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ZEROS OF DERIVATIVES OF ENTIRE FUNCTIONS

THOMAS CRAVEN, GEORGE CSORDAS AND WAYNE SMITH

ABSTRACT. It is shown that if a real entire function of genus one has only

finitely many nonreal zeros, then, its derivatives, from a certain one onward,

have only real zeros.

A real entire function tp(x) is said to be in the Laguerre-Pólya class if ip(x) can

be expressed in the form

oo

il>(x) = cxne-ax2+ßx Y[(l + x/ak)e-x'a\

fe=i

where c,ß,ak are real, a > 0, n is a nonnegative integer, and J2ak~2 < °° (see P^

PI]). If ip(x) is in the Laguerre-Pólya class, we will write ip € £.-?■ Of particular

importance is the fact that such a function can be uniformly approximated on

compact subsets of the complex plane by a sequence of polynomials with only real

zeros. We shall use the notation £-P* to denote the set of all entire functions which

arise as products of real polynomials and functions in C-P.

A fifty-five year old conjecture of Pólya [P2] and Wiman [Wl] states that the

derivatives <p^n\x) for <p(x) € t-P* will have only real zeros for all sufficiently

large n. All work on this problem depends heavily on the order of <p(x). (The

corresponding statement fails for some functions of order 2 such as exp(x2).) The

first partial result was proved by Âlander in 1930 for functions of order less than

| [A2] and later extended by Wiman to functions of order at most 1 [W2]. In

1937, Pólya extended these results to functions of order less than | [P3]. Recently,

the present authors have proved the conjecture for functions of order less than 2

[CCS]. In this paper, we first obtain a refinement of an old theorem of Âlander

[Al] which was needed in [A2] and [CCS]. We use this improved result to extend

our proof of the Pólya-Wiman conjecture to functions of minimal type of order 2

(for definitions, see [B]).

THEOREM 1. Suppose that f(z) = J2bkZk is a transcendental entire function

satisfying

M(r) = max \f(z)\ < ecr     for all r > r0,
\z\ = r

where c and d are positive constants. Let e > 0. Then there are infinitely many

positive integers n such that if f^n\zn) = 0, then

(1) \zn\ > {\og2)e-1{c + £)-1ldn-1+i'd.
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This theorem is an improvement of Âlander's theorem (see, for example, [CCS]).

Âlander's theorem applied to f(z) would yield, in place of (1), the inequality \zn\ >

(log2)n-1+1/A for any X > d.

PROOF OF THEOREM 1. We have by Cauchy's inequality that

glog M(r)

(2) |6„| <       rn      ,        n>0, r>0.

Let H(r) denote the inverse function of logM(r). It follows that for r > cr^ = r%,

(3) ri/dc-i/d < H^

If r = H(n), then by (2), |i>n| < (e/H(n))n.   Thus, by (3), there is a positive

integer n\ such that |6„| < (en~l/d)ncn/d for n > n\. In particular, if 8 > 0, then

\bn\n
n/'dp—n (c + 6) -n/d _ o(l) as n —► oo. Hence there are arbitrarily large n such

that

(4) \bk+n/bn\<ek{c + 6)kld{k + n)-kld,        k > 1.

Then by (4), there are infinitely many n such that

/<")(«)

n\bn
= E

fc=0

n + k\ bk+n   k

k bnZ

n + k

k
bk+n

bn

>i jr(ntk)ek{c+s?!?\z

fc=i
oo

k    j   (n + k)k'd

>2     VfntfcVfc(Ct?fc/dU~fc|

fc=0
k rk/d

If |^|e(c + f5)1//dn  1/d < 1, then the expression above is equal to

(5) 2-{\-en-1/d{c + 8)1/d\z\)-n-1.

Also, for sufficiently large n,

(log2)e_1(c + 36)-1/dn-1+1/d < (log2)e-1(c + 26)-1/dn1/d(n + l)"1.

We conclude that if \z\ < (log2)e_1(c + 3<5)~1/dn~1+1/<i and n is large, then ex-

pression (5) is larger than

(6) 2 1-
log 2  / c + 6

n+1 \c + 26

l/d'
-n-1

Since (6) is positive for all sufficiently large n, the theorem follows by setting 6 =

e/3.
We now present an example showing that Theorem 1 is essentially sharp. Let

f(z) = e~cz , where c > 0. Then f^ is an odd function if n is odd, so f^(0) = 0.

Also, if n is even there is a zero zn of /(") satisfying

c-l/2„-l/2 < Zn < (3/2)1/2c-l/2n-l/2_
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These estimates are due to Wiman [Wl]. From this it is clear that the only possible

improvement in inequality (1) would be an improvement in the constant (log2)/e.

An immediate consequence of Theorem 1 (with d = 2, e replaced by s/2, and

c — a.-\- e/2) for functions in the Laguerre-Pólya class is the following corollary.

Corollary i. Suppose that

f(z) = p(z)e-az2+0z P](l + zlak)e-*la"

is a transcendental function in Z-P*, where p(z) is a real polynomial, and that

e > 0. Then there are infinitely many positive integers n such that if f^n'(zn) = 0,

then

\zn\>{\og2)e'1{a + e)-1'2n~1'2.

We now turn our attention to the Pólya-Winman conjecture. We shall need the

following results, in which we write Dnf for f(nh

Lemma l [CCS, Lemma 1]. If <p e Z-P* and if Dm<p g Z-P for some
nonnegative integer m, then for any a G R

Dm+1[{x + a)<p(x)}eZ-P.

LEMMA 2 [CCS, LEMMA 2]. Let <p(x) - p(x)ip{x) G Z-P*, where p{x) is a

nonconstant polynomial with only nonreal zeros and where

oo

x¡){x) = cxne0x fi (1 + x/ak)e-x/ak

k=l

is in Z-P ■ Then there is a positive integer N and an open nonempty interval I such

that if 7 G /, then (D + i)<pn{x) has fewer nonreal zeros than p(x), where

M«) = *M (exp { [ß- g ¿) *}) fl (l + ¿) ^'ak-

Theorem 2. Let ¡p e Z-P*. If 71 < 72 and if(D + ~tj)<p(x) e Z-P, j = 1,2,
then

[D + i)<p{x) € Z-P    for all 7 € [71,72]•

Moreover, the real zeros of D(<p'/<p) are all simple.

This theorem, but with a restriction on the order of ip, is [CCS, Corollary 1].

The theorem is proved by using the same counting argument as in the original

proof, except that a refinement of [CCS, Lemma 3] is now required. The upper

bound in that lemma must be recognized to be 2d + 1 when <p has infinitely many

zeros.

THEOREM 3. Let <p(x) = p{x)eßx ]J{1 + x/ak)e'x,ak e Z-P*, where p(x) is a

polynomial. If (D + i)tp(x) G Z-P for all 7 in an open nonempty interval I, then

there is a positive integer m such that Dm<p(x) G Z-P■

This theorem but with a restriction to order less than 2, was proved as Theorem 2

of [CCS]. It was proved by obtaining a contradiction involving Âlander's theorem.

The same proof yields Theorem 3 when we use Corollary 1 (with a = 0 and e

sufficiently small) in place of Âlander's theorem. It is important to notice that

Theorem 1 is translation invariant.

We now give our application of Theorem 1 to the Pólya-Wiman conjecture.
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THEOREM 4. Ifp(x) is a polynomial and <p(x) = p(x)eí3x H(l + x/ak)e~x/ak G

Z-P*, then there is a positive integer M such that DMip(x) G Z-P.

PROOF. We may assume that p(x) has no real zeros and has degree 2d. If

d = 1, we obtain the conclusion by applying Lemma 2, Theorem 3, and Lemma

1 in that order. For d > 1, we proceed by induction. Apply Lemma 2, obtaining

7i < 72 such that (D + ^j)<Pn have less than 2d nonreal zeros. By the induction

hypothesis, there exists a number r such that Dr(D+^j)ip^ is in Z-P. By Theorem

2, (D + i)(Dr<piv) is in Z-P for all 7 in (71,72)- Therefore by Theorem 3, there

exists an m such that Dm+r<pN is in Z-P. An appeal to Lemma 1 completes the

proof.
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