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Prolog 

 

In the book „The Mathematical Reality, Why Space and Time are an Illusion“, (UnA1), (*), the concept of „Vision 
– Mathematization – Simplification“ is proclaimed. The overall „Vision“ is about a simplification of the 
incompatible SMEP and the cosmology model, by reducing the number of current „constants of nature“, 
especially regarding the „constant speed of light“ (→ variable speed of light, (UnA)) and the „Planck constant“). 
 
This and other related papers address the „Mathematization“ piece of the above „Vision“ regarding the ground-
breaking idea going back to Einstein (EiA3), (**), to explain the gravitation directly from characteristics of the 
universe (UnA). It is basically achieved by the mathematical concept of a coarse-grained „kinematical“ energy 
Hilbert space  𝐻1, compactly embedded into a  𝐻1/2- (energy) Hilbert space.  Physical notions, like „space-time“, 

„density“, „action“, „Planck’s quantum of action“, „forces“, … become mathematical & physical reality in this 
(„coarse-grained“, see also (BrK), and truly „fermions“) kinematical  𝐻1 „world“, complementary to a purely 

(mathematical) truly „bosons“ potential energy 𝐻1
⊥ „world“. The link to Einstein’s SRT (resp. the Lorentz 

transformation) is given by the famous PCT (charge, parity, time) theorem, (StR). 
 
The mathematical models are weak variational representations of related well defined PDE, which include well 
defined domains and appropriate boundary/initial value conditions. The mathematical reality beyond the 
physical reality is about the extended variational representation in the overall (energy) 𝐻1/2 „world“. Then, the 

„Planck constant“ might be possible to be interpreted as a physical unit of measure in a corresponding  𝐻1 based 

action functional. The „speed of light“ might be possible to be interpreted as a potential barrier 𝜑(𝑥) = 𝑐̅ > 0 

defining a manifold, which represents a hyperboloid in a corresponding Hilbert space H with corresponding 
hyperbolic and conical regions (***).  
 
(UnA1) §10: „The solution is about a qualitative justification for the fact, that (these) two phenomena, 𝑐 and ℎ, 

occur in nature“. …. the proposed strategy in (UnA1) leads to the 4-dimensional unit sphere 𝑆3, with its 

underlying „natural“ quaternions numbers. … „The quaternionic multiplication of a spatiotemporal derivative 

with electromagnetic potential is given by 
 

(
𝜕

𝜕𝑡
, �⃗� ) × (𝜑, 𝐴 ) =

𝜕𝜑

𝜕𝑡
− �⃗� ∙ 𝐴 

𝜕𝐴 

𝜕𝑡
+ �⃗� 𝜑 + �⃗� × 𝐴  . 

 

The last two terms precisely match the known expressions for the electric and magnetic fields �⃗�  and �⃗� .“ 

 
The primarily affected PDO in the context of the proposed quantum gravity theory are the Laplace operator (the 

baseline operator for Newton’s gravity theory), the Prandtl operator, and the (linearized) Boltzmann collision 

operator. 

 

The proposed quantum gravity theory for an integrated gravity and quantum theory foresees a complexity 
reduction concerning 
 

- a common Hilbert space framework, i.e. a change from a current metric space framework (equipped 

with an exterior product, only) to a Hilbert space framework with an inner product (defining a 
corresponding norm/metric) enabling Hilbert space based (weak) variational representation of Partial 
Differential Equations (PDE) or Pseudo Differential Equations 
 

- a replacement of Dirac’s physical „point charge“ model of „ideal functions“ δ ∈ H−𝑛/2−𝜀, (𝑛 denotes the 

space dimension, and 𝜀 > 0, (DiP1)) by a „EP point charge“ model ∈ H−1/2 = 𝐿2 ⊗ 𝐿2
⊥. 

 
The only prize to be paid for this complexity reduction is the following:  
 

the (thermo-) statistics Hilbert space 𝐿2 is extended to 𝐻−1/2 = 𝐿2 ⊗ 𝐿2
⊥ = 𝐻0 ⊗ 𝐻0

⊥, and standard PDE 

variational representations in the form 𝑢 ∈ 𝐷0(B): (𝐵𝑢, 𝑣)0, ∀ 𝑣 ∈ 𝐻0, are considered as approximations to 

extended (weak) variational representations in the form 𝑢 ∈ 𝐷−1/2(B): (𝐵𝑢, 𝑣)−1/2,   ∀ 𝑣 ∈ 𝐻−1/2. 

 
(*) … however, perception is (physical) reality, like the Michelson-Morley experiment, but with different possible interpretations, (SuL) 1.6: (1) 

Einstein: Maxwell equations describe a (provisionally; see (+), next page) physical law (2) Lorentz: „light speed is caused by the movements of 
bodies through the ether“. 
 

(**)  … „Nothing forces us to assume that … clocks have to be seen as running at the same speed“, A. Einstein 
 

(***) A decomposition of a Hilbert space 𝐻 into an orthonal sum of two spaces 𝐻1 and 𝐻2 with corresponding projection operators 𝑃1 and 𝑃2 enables 

a definition of a „potential“ and a related „potential operator“: for 𝑥 being an element of 𝐻 its "potential" is about an indefinite metric given by 

((VaM) (11.1)) 𝜑(𝑥) ≔ ((𝑥))
2
= ‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2  with a related potential operator 𝑾(𝑥) in the form (VaM) (11.4) 𝑾(𝑥):=

1

2
grad𝜑(𝑥) ≔ 𝑃1(𝑥) − 𝑃2(𝑥).    
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The proposed quantum gravity model reduces the zoo of elementary particles of the SMEP to one single EP 

(which Plemelj called „mass element“) with or w/o existing (mathematically defined) classical density, while 

only the first one can be affected resp. allows the definition of kinematical notions in correspondingly defined 

PDE models. The impact on the proposed one-single EP model and a revisited Newton potential equation in a 

weak H−1/2 = 𝐿2 ⊗ 𝐿2
⊥ based framework puts the spot on „Einstein’s lost key“, (EiA3), (UnA), which is about the 

concept of a variable speed of light based on clocks of various types at points with different gravitation 

potentials (UnA), (UnA1) (*). 

 
In (DeH) it is pointed out that the Mach principle is a cosmological principle, which, as there are multiple 
cosmological models, it becomes also a selection principle to select the few physical relevant cosmological 
models. Therefore, in the sense of Kant, it it not a „constitutive“ principle (like the general co-variance of the 
field equations), but a „regulative“ principle. In this sense the Mach principle is a principle for the very large 
(cosmology). In (DeH) it is also pointed out that the Planck action constant is independent from from any weak 
or strong gravitation field. It somehow mirrors the fundamental difference of physical mraco and micro world 
(**). Schrödinger’s formula (ScE3) told us, that the negative potential of the total mass of the universe at a 
given point of observation (calculated with the valid graviation constant G at this point) corresponds to half of 

the quadrat of the speed of light, 
1

2
∙ 𝑐2. This approach of Schrödinger in (ScE3) was rediscovered by R. Dicke, 

(DiR), (UnA1); (we note that the momentum is given by 
m

2
∙ 𝑣2) (***).  

 

One of the central notions in theoretical physics is about the „potential“, which is more specifically about a 
„potential“, „potential functions“ and „potential operators“, e.g. (ChJ), (SuL), (VaM). In case of the Poission 

equation the potential function is about the solution of the Poisson equation, the Laplace operator −∆≔
−𝑑𝑖𝑣(𝑔𝑟𝑎𝑑) (with appropriately defined Dirichlet or Neumann boundary conditions, as part of the underlying 

operator domain), is about the potential operator, and the potential 𝑝(𝑢) itself of the potential function 𝑢 is 

defined by  𝑝(𝑢) ≔
1

2
‖𝑢‖𝐻1

2 . 

 

The proposed quantum element „energy“ concept is about the sum ‖𝑥‖1/2
2 = ‖𝑥0‖1

2 + ‖𝑥0
⊥‖1/2

2 , whereby 𝑥 denotes a 

quantum element 𝑥 = 𝑥0 + 𝑥0
⊥ ∈ 𝐻−1/2  with its related quantum element energy 𝑥𝑒

2 = 𝑒0
2 + (𝑒0

⊥)2 = ‖𝑥0‖1
2 + ‖𝑥0

⊥‖1/2
2 . A 

decomposition of a Hilbert space 𝐻 into an orthonal sum of two spaces 𝐻1 and 𝐻2 with corresponding projection 

operators 𝑃1 and 𝑃2 enables a definition of a „potential“ 𝜑(𝑥) and a related „potential operator“ 𝑾(𝑥), (VaM) 

(11.1), (11.4), 𝜑(𝑥) ≔ ((𝑥))
2
= ‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2 and 𝑾(𝑥):=

1

2
grad(𝜑(𝑥)) ≔ 𝑃1(𝑥) − 𝑃2(𝑥). The potential criterion 

𝜑(𝑥) = 𝑐1 > 0 defines a manifold, which represents a hyperboloid in the Hilbert space H with corresponding 

hyperbolic and conical regions.  
 
Regarding the „important conjecture“, ℎ~𝜋/2 ∙ 𝑐 ∙ 𝑚𝑝 ∙ 𝑟𝑝, (see (UnA1) chapter 6), we note that the potential 

criterion above can be used to model the two „constitutive“ principles: (1) there is no gravitation potential 

between a proton 𝑝 and an electron 𝑒 : this „world“ is governed by the Planck action constant; (2) the 

gravitation potential of an atom is calculated by the two radius‘ 𝑟1 ≔ 𝑝, 𝑒̅̅̅̅̅  and 𝑟2 ≔ 𝑅𝑈 : this „world“ is 

approximately governed by the parameters derived from the Mach principle, including the speed of light 
accompanied with the concepts of time and events. In this model the further below proposed 
repulsive/attractive model replaces Dirac’s spin concept to model the Pauli exclusion principle. 
 
 
 

(+) (EiA) p. 52: „Die Gesetze aber, nach denen sich Ströme und Ladungen verhalten, sind uns nicht bekannt. Wir wissen wohl, dass die Elektrizitäten in Elementarkörperchen 
(Elektronen, positiven Kernen) bestehen, aber wir begreifen es nicht vom theoretischen Standpunkt aus. Wir kennen die energetischen Faktoren nicht, welche die Anordnung 
der Elektrizität in Körperchen von bestimmter Grösse und Ladung bewirken, und alle Versuche, die Theorie nach dieser Seite hin zu vervollständigen, sind bisher gescheitert. 
Wir kennen daher, falls wir überhaupt die Maxwellschen Gleichungen zugrunde legen dürfen, den Energietensor für die elektromagnetischen Felder nur ausserhalb der 

Elementarteilchen. An diesen Stellen, den einzigen, wo wir einen vollständigen Ausdruck für den Energietensor aufgestellt zu haben glauben, gilt 
𝜕𝑇𝑖𝑗

𝜕𝑥𝑗
= 0. „… p.54: „wir wissen 

heute, dass die Materie aus elektrischen Elementarteilchen aufgebaut ist, sind aber nicht im Besitz der Feldgesetze, auf welchen die Konstitution jener Elementarteilchen beruht.“ 
… p. 81. „Für ein Feldgesetz der Gravitation muss die Poissongleichung der Newtontheorie zum Muster dienen. … Die Untersuchungen der speziellen Relativitätstheorie haben 
uns gezeigt, dass an die Stelle des Skalars der Massendichte der Tensor der Energiedichte zu treten hat. In diesem ist nicht nur der Tensor der Energie der ponderabeln Materie, 
sondern auch der der elektromagnetischen Energie enthalten. Wir haben sogar gesehen, dass unter dem Gesichtspunkte einer tieferen Analyse der Energietensor der Materie 
nur ein vorläufiges, wenig tiefgreifendes Darstellungsmittel für die Materie anzusehen ist. In Wahrheit besteht ja die Materie aus elektrischen Elementarteilchen und ist selbst 
Teil, ja als der Hauptteil des elektromagnetischen Feldes anzusehen. Nur der Umstand, dass die wahren Gesetze des elektromagnetischen Feldes für sehr intensive Felder noch 
nicht hinreichend bekannt sind, zwingt uns vorläufig dazu, die wahre Struktur dieses Tensors bei der Darstellung der Theorie unbestimmt zu lassen.“ 
 
 

(UnA1): The expansion and the total mass of the universe are related to Newton’s gravitation constant G. Einstein’s equivalence principle (inert mass is equivalent to heavy 

mass) corresponds to the Mach principle, stating that the route cause of gravitation is the result of the total mass of the universe. Schrödinger’s formula (ScE3) told us, that the 

negative potential of the total mass of the universe at a given point of observation (calculated with the valid graviation constant G at this point) corresponds to half of the quadrat 

of the speed of light, 
1

2
∙ 𝑐2; we note that the momentum is given by 

m

2
∙ 𝑣2 . 

 
 

(EiA3): „Nach dem soeben Gesagten müssen wir aber an Stellen verschiedenen Gravitationspotentials uns verschieden beschaffener Uhren zur Zeitmessung bedienen. Wir 
müssen zur Zeitmessung an einem Orte, der relativ zum Koordinatenursprung das Gravitationspotential 𝜑 besitzt, eine Uhr verwenden, die – an den Koordinatenursprung 
versetzt -  (1 +

𝜑

𝑐2
) mal langsamer läuft als jene Uhr, mit welcher am Koordinatenursprung die Zeit gemessen wird. Nennen wir 𝑐0 die Lichtgeschwindigkeit im 

Koordinatenursprung, so wird daher die Lichtgeschwindigkeit 𝑐 in einem Orte vom Gravitationspotential 𝜑 durch die Beziehung  𝑐 = 𝑐0(1 +
𝜑

𝑐2
) gegeben sein. Das Prinzip von der 

Konstanz der Lichtgeschwindigkeit gilt nach dieser Theorie nicht in derjenigen Fassung, wie es der gewöhnlichen Relativitätstheorie zugrunde gelegt zu werden pflegt.“. 
 

(*) From (UnA) chapter 8 we quote: „The article (DeH) does no less than explain all known tests of the theory with variable speed of light!“.  
 
 

(**) In this context we quote the very last two sentences in (DEH): „The quantum theory gets primacy regarding the classical theory with its most perfect design, the general 
relativity theory. Therefore, the laws of of the metric field, which are in principle independent from the laws of the quantum theory, have no absolute validity. The regularity of 
the metric field – indeed in a statistical way – would be tied with elementary particle interaction, like it is furthermore „located“ in the sense of the Mach principle.“ 
 

(***) (UnA), p. 78: „The principle of the constancy of the speed of light can be maintained only by restricting to space-time regions with a constant gravitational potential“, 

Annalen der Physik 38 (1912) p. 355-369; (UnA) p. 121: „Einstein must also have assumed the coincidence 
𝑐2

𝐺
~

𝑀𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒

𝑅𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒
, i.e.  𝐺~𝑐2 𝑅𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒

𝑀𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒
“; this means that gravitation constant 

is related to the total mass of the universe, (which puts the spot on Mach’s principle), i.e. the gravitation constant is that small, because the total of the universe is that large (see 
also (BaJ), (ScD); the formula  𝑐2/𝐺~𝑀𝑈/𝑅𝑈 allows an alternative interpretation of the observed deviation of the forecasted and measured speed of the Pioneer sondes (KrK), 
(ScL), (ToV); see also (UnA2). 
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The cosmology field equation model in (DeH) accompanied by properly defined domains enables weak 

variational representations in a Hilbert space framework. The calculus of variations is analogous to the elasticity 

theory regarding stress and strain tensors accompanied by the two Korn’s inequalities, (see e.g. (VeW)). 

According to the described meaning of the „Mach principle“ the corresponding physical meaning of the classical 

space-time continuum framework is „just“ a continuum approximation of the action of elementary particle 

interactions, (DeH). However, the weak variational representation of the considered extended Einstein SRT-

Newton model enables a common modelling Hilbert space based framework with the quantum mechanics and 

Feynman’s related quantum electrodynamics.  

(UnA2): „Feyman’s theory worked so well that particle physicists decided to use it as a blue print for all other 

interactions“. It results into a particle zoo, which is about 36 hadrons, 6 leptons and anti partners, W- and Z-

particles and another series of colorful gluons (*).  

The extended framework H−1/2 = 𝐿2 ⊗ 𝐿2
⊥ enables an „only“ two-type „elementary particle elements“ model, 

which is about Hilbert space elements with („fermions“) and w/o („bosons“) kinematical energy. 

 
The in (DeH) proposed linearized (Lorentz-invariant) field equations contain the Newton/Poisson equation 
 

𝛥𝛾44 = [
8𝜋𝐺

𝑐4
] 𝜌𝑐2. 

 
In order to ensure a unique solution corresponding boundary conditions are required. In the context of radiation 
and transport partial differential equations the Neumann boundary condition is considered as more problem 
adequate than the Dirichlet boundary condition.  
 
The Neumann potential operator is related to the Prandtl operator 
 
 

(∏𝑣)(𝑥):=
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥−𝑦|2𝑆
𝑑𝑆𝑦 = 𝑓(𝑥), 

 
when seeking the solution of the Neumann boundary value problem  
 

                                                                  𝛥𝑢 = 0  in 𝑅3 − 𝑆 
                                                                             (*) 

    
𝜕𝑢

𝜕𝑛
= 𝑓  on 𝑆.  

 
With respect to the proposed energy Hilbert space   𝐻1/2 we note that the Prandtl operator 

 

∏ ∶  𝐻1/2 → 𝐻−1/2 

 
is bounded, the solution function is represented as double layer potential  
 

𝑢(𝑥): =
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥−𝑦|2𝑆
𝑑𝑆𝑦 ∈ 𝐻1(𝑅

3 − 𝑆), 

 
with unknown function 𝑣(𝑦) to be determined by the Neumnn problem, and the exterior Neumann problem 

admits one and only on generalized solution, (LiI), chapter 4.  
 
 
 
 
 

 
 
 
 
 
 
 
 
(*) (UnA2): „But unlike quantum electrodynamics, the results of its extension to nuclear physics, called quantum chromodynamics, are anything but 

precise. … Thought the experimental agreement is disappointing, usually the „uniformity“ is praised as a flash of inspiriation. Very funny is the 

comment of Feynman on how his own ideas were pushed to a too general level: 

„So when some fool physics gives a lecture at UCLA (University of California Los Angeles) in 1983 and says, „This is the way it 

works, and look how wonderfully similar the theories are,“ it’s not because Nature is really similar; it’s because the physicists habe 

only been able to think of the same damn thing, over and over again.“ 

As Murray Gell-Mann frankly admitted during a talk in Munich 2008, Heisenberg considered the entire idea of fractional charges assigned to quarks to 

be nonsense. … It is unlikely that he felt biases against fractional quantities, as he, in his freshman years, had proposed the famous „half-integer 

spin“ on an electron, which back then stood in sharp contrast to the established wisdom. However, half-integer spins make sense observationally, 

whereas no one has ever seen a fraction of a charge.“ 
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Half of the four Maxwell equations, 

 

𝑑𝑖𝑣(�⃗� ) = 0 , 𝑟𝑜𝑡(�⃗� ) +
𝜕

𝜕𝑡
�⃗� = 0 , 

 

are „just“ a mathematical consequence of the definition of the magnetic field �⃗� . They are derived via a 

differentiating process, applying the div- resp. the rot-operator to the definition of the magnetic field �⃗� := 𝑟𝑜𝑡𝐴 , 

whereby 𝐴  denotes an arbitrary (differentiable) vector field. In other words, there are no magnetic charges 

foreseen telling the fields, how to vary, (SuL).  
 
The other half of the Maxwell equations,  
 

𝑑𝑖𝑣(�⃗� ) = 𝜌, 𝑟𝑜𝑡(�⃗� ) −
𝜕

𝜕𝑡
�⃗� = 𝑗  , 

 

are the consequences of a more specifically defined vector field  𝐴 . In this case there is an underlying scalar 

field of  𝐴  regarding the time variable, reflecting the space-time geometry structure. It enables the definition of 

an electric field �⃗�  given by, (SuL) 

 

�⃗� : = −
𝜕𝐴 

𝜕𝑡
− 𝑔𝑟𝑎𝑑(𝐴0). 

 
In other words, only electric charges tell the electro-magnetic fields, how to vary. Reversely, there is only the 
Lorentz force 
 

𝐹 = 𝑒(𝑣 × �⃗� ), 
 
where „the magnetic field tells the electrons, how to move“. From a physical modelling perspective, this 
„imbalance“ challenge has been overcome by the concept of „displacement current“. The Maxwell equations 
provided the baseline concepts for Einstein’s gravity theory.  
 
The electrodynamic in the special relativity theory is described by the four-vector formalism of the space-time 
given by the D’Alembert operator equation, 
 

(
𝜕2

𝜕𝑡2 − ∆)𝐴 =
4𝜋

𝑐
𝑗 , 

 

with the four-vector potential 𝐴 , where its curvature determines the electric and magnetic field forces, and 𝑗 
denotes the four-current-density.  
 
Regarding the physical notions of „flux“ and „mass element“ we refer to the extended definitions from J. 

PLemelj (PlJ). Plemelj‘s (Neumann boundary condition based) notion „flux“ is defined by �̅�(𝜎) ≔ −∮
𝜕𝑈

𝜕𝑛
𝑑𝜎

𝜎

𝜎0
  

(𝜎0, 𝜎0 ∈ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒), whereby �̅� relates to the conjugate of 𝑈(𝜎), resp. its Hilbert transform. In case �̅�(𝜎) is 

differentiable, this „flux“ definition corresponds to the standard Neumann boundary operator 
𝑑�̅�(𝜎)

𝑑𝜎
= −

𝑑𝑈

𝑑𝑛
. 

However, in case 
𝑑𝑈

𝑑𝑛
 is not defined (i.e. �̅�(𝜎) is not differentiable), the „flux“ �̅�(𝜎) is a still well defined term. 

Plemelj‘s concept was developed for the logarithmic potential (𝑛 = 2), which is related to the Cauchy-Riemann 

Differential equations. The generalization to dimensions 𝑛 > 2 (𝑑𝑖𝑣𝐴 = 0, 𝑟𝑜𝑡𝐴 = 0 (RuC)) leads to the concept of 

Riesz transforms (StE1). 
 

Mathematically speaking, quantum theory is about a Hilbert space based linear operator theory. Sobolev space 

based classical (non-linear) partial differential operators can be equivalently re-formulated in a weak variational 

form. The Sobolev baseline Hilbert space, the Lebesgue space L2 =:𝐻0, is reflexive with respect to its underlying 

inner product (𝑢, 𝑣)0 ≔ (𝑢, 𝑣)𝐿2
. In case a considered non-linear partial differential operator 𝐵 can be represented 

in the form 𝐵 = 𝐴 + 𝐾 + 𝐾  with 𝐴 linear, self-adjoint and positive definite, 𝐴−1, 𝐾 linear, and 𝐴−1, 𝐾, 𝐾 compact on 

appropriately defined domains, then there exist discrete spectra and corresponding eigen-function based 

orthogonal systems, enabling the definition of corresponding isomorph Hilbert scales 𝐻𝛽
(𝐴−1)

, 𝐻𝛽
(𝐾)

, 𝛽 ∈ 𝑅. For a 

related variational calculus, which can be applied to Hamiltonian systems, nonlinear wave equations and 

problems related to surface of prescribed mean curvature (i.e. going far beyond purely elliptic PDE), we refer to 

(ChJ). 

 
The considered decompositions H−1/2 = 𝐿2 ⊗ 𝐿2

⊥ resp. H1/2 = 𝐻1 ⊗ 𝐻1
⊥ are about the „coarse-grained“ (discrete 

spectrum/orthogonal eigenfunctions based) Hilbert space 𝐿2 resp. 𝐻1, and closed sub-spaces 𝐿2
⊥ resp. 𝐻1

⊥ of 

H−1/2.  

 
(WeH) p. 171: „On the basis of rather convincing general considerations, G. Mie in 1912 pointed 
out a way of modifying the Maxwell equations in such a manner that they might possibly solve the 
problem of matter, by explaining why the field possesses a granular structure and why the knots of 
energy remain intact in spite of the back-and-forth flux of energy and momentum“. 
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In the Einstein’s field equations „space-time geometry tells mass-energy how to move“ and „mass-energy tells 
space-time geometry how to curve“. In the Maxwell equations „charges tell the electromagnetic fields how to 
vary“. Usually both equations systems are considered w/o any boundary or initial value conditions; but such 
conditions are prerequites to ensure well defined problems (*).  

 

The Einstein operator is given by 𝐺 = 𝑅𝑖𝑘 − 𝑅
𝑔𝑖𝑘

2
 with the corresponding gravity field equations 𝐺 = −𝜅𝑇𝑖𝑘 and the 

corresponding motion equations 
𝑑

𝑑𝜏
(𝑔𝜇,𝜈

𝑑𝑥𝜇

𝑑𝜏
) =

1

2

𝜕𝑔𝛼𝛽

𝜕𝑥𝜈

𝜕𝑥𝛼

𝜕𝜏

𝜕𝑥𝛽

𝜕𝜏
 for the path 𝑥𝜇 = 𝑥𝜇(𝑡) of a particle.  

 
The change from the Newton model is about a change from the Newton potential equation −∆𝛷 = −4𝜋𝑘𝜌 

(applying the Dirac (delta) function on the right side of the PDE) to the Einstein equation 𝐺 = −𝜅𝑇𝑖𝑘, going along 

with a change from the motion equations from 
 

𝑑2�⃑�

𝑑𝑡2
= −𝑔𝑟𝑎𝑑𝛷       →        

𝑑

𝑑𝜏
(𝑔𝜇,𝜈

𝑑𝑥𝜇

𝑑𝜏
) =

1

2

𝜕𝑔𝛼𝛽

𝜕𝑥𝜈

𝜕𝑥𝛼

𝜕𝜏

𝜕𝑥𝛽

𝜕𝜏
. 

 

Instead of one potential equation we now have 10 equations with 10 potentials 𝛷𝑖𝑘; instead of a linear operator, 

we now have a non-linear operator, i.e. the gravity potential is no longer the sum of single gravitation 
potentials. Additionally, there is a circle structure, i.e. the potentials are functions of the 𝑇𝑖𝑘 (𝛷𝑖𝑘 = 𝑓(𝑇𝑖𝑘)), while 

the space-time structure are functions of the potentials (𝑓(𝛷𝑖𝑘)). The matter, as described by the energy-

momentum tensor 𝑇𝑖𝑘, reflecting the principles of energy and momentum conservation, generates a curvature 

of the space-time and particles move along of geodesics. Therefore, things become more complicate, a circle 
principle is added (the stage enables the actors, while the actors build resp. influence the stage), and the PDE 
model is no longer well defined (no boundary and initial values, etc.), the vaccum energy problem occurs, … 
and all just to achieve an improved (~10−7 → ~10−14) mathematical model being validated by very few observed 

gravitational effects. On the other side there were/are alternative gravitation models existing, (UnA1): 
 

(DiR): „The great difficulty with constructing a theory of gravitation is the paucity of experimental 
evidence. After 40 years there are still only four famous observational checks of the theory of 
relativity. Of these only two have any real accuracy“. 

 
Einstein concluded the constancy of the light velocity proclaiming that the Maxwell equations describe a 
physical law, later „confirmed“ by the Michelson-Morley experiment. His great physical achievement in this 
context was the discovery of the space-time symmetry structure of this assumed physical law given by the 
Lorentz transform. Lorentz himself did not accepted this physical law, he only considered it as approximation to 
whatever. Space-time structure is the mathematical pre-requisite defining the electric field. Therefore, 
proclaiming the conclusion „space-time symmetry“ out of the Maxwell equation proclaimed as a physical 
principle is a kind of self-fulfilling prophecy.  
 
Lorentz’s interpretation of the Michelson-Morley experiment was, (SuL) 1.6: 
 

„light speed is caused by the movements of bodies through the ether“. 
 
Unzicker A., „Vom Urknall zum Durchknall“ (english: Bankrupting Physics.), 2009: Dirac applied the special 
relativity theory to the Schrödinger equation leading to the attribute of „spin“ of an elementary particle. The 
ratio of the masses of a proton and an electron (about 1836,15… ) are still w/o any model explanations. The 

Planck (action quantum) constant ℎ corresponds approximationally to ℎ~𝑐 ∙ 𝑚𝑝 ∙ 𝑟𝑝, wherehy  𝑟𝑝~1,3 ∙ 10−15𝑚. It 

leads Dirac to an estimate of the total number of elementary particle in the universe 
𝑀𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒

𝑚𝑝𝑟𝑜𝑡𝑜𝑛
~1080, (DiP). 

 
An essential concept of the ‘standard’ model of cosmology is „dark energy“. Its existence is postulated to 
explain the cosmic acceleration, inferred from the Hubble diagram of Type Ia supernovae data. In (NiJT) it is 
shown that those data are still quite consistent with a constant rate of expansion (***). 
 
(*) How the magnetic field of the earth, which enabled and still ensures all „life“ on earth, has been formed, while its existence is obviously 

guaranteed by the dynamo effort caused by the inertly rotation of the (thermodynamical generated) hot core of the earth? In the theory of Sciama 
„on the origin of inertia“ (ScD) (see also (UnA)), inertial effects arise from the gravitational field of a moving body, where for simplicity, gravitational 

effects are calculated in flat space-time by means of Maxwell-type field equations. One considered case of possible motion of this system, in which 

the universe and body rotate with constant angular velocity about an axis through the centre of the body perpendicular to the line joining it to the 

particle, is modelled by a not zero gravomagnetic field, defined by a magnetic field of a rotating charge distribution in the form H⃗⃗ = 𝑐𝑢𝑟𝑙𝐴 = 2ω⃗⃗ . 
 

(**) (DiP) The modern study of cosmology is dominated by Hubble’s observations of a shift to the red in the spectra of the spiral nebulae—the 
farthest parts of the universe—indicating that they are receding from us with velocities proportional to their distances from us. These observations 

show us, in the first place, that all the matter in a particular part of space has the same velocity (to a certain degree of accuracy) and suggest a 

model of the universe in which there is a natural velocity for the matter at any point, varying continuously from one point to a neighbouring point. 

Referred to a four-dimensional space-time picture, this natural velocity provides us with a preferred time-axis at each point, namely, the time-axis 
with respect to which the matter in the neighbourhood of the point is at rest. By measuring along this preferred time-axis we get an absolute 

measure of time, called the epoch. Such ideas of a preferred time-axis and absolute time depart very much from the principles of both special and 

general relativity and lead one to expect that relativity will play only a subsidiary role in the subject of cosmology. This first point of view, which 

differs markedly from that of the early workers in this field, has been much emphasized recently by Milne. 
 

(DiP1) One of the most attractive ideas in the Lorentz model of the electron, the idea that all mass is of electromagnetic origin, appears at the 

present time to be worng, for two separate reasons. First, the discovery of the neutron has provided us with a form of mass which it is very hard to 
believe could be of electromagnetic nature. Secondly, we have the theory of the positron a theory in agreement with experiment so far it is known – 

in which positive and negative values for the mass of an electron play symmetrical roles. This cannot be fitted in which the electromagnetic idea of 

mass, which insists on all mass being positive, even in abstract theory. … We are faced with the difficulty that, if we accept Maxwell’s theory, the 

field in the immediate neighborhood of the electron has an infinite mass. 
 

(***) The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred 
originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous 

statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by 

which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather 

surprisingly, that the data are still quite consistent with a constant rate of expansion. 
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The general solution of the Schrödinger equation is given by 
 

𝜙(𝑥 , 𝑡) = ∑ 𝑐𝑛𝑒−𝑖𝜆𝑛(
ℎ

2𝜋
)𝑡𝜙𝑛(𝑥 )𝑛 . 

 
The Schrödinger field equation for the electrons wave functions 𝜓(𝑥 , 𝑡) reflects in the right way the experimental 

verified relationship between the group velocity and the wave number. The wave functions themself do have no 
physical meaning. But the intensities of fields, as e.g. (from Maxwell theory) the energy density and the 

Poynting vector or (from quantum mechanics) the Hamiltonian operator of a free string  
 

𝐻:=
1

2𝜌
𝑃0

2 + ∑
1

2𝜌
𝑃𝑛

2 +
𝜌

2𝑙
𝜔𝑛

2𝑄𝑛
2 =∞

1
1

2𝜌
𝑃0

2 +
1

2
∑ ℏ𝜔𝑛(𝐴𝑛

∗ 𝐴𝑛
∞
1 + 𝐴𝑛

∗ 𝐴𝑛)   

i.e. 

𝐻 =
1

2𝜌
𝑃0

2 + ∑ ℏ𝜔𝑛𝐴𝑛
∗ 𝐴𝑛 +

1

2
∑ ℏ𝜔𝑛

∞
1

∞
1 . 

 
are modeled as squares of field quantities. We note that the series 
 

𝐸0: =
1

2
∑ ℏ𝜔𝑛

∞
1  

is divergent. The current interpretation of the “square concept” above is that the quantity 

𝜌(𝑥, 𝑡): = |𝜓(𝑥 , 𝑡)|2 

models the density of the matter field of electrons. Based on this interpretation the continuity equations (which 

is the Schrödinger equation) is given by 

�̇� + 𝑑𝑖𝑣(
ℏ

2𝑚𝑖
𝜓•�⃗� 𝜓 − 𝜓�⃗� 𝜓•) = 0. 

The ground state energy is not measurable. Its chosen value is therefore arbitrarily, motivated by the fact, to 

keep calculations as easily as possible, and, mainly, to ensure convergent integrals/series. Energies of freely 

composed systems should be additive. For photons in a box section (cavity) there are infinite numbers of 

frequencies 𝜔𝑖. If one assigns any frequency a ground state energy value ℏ𝜔𝑖/2, then the ground state energy 

without photons has the infinite energy  

1

2
∑ ℏ𝜔𝑖 = ∞𝑖 . 

The miss-understanding, that that the ground state energy is fixed and uniquely defined, starts already in the 

classical physics: The definition of the Hamiltonian 

𝐻 =
𝑝2

2𝑚
+

1

2
𝜔2𝑥2 =:𝑇 + 𝑉 

defines the not measurable ground state energy in that way, that the state of lowest energy, the points (𝑥, 𝑝) =

(0,0) in the phase space, is defined as „zero“. The underlying quantum mechanics model is about Hermitian 

operators, physical observables and wave packages. 

The spectrum of a hermitian, positive definite operator 𝐴: 𝐷(𝐴) → 𝐻 with domain 𝐷(𝐴) in a complex-valued 

Hilbert space 𝐻 is discrete. This property enables an axiomatic building of the quantum mechanics, whereby, 

roughly speaking, physical states are modeled by the elements of the Hilbert space, observables of states are 

modelled by the hermitian operator 𝐴 and the mean value of the observable 𝐴 at the state 𝜓 with ‖𝜓‖ = 1 is 

modelled by the inner product 〈𝐴𝜓, 𝜓〉 . 
 
In other words, the expectation value of an operator �̂� is given by   

 

〈𝐴〉 = ∫𝜓∗(𝑟 ) ∙ �̂� [𝜓](𝑟 )𝑑𝑟   
 
and all physical observables are represented by such expectation values. Obviously, the value of a physical 

observable such as energy or density must be real, so it’s required 〈𝐴〉 to be real. This means that it must be 

〈𝐴〉 = 〈𝐴〉∗, or 

 

〈𝐴〉 = ∫𝜓∗(𝑟 ) ∙ �̂� [𝜓](𝑟 )𝑑𝑟 = ∫[�̂�𝜓(𝑟 )]
∗
𝜓(𝑟 )𝑑𝑟 = 〈𝐴〉∗. 

 

Operators �̂�, which satisfy this condition are called Hermitian. One can also show that for a Hermitian operator, 

 

∫𝜓1
∗(𝑟 ) ∙ �̂� [𝜓2

∗](𝑟 )𝑑𝑟 = ∫[�̂�𝜓1 (𝑟 )]
∗
𝜓2 (𝑟 )𝑑𝑟   

 

for any two states 𝜓1  and 𝜓2 . 
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For the eigenvalue problem of a self-adjoint, positive operator 𝐴 
 

𝐴𝜙 = 𝜆𝜙 
 

the eigenvalues {𝜆} are the discrete spectrum 𝜆𝑛 with either finite or countable infinite set of values 

 

𝐴𝜙𝑛 = 𝜆𝜙𝑛 , ‖𝜙𝑛‖
2 = 1. 

 

In this case the mean value �̅� of 𝐴 is given by   

�̅�: = 〈𝐴𝜓, 𝜓〉 
 

Let 𝑤𝑛 the probability, that the eigenvalue occurs of a measurement of the observables 𝐴 then it holds for the 

mean value �̅� of 𝐴 

 
�̅�: = ∑ 𝑤𝑛𝜆𝑛𝑛 = ∑ 𝑤𝑛〈𝜙𝑛 , 𝐴𝜙𝑛〉𝑛    , 𝜙 = ∑ 𝛼𝑛𝜙𝑛𝑛 . 

 
Because of 
  

�̅� = 〈𝜓, 𝐴𝜓〉 = 〈∑ 𝛼𝑛𝜙𝑛𝑛 , 𝐴(∑ 𝛼𝑛𝜙𝑛𝑛 )〉 = ∑ 𝛼𝑛
∗𝛼𝑛〈𝜙𝑛 , 𝐴𝜙𝑛〉 = ∑ 𝛼𝑛

∗𝛼𝑛𝜆𝑛〈𝜙𝑛, 𝜙𝑛〉𝑛𝑛 = ∑ 𝛼𝑛
∗𝛼𝑛𝜆𝑛𝑛    

 
it follows 
 

�̅� = ∑ 𝛼𝑛
∗𝛼𝑛𝜆𝑛𝑛   

 
i.e.  
 

𝑤𝑛 = |𝛼𝑛|
2 = |〈𝜙𝑛 , 𝜙〉|2 . 

 
In case the operator 𝐴 is only hermitian (without being positive definite resp. 𝐴−1 is not compact), Hilbert, von 

Neumann and Dirac developed a corresponding spectral theory. It leads to a continuous spectrum 𝜆(𝑣), indexed 

by a continuous 𝑣. In this case 𝜙(𝑥 ; 𝑣) = 𝜙𝑣(𝑥 ) denotes an eigen-function to the eigen-value 𝜆(𝑣). The norm of 

this function is infinite, i.e. the function is not an element of the Hilbert space. An approximation to this function 
with finite norm is given (for sufficiently small ∆𝑣) by the eigen-differential 

 

𝜙∆𝑣(𝑥 ) =
1

∆𝑣
∫ 𝜑(𝑥; 𝑣′)𝑑𝑣′𝑣+∆𝑣/2

𝑣−∆𝑣/2
. 

 
All for the Hilbert space related properties are valid for the eigen-differentials, but not for the eigen-function 
itself. The scalar product of the eigen-function is „normed“ to a Dirac 𝛿-function by 

 

〈𝜑(𝑥; 𝑣′), 𝜑(𝑥; 𝑣′′)〉 = 𝛿(𝑣′ − 𝑣′′). 
 

The norm of the related eigen-differentials is given by 
 

〈𝜙∆𝑣(𝑥 , 𝑣), 𝜙∆𝑣(𝑥 , 𝑣
′)〉 =

1

∆𝑣
∫ ∫ 𝜑(𝑥; 𝜇′)

𝑣′+∆𝑣/2

𝑣′−∆𝑣/2
𝜑(𝑥; 𝜇′′)𝑑𝜇′𝑑𝜇′′ =

1

∆𝑣
∫ 𝛿(𝜇′ − 𝜇′′)

𝑣+∆𝑣/2

𝑣−∆𝑣/2

𝑣+∆𝑣/2

𝑣−∆𝑣/2
. 

 
The integral is 1 for 𝑣 = 𝑣′ (with appropriate norm factor) and is 0 if |𝑣 − 𝑣′| > ∆𝑣. 

 
In case if 𝑣 is a momentum the eigen-differential gives a wave package with finite distance ∆𝑣 in the 

momentum space and therefore with finite distance ∆𝑥~
1

∆𝑣
 in the particle space. Such a package can be normed 

to the value 1 (1 particle). ∆𝑥 (and correspondingly ∆𝑣) has to be larger than all other typical distances of the 

problem. In this sense eigen-differentials correspond to the formalism of wave package modelling. 
 
The following eigenpair relations are valid: 
 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖     𝐴𝜙𝜆 = 𝜆𝜙𝜆    ‖𝜙𝜆‖
2 = ∞ , (𝜙𝜆, 𝜙𝜇) = 𝛿(𝜙𝜆 − 𝜙𝜇). 

 
The 𝜙𝜆 are not elements of the Hilbert space. The so-called eigen-differentials are built as superposition of such 

eigenfunctions.  
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The eigen-functions of the discrete and continuous spectrum build an extended Hilbert space to ensure that for 
every 𝜓 it holds 

 

𝜓(𝑥) = ∑ 𝛼𝑛𝜑𝑛 + ∫ 𝑐(𝑛 𝑣′)𝜑(𝑥; 𝑣′)𝑑𝑣′. 

 
With 

 

𝑐𝑛: = 〈𝜑𝑛(𝑥), 𝜓(𝑥)〉 , 𝑐(𝑣):= 〈𝜑(𝑥; 𝑣), 𝜓(𝑥)〉 
 
it holds the Parceval identity 

 

〈𝜓, 𝜓〉 = ∑ |𝑐𝑛|2 + ∫|𝑐(𝑣′)|2 𝑑𝑣′
𝑛 , 

 
and the eigen-differential are orthogonal wave packages. 
 

If for every 𝐿2 − function such a representation is possible, one call the system {𝜑} a complete orthogonal 

system.  
Such a complete orthogonal system {𝜑} is not uniquely defined. 

 
There is always the degree of freedom  
 

- to choose arbitrarily the phase of each eigen-function  
 

- the set of the non-standard eigenvalues can be orthogonalized on different ways 
 

- to replace the index 𝑣 of the continuous spectrum by an index 𝜇(𝑣) with 𝜇(𝑣) differentiable, 

monotone function of 𝑣. Then 
 

𝜑(𝑥; 𝜇) =
𝜑(𝑥;𝑣)

√𝑑𝜇/𝑑𝑣
. 

 
For not all hermitian operators there exist a complete orthogonal system of eigen-functions. For all operators, 
which represent physical observables, there exist a complete orthogonal system. 
 
The building of Hilbert scales is based on the Friedrichs extension of the domain of hermitian operators. Those 
domains can be extented to energetic Hilbert spaces (where the domain of the Hermitian operator is densely 
embedded into the energetic Hilbert space), that the symmetric operator is extented to a self-adjoint operator. 
The corresponding eigen-pairs of the constructed self-adjoint operator enable the definition of a Hilbert scale. 
 
The not well defined wave package concept (only approximation solutions, divergent norms, the underlying  
wave functions themself do have no physical meaning, the regularity of the Dirac „function“ depends from the 

space dimension, index 𝑣 of the continuous spectrum can be replaced by an index 𝜇(𝑣) …) is replaced by a 

quantum element Hilbert space 𝐻−1/2 = 𝐿2 ⊗ 𝐿2
⊥ = 𝐻0 ⊗ 𝐻0

⊥ accompanied by a corresponding quantum energy 

Hilbert space 𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥. Both Hilbert spaces are decomposed into classical Hilbert subspaces 𝐿2 and 𝐻1 

(allowing „physical observables“ modelling) and related complementary subspaces, modelling not measurable 
physical relevant notions like quantum elements w/o density or ground state energy. 
 
The quantum mechanics „energy density“ concept (basically the 𝐻1-norm of the potential function) is replaced 

by a sum given by 
 

‖𝑥‖1/2
2 = ‖𝑥0‖1

2 + ‖𝑥0
⊥‖1/2

2  , 

 
whereby 𝑥 denotes a quantum element 𝑥 = 𝑥0 + 𝑥0

⊥ ∈ 𝐻−1/2  with its related quantum energy 

 

𝑒 = √𝑒0
2 + (𝑒0

⊥)2 = √‖𝑥0‖1
2 + ‖𝑥0

⊥‖1/2
2 . 

 
The prominent examples of Hermitian operators are the Laplace operator (to model the elastic energy of the 

string) and the single layer (singular Symm integral) potential operator S to formulate the boundary integral 

equations of the homogeneous Dirichlet or Neumann boundary value problem. 
 
The transport type and the Maxwell equations are also concerned with the gradient operator ∇, which is only 

skew symmetric. However, the properties of the Hilbert transform operator (e.g. skew symmetric, isometric, 
rotation invariant), and its related Riesz transform operators for space dimensions 𝑛 ≥ 2), enable an inner 

product definition (coming along with a corresponding „energetical“ domain extension) in case the derivative 
operator 𝑢 →  𝑢′ is replaced by 𝑢 →  (𝐻𝑢)′. In the above propose 𝐻−1/2-based variational representation this goes 

along with a replacement in the form 
 

(𝑢′, 𝑣)−1/2 = (𝑢′, 𝑆𝑣)0  →   ([𝐻𝑢]′, 𝑣)−1/2 = (𝐻𝑢′, 𝑣)−1/2 = (𝐻𝑢′, 𝑆𝑣)0 = (𝐻𝑆𝑢′, 𝑣)0 = −(𝐻𝐻𝑢, 𝑣)0 = (𝑢, 𝑣)0, 

 
i.e. the modified differentation operator 𝑢 →  (𝐻𝑢)′ with domain 𝐻0 defines an inner product (BrK), (BrK1), 

(BrK3). 
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The replacement 𝑢 →  𝑢′ by 𝑢 →  (𝐻𝑢)′ is also proposed to define modified (Schrödinger) differential operators  

𝑖ℎ

2𝜋
(

𝜕

𝜕𝑡
,−

𝜕

𝜕𝑥
)   →   

𝑖ℎ

2𝜋
(

𝜕

𝜕𝑡
 , 

1

𝑖
𝐻 [

𝜕

𝜕𝑥
]). 

The energy-momentum relationship of a classical non-relativistic particle with mass 𝑚 is given by 𝐸2 =
𝑝2

2𝑚
+ 𝑈. 

Substituting the (Schrödinger) differential operators 𝑖(
ℎ

2𝜋
)

𝜕

𝜕𝑡
 , −𝑖(

ℎ

2𝜋
)

𝜕

𝜕𝑥
 into this equation leads to the wave 

equation. Because of 𝐻2 = −𝐼, substituting the proposed modified (Schrödinger) differential operators into the 

equation 𝐸2 =
𝑝2

2𝑚
+ 𝑈 results into the wave equation in the form 

[
𝜕2

𝜕𝑡2
−

𝜕2

𝜕𝑥2
] (𝜓) + 𝑈(𝜓) = 0 . 

The energy-momentum relationship of a relativistic particle with mass 𝑚 is given by 𝐸2 = 𝑝2 + 𝑚2. The 

substitution of the (Schrödinger) differential operators 𝑖(
ℎ

2𝜋
)

𝜕

𝜕𝑡
 , −𝑖(

ℎ

2𝜋
)

𝜕

𝜕𝑥
 leads to the relativistic Klein-Gordon 

equation describing spin-0 particles in relativistic quantum field theory. However, the relativistic particle 

energy-momentum relationship allows positive and negative energy solutions 𝐸 = ±√𝑝2 + 𝑚2 resulting in 

negative probability densities  𝜌(𝑥, 𝑡): = |𝜓(𝑥 , 𝑡)|2. This issue has been addressed by the Dirac equation, in which 

the time and space derivatives are first order. The Dirac equation can be thought of in terms of a „square root“ 

of the Klein-Grodon equation. We emphasis, that the above energy-momentum relationship of a relativistic 

particle, given by 𝐸2 = 𝑝2 + 𝑚2, is derived by applying the Legendre transform, which is only valid in the (corse-

grained) 𝐻1 framework. In the proposed 𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥ energy Hilbert space framework only the Hamiltonian 

formalism can be applied. The Hamiltonian and the Lagrange formalisms are only equivalent, if the Legendre 

transformation can be applied requiring certain regularity assumptions to the underlying domains.  

Putting 𝑐: =
ℎ

2𝜋𝑚
 , the weak 𝐿2-based variational representation of the Schrödinger equation with potential energy 

𝑈(𝜓) = 0 is given by 

𝑖(�̇�, 𝜑)0 =
𝑐

2
(−∆𝜓, 𝜑)0 =

𝑐

2
(−𝑖∆𝜓,−𝑖𝜑)0 =

𝑐

2
(−𝑖∇𝜓,−𝑖∇𝜑)0 = −

𝑐

2
(∇𝜓, ∇𝜑)0 = −

𝑐

2
(𝜓, 𝜑)1 ∀𝜑 ∈ 𝐻1, 

i.e. for 𝜓 ∈ 𝐻1 it holds  
𝑖

2

𝑑

𝑑𝑡
‖𝜓‖0

2 = −
𝑐

2
(∇𝜓, ∇𝜓)0 = −

𝑐

2
‖𝜓‖1

2.  

 
Because of 𝐻2𝜓 = −𝜓, the corresponding weak 𝐻−1/2-based variational representation of the modified 

Schrödinger operator (in case pf space dimension 𝑛 = 1) is given by 

 

𝑖(�̇�, 𝜑)
−

1

2

=
𝑐

2
(𝑖𝐻𝜓′, −𝑖𝜑′)−1/2 =

𝑐

2
(𝑖𝐻𝑆𝜓′, −𝑖𝜑′)0 =

𝑐

2
(𝐻𝑆𝜓′, 𝜑′)0 = −

𝑐

2
(𝐻2𝜓,𝜑′)0 =

𝑐

2
(𝜓, 𝜑)1/2     ∀𝜑 ∈ 𝐻1/2. 

 

whereby 𝑆 denotes the Symm integral operator. Putting  𝜑 ≔ 𝜓 ∈ 𝐻1/2 it follows  
𝑖

2

𝑑

𝑑𝑡
‖𝜓‖−1/2

2 =
𝑐

2
‖𝜓‖1/2

2 , i.e. it holds 
𝑑

𝑑𝑡
‖𝜓‖−1/2

2 =
1

2𝜋𝑖

ℎ

𝑚
‖𝜓‖1/2

2  for 𝜓 ∈ 𝐻1/2. The 𝐻0-based weak definition of the commutator [𝑥, 𝑃][𝜓](𝑥) = 𝑖
ℎ

2𝜋
[𝜓](𝑥) is 

given by 
 

([𝑥, 𝑃][𝜓], 𝜑)0 = 𝑖
ℎ

2𝜋
(𝜓, 𝜑)0, 

 

i.e. it especially holds ([𝑥, 𝑃][𝜓], 𝜓)0 = 𝑖
ℎ

2𝜋
‖𝜓‖0

2.  

 
As 𝑃∗ is self-adjoint with respect to 𝐻−1/2, the coresponding weak 𝐻−1/2-representation of the modified 

commutator [𝑥, 𝑃∗][𝜓](𝑥) =
ℎ

2𝜋
[𝐻, 𝑥][𝜓′](𝑥) is given by 

 

 (*)    ([𝑥, 𝑃∗][𝜓], 𝜑)−1/2 =
ℎ

2𝜋
([𝐻, 𝑥][𝜓′], 𝜑)−1/2 = −

ℎ

2𝜋
([𝐻, 𝑥]𝑆[𝜓′], 𝜑)0 =

ℎ

2𝜋
([𝐻, 𝑥]𝐻[𝜓], 𝜑)0 . 

 

For the commutator [𝑥, 𝐻]𝜃 ≔ [𝑥𝐻 − 𝐻𝑥]𝜃 it holds 

 

[𝑥, 𝐻][𝜃](𝑥) =
1

𝜋
∫ 𝜃(𝑦)𝑑𝑦

∞

−∞
 . 

 

A vanishing constant Fourier term of a function 𝜃 ∈ 𝐿2 is a sufficient criterion that 𝜃 ∈ 𝐿2 is a wavelet. At the 

same time, the Hilbert transform of every function has a vanishing constant Fourier term. In other words, 𝐻[𝜓] 
in (*) above is a wavelet function with vanishing constant Fourier term. It therefore follows that the modified 
commutator vanishes, i.e. 
 

[𝑥, 𝑃∗][𝜓](𝑥) = 0   in a weak 𝐻−1/2-sense. 

 
The equation indicates related properties of the correspondingly modified creation resp. annihilation operators 

𝑎,̂ �̂�+, accompanied by the related Hamiltionian function �̂� = �̂�+�̂� +
1

2
 and the commutator operator property 

[�̂��̂�+] = �̂��̂�+ − �̂�+�̂� = 1. 
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The concept of Hilbert scales Hα, 𝛼 ∈ 𝑅, is built on the appropriate hermitian operator properties. The 

polynomial norms ‖𝑥‖α
2 are governed by an exponential ‖𝑥‖(𝑡)

2 -norm, (NiJ), (NiJ1). The approximation “quality” 

of the specific proposed H−1/2 −quantum element Hilbert space with respect to the „observable space“ norm of 

H0 is governed by the inequality 

 

‖𝑥‖−1/2
2 ≤ 𝛿‖𝑥‖0

2 + 𝑒𝑡/𝛿‖𝑥‖(𝑡)
2  , e.g.   ‖𝑥‖−1/2

2 ≤ 𝑡‖𝑥‖0
2 + ∑ 𝑒1−√𝜆𝑖𝑡𝑥𝑖

2∞
𝑖=1  . 

 

The proposed H1/2 −quantum energy Hilbert space overcomes the current challenges of a mathematically not 

well defined ground state energy model, which are accompanied by the miss-understanding that the ground 

state energy is fixed and uniquely defined.  

The Friedrichs extension (canonial self-adjoint extension of a non-negative densely defined symmetric operator) 
can be applied to extend potential operators with domains D(A) (a subspace of a Hilbert space H) to self-adjoint 

operators with an extended domain D(Ã), and R(Ã) = H. They therefore enable a decomposition into an 

orthogonal sum of two subspaces 𝐻1 ⊗ 𝐻2  of D(Ã). Regarding non-linear problems we mention, that for a 

vector space 𝐻, the empty set, the space 𝐻 itself, and any linear subspace of 𝐻 are convex cones. 

 
A decomposition of a Hilbert space 𝐻 into an orthonal sum of two spaces 𝐻1 and 𝐻2 with corresponding 

projection operators 𝑃1 and 𝑃2 enables a definition of a „potential“ and a related „potential operator“:  

 
for 𝑥 being an element of 𝐻 its "potential" is about an indefinite metric given by ((VaM) (11.1)) 

 

𝜑(𝑥) ≔ ((𝑥))
2
= ‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2  

 
with a related potential operator 𝑾(𝑥) in the form (VaM) (11.4) 

 

𝑾(𝑥):=
1

2
grad(𝜑(𝑥)) ≔ 𝑃1(𝑥) − 𝑃2(𝑥).    

 
The potential criterion 𝜑(𝑥) = 𝑐 > 0 defines a manifold, which represents a hyperboloid in the Hilbert space H 

with corresponding hyperbolic and conical regions.  
 
The theory of Hilbert spaces with an indefinite metric is provided in e.g. (DrM), (AzT), (DrM), (VaM). Following 
the investigations of Pontrjagin and Iohvidov on linear operators in a Hilbert space with an indefinite inner 
product, M. G. Krein proved the Pontrjagin-Iohvidov-Krein theorem (FaK). The tool set for an appropropriate 
generalization of the above "grad" definition in case of non-linear problems is about the (homogeneous, not 
always linear in ℎ) Gateaux (weak) differential 𝑽𝑭(𝑥, ℎ) of a functional 𝑭 at a point 𝑥 in the direction ℎ ((VaM) 

§3)).  
 
If there exists an operator 𝐴 with 𝐷(𝐴) = 𝐻1 , 𝑅(𝐴) = 𝐻0  and ‖𝑥‖1 = ‖𝐴𝑥‖0, whereby the operator 𝐴 is positive 

definite, self-adjoint and 𝐴−1 is compact, the corresponding eigenvalue problem 𝐴𝜑𝑖 = 𝜎𝑖𝜑𝑖 has infinite solutions 

{𝜎𝑖,𝜑𝑖} with 𝜎𝑖 → ∞ and (𝜑𝑖 , 𝜑𝑘) = 𝛿𝑖,𝑘. For each element 𝑥 ∈ 𝐻1 = 𝐴−1𝐻0 it holds the representation 

 

𝑥 = ∑ (𝑥, 𝜑𝑖)
∞
𝑖=1 𝜑𝑖. 

 
Inner products with corresponding norms of a distributional Hilbert scale can be defined based on the eigen-
pairs of an appropriately defined operator in the form 
 

(𝑥, 𝑦)𝛼: = ∑ 𝜆𝑖
𝛼(𝑥, 𝜙𝑖)

∞
𝑖 (𝑦, 𝜙𝑖) = ∑ 𝜆𝑖

𝛼𝑥𝑖𝑦𝑖
∞
𝑖  . 

 
Additionally, for 𝑡 > 0 there can be an inner product resp. norm defined for an additional governing Hilbert space 

with an “exponential decay” behavior in the form 𝑒−√𝜆𝑖𝑡 given by 

 

(𝑥, 𝑦)(𝑡)
2 : = ∑ 𝑒−√𝜆𝑖𝑡(𝑥, 𝜙𝑖)(𝑦, 𝜙𝑖)𝑖=1   , ‖𝑥‖(𝑡)

2 : = (𝑥, 𝑥)(𝑡)
2   . 

 
It enables an approximation theory for (distributional) Hilbert scales 𝐻−α, 𝛼 > 0, (NiJ), (NiJ1), (*). The essential 

applied estimate is given by 
 

‖𝑥‖ρ−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖ρ

2 + 𝑒𝑡/𝛿‖𝑥‖ρ.(𝑡)
2 , 

 

which follows from the inequality 𝜆−𝛼 ≤ δ2α + et(δ−1−√λ), being valid for any 𝑡, 𝛿, 𝛼 > 0 and 𝜆 ≥ 1. The special choises 

𝛼 = 1/2, 𝜌 = 0 lead to the above 𝐻−1/2 related inequality. We note the similarity of the above inner product 

(𝑥, 𝑦)(𝑡)
2  to general solution of the Schrödinger equation given by 𝜙(𝑥 , 𝑡) = ∑ 𝑐𝑛𝑒

−𝑖𝜆𝑛(
ℎ

2𝜋
)𝑡𝜙𝑛(𝑥 )𝑛 . 

 
 
 
(*) Theorem: Let 𝛼 < 𝛽 < 𝛾. Then to 𝑡 > 0 and 𝑥 ∈ 𝐻β there is an approximation 𝑦 ∈ 𝐻γ according to ‖𝑥 − 𝑦‖𝛼 ≤ 𝑡β−α‖𝑥‖β   , ‖𝑥 − 𝑦‖𝛽 , ‖𝑦‖𝛽 ≤ ‖𝑥‖β  and   

‖𝑦‖𝛾 ≤ 𝑡−(γ−β)‖𝑥‖β . 

 

https://en.m.wikipedia.org/wiki/Linear_subspace
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Regarding the above Hilbert space decompositions there is an analogy to Robinson’s hyper-real (ideal) numbers 
~ 𝑟 =∗ 𝑟 + 𝑖, which can be decomposed into real numbers  𝑟 and infinitesimal numbers 𝑖. Robinson‘s Non-

Standard-Analysis „marks a new stage of development in several famous and acient paradoxes about infinitely 
small and large numbers“, started with Euclid (who deliberately excluded both, the infinite and the 
infinitesimal), until Weierstrass‘ „limit“ concept, building the foundation of current Standard Analysis (*).  
 

The extended field of hyper-real numbers is still an ordered field, but the additional infinitesimal numbers 
violate the Archimedean axiom. Roughly speaking, the Archimedean axiom is the property of having 
no infinitely larger or infinitely smaller elements. This axiom can be physically interpreted, as the capability to 
surpass any distance between zero and a real number 𝑦 > 𝑥 by 𝑛𝑥 > 𝑦. In simple words, a distance measure is 

possible. 
 

(DaP) Nonstandard Analysis, pp 237 ff:  

 

„Robinson revived the notion of the „infinitesimal“, a number that is infinitesimal small yet greater than 

zero…. In the nineteenth century infinitesimals were driven out of mathematics once and for all, or so it 

seemed. To meet the demands of logic the infinitesimal calculus of I. Newton and G. W. Leibniz was 

reformulated by K. Weierstrass without infinitesimals. Yet today it is mathematical logic, in its 

contemporary sophistication and power, that has revived the infinitesimals and made it acceptable 

again. …. In Euclid both the infinite and the infinitesimal are deliberately excluded. We read in Euclid 

that a point is that has a position but no magnitude. …The atomism of Demokrit had been meant to refer 

not only to matter but also to time and space. But then the arguments of Zenon had made untenable the 

notion of time as a row of successive instants, ot the line as a row of successive „indivisibles“. Aristotle, 

the founder of systematic logic, banished the infinitely large or small from geometry. … 

 

The full flower of infinitesimal reasoning came with the generation after Pascal: Newton, Leibniz, the 

Bernoulli brothers and I. Euler. The fundamental theorems of the calculus were found by Newton and 

Leibniz in the 1660s and 1670s. The first textbook on the calculus was written by L’Hospital, …. Here it is 

state as the outset as an axiom that two quantities differing by an infinitesimal can be considered to be 

equal. In other words, the quantities are at the same time considered to be equal to each other and not 

equal to each other! A second axiom states a curve is „the totality of an infinity of straight segments, 

each infinitesimal small.“  …. 

 

Leibniz did not claim that infinitesimals really existed, only that one could reason without error as if they 

did exist. … Newton tried to avoid the infinitesimal. …. 

 

… Dynamics had become as important as geometry in providing questions for mathematical analysis. 

The leading problem was the connection between „fluents“ and „fluxions,“ what would today be called 

the instantaneous position and the instantaneous velocity of a moving body. … 

 

… We let 𝑑𝑡 stand for the infinitesimal increment of time and 𝑑𝑠 for the corresponding increment of 

distance. … thus the ratio 
𝑑𝑠

𝑑𝑡
 which is the quantity we are trying to find, is equal to 32 + 16𝑑𝑡. …Since the 

answer should be a finite quantity, we should like to drop the infinitesimal term 16𝑑𝑡, and get the 

asnwer, 32 feet per second, for the instantaneous velocity. 

 

… Berkeley declared that the Leibniz produre, simply „considering“ 32 + 16𝑑𝑡 to be „the same“ as  32, was 

unintelligible. „Nor will is avail,“ he wrote, „to say that (the term neglected) is a quantity exceedingly 

small, since we are told, that if something neglected, to matter how small, we can no longer claim to 

have exact velocity but only in approximation. … 

 

…  To find an instantaneous velocity according to the Weierstrass method we abandon any attempt to 

compute the speed as a ratio. Instead we define speed as a limit, which approximated the ration of finite 

increments. … The approach succeeded, ….. We do however, pay a price. The intuitively clear and 

physically measurable quantity, the instantaneous velocity, becomes subject to the surprisingly subtle 

notion of „limit“.  …. 

…  The reconstruction of the calculus on the basis of the limit concept and its epsilon-delta definition 

amounted to a reduction of the calculus to the arithmetic of real numbers. … Leibniz had thought of 

infinitesimals as being infintely small positive or negative numbers that still had „the same properties“ as 

the ordinary numbers of mathematics. On its face the idea seems self-contradictory. …. It was by using 

a formal language that Robinson was able to resolve the paradoxon. Robinson showed how to construct 

a system containing infinitesimals that was identical with the system of „real“ numbers with respect to 

all those properties expressible in a certain language“. 
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Summary  
 

pp. 12 ff. 
 

Braun K., Looking back, part B, (B1)-(B17) 
 

July 30 2020 
 

 

 

The Einstein field equations are classical non-linear, hyperbolic PDEs defined on differentable 
manifolds coming along with the concepts of „affine connexion“ and „external product“.  
 

The Standard Model of Elementary Particles (SMEP) is basically about a sum of three Langragian 

equations, one equation, each for the considered three „Nature forces“.  
 

Quantum mechanics is basically about matter fields described in a L2 = H0 Hilbert space framework 

modelling quantum „states“ (position and momentum).  
 

Our proposed quantum gravity model is based on a distributional Hilbert scale framework (avoiding 
the Dirac „function“ concept to model a „point“ charge, modelled as element of the distributional 
Hilbert space H−𝑛/2−𝜀). Certainly, a Hilbert space based quantum gravity requires some goodbyes 

from current postulates of both theories, the Hilbert space based quantum theory and the metric 
space based gravitation theory. 

 
The central changes to current quantum theory and gravity theory are :   
 

- as the L2 Hilbert space is reflexive, the current operator quantum mechanics/dynamics 

equations can be equivalently represented as variational equations with respect to the L2 inner 

product; those variational representations are extended to a newly proposed 
quantum element Hilbert space H−1/2; we note that the regularity of the Dirac function, as an 

element of the distributional Hilbert space H−𝑛/2−𝜀, is (in case of space dimension 𝑛 = 1) at most 

an element of H−1/2−𝜀. In this context, we emphesis, that the main gap of Dirac‘s related 

quantum theory of radiation is the small term representing the coupling energy of the atom and 

the radiation field. Our proposed model omitts this additional „coupling“ term 
 
- current classical Partial Differential Equations (PDE) can be also equivalently represented as 
variational equations with respect to the L2 inner product; also those variational representations 

are extended to a newly proposed quantum element Hilbert space H−1/2. This extension is 

accompanied with reduced regularity requirements to the underlying domain oft he considered 
PDE. We note that the Einstein field equations and the wave equation are hyperbolic PDEs and 
that PDEs are only well defined in combination with approproiate initial and boundary value 

functions, a spart of a properly defined domain. From a physical modelling perspective, we note, 
that the main gap of the Einstein field equations is, that it does not fulfill Leibniz's requirement, 
that "there is no space, where no matter exists". The GRT field equations (usually also not with 
properly defined domain) provide also solutions for a vaccuum, i.e. the concept of "space-time" 
does not vanishes in a matter-free universe.   
 

The Friedrichs extension of the classical Laplace operator in a L2 Hilbert space framework defines 

the inner product of a related „energy“ Hilbert space H1. The extended Laplace operator in the 

newly proposed H−1/2 framework leads to an extended energy Hilbert space H1/2. The new energy 

Hilbert space H1/2 is decomposed into the current "kinematical" energy Hilbert space H1 (with its 

corresponding underlying (fermion elements) Hilbert space H0) and its complementary "ground 

state" energy Hilbert space 𝐻1
⊥ (with its corresponding underlying (boson elements) Hilbert space 

𝐻0
⊥), i.e. H1/2 = 𝐻1 ⊗ 𝐻1

⊥. The kinematical Hilbert space H1 can be further decomposed into 

repulsive and attractive kinematical energy spaces, in alignment with a corresponding underlying 
decomposition of  the (fermion elements) Hilbert space H0 into repulsive and attractive 

fermion element spaces. 
 

Mathematically speaking, the decomposition H1/2 = 𝐻1 ⊗ 𝐻1
⊥ is about a "coarse grained" Hilbert 

space H1 (i.e. it is compactly and densely (with respect to the H1/2 norm) embedded into H1/2) and 

its complementary closed (in the sense of Cantor’s cardinality measure, very much larger) sub-

space 𝐻1
⊥ of H1/2. In the sense of Cantor, the decomposition corresponds to the "decomposition" of 

the field of real numbers 𝑅 into rational (countable) numbers 𝑄 and irrational (non countable) 

numbers. We also mention that "distributions" are also called "ideal functions", (CoR) p. 766: the 
name "distributions" indicates that ideal functions, such that the Dirac delta function and its 
derivatives, may be interprested by mass distributions, dipole distributions, etc., concentrated in 
points, or along lines or on surfaces, etc. 
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The considered Hilbert scale is based on appropriately defined eigen-pair solutions of a problem 

adequate linear operator 𝐴 with the properties (1) 𝐴 selfadjoint, positive definite, (2) 𝐴−1 compact. 

The corresponding polyonmial decay norms are enriched by an “exponential decay” inner product 
resp. norm with parameter 𝑡 > 0, given by (BrK5) 
 

(𝑥, 𝑦)𝛼.(𝑡) = ∑ 𝜎𝑘
𝛼𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)𝑘    ,   ‖𝑥‖𝛼.(𝑡)

2 ≔ (𝑥, 𝑥)𝛼.(𝑡). 

 

An element  𝑥 = 𝑥0 + 𝑥0
⊥ ∈ 𝐻−1/2 = 𝐻0 + 𝐻0

⊥ with ‖𝑥0‖0 = 1 is governed by the norm of its 

(observation) subspace H0 and the norm 𝜃 ≔ ‖𝑥0
¬‖−1/2

2  by, (BrK3), (BrK5), 

 

‖𝑥‖−1/2
2 ≤ 𝜃‖𝑥‖0

2 + ∑ 𝑒1−√𝜎𝑘𝜃𝑥𝑘
2∞

𝑘=1  . 

 

This norm estimate is a special case of the general inequality (𝛽 > 0 be fixed) 
 

‖𝑥‖𝛼−𝛽
2 ≤ 𝛿2𝛽‖𝑥‖𝛼

2 + 𝑒𝑡/𝛿‖𝑥‖𝛼.(𝑡)
2 . 

 

The proposed quantum gravity model is based on a Hilbert space framework. Wavelet analysis can 
be used as a mathematical microscope, looking at the details that are added if one goes from a 
scale "𝑎" to a scale "𝑎 + 𝑑𝑎", where " 𝑑𝑎 " is infinitesimally small. We mention that an alternative 

model for an "𝑎" to a scale "𝑎 + 𝑑𝑎 model is the concept of the ordered field of ideal points, an 

extension to the ordered field of real numbers with same cardinality, but having additionally 
infinitesimal elements (also called non-Archimedean numbers). 
 

The mathematical microscope wavelet tool 'unfolds' a function over the one-dimensional space 𝑅 R 

into a function over the two-dimensional half-plane of "positions" and "details". This two-
dimensional parameter space may also be called the position-scale half-plane. The wavelet duality 
relationship provides an additional degree of freedom to apply wavelet analysis with appropriately 
(problem specific) defined wavelets in a (distributional) Hilbert scale framework where the 
"microscope observations" of two wavelet (optics) functions f and g can be compared with each 

other by the "reproducing" ("duality") formula. 
 

Physically speaking, the "coarse grained" (kinematical hyperbolic space-time, matter, action, 

Shannon entropy governed world) Hilbert space pair (H0, H1), which is compactly and densely 

embedded into the (quantum element / quantum energy) Hilbert space pair  (H−1/2, H1/2), and its 

complementary closed (ground „state“ elliptic world) sub-space pair (𝐻0
⊥, 𝐻1

⊥) of (H−1/2, H1/2) allows 

to revisite the Hawking-Hartle interpretation of their „wave function of the universe“ interpretation 
concerning a required physical initial state and a corresponding mathematically required measure 
on an initial state (DrW). 
 

We note that the Fourier analysis based applied spectral analysis methods (e.g. cosmological 
distance measurement or the Doppler effect in combination with the Hubble diagram leading to the 

interpretations of moving apart galaxies from each other galaxies with superluminal velocity in an 
expanding universe) is only defined in the „coarse-grained“ kinematical Hilbert space framework 

H1, i.e. the proposed quantum gravity model allows an re-interpretation of the observed 

cosmological background radiation phenomenon (*). 
 
 
 

 
 
 
 
 
 

 
 
(*) At the same point in time H. Weyl's requirement concerning a truly infinitesimal geometry ((WeH) p. 30), are fulfilled as well, 
because ... 

 

… a truly infinitesimal geometry (wahrhafte Nahegeometrie) … should know a transfer principle for length measurements 

between infinitely close points only ... (WeH*)  
 

The physical principle for the proposed kinematical Hilbert space 𝐻1 is the (original) „Leibniz least action“ principle, which is 

based on the „Leibniz action element“ 𝑤 ∙ 𝑑𝑡 resp.  𝑚 ∙ 𝑣 ∙ 𝑑𝑠 defined for any arbitrary system of arbitrary matter particles being 

subject to arbitrary forces. Leibniz‘s „actio“ is defined as the action of the movement of a single matter particle during a certain 

time period. The least action principle in combination with Euler‘s variational calculus enabled multiple ODE or PDE models of 

physical laws, (KnA). 



14 
 

The good bye to current physical classical PDE model solutions is that those PDE are considered as 

approximation solutions to the underlying weak (H−1/2-based) variational representations and not 

the other way around. The current Lagrange equations are only valid in the classical sense, 
whereby the weak variational models are governed by a common Hamiltonian (H1/2-based) 

formalism. 
 
Physically speaking, the currently modeled "forces" phenomena keep part of the specific 
corresponding classical PDE model, but are governed by the same (kinematical and ground state) 
energy field. In other words, there is only one single common kinetical and dynamical energy 

governing the several classical PDE physical (Lagrange formalism based) models; physically 
speaking, the current 3 Nature forces are model spacific phenomena, based on „elementary particle 
interactions“, governed by a single common kinetical and dynamical energy model; all Lagrange 
formalism models (and its combinations) can be derived from a single common underlying (energy 
based) Hamiltonian formalism, where the physical model specific (force based) Lagrange formalism 
is only valid with additional regularity requirements to ensure the existence of the classical PDE 

solutions. In other words, the different (force based) Lagrange formalisms (and its related 
transformation groups combinations) provide only approximation models of the considered special 
physical situations to the underlying single quantum element & quantum energy „world“.   
 
The key ingredients of the proposed quantum gravity theory to integrate the Einstein field 
equations is about differential forms equipped with the inner product of the correspondingly defined 
distributional Hilbert space, with direct relationship to the Hilbert space H1/2 and the mathematical 

concept of indefinite inner product spaces.  
 
An immediate consequence of the extended energy Hilbert space concept is the solution of the 3D-
NSE and Yang-Mills mass problems. The correspondingly extended Cauchy problems of the NSE 
and Maxwell equations become long term stable and well-posed, while the extended Maxwell 
equations also allows standing (stationary) waves, i.e. the Yang-Mills equations (coming along with 
the physical mass gap problem) are no longer required:   

 
- regarding the 3D NSE problem the newly proposed "fluid element" Hilbert space H−1/2 with 

corresponding extended energy („momentum“, "velocity") space H1/2 leads to Ricci ODE 

estimates of order 1/2 enabling a corresponding bounded Sobolevskii (energy inequality) 

estimate. Regarding the second unknown term of the NSE, the pressure, we note that 

"pressure" corresponds to "energy density", (
𝑁∙𝑀𝑒𝑡𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒
~

𝑁

𝐴𝑟𝑒𝑎
). 

 
- the variational representation of the Maxwell equations in the proposed quantum 
element/energy Hilbert space framwork (H−1/2, H1/2) conserves the two H1-based progressive 

(1 − parameter (space or time variable)) electric and magnetic waves concept while also 

allowing additional standing (stationary) 𝐻1
⊥ −based (2 −parameter) wavelets. The vaccuum 

solution of the first ones conserves the linkage to the classical wave equations for the electric 

and magnetic field (while this transformation still requires additional, physical not relevant 
regularity requirements to the underlying solution), while the second ones provides 

additional information regarding the elementary particle dynamics.     
 

 
With respect to „The large scale structure of space-time“ and the role of gravity (Hawking S. W., 
Ellis G. F. R., Cambridge University Press, 1973) and the positive answer regarding „the global 

nonlinear stability of the Minkowski space“ (ChD1) we note that the notions „matter, space-time, 
action, ..“ etc. are only defined in the H1 energy Hilbert space with its underlying Minkowski space 

governed by hyperbolic PDEs, while the orthogonal Hilbert space 𝐻1
⊥ is governed by elliptic PDE, 

only. The (nonlinear) stability of the Minkowski space framework requires initial data sets with 
finite energy and linear and angular momentum (ChD1).  
 
From (CoR) p. 763, we recall the following conjecture for the wave equation, which would show 
that the four-dimensional physical space-time world of classical physics enjoys an essential 

distinction: "families of spherical waves for arbitrary time-like lines exist only in case of two and 

four variables, and then only if the differential equation is equivalent to the wave equation (which 
includes also the radiation problem)."    
 
 
 

 

http://www.fuchs-braun.com/null
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The proposed model is only about truly bosons w/o mass, modelled as elements of the H1-

complementary sub-space of the overall energy Hilbert spaceH1/2. Therefore, the main gap of 

Dirac‘s quantum theory of radiation, i.e. the small term representing the coupling energy of the 
atom and the radiation field, becomes part of the H1-complementary (truly bosons) sub-space 𝐻1

⊥ 

of the overall energy Hilbert space H1/2. It allows to revisit Einstein's thoughts on 

 
ETHER AND THE THEORY OF RELATIVITY 

An Address delivered on May 5th, 1920, in the University of Leyden 
 
in the context of the space-time theory and the kinematics of the special theory of relativity 

modelled on the Maxwell-Lorentz theory of the electromagnetic field. 
 
Einstein’s field equations are hyperbolic and allow so called „time bomb solutions“ which spreads 
along bi-characteristic or characteristic hyper surfaces. Actual quantum theories are talking about 
„inflations“, which blew up the germ of the universe in the very first state. The inflation field due to 

these concepts are not smooth, but containing fluctuation quanta. The action of those fluctuations 

create traces into a large area of space. The existence of quantum fluctuations (in a „world“ 
without a time arrow and without entropy) has been verified by the Casimir and the Lamb shift 
effects. 
 
The standard „big bang“ theory assumes that the creation of the first mass particle (fermion) was 
the „birthday“ of the universe. This event was caused by an „inflation“ energy field triggered by a 
„disturbance“, called fluctuations, which needs to be valid before the gravity theory can „happen“. 

In the proposed quantum gravity model the „birthday“ of the „coarse-grained“, compactly 
embedded fermion-energy Hilbert (sub-) space H1 of H1/2 (coming along with the (kinematical) 

notions "space", "time", "action", etc.) is interpreted as first disturbance of the purely (pre-
universe) boson energy field 𝐻1

⊥ with not existing entropy. The latter one can be interpreted as the 

(in sync with the Casimir effect) not empty quantum vaccuum; its oscillation is the cosmic 
background radiation, which contains all features of dynamic energies. 

 
With the „birthday“ of fermions the correspondingly adapted variational representation of the wave 

equation is then governed by the purely kinematical (fermions) energy Hilbert space H1, while its 

underlying initial values are purely (undistorbed) vacuum (CBR, bosons) energy data from 𝐻1
⊥). As 

a consequence, the wave equation becomes time-asymmetric and the second law of (kinematical) 
thermodynamics (the entropy phenomenon coming along with the notions „mass“, „time“, „space“ 
etc.) can be interpreted (and derived from this wave equation) as „action“ principle of the ground 
state energy to damp and finally eliminate (remedy the deficiency) of any kinematical energy 
„disturbance“. 
 

(CoR) p. 763: "Little is known about the scope of the concept of relatively undistorbed spherical 
waves relating sherical waves to the problem of transmitting with perfect fidelity signals in all 
directions. All we can do here is to formulate a conjecture … some support ...: - families of 
spherical waves for arbitrary time-like lines exist only in case of two or four dimensions if and only 
if the underlying differential equation is the wave equation -," (which includes the radiation 

problem, (CoR) p. 695). A proof of this conjecture would provide (additional) evidence of the below 

proposed integrated SMEP & gravity theory. 
 
In the context with some relevance of the considered Kummer functions to plasma physics we refer 
to (KoV), (PaY):  
 

- regarding the linear response of magnetized Bose plasmas at 𝑇 = 0 for large and small 

values of its parameter; the large parameter expansion plays a determining role in the 

behaviour of these Bose systems in the limit that the external magnetic field B approaches 
zero. This particular expansion is generalized for the Hurwitz zeta function, (KoV). 

 

- regarding the linearized collision operator in the Boltzmann equation with repulsive 

intermolecular (inverse-power) potentials 𝑉(𝑟) = 𝑎 ∙ 𝑟−𝛼 for 𝛼 > 2; the collision operator has 

a purely discrete spectrum and its eigenfunctions are infinitely differentiable 𝐿2 -functions 

which are complete in 𝐿2 . The proof relies on the formalism of pseudo-differential 

operators; the special case 𝛼 = 2 is about the Maxwell’s molecules, (PaY). 
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In the context with the building of distributional Hilbert scales based on a linear operator with 

discrete spectrum and eigenfunctions, which are complete in 𝐿2 , ist underlying approximation 

theory, and an „exponential decay“ inner product resp. norm with parameter 𝑡 > 0, given by 

 

(𝑥, 𝑦)𝛼.(𝑡) = ∑ 𝜎𝑘
𝛼𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)𝑘    ,   ‖𝑥‖𝛼.(𝑡)

2 ≔ (𝑥, 𝑥)𝛼.(𝑡)  

 

govering all „polynomial decay“ Hilbert scale norms we refer to (NiJ), (NiJ1). 

 

In the context with some relevance of the considered Kummer functions to the Navier-Stokes 

equation we refer to (PR1) regarding an integral representation of the Navier-Stokes equations for 

an incompresslble viscous fluid. „Making use of standard integral transferm methods and 

considering the longitudinal components of the velocity field, thereby eliminating the pressure field, 

the Navier-Stokes equations are cast in integral form. The intrinsically non linear character of the 

equations has proved to be an unsurmountable difficulty that has severely restricted their practical 

use. The limited understanding of the turbulent motion of fluids and the lack of a comprehensive 

theory of turbulence is a consequence of this mathematical complication. … The final result is a non 

linear integral equation for the velocity fieId alone, involving a single convolution over the space 

and time variables.“ 

 

The convolution kernel of the integral representation of the Navier-Stokes equations is build on the 

functions 
 

𝐼0(𝑟 , 𝑡) ≔
1

(4𝜋𝜈𝑡)3/2
𝑒−

�⃗⃗� 2

4𝜈𝑡  ,  𝐼1(𝑟 , 𝑡) ≔ (
𝜈𝑡

𝑟 2
)

1

(4𝜋𝜈𝑡)3/2
𝐹1 1 (

1

2
,
3

2
; −

𝑟 2

4𝜈𝑡
) . 

 
 

Regarding the non-linear, non-stationary Navier-Stokes equations a change from a 𝐻0 based weak 

variational framework to a 𝐻−1/2 based framwork leads to reduced regularity assumptions to the 

initial and boundary value functions, the NSE problem becomes well posed, while at the same time 
the Serrin gap problem disappears.  
 

From a physical modelling perspective the extended 𝐻1/2 norm based energy measure of the non-

linear term does not vanishes, in opposite to the current 𝐻1 energy norm; at the same point in time 

the potential incompatibility of the initial boundary values of the NSE with the Neumann problem 

based prescription of the pressure at the bounding walls dissappears. 
 

One can seek the harmonic function solution of the Neumann boundary value problem  
 

                                                               Δ𝑢 = 0  in 𝑅3 − 𝑆   
 

        
∂𝑢

∂𝑛
= 𝑓  on 𝑆 

 

for a closed connected surface 𝑆 ⊂ 𝑅3 in the form 𝑢(𝑥):=
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥−𝑦|2𝑆
𝑑𝑆𝑦, where 𝜙𝑥𝑦 denote the angle 

between the vector |𝑥 − 𝑦| and the normal 𝑛𝑦 to the surface at the point 𝑦 and 𝑣(𝑦) is the density of 

the double layer potential.  
 

The unknown function 𝑣(𝑦) is obtained by the equation 

 

(∏𝑣)(𝑥):=
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥−𝑦|2𝑆
𝑑𝑆𝑦 = 𝑓(𝑥). 

 
The operator ∏ is called the Prandtl operator.  
 

With respect to the considered newly proposed energy Hilbert space   𝐻1/2 we note the following 

(LiI),  
 

Theorem: The Prandtl operator ∏ :   𝐻1/2 → 𝐻−1/2 is bounded, the function   

 

𝑢(𝑥): =
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥 − 𝑦|2𝑆

𝑑𝑆𝑦 

 
is an element of 𝐻1(𝑅

3 − 𝑆) and the exterior Neumann problem admits one and only on 

generalized solution. 
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The above theorem summarizes the following properties, (LiI) (4.1.40), proposition 4.2.1, Theorem 

4.2.2, proposition 4.3.1: 
 

i) the Prandtl operator ∏ :𝐻𝑟 → 𝐻𝑟−1 is bounded for 0 ≤ 𝑟 ≤ 1 

 
ii) there is a representation ∏ = 𝐴 + 𝐾 with  

 

(𝐴𝑣)(𝑥):=
1

4𝜋
∯

𝑣(𝑦)

|𝑥−𝑦|3𝑆
𝑑𝑆𝑦    and    (𝐾𝑣)(𝑥):=

1

4𝜋
∯ 𝑘(𝑥, 𝑦)𝑣(𝑦)

𝑆
𝑑𝑆𝑦 

 

whereby 
 

|𝑘(𝑥, 𝑦)𝑑𝑆𝑦| ≤ |
|𝑥−𝑦|2((𝑛𝑥,𝑛𝑦)−1)−3(|𝑥−𝑦|,𝑛𝑥)(|𝑥−𝑦|,𝑛𝑦)

|𝑥−𝑦|5
| ≤

𝑐

|𝑥−𝑦|
. 

 

iii) For 0 < 𝑟 < 1 the Prandtl operator is Noetherian, i.e. it has a right regularizer 𝑅 with 

𝑅∏ = 𝑅𝐿 + 𝑅𝑁, whereby 𝑅𝑁 is a compact operator in 𝐻𝑟, 𝑅 is bounded from 𝐻𝑟−1 to 𝐻𝑟 

and the operator 𝑁 is bounded from 𝐻𝑟 to 𝐻0,The operators 𝑁𝑅 and 𝐿𝑅 are a compact 

operators in 𝐻𝑟−1.  
 

iv) For 𝑣 ∈ 𝐻𝑟, 𝑟 ≥ 1/2, the function   
 

𝑢(𝑥): =
1

4𝜋
∯ 𝑣(𝑦)

𝑐𝑜𝑠 𝜙𝑥𝑦

|𝑥 − 𝑦|2𝑆

𝑑𝑆𝑦 

 

is an element of 𝐻1(𝑅
3 − 𝑆). 

 

v) For 1/2 ≤ 𝑟 < 1 the exterior Neumann problem admits one and only on generalized 

solution. 
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Plasma physics as a „proof of concept“ of 

the proposed Hilbert space based  
quantum gravity model 

 
 
Plasma is an inonized gas consisting of approximately equal numbers of positively charged ions and 
negatively charged electrons. One of the key differentiator to neutral gas is the fact that its 
electrically charged particles are strongly influenced by electric and magnetic fields, while neutral 

gas is not. There are two nonlinear equations that have been treated extensively in connection with 
nonlinear plasma waves: The Korteweg-de Vries equation and the nonlinear Schrödinger equation. 
.... "When an electron plasma wave goes nonlinear, the dominant new effect is that the 
ponderomotive force of the plasma waves causes the background plasma to move away, causing a 
local depression in density called caviton. Plasma waves trapped in this cavity then form an 
isolated structure called envelope soliton or envelope solitary wave. Considering the difference in 

both the physical model and the mathematical form of the governing equations, it is surprising that 

solitons and evelopes solitons have almost the same shape", (ChF) 8.8. 
 
(MiK) : „Charge Neutrality is one of the fundamental property of plasma: it is about the shielding of the electric potential 

applied to the plasma. When a probe is inserted into a plasma and positive (negative) potential is applied, the probe attracts 

(repulses) electrons and the plasma tends to shield the electric disturbance. 

 

Landau Damping is the other fundamental process of plasma: it is about collective phenomena of charged particles. Waves are 

associated with coherent motions of charged particles. When the phase velocity of wave or perturbation is much larger than the 

thermal velocity of charged particles, the wave propagates through the plasma media without damping or amplification. 

However when the refractive index N of plasma media becomes large and plasma becomes hot, the phase velocity c/N (c is 

light velocity) of the wave and the thermal velocity become comparable (c/N ∼ vT), then the exchange of energy between the 

wave and the thermal energy of plasma is possible. The existence of a damping mechanism of wave was found by L. D. Landau. 

The process of Landau damping involves a direct wave-particle interaction in collisionless plasma without necessity of 

randamizing collision. This process is fundamental mechanism in wave heatings of plasma (wave damping) and instabilities 

(inverse damping of perturbations)“. 

 

Plasma physics modelling is basically about statistical evolution of a large number of particles 
interacting through „collisions“. The mathematical models are the Boltzmann and Landau 
equations, where the unknown function 𝑓 corresponds at each time t to the density of particles at 

the point x with velocity v, (LiP): „If the related non-local, quadratic operator 𝑄(𝑓, 𝑓)were zero, the 
kinetic Boltzmann and Landau equations would simply mean that the particles do not interact an 
the density f would be constant along particle paths“. The operator 𝑄(𝑓, 𝑓) was introduced by 
Maxwell and Boltzmann for the case, that collisions occur. 
 

“In case the described particles of the Boltzmann equation interact with a two-body force (collisions 
case), this leads to a Vlasov-like force (or self-consistent force, or mean field...) 𝐹”, (LiP1). Its 

underlying potential function  𝑉(𝑥) is governed by the Laplace operator “∆=  𝑑𝑖𝑣(𝑔𝑟𝑎𝑑)” based 

potential equation, given by −∆=  ∇𝐹. In (NiJ*) corresponding unusual (Sobolev and Hölder) norm 

estimates are provided, enjoying appreciated shift theorems for the Landau damping phenomenon 
critical Coulomb potential case; the shift theorems also well fit to the proposed H−1/2 Hilbert space 

framework. The provided proofs are all based on standard estimates for the Newtonian potential. 

 
In case the Boltzmann collision kernel B of the non-local, quadratic operator 𝑄(𝑓(𝑡, 𝑥, °), 𝑓(𝑡, 𝑥, °)) 

presents singularities of an arbitrarily high order, it is about so-called grazing collisions, (LiP): 
when almost all collisions are grazing this leads to Landau collision operator resp. the Landau 
equation (also called the Fokker-Landau equation). 
 
The microscopic kinetic description of plasma fluids leads to a continuity equation of a system of 
(plasma) “particles” in a phase space (𝑥, 𝑣). In case of a Lorentz force the equation reduces to the 

so-called collisions-less (kinetic) Vlasov equation (ShF) (28.1.2)), where the force F of the baseline 

Boltzmann equation, acting on the particles, is entirely electromagnetic (ChF) 7.2. Physically 
speaking, collisions are neglegted in case of sufficiently hot plasma, i.e. in case of sufficiently high 
plasma energy.  
 
We note that the related Vlasov formula for the plasma dielectric for the longitudinal oscillators  
 

𝑊 (
𝜔

𝑘
) = −∫

𝐹0′(𝑣)𝑑𝑣
𝜔

𝑘
−𝑣

∞

−∞
  , 

 

is not well defined, from a mathematical and from a physical point of view. Mathematically 
speaking, it is not well defined, even (as Vlasov suggested) if the integral is interpreted as a 
principle-value integral, (ShF) p. 93. Physically speaking, the integral is divergent in case of the 



19 
 

important physical phenomenon of electrons travelling with exactly the same material speed 
𝜔

𝑘
 

and the wave speed 𝑣. The underlying „erroneous assumption is, that longitudinal oscillations set 

up initially in a plasma with nonpathological electron distribution function should  be able to 
persist forever in the absence of dissipative collisions. In other words, it should be possible to 
considerer real values for both 𝜔 and 𝑘. Mathematically speaking, what should be done about 

electrons that travel at a material speed exactly equal to the wave speed?“ (ChF) p. 393. 
 
One of the probably most important physical aspects of the considered Kummer functions are in 
the context of (quantum theory related) Schrödinger operators with a Coulomb potential, (DeJ). 

The self-adjoint Schrödinger operators with a Coulomb potential correspond to Whittaker equations 
with parameter 𝑚 = 1/2. Therefore, corresponding variational representations of the self-adjoint 

Whittaker equations (especially the one with the parameter 𝑚 = 1/2) based on the extended H1/2 

(energy) Hilbert space result into convergent energy norm estimates governing also 3D-
Newton/Coulomb potential singularities.  

 
The current abstract, functional analysis framework to model physical processes as neutron 
transport, radiative transfer, rarified gas dynamics, lectron scattering is about a single abstract 

transport equation in the form 
𝑑

𝑑𝑥
(𝑇[𝜑](𝑥)) = −𝐴[𝜑](𝑥)), where the left hand side describes the free 

streaming and the right hand side describes the collisions (GaA). Krein space methods (going along 
with the theory of „linear operators in space with an indefinite metric“, (AzT), (AzT1), (BoJ)) can be 
used to derive unique solvability of such abstract linear, kinetic equations, like Landau (Fokker-
Planck) type equations, (GaA). 

 
The eigenvalue equations of the (hyperbolic-type) Whittaker self-adjoint operators Hβ.m (on the 

domain of functions, that behave properly near zero) for the eigenvalue (energy) −1/4, is given by 

the Whittaker equations. The (hyperbolic-type) Whittaker equations can be reduced to the 
confluent hypergeometric (Kummer) equations. The Kummer function related Bessel functions are 
annihilated by the general Whittaker operator; the asymptotics of zero-energy eigenfunctions near 
zero of the Whittaker operator with value 𝑚 = 1/2 is 𝑐 ∙ (1 + 𝑂(𝑥𝑙𝑜𝑔(𝑥)). 

 

We note that the hyperbolic-type Whittaker equations get trigonometric (or elliptic)-type Whittaker 
equations by replacing the 𝑧 variable by ±𝑖𝑧 and by replacing the parameter 𝛽 by ∓𝑖𝛽 of the 

oncerned Whittaker operato Hβ.m. The trigonometric-type Whittaker equations is related to the 

eigenvalue (energy) +1/4, (DeJ). 

 
Vlasov’s mathematical argument for the Vlasov equation as a proper microscopic kinetic description 
of hot plasma fluids, alternatively to the Landau equation was, that “this model of pair collisions is 
formally (!) not applicable to Coulomb interaction due to the divergence of the kinetic terms”. The 
proposed Hilbert space based quantum gravity model ensures the convergence of the Coulomb 

potential related singularity. 
 
The Landau damping phenomenon is about “wave damping w/o energy dissipation by collisions in 
plasma”, because electrons are faster or slower than the wave and a Maxwellian distribution has a 

higher number of slower than faster electrons as the wave. As a consequence, there are more 
particles taking energy from the wave than vice versa, while the wave is damped ((BiJ)).  
 

The Landau damping property is complementary to the properties of electro-magnetic forces, which 
weaken themselves spontaneously over time w/o increase of entropy or friction. "It involves 
coupling between single-particles and collective aspects of plasma behavior. ..this topic is related 
to one of the main unsolved questions in physics. .... Landau damping involves a flow of energy 
between single particles on the one hand side, and collective excitations of plasma on the other 
side", (DeR) p. 94.  

 
"In its purest form, Landau damping represents a phase-space behavior peculiar to collisionless 
systems. Analogs to Landau damping exist, for example, in the interactions of stars in a galaxy at 
the Lindblad resonances of a spiral downsity wave. Such resonances in an inhomogeneous medium 
can produce wave absorption (in space rather than in time), which does not usually happen in fluid 

systems in the absence of dissipative forces. An exception in the behavior of corotation resonances 
for density waves in a gaseous medium", (ShF) p. 402. In other words, the Landau damping 

phenomenon can be interpreted as the capability of stars to organize themselves in a stable 
arrangement. 
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In (MoC) a proof is provided for the Landau damping phenomenon based on the Vlasov equation 

using analytical norm estimates. Neither the Vlasov equation itself (a collisions-less equation to 
model wave damping w/o energy dissipation by collisions in plasma) nor the application of 
analytical norm estimates (a hammer being used for nuclear fission) are appropriate to model or 
„to prove“ hot plasma physical phenomena. Alternatively, we propose a weak variational PDE 
representation of the Coulomb force based Landau equation in the proposed distributional Hilbert 
space framework. The counterpart of the analytical norms in (Moc) are given by the related norm 
of the exponential decay inner product 
 

(𝑥, 𝑦)𝛼.(𝑡) = ∑ 𝜎𝑘
𝛼𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)𝑘    ,   ‖𝑥‖𝛼.(𝑡)

2 ≔ (𝑥, 𝑥)𝛼.(𝑡)  

 

accompanied by wavelet analysis capabilities. The alternative approach also avoids the (physically 
not relevant) Penrose stability criterion assumption. In case of grazing collisions, the kernel 
function B of the collision integral operator presents singularities with bounded orders, e.g. the 
Coloumb (Newtonian) potential related singularity. In case of non-grazing collisions, the kernel 

function B presents singularities of an arbitrarily high order, being governed by the ‖𝑥‖𝛼.(𝑡)
2 -norm. 

Mathematically speaking, the proposed H1/2-based (strong and weak) Landau-Poisson-Maxwell PDO 

systems cover all types of PDE, which are parabolic-elliptic-hyperbolic PDE, while the differentiated 
(!) standard Maxwell equations result into the (hyperbolic) wave equation, defining the principle of 
maximal electro-magnetic information exchange by the speed of light and all other related special 
and general relativity theory aspects. 
 
Conceptually speaking the parabolic Landau (evolution) equation connects the elliptic and 

hyperbolic (space-time) quantum world.  
 
We further note, that the elliptic vs. hyperbolic “worlds” are very much in line with D. Bohm’s 
notions of implicate and explicate order, (BoD): 
 
With respect to the elliptic “world” we recall from (BoD) A.2:   

 
"Rather, an entirely different sort of basic connection of elements is possible, from which our 
ordinary notions of space and time, along with those of separately existent material particles, are 
abstracted as forms derived from the deeper order. These ordinary notions in fact appear in what is 
called the explicate or unfolded order, which is a special and distinguished form contained within 
the general totality of all the implicate orders… Explicate order arises primarily as a certain aspect 
of sense perception and of experience with the content of such sense perception. It may be added 

that, in physics, explicate order generally reveals itself in the sensibly observable results of 
functioning of an instrument. … „What is common to the functioning of instruments generally used 
in physical research is that the sensibly perceptible content is ultimately describable in terms of a 
Euclidean system of order and measure, i.e., one that can adequately be understood in terms of 
ordinary Euclidean geometry. …  The general transformations are considered to be the essential 
determining features of a geometry in a Euclidean space of three dimensions; those are 
displacement operators, rotation operators and the dilatation operator." 

 

The hyperbolic world in the standard statistics (reflexiv) Hilbert space framework L2 is about 

statistical thermodynamics and related Shannon (discrete) entropy, based on the countable 
spectrum of the considered differential operators with range L2. 

 
The norm of the quantum H−1/2 elements is governed by the sum of the corresponding 

"observables" L2 norm and the exponential decay norm, while both summands are interwoved by a 

parameter, which can be appropriately choosen to model the influencing & balancing contribution 

of underlying "ground state" energy effect ("time-independent "action""), see also below. 
 
With regards to the proposed integrated SMEP and gravity model, the "between bodies interacting" 
force in the Boltzmann equation is decomposed into two "forces" defined by a corresponding 
(Hamiltonian formalism based) integrated (kinematical & dynamical) energy concept. This is 
achieved by considering the Landau integral operator equation in a weak H−1/2 Hilbert space 

framework. The Coulomb force (Poisson equation based) force and the Lorentz (electro-magnetic) 

force (Maxwell equation based) are replaced by the concept of underlying related kinematical and 

(complementary, not only electro-magnetic) dynamical energy, modelled as decomposition of the 
(energy) Hilbert space H1/2 = 𝐻1 ⊗ 𝐻1

⊥). 
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With regards to the Maxwell equations we recall that the components of the electric and magnetic 

field forces E, H build the 4-dimensional electromagnetic field force tensor Fi,k = (𝐸,𝐻). The Maxwell 

stress tensor s(i,k) σi,k is built on the field force tensor in combination with the Dirac function. The 

standard Maxwell operator is not coercive. For the time-harmonic Maxwell equations, (KiA), there is 
a coercive bilinear form provided, containing tangential derivatives of the normal and tangential 
components of the field on the boundary, vanishing on the subspace H1, (CoM) below. In the 

proposed H−1/2 framework the Dirac function is replaced by H−1/2 distributions to model 

point/surface densities. The Laplace operator of the Poisson equation also defines a coercive 
bilinear form (see also (WeP) below. Thus, in the proposed new framework standard and 
complementary variational methods can be applied, based on coercive bilinear forms. 
 

 
With regards to the changes coming along with the above proposed quantum element/quantum 
energy distributional Hilbert space framework we further note : 
 

- normal and tangential derivatives, mass density, and „flow through a surface“ are replaced by 
Plemelj’s Stieltjes‘ integral based concept of the notions „mass“ and „flux“ at each point of a 

surface (PlJ); the definitions require less regularity assumptions to the underlying potential 
function;  we mention that the Vlasov-Poisson-Boltzmann system is about the Poisson potential 
function defining the forces term 𝐹 in the general Boltzmann equation, (LiP1)  

 
- the extended Maxwell equations (making the Yang-Mills equation superfluous & enabling an 
unique stabil 3D-NSE Cauchy problem solution with appropriately defined distributional initial value 
function) define a coercive bilinear form in the related variational equation representation; we 

mention that the Vlasov-Maxwell-Boltzmann system is about the (collision-free) Lorentz potential 
function defining the forces term 𝐹 in the general Boltzmann equation, (LiP1) 

 
- the role of the Gaussian density function to measure the statistics in the observable space 

H0 can be extended by the mathematical microscope wavelet tool 'unfolding' a function 

over the one-dimensional space R into a function over the two-dimensional half-plane of 
"positions" and "details" 

 

- in general, the usage of a H−1/2 Hilbert space framework allows a variational calculus with 

differentials and related pseudo-differential equations, including Gateaux and Frechet 
differentials, (VaM). 
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