis-
fiesa T(a)$0. If A (x) vanishes at x=a of order a;
then, by (75) and (77),

(78) . o<a<t.

Consider for a moment the indeterminates y,,...,¥y, in
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(73) as arbitrary solutions of (L4¢) and apply a times
the operator TD. We then obtain the formula

a-1
(79) (x) & *x)y, + > a Do,
m+a
= %;; M, (x) (P11(x)y1+...+P1m(x)ym)
(k=1,...,m),

identically in x and the indeterminates TyseeesVys where
the lkl are linear forms in Vyseees¥y whose coefficients
are polynomials in x, and the Mkl are polynomials in x.

Now insert x=ea ; then

T (a)A B)(a) = 8 4 0

and the left-hand side of (79) reduces to;lyk. It
follows that Yyseeesyy, can be expressed as linear
combinations of the m+a linear forms P11(a) Tyte--
+P1m(a) Im (1=1,...,m+a). In view of (78), this
contains the statement of the lemma.

§6. Estimation of Rk ggg Pkl

The coefficients of E1,...,Em, T and Tle
(k,1=1,...,m) lie in some algebraic number field K of
finite degree. By (65) and lemma 3, the coefficients
of all polynomials Pkl (k=1,2,..; 1=1,...,m) all lie in

K.

LEMMA 6: Let a be a number in K and k{m+t, then

IR (o)l = 0 (n(3+e)n - (em-2 ,\n)

[P (@)]= 0 (n“*”n) (1=1,...,m).
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PROOF': If the coefficients of two power series
A=a j+ a,X+... and B=8 d+B1x+... satisfy the condi-
tions |a klngk for k=0,1,..., we shall write A YB.
Plainly,T Tc(1+x)q and TG&IY{C(1+X)Q with some positive
constant ¢c. We are going to prove by induction that

k-1
(80) R, < c<(14x)%a TT (q+D) R (k=0,1,...)

v =0
and

_, k=1
(81) Pk+1,1-(ck(1+x)kQ+2n 1 I (vq+m+2n-1)o(n(2+e)n)

v =0

(1=1,...,m),

where

A ] v © v
(82) R=3Y_la,l }'(T= S v"’%o(ngn),

and the estimate (81) remains valid if the coefficients
of Pk+1,1 are replaced by their conjugates.

Because of lemma 3, the statement is true for
k=0. If it 1s proved for k-1 > 0 instead of k, we
obtain, by (63) and (65),

R.,; = TR', -(c(wx)qck_1

k-2
{(k-1)q(1+x) T 1Ay 7T (L qeD) R

v=0

k-1
1'ck(1+x)kq TT  (¥q+D) ﬁ,
»=0
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P .<c(1+x)qc

k+1,1

k_
T—g(vq+m+2n-1) 0 (n (2+e)n) ( )(k-1)q+2n—1

k-
< c (1+x)kq+2n L T_ (pq+m+2n-1) O (n(2+‘)n),

and this is the required result.
If k¥ < m+t=n+0(1), then, by (82),

|| wq+D)R 1 o(nl 1+ (1,D)KR

k ® v-P
=C(n(3+e)n) ZZ (l’{)yer X
p=0 v=(2m-1)n (v-0)!
f0 (n3+em) ok = (v k) 0 ) XD
v=(2m-1)n-k i
<0 (n{3*e)ny K [(20)2¢ 4 (2k)2K) X7
v=(2m-1 )n-k ’

k-1
(83) (W (yq+D)ﬁ> vea=0 (n(3+¢)n) o <n¢n-(2m—2)n).

The lemma now follows from (80), (81), and (83).

§7. The rank of E1 (a),...,Em(a)
let w 17000 be any complex numbers. We shall
say that they have rank r relative to the algebraic
number field K if they satisfy m-r, and not more than
m-r, linearly independent homogeneous linear equations

N{1 w1+...+hkmwm =0 (k=1,...,m-1)
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with coefficients xkl in K. In other words, the set
Wiseeesw contains r and not more than r numbers

m
which are linearly independent in K.

IEMMA 7: Suppose that @ and all coefficients of
E1,...,Em lie in the algebraic number field K of degree
h. If E1,...,Em form a normal system and if
aT(a )$0, then the rank of E1(a),...,Em(a) relative to

K is at least %%-

PROOF: Since @ is a regular point of the coeffi-
cients le in (49), it follows that not all Ek(a)=o
(k=1,...,m). Suppose that

(8L) )\k]E1 (o) +...+)\kmEm(a) =0 (k=1,...,m~1)

are m-r linearly independent equations for E1(a),...,
Em(a) with integral coefficients Akl in K. Since not
all Ek(a)=0, we have r)1.

Now apply lemma 5, and determine r rows of the
matrix (72), say for k=k1,...,kr, such that the r linear
forms

(85) Pk1(a) E1(a) + oee. + Pkm(a) Em(a) = Rk(a)

(k=k-| ,...,kr)

together with the m-r linear forms in (8k4) are independ-
ent. Write (85) before (84), denote by A the
determinant of the m® coefficients P, and ., and

by A ,, the minor of the element in the kth row and

1th column of A ; then

r:
A E (a) = R, (e) (1=1,...,m).
1@ gf\ gl Tk,
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Because of lemma 6,

R, (@) = 0 (nOPre)nm(am=2iny oy,
g
[P ;(a)] =0 (n3*)R) (1=1,...,m);
g
therefore
Ag = 0 (n(3+¢)n(r—1 ))
A1 =0 (n3+)mm,
Choose a rational positive integer v such that ve is
integral; then ggn_1P1(a) and gzn—1+(k~1 )qul(a),

for k=1,2,... and 1=1,...,m, are integral. Since
A #0, it follows that

QMg a ).

Finally, let n— e . The number El(a )40 for
some 1; hence

3rh > 2m-2
2m-2
r > T
Now the assertion follows, in case m)L, because of

2m-2 |
—m3— > reg. If m=3, we have r) 30 and this means for
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integers r, h the same as r > %h‘ In the remaining case
m=1,2, the assertion is trivial, because of r1.

§8. Algebraic independence
Consider any solution Tysee5¥y of the system (L49).
If v is any given rational positive integer, then the
number of power products

with non-negative rational integral exponents Viseeest
and

m

v.l + e +vm§v
equals
p=p, = (mr’;l").
Because of
m

the # functions Y satisfy a system of # homogeneous
linear differential equations of first order, whose
coefficients are homogeneous linear functions of the
le with rational integral numerical coefficients

THEOREM: Iet the E-functions E1,...,Em be
solutions of a system of m homogeneous linear differen-
tial equations of first order, whose coefficients le
are rational functions with algebraic numerical co-
efficients, and suppose that the #, power products

E1“1...Em"m ("1+"'+"m§-") form a normal system, for
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all » =1,2,... . If a is any algebraic number different
from 0 and the poles of the le, then the m numbers
E1(a),...,Em(a) are. not related by an algebraic equation

with algebraic coefficients.

PROOF: Let S(y1,...,ym) be a polynomial in
TyseeesVp whose coefficients are algebraic numbers and
not all 0. Denote the total degree of S by s, take

v 2> 8 and consider the polynomials y1u1...ymum S with
Voo oees v {v - s.
Their number equals
b, g = (73

and their total degree is { v . If S has the zero
y1=E1(a),...,nyEm(a), then we obtain ¥ ,_g independent
homogeneous linear relations between the », numbers
E'(a)...E_ ™a) (v +...4s {v), with coefficients in
the algebraic number field K generated by the coeffi-
cients of E1”"’Em’ le, S and the number a.

Now apply lemma 7, with g, and the power products
E1V1...Em"m instead of m and E1,...,Em. Because of the
normality assumption we infer that

(86) By B, 25

where h 1s the degree of the field K. But g, and
Bo,-g 8T8 pglynomials of degree m in v starting with the
same term %ﬁ; therefore (86) contains a contradiction
as v—» w0 .

The importance of the theorem lies in the fact that
it reduces the arithmetical problem of algebraic inde-
pendence of the numbers E1(a),...,Em(a) to the analyti-
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cal problem of normality of the power products of the
functions E1(x),...,Em(x). 8, X

The simplest example is Ek=e (k=1,...,m), where
8y5...,8, are algebraic numbers and linearly independent
in the rational number field. The u power products then
take the form epkx (k=1,..., » ) with p different algebraic
numbers L The corresponding system (49) now simply is
y'k= PV (k=1,..., 4 ), so that all boxes are one-rowed,
and normality means that any equation P1ep1X +...+Puer X
=0 with polynomials P1”"’Pu implies P1=0,---;Ri=0,
which is easily proved. This shows that the Lindemann-
Weierstrass theorem is contained in our theorem.

§9. Hypergeometric E-functions

In order to obtain more general applications of
the theorem, we have to look for E-functions satisfying
homogeneous linear differential equations whose co-
efficients are rational functions. We have as yet no
method of finding all such functions, and we only know
the following rather specialized way of construction.

Put

[a,?] =a(a+1) ... (a +p-1) (¥=0,1,...),

go that [« ,0] =1 and [a ,w+1] = (a+r)[a ,v]. Let
81500058 and b],...,bm be rational numbers, bk+0,—1,-2,
e.o.(k=1,...,m), and m-g=t > 0. Define

la., nl...la,
o = nifa,,nl...[la,,n] (r=0,1,...),

™ [b,,nllb,,nl...[b_,n]

co
tn
v=5_cx®
n=0

and introduce the operators
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A, f(x) = D(x1+.)‘tf'(x)),

\
A=A _ __ A_ A . ,
8,78, 8,78, ag_1 ag” 8y
B=A _ A _ A _ A _
b,-b,% b, by b._,b Db -1’
then
AxtRTT (a,+n)(ay+n) ... (ag+n)tgxt(a1+n)_1,
Bx"7! = (b, 4n-1)(bysn-1) ... (ban-1)tb{P1HRTI)T1
so that
A Yy = t8xtar 1 > (a,+n)(ay+n) ... (a +n)cnxtn
X n=0 g
B _Y_ _ tbq -1 tn
I tMx n:\_;‘ (by+n)(by+n) ... (b +n)e x"".
Since

(a1+n)...(ag+n)cn = (b1+n)...(bm+n)cn+1

(n=0,1,...),
we obtain
x'78(x7thip gty tary )T = t™(b,=1)(by=1). .. (b =1)x ™.

The left-hand side takes the form
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W = y(m) + Q]y(m-” +

CF QY+ QY
where Q,..., Q are polynomialsin x~! with rational
coefficients. If one of the m numbers b1 ey bm
equals 1, then y satisfies the homogeneous linear
differential equation W = 0 of order m. If bkah for all
k=1,...,m, we replace g,m by g+1, m+1 and define a
=bm+1=
equation W=0 of order m+1.

Now we shall prove that y is an E-function.

Writing

+1
1; this yields a homogeneous linear differential

0 XV
vy=2_ d, i
v =0 V .
we have
(87) dip = (tn)! ¢,

[a1,n]...[ag,n][ 1, nl...[ 1,n] (tn)!

[by,n]... [by,n]by,; nl...[by,n] (nt)®

(n=0,1,...)

and d, =0 otherwise. It is clear that

la,n] 3 ; )
5,07 = IT ey 7 gl = otet™)

(b#0,-1,-2,...),

for any given ¢ » 0 and n— oo, and

tnt

ngl% < (1+...+1)tn

(nt)
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hence
_ en
dn = 0(n ).

It remains to prove that the third condition in the
definition of an E-function is fulfilled, namely, that
the least common denominator of the rational numbers
do,...,dn is O(n ™). Since the number (tn)!/(n!)t is
integral, it suffices to prove, because of (87), that
the least common denominator of the n+1 numbers [a,k] /
[b,k] (k=0,...,n) is 0(n én), for any rational a, b and
b40,-1,-2,... . Put a=a /P , b=7 /6 , where (a ,P )=1,
(v , 8)=1, 5 >0, then

B%Kla,k] _ BKa(esB)(@s2B).. . (@x(k-1)8) _ M
5 K [b,k] YD) T+ 28). . (re(k1)8) | e

(k=0,...,n),

say. Consider any prime factor p of N ; then (p,d)=1.
If v runs over p1 consecutive rational integers, then
one and only one of the p1 corresponding integers

v+v o is divisible by pl, for 1=1,2,... . Therefore at
least (kp ] and at most 1+[kp'1] of the k factors

v, 7+5 oo, Y+(k=1)8 in Nk are divisible by p In case
p > |v]1+(k-1)é none of these factors 1s divisible by
pl. Suppose that Nk is divisible by p , but not by

ps+1, then

= k11 ¢ s ¢ - (1+[kp 1)),
where 1=1,2,... is restricted by the condition
1< log (17l + (k-1)8) / log p.

Hence
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k
k k — Llog(k+1))
(88) [p] {s< [p] + 0(p2) + 0( Tog D
and

p< vl + (k-1)8

In case (p,B )=1 the left-hand estimate in (88) shows
that also the numerator M. is divisible by

[p] and this remains true for the prime factors of B,
because of the factor B ¥ in M. Denote by r, the
exponent of p in the reduced denominator of Mk/Nk; then

n log n

r_ = 0(—%) + of
p p? log p

for k=0,1,...,n. Therefore the least common denominator
a, of [a,k] /[b,k] (k=0,...,n) satisfies

)s

I

log a, = 0(n) + > __ ) [0(55) + 0<1og Togp) 1log p
D

p=0(n

]

o(n) + = (O(n))ouog n) = 0(n).

Here we used the elementary upper estimate 7 (x)=0(1}<§g %)

for the prime number function. This completes the proof.

Since gﬁt c x for cn %;T%%%J%*B% is the
hypergeometric series, we shall speak of the functions
y defined in this section as hypergeometric E-functions.
Performing the substitution x—Ax for arbitrary alge-
braic N and taking any polynomial in x and finitely
many hypergeometric E-functions, with algebraic coeffi-
cients, we get again an E-function satisfying a homo-
geneous linear differential equation whose coefficients
are rational functions of x. It would be interesting to
find out whether all such E-functions can be constructed
in the preceding manner.
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We shall apply our theorem to the particular
function

e, %0 n
(89) "K =K, (x) =2 _ (=1) (Xy2n
=0 n!'MZ\+1)A+2)...(A+n)‘'2

WF-1,-2,...).

This is a speclal case of the hypergeometric E-functions
introduced in §9: Choose g=0, m=2,b,=1, b,=\+1 and sub-
stitute l’—{f‘or Xx. The differential equation W=0 then

becomes
Ku + 2XX+1 Kl + K - O,

so that the two E-functions y,= K, y,=K' are solutions
of the system

Vo=V ¥ =V T Yoo

We have to investigate whether these functions satisfy
the normality condition in the theorem. This requires
a lengthy discussion which, however, is not without
interest in itself. The answer will be given in §13,
and it will turn out that the normality condition is
satisfied for all rational\# + &, + 2,..

It is practical to consider the differential
equation for x MK instead of K. This gives the Bessel
differential equation

1 22
(90) PANEE S AN G b ;g)y =0
with the particular solution

(91) J}\ (x) = r(x_‘_]) ( ) ( )s
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the Bessel function of index A . For our next purposes,
the parameter A in (90) may be any complex number, not
necessarily rational. Iet any solution y of (90) be
given, not identically 0. This function is everywhere
regular, with possible exception of the points 0 and oo.
It is our first aim to prove that the three functions
X, ¥, y' are not related by an algebraic equation with
constant coefficients, except when 2N 1is odd.

We start by proving the rather trivial statement
that y is not an algebraic function of x. Otherwise
there would exist an expansion

r
_ k
v=3 o

with decreasing rational exponents rg > r, > ... and
co+o, converging near x=o0 . Inserting into (90) we
obtain the contradiction Cy=0- :

Now consider more generally an arbitrary homo-
geneous linear differential equation of the second order

(92) w" + A(X)w' + B(x)w =0

whose coefficients A and B belong to a given field L

of analytic functions of x. We shall assume that L 1is
closed with respect to differentiation, in other words,
that L contains the derivatives of all its elements.

For instance, L may be the field of rational functions
of x. Now suppose that (92) has a particular solution
Wos which is not algebraic over L, but satisfies an
algebraic differential equation of the first order, with
coefficients in L. We shall prove that then there exists
also a solution of (92) whose logarithmic derivative is
algebraic over L. Our assumption means that one can
find a polynomial P(y,z) in two indeterminates y,z, with
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coefficients in L and not all 0, such that P(wo,w6)=0
identically in x; moreover, P is not independent of z
itself.

If Q(y,z) is any polynomial in y,z with coeffi-
cients in L, we define

(93) Q(y,2) = Q + 2Q - (Az+By)Qy;

then Q*(y,z) again is a polynomial in y,z with co-
efficients in L and

(9) 4 QM) _ g (w,w)

dx
for every solution w of (92). We may assume that
P(y,z) 1s irreducible. Consider P(y,z) and P*(y,z) as
polynomials in z alone and introduce their resultant
R(y); this is a polynomial in y with coefficients in L.
Because of (94), the differential equation P(wo,wd) 0
implies P’(wo,wd) =0, hence R(wo)=0. But W, is not
algebraic over L, so that R(y) vanishes identically in
y. This proves that P and P*, as polynomials 1in z,. are
not coprime. Since P is irreducible, we obtain

I

(95) P*(y,Z) = T(y,z) P(y,z)

where T 1s a polynomial in y,z with coefficlents in L.

Now take in P(y,z) the aggregate H(y,z) of terms
of highest total degree in y,z, so that H 1s a homo-
geneous polynomial in y,z of positive degree t, with
coefficients in L and not all 0. The definition (93)
shows that H* again is a homogeneous polynomial in y,z
of degree t, and that P*-H*=(P-H)* is of total degree
{ t. Comparing degrees in (95) we see that T cannot
have positive total degree; therefore T is independent
of y,z and a function in L; moreover
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(96) H'(y,2) = T H(y,z).

Consider the homogeneous linear differential
equation

(97) vt = Tv

of the first order. Its general solution is v=Cv
where VO+0 is a particular solution and c¢c an arbitrary
constant. Because of (94) and (96), the function

H(w,w') is a solution of (97), for every w satisfying
(92). Choose two independent solutions W, W, of (92),

then w=\ W, + N ,W, 1s the general solution of (92), with

1 272
arbitrary constants Ao AE- Therefore
1 —_
H(x W, +A W, A W, +A2xN2) = c(xl,xg)vo,

where c(A1,A2) is independent of x. But the left-hand
side is a homogeneous polynomial of degree t in
Al, Ae; hence

A 1M ,\2+...+Ct2

with constant Cpsee+sCg

Finally determine two constant values A ,,M ., not
both 0, such that C()\1,>\ 2)=o. Then the corresponding
particular solution w=>\1w1+>\2w2 of (92 ) satisfies the
differential equation

'
H(T,WW = 0.

This means that the logarithmic derivative of w is
algebraic over L.
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We apply the result of §10 to the Bessel

differential equation (90) and take for L the field of
rational functions of x. Suppose that y0+0 is a solution
of (90) which satisfies an algebraic differential
equation P(yo,y'o)=o whose coefficients are polynomials
in x and not all 0. It follows from our result that
then (90) has another particular solution y+0 whose
logarithmic derivative %l = u 1s an algebraic function
of x. The function y is regular for all x+0,0 ; there-
fore the only possible branch points of u lie at 0 and
. We shall prove that no branch of u is ramified
at . This implies that also 0 is no branch point,
-and u has to be a rational function of x.
Let

[@s)] I’k
(98) us=o c X
k=0

be the power series expansion of any branch of u near
x=2, with rational exponents ry > r, > ... and co+0.
Because of (90), the function u satisfies the special
Riccati differential equation

2
2 1 A
u' + u° + T u="—=-1
X %2 ’
hence
. -1 0 r +r 2
(99) > (I’k+1)ck}(k I ckclxk 1=%-1.
k=0 k,1=0 x
Comparing coefficients we obtain
r, = 0, c,=+1

For any n=1,2,... the two terms corresponding to k=0,
1=n and k=n, 1=0 in the double sum give the contribution
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2cocnxrn to the left-hand side of (99). If cn+0, the
exponent ry has to equal one of the exponents rk—1

(k < n), I+ (k,1 < n) and -2. We infer by induction
that we may restrict the exponents to the sequence of
rational integers rk=-k (k=0,1,...). In particular,
r,=-1 and

1
2cyCy + Cy = 0, c,=-5-

Therefore
(100) u=+1-s=+ ..

is regular and unramified at oco.

Now we know that u is a rational function of x.
Apply (98) and (99) to the power series expansion of u
near x=0, so that the exponents T, are consecutive
integers in ascending order. It follows that this
power series takes the form

A

+ ..
X .

(101) u= +
If x0+0, o 1is a zero of y, of order a » 1, then
u has at X=X, & pole of first order with the residue a.
Since u is a rational function, y has only finitely
many zeros + 0, o, say Xyseows Xpo taken with their
multiplicity. The function u is regular at all other
points #0. It follows from (100) and (101) that
h
1
f iR

k=1 * %k

u=+ 1 +

X

is the partial fraction expansion of u and that

h+N = - % .
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Therefore 2X = + (2h+1) is an odd number.

We have reached the first aim announced in §10,
namely, we have proved that no solution y#0 of the Bessel
differential equation satisfies an algebraic differential
equation of first order whose coefficients are poly-
nomials in x, provided 2 A 1s not an odd number. It is
known that the-éase 2N = +(2h+1) really 1is exceptional.
For any given h=0,1,..., the functions

1 .
h+§- dh o 1x

v, =X — 5 h
1 d(x2)h %
1 .
. Xh+é- dh T ix
2 d(Xe)h %

are two independent solutions of (90), with x=ijh+%).
Every solution then takes the form

1
-h-— s _s
y = X 2 (pe*iBe ™)
where A(x) and B(x) are certain polynomials. Computing
ye,yy',(y')2 and eliminating eglx, e_2iX one obtains the
quadratic differential equation of first order

C,¥° + Gy’ + C5(¥1)F =

where Cys Cyo 03, C, are polynomials in x and not all o.
From now on we shall exclude the exceptional case.

§12. Algebraic relations
involving different Bessel functions

Let two independent solutions ¥y Y5 of the Bessel
differential equation be given. Then the function
y1y§ -y, =4A satisfies A' = - é%y whence
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- <
(102) ViVh T VLYY =%

with constant c$0. This shows that the five functions
¥y yﬁ s Yoo yé and x are algebraically dependent.

We shall prove that the four functions Yq5 VA TS
Y, X are algebraically independent. Because of the
result of §11 we have to prove that ¥, 1s not algebraic
over the field M of the rational functions of ¥y y{ o
X. Suppose that there exists an irreducible polynomial

P(t) = t" + ...
with coefficients in M, such that
P(y,) =0

identically in x. We define

yl
(_1_ t+}?§r_) Pt(t) + dP(t)

(103)  PU() = (5 =

yl
ngl—tn + ..
1
"this again is a polynomial of degree n in t, with
coefficients in M. For arbitrary constant Ay the

function yo=y2+-x1y} is a solution of the linear
differential equation of first order

yi = yi_ Yoo+ L
0 y1 0 Xy1
for y,. The definition (103) implies
0
dP(y,)

dx

(104) P*(y,) =

and, in particular,
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P*(yg) = 0.

It follows that P*(t) is divisible by P(t), whence

1

* ) = ol pt
P (t) =n 7 (t)

and, because of (10k4),

P(y,) = by}
where b is independent of x. The function P(y2+ x1yH)

is a polynomial in A , of degree n; therefore b=b0+b1 A1

1
n_ .
+...+bn>\1 with constant bo""’bn’ and

_ -1
Pe(y,) = b13'l11 :
This 1s an algebraic equation for Is of degree n-1, with

coefficients in M; hence n=1 and Vs itself lies in M,
so that

(000 L]

(105) y2=

where f and g are polynomials iny,, y{ and x. Take
in f and g the homogeneous aggregates of highest total
degree in Ty y{, say fo of degree ¢ and go of degree?v ,
and Introduce the difference § = ¢ - v as total degree
of the ratio f/g.

Put fo/go= v; then v is homogeneous of degrees in
¥,5 ¥, and the difference f/g-v has total degree
{ §. Because of the differential equation (90), the
same 1s true for v'and (f/g)'-v'. Inserting (105) into
(102) we obtain an identity in Yis ¥{>X. On the left-
hand side of (102) the terms of highest total degree
vield ylv'-vy; of degree & +1, whereas the right-hand
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side has total degree 0. Therefore § > -1.

Suppose first that § > - 1; then ¥,v'-vy{=0, whence
v=C,¥, with constant ;s and 4 =1. Substituting
y,+c¢,y, for y,, we have to replace f/g by f/g+v, and
the new f/g will have total degree < 1. This leaves us
with the case § =-1 and

c
v! - v | R
¥4 ¥4 x’

so that v is a rational function of x, y,, y; and
homogeneous of degree -1 iny,, y1' which satisfiies the
Bessel differential equation. Write v=v(y1 Y1 ). Using
once more the algebraic independence of Yy ¥ y1' we see
that also V(A1y1+)\ Y MY+ Aeye'), for arbitrary
constant A 1 and \ o> is a solution of (90). Hence

(106) V(A1y1+)\2y2, /\1y1'+)\2y2') = ALy, + ALY,

where A 17 A , are independent of x. Since
A c
1 - | J— ¢ 1 L. | - A2
V¥ T YV T T DDA S

it follows that A 1 and A , are rational functions of

A 1 and \ 0> homogeneous of dimension -1, not both
identically 0, and with constant coefficients. Iet

A 0 be the least common denominator of A 1 and A 03

this is a homogeneous polynomial of degree » 1. Now
multiply (106) by A o8y and choose for x,, N, two numbers,
not both 0, such that A o=°' It follows that the
particular solution y= )\1y1+)\2y2 of (90) satisfies the
algebraic differential equation go(y,y' )=0, which 1is

impossible.

.§13. The normality condition for Bessel functions
Now we are going to prove finally that the
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normality condition of the theorem 1s fulfilled in case
of the two E-functions E1=Kx(x), E2=Ki(x), where KA (x)
is defined in (89) and A denotes a rational number

. _ 2A 41
o> Bo=E T T By

therefore the q+1 functions qu=E$ Eg_kmk=o,...,q)
satisfy for every given g=0,1,2,... the system of
differential equations

1
+ 4+ 1,-1,22,-2,... . We have E!=E

=  (q-k) 2A+1 - (a-
(107) zéq = kzk_1‘q (g-k) e qu (a k)zk+1,q
(k=0,...:q)
where Z_, and z mean 0. Our problem i1s to prove
pye] a+1,q

that the %{u+1)(u+2) functions qu(k=o,...,q; g=0,...,V)
constitute for every v=0,1,2,... a normal system.
If z is any solution of

(108) z" + Y/

then the g+1 functions zk(z')q-k (k=0,...,q) form a
solution of (107). Take z= PaZ+ Y Zps where Z,, Z
are two independent solutions of (108) and 91, s

arbitrary constants, and define

2

0

k. o,k _ < 1 g-1

z-(z") = %;6 Py pg Y k1,9’
then the g+1 functions ¢ k1.0 (k=0,....q) constitute for

)4

each 1=0,...,0 a solution of (107). Sincev 1.9
a,,1l.a-1 at,q
(j)z1zé , those o0+1 solutions are linearly independent,
because otherwise one would obtain a homogeneous alge-

braic equation of degree q for Z,, Z,, with constant
coefficients not all 0, in contradiction to the inde-

nendence of z, and Zye
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The system of %O’+1)(v+2) homogeneous linear
differential equations of first order for the qu
(k=0,...,q; @=0,...,v) trivially breaks up into+1
boxes corresponding to the v +1 values of q. We obtain
the v +1 solution boxes Yh=%¢k1’q), where k,1=0,...,q,
and we now have to prove that they are independent in
the sense of §4; this means that the sum

R= > P C1y ¥
ock, 1a<» kq “1q kl,q

with arbitrary polynomials qu(x) and arbitrary con-
stants cy vanishes identically in x only in the
trivial case that all quclq are identically O.

Introduce y1=xx Z,s Y= xM Z,; 8O that Jys ¥, are
independent solutions of the Bessel differential
equation (90) and

zb=xM (v hy) Gmie), oy vy = 8

with constant c40. Then

A
1 % PoZp =X (P ¥+ PoY,),
z! o+ = x N fp.y'+ o, y)- >L(p V.+p, 5,01
p1Z] + P2 1917 Podo™ xV Pd T Pods
! ce

- y
. 1(%— Doy, 0,7, !

and
q -
(109) S s te 0Ty
1=0 k']_,q

! cp, 9k
- kI A T2
= x M py i+ a,,) i(y—1 - 0P T+ p Y ) 3
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This shows that ¢/k1,q is a polynomial in y,, y]'1, Vs,
whose coefficlents are algebraic functions of x, since
N is a rational number.

Now suppose that R=0, identically in x. The
result of §12 implies that then R vanishes identically
in x, Vi y;, y2: If all products quclq=° for
k,1=0,...,q and lg=# +1,...,» , we consider in R the
terms of total degree ¢ iny,, Vi Yoo Because. of (109),
we obtain from ¥ . , the contribution (} )x M

Ii _Npk 1 k-l
(§: -3 ¥y, ¥, - Therefore

Y\ Ko \# -1
S P ey, (M- —) (—- =0
odi, T K T L (y1 X I )

identically in x, Ty y{, Voo and this implies
Pku Cqp = 0 (k,1=0,...,p¢ ). It follows that all qu
cl’q are 0, and the proof is complete.

The only singularity of the coefficients in the
differential equation (108), for finite x, is x=0. Let
a« be any algebraic number #0, and A a rational number
1t %, -1, + %, -2,... . It follows from the theorem
that the values Kx(a) and K| (e) are not related by any
algebraic equation with algebraic coefficients. In
particular, K, (a) itself is transcendental. This im-
plies that all zeros of K, (x) are transcendental, and,
because of (91), the same holds for the zeros 0 of the
Bessel function J) (x).

Putting

@
w=F (x)=2_ x

=0 n'(x+1)...(x +n)

we have
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Ky (x) = £, (- %)
and the differential equation

xw" o+ (N +1)W' = w,

which leads to the continued fraction

w _ X
‘X;'T_)‘+1 Y Ne+ X
x+3+._
Since
w! -1 Ki(evx
w V=X K(2 yx)

it follows that the value of this continued fraction is
transcendental for all algebraic x40 and all rational) .
In this statement the values A =+ %, + %,... are in-
cluded, because the remark at the end of §11 shows that
in this case the transcendency follows from that of

eﬁ.

In particular, the number

1
2 + 1
3+ .

is transcendental.

§14. Additional remarks
The preceding example of the Bessel differential
equation makes clear that the application of the theorem
to a given systen of linear differential equations of
first order requires a detailed study of algebraical
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and analytical properties of the solutions. Of course,
it may happen that the normality condition is not
satisfied. The simplest example 1is provided by the
special case A = - % in (89); then K=cos x, K'= -sin x,
K"= -K, and the solution box

cos X sin x
Y= (lgin x cos x)

is not independent in the sense of §4, since cos x

+ 8in x-1 + i(-sin x) + 1 cos x+1 = 0. The inner reason
is that the substitution z1=y1-iy2, no=Y,+1Y¥, transforms
the system y;=y2, y2'=—y1 into z;=iz1, zé=iz2, and the
transformed Y breaks up into the two boxes eiX, e"1ix,
This makes it probable that the independence of the
solution boxes Yi in §4 can be expressed as a property
of the ring P of linear transformations

Yy — Ak1 Ty o+ eee + Akmym (k=1,...,m),
whose coefficients Akl are rational functions of x, and
which map the linear sst of solutions of the differential
equations (49) into itself. It is not difficult to find
this connection if one uses the results of A. Loewy on
homogeneous linear differential equations. However, we
did not need P for the application to Bessel functions,
so we only mention it here.

Our result concerning K(a) can be generalized in
the following way. We consider the m=2r functions
K(alx), K'(alx) (1=1,...,r), where @,,..., @, are given
algebraic numbers whose squares all are different from
each other and from 0. It is'possible to prove that the
condition of the theorem is satisfied, if 2\ is not odd;
therefore the numbers K(¢1), K'(a1),..., K(ar), K'(ar)
are not related by an algebraic equation with algebraic
coefficients. This again is a special case of the
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following statement: Let A 1009 N g be rational
numbers, different from -1, + 7 T2, % %,..., and let
none of the numbers A .+ i (1 {k <1< s) be integral;
mmnthezrsnmmmrst(a),K& (a)(x=x1,“.,xs;
Ry ar) are algebraically independent. The
proof has not been carried through in detail and we

leave 1t as an interesting exercise.
Another exercise 1s provided by the hypergeometric

E-function

u=a

o

X ok (x +1)
TE X (O +1)

1 - -
_ / £ (1opy N T TTobRgy // 57T (1-g) gt
‘0 0

with rational « ,\ #0, -1, -2,..., which is a solution of

n

y=1+ f— .

Y

xXy" + (N=X)y' =« y.

It seems more difficult to carry over the in-
vestigations of Sections 10, 11, 12, 13 to linear
differential equations of order greater than two, but
it would be worth while to try.



CHAPTER III

THE TRANSCENDENCY OF aP’
FOR IRRATIONAL ALGEBRAIC b AND ALGEBRAIC a 4 0, 1

Let p be any complex number #0 such that e” =a is
algebraic, and let B be any irrational number such that
also e =af =c 1is algebraic. Because of the addition
theorem f(x+y)=f(x)f(y) for the function f(x)=ep XX it
follows that f(x) takes the algebraic values aPcd for
all x=p+B4d (p,q=0,+1,+2,...). These x are different
fromn each other, because of the irrationality of 8

In 1929 Gelfond made the important discovery that
B cannot be a non-real quadratic irrationality; this
means that the number ab=eb log a is transcendental for
every lmaginary quadratic irrationality b and every
algebraic a#$0, except for log a=0. In his proof Gelfond
applied the interpolation formula of §14, Chapter I, to
the specilal case f(z)=az=ez log a
ps+++ consisting of the points p+ba(p,q=0,+1,+2,...)
in a certaln arrangement. The coefficients 8gs 8qsee-

and the sequence

Z,, 2
in the expansion
£(z) = agFy(z) + a,F (z) + ...,

n
F (z) = 111 (z-2q)

are glven by

75
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_ 1 f(z) 5. _ n f(zk)
8n-1 T 2w /C Fn(z) dz = k=Z1 Fr'l(zk) ’

n
FI!l(Zk) = E1 (Zk-zl)’
14k

and this shows that they are numbers in the field K
generated by a, b, ab. On one hand it follows from the
integral formula for an4 that the coefficients tend
rapidly to 0 ag n— o ; on the other hand, if K were an
algebraic number fileld, one can obtain an estimate of
Egn and the denominator of a,- In case of an imaginary
quadratic b these estimates imply that a, =0 for all
sufficiently large n. This is contradictory, since
f(z) 1s not a polynomial.

Gelfond's proof was carried ever to the case of a
real quadratic irrationality b by Kusmin in 1930.
However, this method fails if b is an algebraic
irrationality of degree h > 2; it only gives the weaker
result that at least one of the h-1 numbers ab, abe,...,
abP™" 15 transcendental.

In 1934 Gelfond and Schneider, independently of
each other, solved the general problem of ths trans-
cendency of ab for arbitrary irrational algebraic b.
Both proof's make use of the arithmetical lemmas in
§2, Chapter II, in order to construct suitable
approximation forms. Since Schneider's proof 1is more
closely related to the other ideas of Chapter II, we
present it first. Gelfond's proof will be given in a
simplified form which makes it somewhat shorter than

Schneider's proof.

§1. Schneider's proof
Suppose that b is irrational and that the three
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numbers b, a4o0, c=ab=eb log a(log a+0) lie in an

algebraic number field K of degree h. If a 1is a root
of unity, then c¢ is not a root of unity; in this case,
we replace a, b, ¢ by ¢, b ', a, so that the new a
is not a root of unity.

Define

q2
m= 4h + 3, n= -,

where q2 1s a positive integral rational square
divisible by m. We now apply lemma 2, §2, Chapter II,
to the determination of m polynomials P1(x),..., Pm(x)
of degree < 2n-1 with integral coefficients in K, not
all 0, such that the entirs function

R(x) = P, ()al™ % L p (x)alm2)% 4 4k (x)

vanishes at the q2=mn different points x=\X + e b(A,u=1,2,
.»q). This condition yilelds mm homogeneous linear
equations for the 2mn indeterminate coefficients in
P1,...,Pm. The numerical coefficients of these equa-
tions lie in K and the absolute values of all their
conjugates are (c1q)2n_10(02q)=0(03nnn), where
Cis Cpsvee denote positive rational integers independent
of n; moreover, there exists a common denominator
chen—1+2(m—1)q=0(05n)' In virtue of the lemma, we
obtain a non-trivial solution such that all coefficients
in P1,...,Pm, and their conjugates, are 0(c6nnn).
Putting

(110) P (x) = a(m_l)kPl(x+k) (K=1,...,m),

we have
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_ (m-1)x
(111) R(x+k) = Pk1a + .. + Pkm'
Suppose that PV1(X);"':PV (x) (o< vy Spy < een <vg§m)
are not identically 0, whereas all other Pl(x)=0. If
1
P, = a X + ey a1+0 (1=1,...,g),

so that ry > 0 denotes the exact degree of P, 1’ then
the g-rowed determinant

A =1 Ry () I, g
Tateoot+l
= Q,I... agVX1 g"‘ c ooy
with
- (m- v q)k
v=1a le,1=1,.. .,

=T @7k =T 4o,
/7

does not vanish identically, since a 1is not a root of
unity. The degree of A (x) is Pyt 4Ty <{ m(2n-1)<{omn.
Therefore we can find at least one of the 2q2=2mn
numbers

X= N+ 4D (AN=1,...,20; ¥ =1,...,q),

say x= £, such that

A(E) #+ 0.
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It follows from (110) and (111) that at least one
of the m numbers R(f +k) (k=1,...,m) is different from O.

Suppose

R(E +k)= Y +O)

then chzn—1+(m-1)(3q+nn v 1is an integer in K and #40;

whence
(112) (9 (v)l >c;n.

On the other hand, using our previous estimate of the
coefficients of P1""’%n’ we obtain

(113) [vy1 = 2mn(08q)2n'1cg olc ™) = o(c? n P,

It remains to find a sufficiently good upper
estimate of | v | itself. Apply Cauchy's theorem to
the entire function

J N -
S(x) = R(x) TT g—§¥7r:75%§
Asp =1
which takes the value ¥ at x=% +k; then

N _L/_Siﬂdx,
c

T oom x-% -k

where C is a simple closed curve, in positive direction,
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containing § +k in its interior. Taking for C the
circle

x| =n +m+ g(2+I/bl) =n + 0 (V1)
we have ~
R(x) = 2mn(c, ;n)*" e, ,Poie ™) = ofe "™,

Ix-¢ -kl 2n ) CJ—J-Th, X=X =£Db] >n (A ,e=1,...,q)
_q'_ o o
| £4k-2-pb _ -9 q)_ - m
A,u=1 X-A-pb =01 0 ((015Q) = 0(016nn 7)),

hence

mn m
- n_3n n_- 5 _ (3- —)n)
(114) ¥=c;5n 0(c gm ) —O(q7nn 2

In view of (113) and (114),
m
(115) %(V)=Oﬁn§%“‘?“““h”“9.

Here the exponent of n equals
- m - = -1
(3- 3 n+2h-1)n=-2
so that (112) and (115) contradict each other as n— » .

§2. Gelfond's proof
We use a, b, ¢, h, K in the same meaning as in
§1: The three numbers a, h and c=ab=eb log a lie in an
algebralc number field of degree h; the number b is
irrational, a and log a are 0. However, we need not
assume that a 1s not a root of unity.
The approximation form is constructed in a
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different way. Put
2
m= 2h + 2, n= %E’
where q2=t is a positive integral rational square
divisible by 2m, and

Pis P ooseesp ¢ = (N +# b) log a (A,p =1,...,Q)

Introduce the entire function

R(x) = € + ee. + 7

with indeterminate coefficients 7 s M £ and con-

190
sider the mn homogeneous linear eguations

(log a)-kR(k)(l) =0

(k=0,...,n-1; 1=1,...,m)

for the 2mm=t unknown quantities 7 NERRRPR R Their

numerical coefficients lie in K, they have a number

¢ n-1+2mq —

1 n)

O(c2

as common denominator, and all their conjugates are
0 «ch)n—1c:§=o(c?'nn/2). It follows from lemma 2
that the equations have a non-trivial solution in
cea My of K such that

n

71 = 0(cg n° ) (k=1,...,t).

integers 7 ,,.

Since the t numbers p K all are different, the
function R(x) does not vanish identically. Choose p
such that RX)(x)=0 for k=0,1,...,p-1 and x=1,...,m,
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but R(p)(1)+0, for some 1=1,...,m. Clearly, p >n.
Consider the number

(116) (log ) P RPN (1) = v 4 o; -
it lies in K, and c1p+2mq7 is integral, so that
(117) % (v ) 1> el®
Moreover,
n
(118)  T71 = t(c;a)Pe, T 0(c} v?) = o(cf P").

To find again a suitable upper estimate of |7 |
itself, we introduce the entire function

- pt —R&x) {7 (Llk) p,
stx) = pt G ] L) v,

k=1
k+1
then

= (log a)Ps(1)

)
|

and

s1) = Ay f ) ax,

27l x-1

where we take for C the circle
x| =m(1+%).

We obtain



§2. GELFOND'S PROOF 83
n D el
n n
R(x) = t ¢P*@ 0(cq £?) = (e, p?),
%11 2 Ixl B dxkl 2m B e=1,.l0m)
0 ;
_1)7P 1k p _ ( p,d\mp
G-I () P = o(e, ™)
k41
1 3-m
> b

s(x) = pt ¢, P(H)™ o(cP) %) = olel,
whence
Y = 0(0533 pzéﬂp)
and, by (118),

(119) 2 (7)

The exponent of p equals

(h-1)p + % = - 2,

so that (117) and (119) contradict each other for
sufficiently large n, because of p > n.

§3. Additional remarks

)5

The main difference of the two proofs lies in the
method by which the algebralc number v 0 is obtained.
Schneider applies the functional equation a¥*V=a%a¥ in

order to construct g approximation forms with non-van-
ishing determinant, and the inequality 7 #0 follows

from an algebraical reason, in analogy to our pro-

cedure in §4 and §5, Chapter II. Gelfond simply uses
the fact that the Taylor series of an analytic function,

which i1s not a polynomial, must contain infinitely
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many coefficients $0. Since this method is indirect,

it does not give immediately an explicit finite upper
bound for p in (116); though this can be found by a
more detalled investigation. Gelfond's version of the
proof 1is appropriate for the solution of the analogous
problems concerning elliptic functions which we shall
study in Chapter IV.

Our result on the transcendency of ab can also be
stated this way: If a and c are algebraic numbers,
ac%0, log a+0, then the ratio log ¢/ log a 1is either
rational or transcendental. In other words: The
logarithm of any algebraic number relative to any
algebraic base 1s either rational or transcendental.
However, it 1s not known whether log c and log a are
algebraically independent in the case of an irrational
quotient log ¢/ log a; it is not even known whether
there cannot exist an inhomogeneous linear relation
a log & + 7Y log ¢ =1 with quadratic irratidonal« and
Y . Another example showing the narrow limits of our
knowledge on transcendental numbers 1s the following
one: Since e is transcendental, not both numbers
e+T™ and em can be algebraic; but we do not even
know whether e+ or er are irrational.

Since e” =i-21, the transcendency of e™ 1is
contained in Gelfond's result of 1929 on the trans-
cendency of aP for algebraic a40, log a0, and
imaginary quadratic b. Before this discovery the
problem of proving, for instance, the irrationality of
2V 2 had been considered as extremely difficult, so
that Hilbert liked to mention it as a problem whose
solution lay still further in the future than the
proof of Riemann's hypothesis or Fermat's conjecture.
This shows that one cannot guess the real difficulties
of a problem before having solved it.



CHAPTER IV

ELLIPTIC FUNCTIONS

The last chapter will be devoted to some of the
deep results concerning elliptic functions obtained by
Schneider in 1937.

§i. Abelian differentials
Let ¢ (¢ ,n )=0 be the equation of an irreducible

algebraic curve C of genus p. We consider ¢ as the
independent variable and introduce the Riemann surface %
corresponding to the algebraic function » . The field
of all single-valued neromorphic functions on ® is
identical with the field € of all rational functions

Y (¢ ,7 ) of £ and 7 on C which are not identically oo
The expression

(120) dw = ¢ (¢ ,9 )d&

ig called an abelian differential on ®%.

At every point » on ® we have a local uni-
formizing parameter t which maps a neighborhood of this
point onto a simple neighborhood of 0 in the t-plane.
Inserting for £ and w their power series in t, we
obtain from (120) an expansion
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where only finitely many cn with negative subscript n
are #0; of course, the coefficients Ch depend upon ¥» .
The abelian differential dw is called of the first kind,
if ¢,=0 for all n < 0ard all p ; it is of the second
kind, if c_,=0 everywhere on ® ; in the remaining case,
when there is no condition, one speaks of the third
kind. Introducing the abelian integrals w one can
characterize the three cases in the following way: The
abelian integral w is of the first kind, if it is
everywhere finite; it is of the second kind, if it has
no other singularities on R than poles; it is of the
third kind, if it may have logarithmic branch points.
If dw, and dw, are abelian differentials on R
of the same kind, then also ) 1dw1+-A2dw2 1s, for any
constants ) 1,A o We shall restrict ourselves to
differentials of the first and second kind. The
structure of the corresponding additive groups is
described by the following classical results: There
exist p, and not more than p, linearly independent
differentials du1,...,dup of the first kind; there
exist p differentials of the second kind dv1,...,dv
such that any differential of the second kind on % can
be uniquely expressed in the form

(121) dw = (A 1du1+...+)\pdup)

+ (p 1dV1+...+ypde) + dx ,

where A1,..., A . and M1,...,plp are constants, and
X =x(& , n) lies in @

In the preceding definitions and statements it is
‘not necessary to assume that the underlying field of
constants in @ comprises all complex numbers, but is is
important that this field 1s algebraically closed. From

now on we shall restrict the coefficients of ¢ and ¥

’
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to algebraic numbers and speak of € 1in this new
meaning; then also A IERRRY )\p and w
(121) are algebraic numbers.

1""""p in

§2. Elliptic integrals
In the elliptic case p=1 the curve ¢ (£ , 1 )=0
can be mapped by an appropriate birational trans-
formation

,X=¢1(E:'l), y=¢2(5,7l) (\01,'[{211'13)

onto the normal cubic curve

2 _ 3 _ _
y - l}X~ ggx 83

with algebraic constants g,, 8s and g2—27g§ =1 40. Then

dz=-dy—x, a¢ =

xdx
v

are differentials of the first and second kind, and any
elliptic Integral w of the second kind satisfies, in
virtue of (121), the decomposition formula

(122) dw = X\ dz + w df + dx ,

where A , p are algebraic constants and x (x, y) 1is a
rational function of x and y with algebraic coefficients.

The Welerstrassian functions @ (z) and ¢ (z) are
defined by

ood [}
e= [F x-§@), y-§'(0)--F

erz) =B L E o s mwz),  §(-2) = -f(2).

z ~ dx dz —
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Introduce the odd function

q(z) = Xz + ¢ ¢ (2),
then the decomposition (122) takes the form
(123) dw = dq + dx .

We shall have to make use of the addition theorem for
the elliptic integral w of the second kind; because of
(123), it is an immediate consequence of the addition
theorem for g, namely

g B'(z)- P'(z0)

(12’4) q(Z+ZO) - q(Z) - Q(zo) = 2 &(z)- ?(ZO) 4

where z and z, are independent variables in the complex
plane. The addition theorem for g(z) follows from (124)
by differentiation with respect to z, in view of the
differential equation

]

#'(z) = (u<@3(z) - g, §lz) - g3> 2.

Besides (124) we need some other well known
properties of the elliptic functions: There exist two
basic perlods w ,, , of &(z) such that any period o
can be uniquely expressed as o =g, w,+8, w, with
rational integral g,, g,; the ratio o/ w =7 1s not
real; the function ¢ (z) has poles of first order at all
period points z=w and is regular at all other finite
points in the z-plane; finally,

w

(125) g(z+w) -g(z) =7,

where 7 depends upon the period « and not upon z.
Our main object is the proof of the following
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theorem by Schneider: Iet p 1= p (& 12 n1) and
P o= p (& 59 02) be two points on the Riemann surface R
of the curve ¢ (£ , 7 )=0 of genus 1, whose coordinates
E 4o My and ¢ ps M, BYE algebraic numbers, and let
w(p) be an indefinite elliptic integral of the second
kind which is regular at » 1295 and does not reduce to
a rational function of ¢ and »; then the value of the
definite elliptic integral

b2
(126) wie o) Wl )= [ aw

p‘l
is transcendental, except when Pis v, coincide and the
path of integration on % 1s homologous to O.

It should be mentioned, since w(p ) is not single-
valued on ® , that the theorem holds for any path of
integration L on % with the end points p ; and v» ,. For
the proof of the theorem we may exclude the trivial case
that L is closed on ® and homologous to 0; then L is
the image of a path in the z-plane with different end
points z, and Zye. The difference

Z, ~Z, =z, + 0
is a period @ only in case L is closed on ®# . In this
case we may suppose, for the proof of the theorem, that
L is not homologous to twice a closed curve on % ; then
% 1s not a period and, because of (123) and (125),

(27) 2q@) =7 = [da= [ aw, B - o

If L 1s not closed, then Z, is not a period and we may
apply (124), with z=z, Or 2 tending to Z,, and (123).
By the assumptions in the theorem concerning » 1 and
» ,» 1t follows that the difference of q(z,) and the
elliptic integral (126) is an algebraic number. This
result, together with (127), shows that it suffices to
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prove the following statement:

Let A s B By ga, 8"(20) be algebraic numbers and
A , # not both 0; then q(zo)= A2z
cendental.

ot K i‘(zo) is trans-

§3. The approximation form
Suppose that N , ¥, 8ss Bx> 5°(Zo)’ 50'(20) and
q‘(zo) lie in an algebraic number field K of degree h and

put
(128) m= 16h + 1.
Consider the multiples Zys ezo, BZO,... of Z45 since Z,

is not a period, we may choose m of these multiples,
S8Y ZyseeesZps which are no periods. It follows from
the addition theorem of q(z) and &(z) that all 3m
numbers @'(zk), &'(zk), q,(zk) (k=1,...,m) lie in K.

If a and b are any constants #0 in K, we may
perform the substitutions azx—u( a3y->y, a'g,—> 8,
a6g3—>g5, alzz, abA—> A, a be — u, af— ¢,
bgr g, which simply express the group property of
apelian differentials. A suitable choice of a and b
then allows us to assume that the 3m+k numbers A s By,

;—g2, 8> &(zk), @'(zk), q(zk) (k=1,...,m) all are
integers 1n K. It follows from the formulas q'=\ - &,
&"=6 5’32- 2% that also all derivatives of § and q are
integers ih K, for Z=Zys e e e s Zps and the same then holds
obviously for all derivatives of the power products

o

£(2) = Tag (2) = &% (220" (2) (@ ,8=0,1,...)

To obtain an upper estimate of the absolute
values of these derivatives we use Cauchy's formula
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t Mg = 3 [ —Tlaz -0,
©

(z- 7 )l+1

taking for C a circle with center z, and sufficiently
small radius, so that all period points stay outside.
On ¢ we have f(z)=0(c,** B) where ¢, is independent of
a , B ; hence

1

(129) £ h (z) = 11 o P+
for k=1,...,m and all @ , B8 ,1=0,1,...

A corresponding estimate for the conjugates of
£(1)(z,) can be obtained by the following trick. Let
K be any of the h conjugates of K. Since A —gz 2785 =l=o,
also A #0; therefore we may introduce the 6—function
with the invariants gz, g3, and we denoE_e_ it by 5%(2).
For fixed k we define a complex number Zy by the condi-
tion that &(zk)= @(zk) and @'(zk)= 3:'(zk); this
determines Z only up to an arbitrary additive period of
the function @(z), and we choose a fixed Zy - Finally
we define the function q(z) uniquely by the condition
that q'(z)=X -# &(z) and E(a)— W Then
fu8 (2)=%" q% has all the properties of fo8 (z)
needed for the proof of‘ (129), and f(l) (z. )—f(lﬁ) (Zk)‘
Therefore

(130) [£) (2ol = 12 o(e* P +1)

for k=1,...,m and all a ,8 ,1=0,1,...
Let r'2 be a positive rational integral square
divisible by 2m and put
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Consider the polynomial R( &,9) in ® and q, of
degree < r in each variable, with rf indeterminate
coefficients. Under the condition that R(gaq), as a
function of z, vanishes at all m points Z=Zy 02 of
order n at least, we obtain mn homogeneous linear
equations with integral numerical coefficients in K
whose conjugates, because of the estimate (130) for
al{r,B {r, 1 <{n, all are O(Cf ™). Applying
lemma 2 we see that we can satisfy our condition by a
polynomial R( &,q) with integral coefficients in K, not
all 0, whose conjugates are O(c;'nn).
§4. Conclusion of the proof

We shall first prove that the function q(z) is
not an «lgebraic function of @(z). Otherwise there
would exist an equation of smallestdegree p > 1,

(131) a® +Aq” T+ . +A, =0,

where A1,...,Ap are rational functions of % (z) and
'(z). Since q'(z) =\ -» @ H(z), differentiation of
(131) with respect to z gives an equation of degree

{ p -1 in q and therefore an identity in q. Iet j be
an indeterminate, independent of z. It follows that the
expression

@+ +A @) T4 v Ay, a=a2),

does not depend upon z. Derivation with respect to j
glves an equation of degree p -1 for q(z); hencep =1,
and g(z) is an elliptic function. But g(z) has at
most one pole in the period parallelogram, namely the
pole of first order at z=0 in case p $0. Therefore
g(z) is constant, and this is a contradiction,\ and ¥

being not both 0.
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Now we know that the meromorphic functior

R(gpa) = g(z)

cannot vanish identically in z. Determine the number
s such that all derivatives g(z), g'(z),...,g(s—1)(z)
vanish at the m points Z=Zy 50525 but

Y= g(S)(zk) + 0,

for some k=1,...,m. Plainly, s > n. The number v is
an integer in K, so that

(132) IR (v) | 21.
On the other hand, because of (130),

(133) M1 =s! 052n+sr2 0 (e ™) = 0(cg%s®9).
It remains to find an appropriate upper estimate
of |y | itself. Let v be a positive rational integer
which shall tend to oo with n, and define
14
T (z-g@ 178, 5
51 ,82='V

A(z) )T

b

1 s
B(z) = TT (z-29)%,
1=1

where w are basic periods of E@(z). The

function

w

1’ 2

£(z) = 52 e(2)

is regular in the parallelogram F, defined by
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1 1 1 1
('”‘2—§X1 §y+§'; 'l’-E'gxegu +2—).

Choose n already so large that Zyse-esZ, are inner points
of F, . On the frontier of F, we have the following
estimates, because of (125) and the periodicity of }(z):

rg(c7ll)r 0(c5nnn),
2
A(z) ()((CSV )3I’(2V +1) ) = O(C

E%E) =0 ((E%g)ms) s

g(z)

rv? 27rv2>
9 v E]

hence

S, . rv 2 n 28rvy 2—ms
11 c9 ny ).

I

f(z) = 0(

Furthermore, we have at the point z=2) of F,

(s)
Az, )g " (2, )
£z) = Alz) lin B2l K k

Z—-Zk

! TTIn ( )S
S. Z2, <2
1= K71

T4k

1 n m ) ‘ s
K(z) = 0(C12 ) IT (7-29)% = 0(c57).

1=1
14k

The maximuin property of the absolute value of an
analytic function now yields the estimate

2 2_
y = 8! c12nc1350(c”scgrv oy 28rv ms)
2
2 28r v “-ms
—O(%hs%r" sy ).
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Let r > 112 and choose

then
28y 2 g“?

and

_ms
Yy = O(C.Is,j Sesv T)

- I_I’I_E_ ms
ol ®) ol o 8)

Therefore, in view of (128) and (133),

_ S 2hs—ms)_ (3 —s)
®"(v)=0 (017 s 8) =0 i, s 8)-o

(n—o00),

in contradiction to (132). It follows that our assump-
tion at the beginning of §3 was false, and q(zo) is
transcendental whenever \ ,u , €55 g5, 5%(20) are
algebraic, A , # not both o.

§5. Some other results
Let us conslder some examples for Schneider's
theorem. If (¢ 17 v1) and (& , 7 ) are two real points
on the ellipse

2 2
£E2 0,17 (0<b< a),
a b

then the arc length



96 IV. ELLIPTIC FUNCTIONS

_ & 32_6252 )

s(g, &,) —./' _T;ZT;E_ dé
£, 2
(€2=1 - 2
8.2

is an elliptic integral of the second kind, and not a
rational function of ¢ and ». Therefore s is trans-
cendental if a, b, E1, ¢ are algebraic numbers,
except 1n the trivial case that s=0. In particular, the
perimeter of the ellipse is transcendental for alge-
braic a and b. The corresponding results for the
circle, a=b, are contained in Lindemann's theorem.

The arc length of the lemniscate

(¢ 2 472)2 = 2a2(¢ 2-92) (&> o)
is given by
t 2 2
s(t,6,)=avF de (t2= £o=1),
1 [ = o

1

As a function of t, this 1s an elliptic integral of the
first kind. It follows for algebralc a that the arc
length on the lemmiscate, between points with algebraic
coordinates &, 5, 1s transcendental, except in the
trivial case s=0. In particular, the perimeter of the
lenmiscate i§ transcendental for algebraic a. Since

1 -
dt _ N 2
4 4 ﬁ' = ‘/0. u (1 u) du

the perimeter, for a=1, equals =2 I' (%). Therefore
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_1
the number = % P( ) is transcendental We do not

know, however, whether r ( ) itself is irrational.

All our transcendency proof's made essential use of
the fact that the problem can be reduced to the proof
of a property of entire functions. This is the reason
why the known methods do not work for elliptic integrals
of the third kind and not even for integrals of the
third kind in the still simpler case of curves of
genus 0. For instance, it i1s not known whether the
number

1
ax 1 T
/O 5 = 3(loe 2 + 75)

is irrational.

Concerning elliptic functions Schneider discovered
another interesting theorem which we shall mention
without pfoof' let £(z)= g l(z, g5 gB) and &’ (z)
= ®(z, 8, » 85 ) be two algebraically 1ndependent
& -functions w1th the invariants g,, g5 and ge, gB,
then at least one of the 6 numbers g5 g3, g%, 83’ EP(z )s
ﬁ»(z ) 1s transcendental, for any z, which is not a
period for one of the functions.

It 1s known that §(z) and 8’~’*(z) are related by
an algebraic equation with constant coefficients, if and
only 1f their period lattices are commensurable; this
means that

* *
(134) w1=aw1+6w2, w2=7w1+5w2
with rational a« , 8 , v, 8 , where Wi @, and w T,w ;
are basic periods. As an application of the theorem,
suppose that both
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w g
3_2.=7-, —5——2——2=J(r)
1 g,” 2785

are algebraic numbers. We have

g, =605 W ", 8 = 140 T 08
w

where w runs over all periods #0 of &z, g5 g3).
Replacing « by A « with suitably chosen congtant

N $0, we may prescribe g3=1 in case j( 7 )=0 and g,=1
otherwise, so that now g5 and g5 both are algebraic
numbers. Define

* -4 L -6
g2 - T 823 gz) - T 85}
* *

(135) ""«l =T7Tw 19 ‘92 =70 X

then

@ (72)= "% gz)
and, in particular

@ - 2}
p(Z) = TR
w w

Since now the 6 numbers 8ss 83’ g;, g;, 55(—§g),55*(_§g)
all are algebraic, the theorem implies (134) and,
because of (135),

(T -a)(7-38)= 37,

so that 7 1is a quadratic irrationality.
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This shows that the elliptic modular function j(z)
is transcendental for every algebraic number = in the
upper half-plane which is not an imaginary quadratic
irrationality. On the other hand, it is known from the
theory of complex multiplication that j(7) is algebraic
for any imaginary quadratic 7.

In 1941 Schneider extended one of his results
concerning elliptic integrals to abellan integrals on
Riemann surfaces % of genus p » 1: Let w be an abelian
integral of the first or second kind and not an alge-
braic function, and suppose that L1,...,¥b are p
retrosections on % which leave % connected; then at least
one of the p integrals

r;k=/Lde (k=1,...,p)

is transcendental; in particular, there exists on & a
closed curve L such that

(136) q=Adw

is transcendental. It should be mentioned that the last
formula on p.126 of Schneider's paper is wrong; however,
it 1s not hard to complete the proof by using Cauchy's
formula only for one single variable.

An interesting example is provided by

w = ./xa—1(1-x)3_1dx

where «,B8,2+8 are rational, but not integral. Then for
any closed curve L the corresponding period 7 in (136)
takes the form p B («,8), wherep is a number in the
cyclotomic field generated by e° ™ % and 278,
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Therefore Schneider's result implies that the number

B(a’B) = :[I"‘—XM

is transcendental, whenever a ,B,a+ 3 are rational and
non-integral. It follows from the transcendency of 7
that the case a+3= 1,2,... is no real exception.
Choosing a=3 we see that at least one of the two numbers
T(a), I'(2a) is transcendental for all rational non-
integrale . But we do not know, for instance, whether
Y(%) is irrational.

As a ceometric application of the result con-
cerning B(«,B8), consider in the complex z-plane the
curve consisting of all points z with the property that
the product of the n distances,lz-aek! from z to the
vertices aek(k=1,...,n;e = egﬁi ; a » 0) of a regular
polygon equals a™. For n=1 and n=2 we obtain circle
and lemniscate. A simple calculation shows that the
perimeter of the curve has the value

1

g =28 a]3(L !

2,2_1:1.);
therefore the ratio s/a is transcendental. Another
example 1is provided by the domain
1 1
X
ER ISP

in the (x,y) plane, where «,3 are positive rational
non-integral numbers; its area has the transcendental

value

J=y 2B B (4 8.
« B
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