
ON THE EQUATION div u = g AND BOGOVSKIĬ’S OPERATOR IN
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Abstract. Consider the divergence problem with homogeneous Dirichlet data on a Lipschitz
domain. Two approaches for its solutions in the scale of Sobolev spaces are presented. The
first one is based on Calderón-Zygmund theory, whereas the second one relies on the Stokes
equation with inhomogeneous data.

1. Introduction

The solution of many problems in hydrodynamics requires a thorough understanding of the struc-
ture of the solutions of the equation div u = g for a given scalar valued function g. Hence, given a
domain Ω ⊂ R

n, quite a few authors (see e.g. [Cat61], [Lad69], [Neč67], [SŠ73], [Bog79], [Bog80],
[Pil83], [Sol83], [vW90], [BS90], [FS94], [Gal94], [Soh01]) dealt with the problem

(1.1)

{
div u = g in Ω
u|∂Ω = 0 on ∂Ω.

There are several approaches to prove the existence of a solution to problem (1.1), see [Bog79],
[Gal94], [vW90] and [Pil83]. Observe also that the solution to this problem is not unique.

Bogovskĭı proved the existence and a-priori estimates for a solution to (1.1) in the scale of
Sobolev spaces of positive order provided Ω ⊂ R

n is a Lipschitz domain, n ≥ 2 and g ∈ Lp(Ω)
satisfies

∫
Ω g = 0. Here 1 < p < ∞. His approach is based on an explicit representation formula

for u on star shaped domains. This representation of u as a singular integral allows to apply
Calderón-Zygmund theory and estimates for u in Sobolev spaces of positive order follow thus by
this theory.

In this paper we prove that Bogovskĭı’s solution operator B can be extended continuously to
an operator acting from W s,p

0 (Ω) to W s+1,p
0 (Ω)n provided s > −2 + 1/p. Our approach is based

on properties of the adjoint kernel of K, K associated to B, see also [BS90], [MM05]. Results of
this type are quite useful in the study of the Navier-Stokes flow past rotating obstacles, see e.g
[GHH04]. Note that the case s = −1 was already considered by Borchers and Sohr in [BS90]; see
however [FS94] and the footnote on page 180 of Galdi’s book [Gal94].
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A completely different approach to equation (1.1) is based on estimates for the solution of the
inhomogeneous Stokes system

(1.2)
−∆u+ ∇p = f in Ω

div u = g in Ω
u = 0 on ∂Ω,

see Section 3. Setting f = 0 and Bg := u, where (u, p) is the solution to problem (1.2), one obtains

by this approach in particular estimates for the solution to problem (1.1) provided g ∈ Ŵ 1,p(Ω)

or g ∈ Ŵ−1,p(Ω). In Section 3 we extend this approach to g ∈ Ŵ s,p(Ω) for all s ∈ [−1, 1]. For
related problems as e.g. groundwater flow we refer to [CL93].

2. Approach by an explicit representation formula

Let Ω ⊂ R
n be a domain and let 1 < p < ∞. For s ≥ 0 we denote by (W s,p(Ω), ‖ · ‖W s,p(Ω)) the

usual Sobolev spaces, see e.g. [Tri95]. Furthermore, let W s,p
0 (Ω) := C∞

c (Ω)
‖·‖W s,p(Ω)

. For s < 0
we set

W s,p(Ω) := (W−s,p′

0 (Ω))′ and W s,p
0 (Ω) := (W−s,p′

(Ω))′,

where 1
p

+ 1
p′

= 1. Note that C∞
c (Ω) is dense in W s,p

0 (Ω) for all s ∈ R.

Our first proposition relies on the fact that for bounded and star shaped domains with respect
to a ball K a solution to problem (1.1) can be written as a singular integral. More precisely,
choose ω ∈ C∞

c (K) with
∫

K
ω = 1 and define for g ∈ C∞

c (Ω)

(Big)(x) :=

∫

Ω

g(y)
xi − yi

|x− y|n

∞∫

0

ω(x+ r
x− y

|x− y|
)(|x − y| + r)n−1 dr dy,(2.1)

where x = (x1, . . . , xn) and i = 1, . . . , n.
Then the following holds.

Proposition 2.1. Let 1 < p <∞ and Ω ⊂ R
n be a bounded and star shaped domain with respect

to some ball. Let g ∈ Lp(Ω). Then B := (B1, . . . , Bn) satisfies

BC∞
c (Ω) ⊂ C∞

c (Ω)n

and

∇ ·Bg = g − ω

∫

Ω

g for g ∈ Lp(Ω).

Moreover, for s > −2 + 1
p
, B can be continuously extended to a bounded operator from W s,p

0 (Ω)

to W s+1,p
0 (Ω)n.

Proof. The case s ≥ 0 was already treated by Bogovskĭı in [Bog79]. There it is proved that
BiC

∞
c (Ω) ⊂ C∞

c (Ω)n. Moreover, by Calderón-Zygmund theory for the singular integral (2.1) one
obtains the assertion for s ≥ 0. For a detailed proof see [Gal94, Lemma III.3.1].
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In the following we prove the assertion for s < 0 by duality. In fact, the kernel of the adjoint
B∗

i of the operator Bi is given by

K∗
i (x, x− y) = −

xi − yi

|x− y|n

∞∫

0

ω(y − r
x− y

|x − y|n
)(|x− y| + r)n−1 dr

= −(xi − yi)

∞∫

1

ω(x− r(x − y))rn−1 dr

= −(xi − yi)

∞∫

0

ω(x− r(x − y))rn−1 dr + (xi − yi)

1∫

0

ω(x− r(x − y))rn−1 dr

= −
xi − yi

|x− y|n

∞∫

0

ω(x− r
x− y

|x− y|
)rn−1 dr + (xi − yi)

1∫

0

ω(x− r(x − y))rn−1 dr

=: K∗
i,sing(x, x − y) +K∗

i,bdd(x, x − y).

Since

|∂xj
K∗

i,bdd(x, x− y)| ≤ C, i, j = 1, . . . , n, x ∈ Ω, y ∈ R
n,

it follows that the operator associated to the kernelK∗
i,bdd continuously maps Lp(Ω) intoW 1,p(Ω).

We thus consider in the following the contribution of K∗
i,sing. Similarly as in the proof of [Gal94,

Lemma III.3.1], the kernel ∂xj
K∗

i,sing can be decomposed in a weakly singular kernel K∗
i,sing,w and

a Calderón-Zygmund kernel K∗
i,sing,CZ. More precisely, ∂xj

K∗
i,sing can be rewritten as

∂xj
K∗

i,sing = K∗
i,sing,w +K∗

i,sing,CZ,

with

K∗
i,sing,w(x, x − y) = −

xi − yi

|x− y|n

∞∫

0

(∂xj
ω)(x− r

x− y

|x − y|
)rn−1 dr,

K∗
i,sing,CZ(x, x − y) =

−δij
|x− y|n

∞∫

0

ω(x− r
x− y

|x− y|
)rn−1 dr

+
xi − yi

|x− y|n+1

∞∫

0

(∂xj
ω)(x− r

x− y

|x − y|
)rn dr.

Note that K∗
i,sing,CZ satisfies the following properties

(a) K∗
i,sing,CZ(x, z) = α−nK∗

i,sing,CZ(x, αz), x ∈ Ω, z ∈ R
n, α > 0,

(b)
∫
|z|=1K

∗
i,sing,CZ(x, z) dz = 0, x ∈ Ω,

(c) |K∗
i,sing,CZ(x, z)| ≤ C, x ∈ Ω, |z| = 1.

It follows from classical Calderón-Zygmund theory [CZ56], [Ste93] that

B∗
i ∈ L(Lp(Ω),W 1,p(Ω)).
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Moreover,

B∗
i ∈ L(W s̃,p

0 (Ω),W s̃+1,p(Ω)), s̃ > 0

by [Gal94, Remark III.3.1] and real interpolation. Since W s,p
0 (Ω) = W s,p(Ω) for −1 + 1

p
< s < 1

p
,

we obtain

B ∈ L(W s,p
0 (Ω),W s+1,p

0 (Ω)n), −2 +
1

p
< s < −1.

The remaining cases finally follow by real interpolation. �

Remark 2.2. (a) It should be emphasized that in the above proposition, the operator B is
defined for all g ∈ Lp(Ω) whereas Bogovskĭı [Bog79], von Wahl [vW90] and Galdi [Gal94]
constructed solutions to the problem (1.1). The latter is only possible if

∫
Ω g = 0. Hence,

B may be regarded as extension of the solution operator to problem (1.1). However, if∫
Ω
g 6= 0, then Bg is not a solution to (1.1).

(b) The idea of using the adjoint kernel to prove estimates for B in Sobolev spaces of negative
order is quite natural and was already used in [BS90] for the case s = −1. More recently,
this approach was also reconsidered by [MM05].

(c) There is a considerable difference between Bi and its adjoint B∗
i . As BiC

∞
c (Ω) ⊂ C∞

c (Ω),
this does not hold true for its adjoint.

(d) The above proof shows that B ∈ L(W s,p
0 (Ω),W s+1,p(Ω)n) for s ≤ −1.

Bounded and locally Lipschitz domains have the remarkable property that they can be written
as a finite union of star shaped domains. This gives us the possibility to carry over mapping
properties of the operator B, originally defined on star shaped domains, to locally Lipschitz
domains. For convenience and to fix notation we first state a result concerning the decomposition
of Lipschitz domains into star shaped domains. For a proof of this result we refer to [Gal94,
Lemma III.3.4].

Lemma 2.3. Let Ω ⊂ R
n be a bounded and locally Lipschitz domain. Then there exist m ∈ N

and an open cover G = {Gi : i ∈ {1, . . . ,m}} of Ω such that for 1 ≤ i ≤ m the set Ωi = Ω∩Gi is
star shaped with respect to some ball and Ω =

⋃m

i=1 Ωi.

Moreover, there exist φi ∈ C∞
c (Gi), mi ∈ N, θi,k ∈ C∞

c (Ωi) and ψi,k ∈ C∞
c (Ω) (i ∈

{1, . . . ,m}, k ∈ {1, . . . ,mi}) such that

Pig := φig +

mi∑

k=1

θi,k

∫

Ω

ψi,kg, g ∈ C∞
c (Ω)

satisfies Pig ∈ C∞
c (Ωi) and

∫
Ω Pig = 0. In addition, if

∫
Ω g = 0 we get a decomposition of g by

g =
∑m

i=1 Pig.

In order to define a solution operator to (1.1) for bounded, locally Lipschitz domains we
reconsider the operators Pi.

Lemma 2.4. Let 1 < p <∞, s ∈ R and let Ωi and Pi be defined as in Lemma 2.3 for i = 1, . . . ,m.
Then

Pi ∈ L(W s,p
0 (Ω),W s,p

0 (Ωi)), s ∈ R, 1 < p <∞.
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Proof. Let i ∈ {1, . . . ,m}. Consider first the case where s ≥ 0. Then there exists C > 0 such
that

‖Pig‖W
s,p
0 (Ωi) ≤ C‖g‖W

s,p
0 (Ω), g ∈W s,p

0 (Ω).

In order to prove the remaining cases, let s > 0, g ∈ C∞
c (Ω) and v ∈W s,p′

(Ωi),
1
p

+ 1
p′

= 1. Then

|〈Pig, v〉| = |

∫

Ωi

φ(x)g(x)v(x) +

m∑

k=1

θi,k(x)v(x)

∫

Ω

ψi,k(y)g(y) dy dx|

= |

∫

Ωi

g(x)φ(x)v(x) dx+

m∑

k=1

∫

Ω

ψi,k(y)g(y)

∫

Ω

θi,k(x)v(x) dx dy|

≤ ‖g‖
W

−s,p
0 (Ω)‖φv‖W s,p′ (Ω) + ‖g‖

W
−s,p
0 (Ω)

m∑

k=1

‖ψi,k

∫

Ω

θi,k(x)v(x) dx‖W s,p′ (Ωi)

≤ C‖g‖
W

−s,p

0 (Ω)‖v‖W s,p′ (Ωi)

where C is some constant independent of g and v. �

The following theorem is the main result of this paper. Besides its interest in its own, there
are many applications of the use of Bogovskĭı’s operator in Sobolev spaces of negative order; see
e.g. the recent paper [GHH04].

Theorem 2.5. Let Ω ⊂ R
n be a bounded domain with a locally Lipschitz boundary. Then there

exists B : C∞
c (Ω) → C∞

c (Ω)n such that

∇ · Bg = g, g ∈ Lp(Ω) with

∫

Ω

g = 0.

Moreover, B can be extended continuously to a bounded operator from W s,p
0 (Ω) to W s+1,p

0 (Ω)n

provided s > −2 + 1
p
.

Proof. Let g ∈ C∞
c (Ω). Consider the decomposition of Ω and the associated operators Pi defined

as in Lemma 2.3. Then

(2.2)
m∑

i=1

Pig = g provided

∫

Ω

g(x) dx = 0.

Denote the operator defined in Proposition 2.1 acting on Ωi by Bi and set Bg :=
∑m

i=1 BiPig.

Then by Proposition 2.1 and Lemma 2.4, B ∈ L(W s,p
0 (Ω),W s+1,p

0 (Ω)n) for all s ≥ 0 since
BiPiC

∞
c (Ω) ⊂ C∞

c (Ωi)
n.

Again, by Proposition 2.1 and Lemma 2.4

|〈Bg, v〉| = |

∫

Ω

m∑

i=1

BiPig(x)v(x) dx| = |

m∑

i=1

∫

Ωi

BiPig(x)v(x) dx|

≤ C

m∑

i=1

‖Pig‖W
−s,p
0 (Ωi)

‖v‖W s,p′(Ωi)

≤ C‖g‖
W

−s,p
0 (Ω)‖v‖W s,p′ (Ω), g ∈ C∞

c (Ω), v ∈W s,p′

(Ω).
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Finally, by (2.2) we obtain

∇ · Bg =

m∑

i=1

∇ · BiPig =

m∑

i=1

Pig = g, g ∈ Lp(Ω),

∫

Ω

g(x) dx = 0.

�

3. Approach by the inhomogeneous Stokes equation

We start this section by considering the problem

(3.1)
−∆u+ ∇p = f in Ω

div u = g in Ω
u = 0 on ∂Ω

where Ω ⊂ R
n for n ≥ 2 is a bounded domain with boundary ∂Ω ∈ C2. Let 1 < p, p′ < ∞ such

that 1 = 1
p

+ 1
p′

.

We then set Lp
0(Ω) := {f ∈ Lp(Ω) :

∫
Ω f = 0} and for s ∈ [0, 1] let Ŵ s,p(Ω) := W s,p(Ω)∩Lp

0(Ω)

equipped with the norm in W s,p(Ω). Furthermore, we define Ŵ−s,p(Ω) := (Ŵ s,p′

(Ω))′ equipped
with the usual dual norm.

Note that for g ∈ Ŵ 1,p(Ω) we have

‖g‖cW−1,p(Ω)
= sup

v∈cW 1,p(Ω)\{0}

|〈g, v〉|

‖v‖W 1,p′ (Ω)

≤ ‖g‖
W

−1,p
0 (Ω).

The following proposition is due to Farwig and Sohr [FS94].

Proposition 3.1. Let Ω ⊂ R
n be a bounded domain with C2-boundary. Let 1 < p < ∞. Then

there exists a bounded operator R : Ŵ 1,p(Ω) → W 2,p(Ω)n ∩ W 1,p
0 (Ω)n such that divRg = g.

Moreover, R satisfies the following estimates:

(a) ‖Rg‖Lp(Ω) ≤ C‖g‖cW−1,p(Ω)
≤ C‖g‖

W
−1,p
0 (Ω),

(b) ‖Rg‖W 2,p(Ω) ≤ C‖g‖W 1,p(Ω).

Here C > 0 is a constant depending on Ω and p only.

Setting f = 0 and Rg := u, where (u, p) is the solution of (3.1) the assertion above is a direct

consequence of the unique solvability of the problem (3.1) with f ∈ (Lp(Ω))n and g ∈ Ŵ 1,p(Ω).
Similarly, we obtain the fact that R ∈ L(Lp

0(Ω), (W 1,p(Ω))n) from the unique solvability of
the problem (3.1) for f ∈ W−1,p(Ω)n and g ∈ Lp

0(Ω). In fact, since (u, p) is the unique solution

of (3.1), the operator R given in Proposition 3.1 may be thus extended from Ŵ 1,p(Ω) to Lp
0(Ω).

Unique solvability of (3.1) in the given setting was first proved by Cattabriga [Cat61] for the case
n = 3 and by Galdi and Simader [GS90] for general n ≥ 2. See also [KS91] for a different proof.
We summarize these facts in the next proposition.

Proposition 3.2. Let 1 < p <∞ and let Ω ⊂ R
n be a bounded domain with C2-boundary. Then

for every f ∈ W−1,p(Ω)n and g ∈ Lp
0(Ω) there exists a unique solution (u, p) ∈W 1,p

0 (Ω)n ×Lp
0(Ω)

of (3.1) satisfying the inequality

‖∇u‖Lp(Ω) + ‖p‖Lp(Ω) ≤ C(‖f‖W−1,p(Ω)n + ‖g‖Lp(Ω))

for some constant C = C(Ω, n, p).



ON THE EQUATION div u = g 7

Noting that (Lp′

0 (Ω))′ = Lp
0(Ω), the following lemma implies that Lp

0(Ω) is dense in Ŵ−1,p(Ω).
The proof is standard and therefore omitted.

Lemma 3.3. Let X,Y be Banach spaces. Assume that X is densely embedded in Y and that X
is reflexive. Then the closure of Y ′ is X ′.

Combining the above results, we may define a solution operator for the divergence problem
(1.1) in the following spaces

R :





Ŵ 1,p(Ω) → W 2,p(Ω)n ∩W 1,p
0 (Ω)n

Lp
0(Ω) → W 1,p

0 (Ω)n

Ŵ−1,p(Ω) → Lp(Ω)n

The following result gives additional mapping properties of R in the scale of Sobolev spaces.

Theorem 3.4. Let 1 < p < ∞ and let Ω ⊂ R
n be a bounded domain with C2-boundary. Let

s ∈ [−1, 1]. Then there exists a bounded linear operator R : Ŵ s,p(Ω) → W s+1
0 (Ω)n such that

divRg = g for all g ∈ Ŵ s,p(Ω).

Proof. The cases s = 1 and s = −1 follow from Proposition 3.1. Consider next the case where
0 ≤ s < 1. Denote by K the set of all constant functions over Ω. Then we may identify the spaces

Lp
0(Ω) with Lp(Ω)/K and Ŵ 1,p(Ω) with W 1,p(Ω)/K, respectively. As K is a one-dimensional

vector space, it follows from [Tri95, Section 1.17.2, Remark 1] that

(Lp
0(Ω), Ŵ 1,p(Ω))s,p = (Lp(Ω)/K, W 1,p(Ω)/K)s,p = (Lp(Ω), W 1,p(Ω))s,p/K = Ŵ s,p(Ω).

This implies the assertion provided 0 ≤ s < 1.

In order to prove the remaining case where −1 < s < 0, note that (Lp′

0 (Ω), Ŵ 1,p′

(Ω))′s,p′ =

(Lp
0(Ω), Ŵ−1,p(Ω))s,p; see e.g. [Tri95, Section 1.11.2]. Hence,

Ŵ−s,p(Ω) = (Lp′

0 (Ω), Ŵ 1,p′

(Ω))′s,p′ = (Lp
0(Ω), Ŵ−1,p(Ω))s,p

and the proof is complete. �

Remark 3.5. The assertions of Theorems 2.5 and 3.4 remain valid also for the complex inter-
polation spaces. In fact, the above mapping properties of B and R in the scale of Sobolev spaces

hold true also in the scale of the spaces Hs,p(Ω) and Ĥs,p(Ω), respectively.
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