The three Millennium problem solutions, RH, NSE, YME, and a Hilbert scale based quantum geometrodynamics

Overview

Klaus Braun
December, 2019

Einstein A., "We can't solve problems by using the same kind of thinking we used when we created them".

The homepage www.fuchs-braun.com provides solutions to the following Millennium problems

(1) the Riemann Hypothesis
(2) the 3D-nonlinear, non-stationary Navier-Stokes equations problem
(3) the mass gap problem of the Yang-Mills equations.

A common underlying distributional Hilbert space framework enables

(4) a quantum gravity theory.

The proposed quantum gravity theory is based on an only (energy related) Hamiltonian formalism, as in general the corresponding (force related) physical model specific Lagrange formalism is no longer defined, due to the reduced regularity assumptions to the domains of the concerned (Pseudo Differential) Operator (*)

The common distributional Hilbert space framework provides an answer to Derbyshine’s question ((DeJ) p. 295):

"The non-trivial zeros of Riemann’s zeta function arise from inquiries into the distribution of prime numbers. The eigenvalues of a random Hermitian matrix arise from inquiries into the behavior of systems of subatomic particles under the laws of quantum mechanics. What on earth does the distribution of prime numbers have to do with the behavior of subatomic particles?"

The decompositions \(H_{-1/2} = H_0 \otimes H_0^* = H_{1/2}, H_{1/2} = H_1 \otimes H_1^* = H_{-1/2}^* \) distinguish between elementary particle states & energy with or w/o „observed/measured mass”. The „symmetry break down” model to „generate/explain” physical „mass” is replaced by a „projection of a self-adjoint operator onto the observation/measure space \(H_0 \) (*) . In other words, the matter particles (fermions) are the manifestations of the (ether) vacuum energy (bosons).

In the proposed model the (standard) „calculus in the small” meets the „calculus in the large” (MoM) in combination with the Hamiltonian formalism for classes of non-linear equations, where the kinetic (matter, Lagrange formalism) energy part is (only) based on a Krein space setting/decomposition (GaA) of the compactly embedded sub-spaces \((H_0, H_1)\) into the Hilbert spaces \((H_{-1/2}, H_{1/2} = H_{-1/2}^*)\).

(*) The standard Hilbert space in quantum theory is \(L_2 = L_2 \) with its underlying Lebesgue integral concept. The latter one is the most relevant measurement concept in probability theory and statistics, being also applied for „observable” measurements in quantum theory. The Hilbert space \(L_2 = L_2 \) is strongly related to the concept of Fourier series. Regarding the Hilbert space \(H_{-1/2} \) the corresponding measurement concept is the Fourier-Stieltjes series concept going along with the concept of cardinal series in the context of integral and meromorphic functions (WhJ). We note that the cardinal series representation for the trivial zeros and the imaginary parts of the non-trivial zeros of the Riemann Zeta function \((-2n, \rho_n)\) is given by ((WhJ) p. 68)
(1) The Riemann Hypothesis

The key ingredients of the Zeta function theory are the Mellin transforms of the Gaussian function and the fractional part function. To the author’s humble opinion the main handicap to prove the RH is the not-vanishing constant Fourier term of both functions. The Hilbert transform of any function has a vanishing constant Fourier term. Replacing the Gaussian function and the fractional part function by their corresponding Hilbert transforms enables an alternative Zeta function theory based on two specific Kummer functions and the cotangens function. The imaginary part of the zeros of one of the Kummer functions play a key role defining alternatively proposed arithmetic functions to solve the binary Goldbach conjecture.

Let H and M denote the Hilbert and the Mellin transform operators. The Mellin transform of the Gaussian function $f(x):=e^{-\pi x^2}$ is given by

$$M[f](s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) x^{-s/2} dx = \frac{1}{2\pi} \int_{0}^{\infty} f(x) x^{-s/2} dx = \frac{1}{2\pi} \int_{0}^{\infty} f(x) x^{-s/2} dx$$

The related Theta function properties (based on the Poisson summation formula) of

$$G(x) := \theta(x^2) := \sum_{n=0}^{\infty} e^{-\pi n^2 x^2} = 1 + 2 \sum_{n=1}^{\infty} e^{-\pi n^2 x^2} =: 1 + 2 \psi(x^2) = \frac{1}{2} \sum_{n=0}^{\infty} e^{-\pi n^2 x^2} \approx \frac{1}{2}$$

leads to the Riemann duality equation in the form (EdH) 1.8

$$\xi(s) := \frac{1}{2} \int_{0}^{\infty} G(x^2) x^{-s} dx \rightarrow \frac{1}{2} \int_{0}^{\infty} G(x^2) x^{-s} dx.$$

It implies that the invariant operator $x^{-\frac{s}{2}} \rightarrow \int_{0}^{\infty} x^{-\frac{s}{2}} G(x) dx$ is formally self-adjoint with the transform $2\xi(s)/(s(s-1))$. But this operator has no transform at all as the integrals do not converge, due to the not vanishing constant Fourier term of both functions.

Replacing $f(x) \rightarrow f_H(x) := M[f](x)$ leads to an alternative entire Zeta function $\xi'(s)$ in the form

$$\xi'(s) := \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^s} (x^2) \tan(\frac{\pi}{2} s) \cdot \xi(s) = \xi(s) \cdot M \left[\frac{1}{dx} \cdot x^\frac{s}{2} f_H(x) \right] (s)$$

with same zeros as $\xi(s)$, as it holds $s(1-s)\xi'(s)\xi'(1-s) = \pi \xi(s)\xi(1-s)$.

Due to the vanishing constant Fourier term the invariant operator $x^{-\frac{s}{2}} \rightarrow \int_{0}^{\infty} x^{-\frac{s}{2}} G_H(x) dx$ is self-adjoint, providing an appropriate hermitian operator mapping rule. The corresponding to be appropriately defined domain is motivated by the Bagchi Hilbert space reformulation of the Nyman, Beurling and Baez-Duarte RH criterion (BaB). It provides the link between (1), the RH, and solutions of (2), (3), (4): For the Zeta function on the critical line $\xi(t) := \xi\left(\frac{s}{2} + it\right) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ it holds

$$\xi(t) \in H, \quad \xi(t) \in H, \quad \xi(t) \in H.$$

The imaginary part values ω_n of the zeros of the considered Kummer function $f_1(1/2; 2\pi iz)$ (alternatively to $e^{2\pi i x}$) with its corresponding Mellin transform

$$M\left[f_1(1/2; 2\pi x) \right] (s) = \int_{0}^{\infty} x^{s-1} f_1(1/2; 2\pi x) dx = \frac{\Gamma(s+1/2)}{\sqrt{\pi}}$$

enjoy appropriate properties (SeA), e.g. $2n-1 < \omega_n < 2n < \omega_n + \omega_{n+1} < 2n + 1$ satisfying the "Hadamard gap" condition.
The decomposition of the newly proposed energy Hilbert space $H_{1/2} = H_1 \otimes H^+_1$ enables (weak, variational representation) models of classical PDO equations distinguishing between "complementary" thermodynamic energy and ether (ground state) energy by the related energy inner product decomposition of $H_{1/2} \times H_{1/2}$. The first one, H_1, is governed by Fourier's (one-parameter) waves, Kolmogorov's (statistical) turbulence model, Einstein's Special (Lorentz invariant) Relativity, Klainerman's global nonlinear stability of the Minkowski space, Vainberg's conceptions of second order surfaces in Hilbert spaces (hyperboloid (conical and hyperbolic regions) defined by corresponding potential barriers), Almgren's varifold geometry (in the context of least area problems) and the Heisenberg's uncertainly relation, while the second one, the closed subspace H^+_1 of $H_{1/2}$, is governed by Calderón's (two-parameter) wavelets to go from scale "a" to scale "a − da" Bohm's revisited "quantum potential" and, Plemelj's "mass element" conceptions. With respect to the alternatively proposed (Kummer function based) Zeta function theory above we note that a L_2–function with vanishing constant Fourier term defines a $H_{1/2}$–wavelet (mother) function.

The wavelet transform allows to unfold a function over the one-dimensional space \mathbb{R} into a function over the two-dimensional half-plane of positions and details, addressing the question "where is which details generated?".

The continuous wavelet transform with the complex Shannon wavelet can be considered via solutions of Cauchy problems for PDE in the context of the construction of wavelets for an analysis of non-stationary wave propagation in inhomogeneous media. Interpolation at the lattice points in the complex plane leads to the concept of cardinal series. It is the proposed alternatively to the Newton-Gauss series in standard Zeta function theory. The cardinal series are also proposed as additional tool in the context of "Elliptic Functions According to Eisenstein and Kronecker", A. Weil.

The weak, variational $H_{-1/2} \times H_{-1/2}$–representations of the classical NSE and Maxwell equations enable well-posed solutions of the problems (2) & (3) with respect to the related newly proposed $H_{1/2}$–energy norm:

(2) The 3D-nonlinear, non-stationary Navier-Stokes equations problem

The common distributional Hilbert space framework goes along with reduced regularity assumptions for the domain of the momentum (or pressure) operator. In the context of the 3-D-NSE problem this enables energy norms estimates "closing" the Serrin gap, while at the same point in time overcoming current "blow-up" effect handicaps.

The analysis of the 2D-NSE for the 3D-NSE fails due to not appropriate Sobolev (energy) norm estimates. This is called the Serrin gap. The Yang-Mills mass gap is about the fact that color confinement permits only bound states of gluons, forming massive particles. The extended quantum state Hilbert space $H_{-1/2}$ enables a Hilbert space based quantum gravity theory and convergent energy norms estimates for the 3D-NSE problem.

(3) The mass gap problem of the Yang-Mills equations

The classical Yang-Mills theory is the generalization of the Maxwell theory of electromagnetism where chromo-electromagnetic field itself carries charges. As a classical field theory it has solutions which travel at the speed of light so that its quantum version should describe massless particles (gluons). However, the postulated phenomenon of color confinement permits only bound states of gluons, forming massive particles. This is the Yang-Mills mass gap. The variational representation of the time-harmonic Maxwell equations in the proposed "quantum state" Hilbert space framework $H_{-1/2}$ builds on truly fermions (with mass, $e H_1$) & bosons (w/o mass, $e H^+_1$) quantum states / energies, i.e. a Yang-Mills equations model extension is no longer required.
(4) A quantum gravity theory

A common mathematical model of unified quantum and gravity theories requires a truly infinitesimal geometric framework. The Hilbert space based framework in quantum theory is certainly the more suitable geometric framework compared to Weyl’s manifold based ones. At the same point in time both theories need to leave something out as they are not compatible. In quantum theory already in the simple quantum harmonic oscillator model the eigenvalues converge equidistant to infinity, i.e. the total energy is infinite as well. A similar situation is given by the concept of “wave packages” with other (less regular) domain as the H_1 domain for standard Fourier waves. A related concept is a about wavelets leading to the extended Hilbert space $H_{1/2}$. The standard quantum theory Hilbert space is $H_0 = L_2$ in order to enable to full statistical analysis, which is basically statistical thermodynamics going along with an “action variable” (HeW).

The Lagrange formalism is related to the concept of “force”, while the Hamiltonian formalism is related to the concept of “energy”. Both formalisms are equivalent only (!) in case the Legendre (contact) transform can be applied. Our proposed “alternative energy (Hilbert space) concept” goes along with reduced regularity assumptions of the concerned operators (similar to the regularity reduction when moving from standard potential function (“mass density”) definition to Plemelj’s “mass element” concept ($C^0 \rightarrow C^1$)), (PlJ).

The “mass generation process” is modelled as a “selfadjoint (Hermitian operator) property” break down by the orthogonal projection $H_{1/2} = H_1 \otimes H_1 \rightarrow H_1$, i.e. the closed subspace H_1 is the model for the ground state (vacuum) energy, which is and can be neglected in all (“less granular”) Lagrange formalism based physical models.

The physical concepts of “time” and “change” are different sides of the same coin, i.e. there is no “time” w/o “change” and there is no “change” w/o “time”, i.e. there is no “action variable”. In other words, the concepts of “time” and “change” are and need to be in scope of the “matter/kinetic” energy model H_1, while its complementary ground state (vacuum) energy model H_1^\perp is per definition independent from the thermodynamical concept of “time” ((SmL), (PeR), (RoC1)).

The Friedrichs extension of the Laplacian operator (with its underlying Poisson equation being applied in electrostatics, thermodynamic and classical gravity theory) is a selfadjoint, bounded operator B with domain H_1. Thus, the operator B induces a decomposition of H into the direct sum of two subspaces, enabling the definition of a potential and a corresponding “grad” potential operator. Then a potential criterion defines a manifold, which represents a hyperboloid in the Hilbert space H_1 with corresponding hyperbolic and conical regions ((VaM) 11.2). The direct sum of the corresponding two subspaces of $H = H_1$ are proposed as a model to define a decomposition of the “fermions” space H_1 into repulsive resp. attractive fermions

$$H_1 = H_1^{\text{repulsive}} \otimes H_1^{\text{attractive}} = H_1^{(c)} \otimes H_1^{(s)}$$

whereby the above potential criterion defines those two kinds of elementary mass particles. Then the corresponding proposed quantum energy Hilbert space (including attractive gravitons $\in H_1^{(s)}$) is given by

$$H_{1/2} = H_1^{(c)} \otimes H_1^{(s)} \otimes H_1$$

As H_1 is compactly embedded into $H_{1/2}$, and given an initial universe w/o any thermodynamical “time” (i.e. $H_1 = \{1\}$, with only existing ground state energy state for the whole mathematical model system) the probability for “symmetry” break down events to generate mass were and are zero; obviously those events happened and will go on to be happen. At the same point in time the generated and still being generated “matter world” H_1 is governed by e.g. the “least action principle” (KnA), and the principles of “statistical thermodynamic” (ScE), whereby the classical action variable of the system determines the “time” (HeW).
The common mathematical (geometrical Hilbert space based) model enables a quantum gravity model based on Bohm's "hidden variables" theory (with the concept of "quantum potentials"), in line with Einstein's ether vision and his Special Relativity theory, Wheeler's gravitation & inertia conception and Schrödinger's "(My) View of the World". At the same point in time Dirac's model of the "point mass density of an idealized point mass" is replaced by Plemelj's definition of a "mass element". (*)

The decomposition of the newly proposed energy Hilbert space $H_{1/2}$ can be interpreted as "Minkowski space-time based fermions energy" Hilbert space H_1, while its elements, i.e. the existence of truly fermions (attractive and repulsive elementary particles with mass) is "caused" by the elements of $H_{1/2}$, i.e. the truly bosons (the elementary particle elements without mass) being modelled as elements of the complementary subspace of H_1 with respect to the inner product of $H_{1/2}$.

In other words, the decomposition $H_{1/2} = H_1 \otimes H_{1/2}^* = H_{1/2}^*$ distinguishes between elementary particle states & energies with or w/o "mass". The current "symmetry break down" model to "generate/explain" physical "mass" is replaced by a "projection operator onto the observation/measure space". In other words, the matter particles (fermions) are manifestations of the corresponding vacuum energies (bosons). (**)

The projection operator onto the observation/measure space is self-adjoint with respect to the inner product of H_1. Therefore, the "projection operator model" is compatible to the hermitian operator concept as applied in quantum mechanics, where all measurements have an associated observable (hermitian) operator, i.e. all eigenvalues are real and the possible outcomes of a measurement are precisely the eigenvalues of the given observable.

The thermodynamic Hilbert (energy) space H_1 is compactly embedded into the newly proposed Hilbert (energy) space $H_{1/2}$. From a statistical point of view it means that the probability to catch a quantum state/"elementary particle", which is able to collide with another one, is zero. This compactly embeddedness enables a new interpretation of the entropy phenomenon as the change process from thermodynamical (kinetic) energy to ether (ground state, "quantum potential", "Leibniz's living force") energy.

Mathematically speaking the expanded new energy Hilbert space $H_{1/2}$ (where the Heisenberg uncertainty inequality is valid) enables the Hamiltonian formalism, only. Only for the standard energy Hilbert space H_1 (which is a compactly embedded, separable Hilbert (sub-) space of $H_{1/2}$) the corresponding Lagrange formalism is defined due to a valid Legendre transformation, because of appropriate regularity of the Hilbert space H_1. In other words, Emmy Noether's theorem is valid only in the H_1 framework. It means that if the Lagrange functional is an extremal, and if under corresponding infinitesimal transformation the functional is invariant to a certain definition, then a corresponding conservation law holds true.

(*) (5Sm1L), xvii: "In these chapters I hope to convince you that conceptual problems and raging disagreements that have bedevilled quantum mechanics since its inception are unsolved and unsolvable, for the simple reason that the theory is wrong. It is highly successful, but incomplete. Our task – if we are to have simple answers to our simple questions about rocks are – must be to go beyond quantum mechanics to a description of the world on an atomic scale that makes sense."

The proposed model is in accordance with the following three mathematical model layers:

1. the quantum/"differential" layer: the variational $H_{1/2} \times H_{1/2}$ –based quantum gravity "EP world"
2. the "atom"/density layer: the variational $H_1 \times H_1 = L_2 \times L_2$ –based statistical thermodynamical "EP world"
3. the "organism"/ exact physical laws layer: the classical PDE C^+ –based "organic world".

(**) The inflation model of A. Linde requires a very small amount of ("a priori" existing, which is a contradiction by itself) matter to generate an initial "vacuum", which then inflated / blowed up to the current universe (big bang). The newly proposed model assumes a mass-less initial vacuum state (w/o any "existing" space-time concept) generating first fermions at Planck time (going along with a space-time framework initiated at Planck time) by a "projection operator onto the observation/measure space". Then, "caused" by the first generated fermions at Planck time, the Linde model can be applied.

(E1A3) S. 35: "Sitz des elektromagnetischen Feldes ist der leere Raum. Es gibt in diesem nur einen elektrischen und einen magnetischen Feld-Vektor. Dieses Feld wird erzeugt durch atomistische elektrische Ladungen, auf die das Feld wieder potenziellionisch zuköpfnt. Eine Verknüpfung des elektromotorischen Feldes mit atomistischen Bausteinen der Materie starr verbunden sind. Für letztere gilt Newtons Bewegungsgesetz"; (E1A5) S. 52: "Die Maxwellischen Gleichungen bestimmen das elektromagnetische Feld, wenn die Verteilung der elektrischen Ladungen und Ströme bekannt ist. Die Gesetze aber, nach denen sich Ströme und Ladungen verhalten, sind uns nicht bekannt. ... Wir wissen wohl, ..., aber wir begreifen es nicht vom theoretischen Standpunkts aus."
The wave-mechanical vibrations correspond to the motion of particles of a gas resp. the eigenvalues and eigenfunctions of the harmonic quantum oscillator. The alternatively proposed $H_{1/2}$ energy space is claimed to enable Schrödinger's "purely quantum wave" vision, which is about half-odd integers, rather than integers quantum numbers. As a consequence the corresponding eigenvalue and eigenfunction solutions of the number operator (i.e. the product of generation and annihilation operators) start with index $n = 1$, not already with $n = 0$. The quantum energy for the quantum state with index $n = 0$ is modelled by the closed sub-space $H_{1/2}^1$ of the energy Hilbert space $H_{1/2} = H_1 \otimes H_{\frac{1}{2}}^1$. The eigenvalue and eigenfunction solutions of the number operator (i.e. the product of generation and annihilation operators) starting with index $n = 1$ are modelled by the densely embedded Hilbert space H_1 of $H_{1/2}$. The change from the standard energy space H_1 to $H_{1/2}$ also anticipates the linkages of the crystal lattices to the Heisenberg uncertainty relation; such a missing proper linkage was the reason, why Schrödinger not adopted his "half-odd integers" idea, continuing to take for the quantum number n, the integers, beginning with $n = 0$ ((ScE2) p. 51).

With respect to the ladder operators of the harmonic quantum oscillator the proposed alternative quantum state and related energy Hilbert scales can be visualized by

\[
H_{1/2} = H_1 \otimes H_{\frac{1}{2}}^1 \quad \text{is the proposed energy Hilbert space, covered by wavelets and the Heisenberg uncertainty relation; the discrete energy eigenfunctions are elements of } H_1; \quad \text{the areas between the several discrete energy level lines reflect the "continuous" } |
\]

\[
\text{"transition energy" modelled as an (wave package) "element" of } H_{\frac{1}{2}}.\]

In the context of the Berry-Keating conjecture and the proposed RH solution framework we recall, that for the imaginary parts of the zeros of the considered special Kummer function it holds the inequalities

\[
(n - \frac{1}{2}) < \frac{1}{2} \sum_{k=1}^{n} 2\omega_k < (n + \frac{1}{2}).
\]

\(^(*)\) (ScE2) p. 44: "The different cases in the evaluation of "Z" arise thus: (a) $n_z = 0, 1, 2, 3, 4, \ldots$ (Bose-Einstein gas); (b) $n_z = 0, 1$ (Fermi-Dirac gas, Pauli's exclusion principle). There may or may not be condition that the total number of particles is constant, $n = \sum n_z$."

(ScE2) p. 50: "Since in the Bose case we seem to be faced, mathematically, with simple oscillator of Planck type, of which the n_z is the quantum number, we may ask whether we ought not to adopt for n_z half-odd integers $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$ rather than integers. Once must, I think, call that an open dilemma. From the point of view of analogy one would very much prefer to do so. For, the "zero-point energy" $\frac{1}{2} \mu_0$ of a Planck oscillator is not only borne out by direct observation in the case of crystal lattices, it is also so intimately linked up with the Heisenberg uncertainty relation that one hates to dispense with it. ... Not until the idea of photons had gained considerable ground did Bose (about 1924) point out that we could, alternatively to the "holraithem" oscillator statistics, speak of photon statistics, applied to the wave-mechanical proper vibrations which correspond to the motion of the particles of an ideal gas. ... The wave point of view in both cases, or at least in all Bose cases, raises another interesting question. Since in the Bose case we seem to be faced, mathematically, with simple oscillator of the Planck type, of which the n_z is the quantum number, we may ask whether we ought not to adopt for n_z half-odd integers $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$ rather then integers. One must, I think, call that an open dilemma. From the point of analogy one would very much prefer to do so. For, the "zero point energy" of a Planck oscillator is not only borne out by direct observation in the case of crystal lattices, it is also so intimately linked up with the Heisenberg uncertainty relation that one hates to dispense with it. On the other hand, if we adopt it straightaway, we get into serious trouble, especially on contemplating changes of the volume (e.g. adiabatic compression of a given volume of black-body radiation), because in this process the (infinite) zero-point energy seems to change by infinite amounts! So we do not adopt it, and we continue to take for the n_z the integers, beginning with 0."

6
From a philosophical perspective we mention that according to Kant, time and space are not objectively real but rather a framework within which our experiences are constructed. It is, in large part, this framework of time and space that makes our sensory experiences possible, or at least meaningful. In this sense it corresponds to the proposed "Minkowski space-time based attractive and repulsive fermions energy" Hilbert space H_1. The "existence" of its elements, modelling truly fermions (elementary particles with mass) is "caused" by truly bosons (the elementary particle elements without mass) being modelled as elements of the complementary subspace of H_1 with respect to the inner product of $H_{1/2}$.

With respect to the both halves of Schopenhauer's view of the world in "the world as will and imagination" (ZiR)

1. the "will", the aimless, cosmic, universal energy as reason of the world (see also (*)
2. the "imagination", the world's appearance as idea.

the "will" ("Brahma" in Hinduism) corresponds to the "ether energy", and the "imagination" corresponds to the "fermions energy", in other words "the world is the self knowledge of the will".

With respect to Einstein's "The World as I see it" (EiA3), to answer the question "What is the meaning of human life, or organic life together?" we recall

"In human freedom in the philosophical sense I am definitely a disbeliever. Everybody acts not only under external compulsion but also in accordance with inner necessity.

Schopenhauer's saying, that "a man can do as he will, but not will as he will", has been an inspiration to me since my youth up, and a continual consolation and unfailing well-spring of patience in the face of the hardships of life, my own and others'. This feeling mercifully mitigates the sense of responsibility which so easily becomes paralyzing, and it prevents us from taking ourselves and other people too seriously; it conduces to a view of life in which humour, bawd, has ist due place."

In line with (in fact, building on) A. Einstein (EiA4) and with respect to a different view (in fact, discarding and overcoming) of today's related "good and evil" concept in basically all related corresponding monotheistic philosophical concepts we refer to (ScM), (ScM1).

With respect to Schrödinger's "(My) View of the world" (+), e.g. about "What is Life" (++) the proposed model is in accordance with the following three mathematical model layers:

1. the quantum/"differential" (+) layer: the variational $H_{-1/2} \times H_{-1/2}$ –based quantum gravity (N(on-Standard)MEP) "EP world"
2. the "atom" (+)/density layer: the variational $H_0 \times H_0 = L_2 \times L_2$ –based statistical thermodynamical (SMEP) "EP world"; we note that the Hilbert space L_2 is reflexive, i.e. the L_2 – based quantum mechanics is equivalent to the weak variational $H_0 \times H_0 = L_2 \times L_2$ –based statistical thermodynamical model
3. the "organism" (+,++)/ exact physical laws layer: the classical PDE H_k – (resp. the classical PDE C^k – (Sobolev embedding theorem, $k > n/2$)) based "organic world".

With respect to the „Bhagavad Gita" going beyong the three ((2) & (3) & SMEP related) Nature forces we refer to (HaJ).

(*) (EiA3): S. 19: "... ich will sie als kosmische Religiosität bezeichnen. ... Viel stärker ist die Komponente kosmischer Religiosität im Buddhismus, was uns besonders Schopenhauers wunderbare Schriften gelehrt haben. ... Von diesen Gesichtspunkten betrachtet, stehen Männer wie Demokrit, Franziskus von Assisi und Spinoza einander nahe."
PART I

A Kummer/Cot* function based alternative Zeta function theory to solve the Riemann Hypothesis

The Riemann Hypothesis states that the non-trivial zeros of the Zeta function all have real part one-half. The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the Zeta function correspond to eigenvalues of an unbounded self-adjoint operator. It is related to the Berry–Keating conjecture that the imaginary parts of the zeros of the Zeta function are eigenvalues of an „appropriate” Hermitian operator \(H = \frac{1}{2} (xp + px) \) where \(x \) and \(p \) are the position and conjugate momentum operators, respectively, and multiplicity is noncommutative. The operator \(H \) is symmetric, but might have nontrivial deficiency indices (W. Bulla, F. Gesztesy, J. Math. Phys. 26 (1), October 1985), i.e. in a mathematical sense \(H \) is not Hermitian.

The key ingredients of the Zeta function theory are the Mellin transforms of the Gaussian function and the fractional part function. To the author’s humble opinion, the main handicap to prove the RH is the non-vanishing constant Fourier term of both functions. The Hilbert transform of any function has a vanishing constant Fourier term.

Let \(H \) and \(M \) denote the Hilbert and the Mellin transform operators. Replacing the Gaussian function \(f(x) = e^{-\pi x^2} \) and the fractional part function by its Hilbert transforms enables an alternative Zeta function theory.

The Mellin transform of the Gaussian function is given by

\[
M[f](s) = \frac{1}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right), \quad M[-xf^{\prime}(x)](s) = \frac{1}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right).
\]

The related Theta function properties (based on the Poisson summation formula) of

\[
G(x) := \theta(x^2) = \sum_{n=0}^{\infty} e^{-\pi n^2 x^2} = 1 + 2 \sum_{n=1}^{\infty} e^{-\pi n^2 x^2} = 1 + 2 \psi(x^2) = \frac{1}{2} \sum_{n=0}^{\infty} e^{-\pi n^2 x^2} = \frac{1}{x} G\left(\frac{x}{2}\right)
\]

leads to the Riemann duality equation in the form (EdH) 1.8

\[
\xi(s) := \frac{\pi}{2} f\left(\frac{x}{2}\right) (s-1) \pi^{s-1} \zeta(s) = (1-s) \cdot \zeta(s) M[-xf^{\prime}(x)](s) = \zeta(s) \cdot M[-x f^{\prime}(x)](s) = \xi(1-s).
\]

The Mellin transform for Riemann’s auxiliary function

\[
H(x) := - \frac{d}{dx}(x^2 \frac{d}{dx} G(x)
\]

is well defined and it holds

\[
\int_0^\infty x^{1-s} H(x) \frac{dx}{x} = \int_0^\infty x^s H(x) \frac{dx}{x}.
\]

(*) The Hilbert transform of the Gaussian function is given by the Dawson function

\[
F(x) = e^{-x^2} \int_0^x e^{xt} dt = \int_0^x e^{xt} \sin(2xt) dt = x F_1\left(\frac{1}{2}; -x^2\right) = xe^{-x^2} f(x, \frac{1}{2}; 1, x^2).
\]

The appropriate related Mellin transform properties are given by (GrI) 7.612

\[
\int_0^\infty e^{i\beta x} \sin(x^2) dx = \frac{i}{2} \pi^{1/2} \Gamma\left(\frac{1+\beta}{2}\right) \sin\left(\frac{\pi}{4}\right), \quad 0 < \exp(-x^2) \; \exp(-x^2) \; \exp(-x^2) \; \exp(-x^2)
\]

leading to e.g.,

\[
\frac{\pi}{2} \sum_{n=0}^{\infty} e^{-\pi n^2 x^2} = \frac{1}{2} \pi^{1/2} \Gamma\left(\frac{1+\beta}{2}\right) \sin\left(\frac{\pi}{4}\right), \quad 0 < \exp(-x^2) < 1. \quad \text{It indicates a replacement of the Gauss „Gamma” function definition (EdH) p.8}
\]

\[
\Pi\left(\frac{1}{2}\right) = \Gamma\left(\frac{1+1/2}{2}\right) = \Gamma\left(\frac{1}{2}\right) \sin\left(\frac{\pi}{4}\right) = \frac{\pi^{1/2} \Gamma\left(\frac{1}{2}\right) \sin\left(\frac{\pi}{4}\right)}{\Gamma\left(\frac{1}{2}\right)}.
\]

We note the formula (GrI) 3.511, 8.322

\[
\frac{\pi}{2} \sum_{n=0}^{\infty} \left[\Gamma\left(\frac{1}{2} + it\right) \right]^2 dt = \frac{\pi}{2} \sum_{n=0}^{\infty} \left[\Gamma\left(\frac{1}{2} + it\right) \right]^2 dt = 1, \text{ i.e. } \Gamma\left(\frac{1}{2} + it\right) \in L_2(-\infty, \infty).
Formally it also holds
\[\int_0^\infty x^{-s} \left[-\frac{d}{dx} x^2 \frac{d}{dx} G(x) \right] dx = s(1-s) \int_0^\infty x^{-s} G(x) dx. \]

It implies that the invariant operator \(x^{-\frac{1}{2}} \rightarrow \int_0^\infty x^{-\frac{1}{2}} G(x) dx \) is formally self-adjoint with the transform \(2\xi(s)/(s(s-1)) \). But this operator has no transform at all as the integrals do not converge, due to the not vanishing constant Fourier term of the Poisson summation formula (\cite{EdH} 10.3). Replacing \(f(x) \rightarrow f_\mu(x) := M[f](\mu) \) leads to an alternative entire Zeta function \(\xi'(s) \) in the form

\[\xi'(s) = \frac{1}{2} (s-1)\pi \cot \left(\frac{\pi s}{2} \right) \cdot \xi(s) = \xi(s) \cdot M \left[\frac{\mu}{\pi x} [-x \cdot f_\mu(x)] \right](s) \]

with same zeros as \(\xi(s) \), as it holds \(s(1-s)\xi'(s)\xi'(1-s) = \pi \xi(s)\xi(1-s) \).

A similar situation is valid, if the duality equation is built on the fractional part function ([TIE] 2.1).

The Mellin transforms in the critical stripe for the distributional Fourier series representation of the \(\cot \) —function in a distributional \(H_{-1} \) —sense are given by (*)

\[M[\cot^*](s) = \xi(1-s) \cdot \tan \left(\frac{\pi s}{2} \right) = \xi(1-s) \cdot \cot \left(\frac{\pi s}{2} \right) \]

\[M \left[\frac{1}{\pi x} \cot^* \left(\frac{\pi s}{2} \right) \right](s) = M[\cot^*](1-s) = \xi(s) \cdot \cot \left(\frac{\pi s}{2} \right). \]

(*) The Bagchi Hilbert space based RH criterion is dealing with the fractional part function. Its Hilbert transform is given by

\[g(x) = \ln \left(\frac{2 \sin \left(\frac{\pi s}{2} \right)}{\pi} \right), \]

which is an element of \(H_s \). Therefore, its related Clausen integral (\cite{AbM} 27.8) is an element of \(H_s \), and its first derivative, \(\frac{1}{2}\cot \left(\frac{\pi s}{2} \right) \) resp. \(\cot (nx) \), joins the Zeta function on the critical line as an element of \(H_{-1} \). The \(H_{-1} \), Hilbert space corresponds to the weighted \(L^2 \) —space as considered in (\cite{BbB}). As \(g(s) \in H_s, \) it holds

\[(g, v)_{H_s} = (\xi, v), \quad \| v \|_{H_s} < \infty, \quad \forall v \in H_s \]

i.e. the formally derived Fourier series representation of

\[\cot(s) = \sum_{n=-\infty}^{\infty} \sin(nx) \cdot \sum_{n=-\infty}^{\infty} \sin(2nx) \]

is defined in a distributional \(H_{-1} \) —sense (see also \cite{BbB} (17.12) (17.13)). For \(s > 0 \) and \(\| g(s) \|_{H_s} < 1 \) it holds (\cite{GrF} 3.761)

\[\int_0^\infty x^s \sin(x) \frac{dx}{x^2} = \frac{\pi}{2} \sin \left(\frac{\pi s}{2} \right), \quad \int_0^\infty x^s \cos(x) \frac{dx}{x^2} = \frac{\pi}{2} \cos \left(\frac{\pi s}{2} \right). \]

Therefore the Mellin transforms of the \(H_{-1} \) —distributional Fourier series representation of the \(\cot^* \)- resp. \(G_\mu(s) \) —functions are given by

\[M[\cot^*](s) = \xi(1-s) \cdot \tan \left(\frac{\pi s}{2} \right) \cdot \cot \left(\frac{\pi s}{2} \right), \quad M[\cot](s) = 2 \sum_{n=-\infty}^{\infty} \sin(2nx) \cdot \cot \left(\frac{\pi s}{2} \right) \]

\[M[\cot^*](s) = 2 \sum_{n=-\infty}^{\infty} \sin(x) \sin(2nx) \cdot \cot \left(\frac{\pi s}{2} \right) \]

\[M[\cot^*](s) = 2 \sum_{n=-\infty}^{\infty} \sin(x) \sin(2nx) \cdot \cot \left(\frac{\pi s}{2} \right) \]

\[M[\cot^*](s) = 2 \sum_{n=-\infty}^{\infty} \sin(x) \sin(2nx) \cdot \cot \left(\frac{\pi s}{2} \right) \]

In combination with the functional equation of the entire Zeta function in the form \(\xi(s) = 2\pi \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma(1-s) \xi(1-s) ((\text{TIE}) (2.1.1)) \) this leads to

\[M[\cot^*](s) = \xi(1-s) \cdot \cot \left(\frac{\pi s}{2} \right), \quad M[\cot^*] \left(\frac{1}{2} \right)(s) = M[\cot^*](1-s) = \xi(s) \cdot \cot \left(\frac{\pi s}{2} \right). \]

On the critical line \(s = \frac{1}{2} + it \) it holds \(M[\cot](s) \cdot M[\cot^*](1-s) = \xi(s) \cdot \xi(1-s) \cdot \cot^* \cot(\text{atan}^2(\mu)) \) because of

\[\sin \left(\frac{\pi s}{2} \right) = \frac{1}{2} \left(\cosh \left(\frac{\pi f}{2} \right) + i \sinh \left(\frac{\pi f}{2} \right) \right) \text{ and } [\sin(x)]^2 = \frac{n}{\csc(n\pi)} \]

\[\cot \left(\frac{\pi s}{2} \right) = \tan \left(\frac{\pi s}{2} \right) = 1 - i \cdot \tan(\text{atan}(\mu)) = 1 + 2i \cdot \sum_{n=1}^{\infty} (\text{atan}(1) \cdot e^{-2\pi n}) \] (\(n > 0 \))

\[\cot \left(\frac{\pi s}{2} \right) = \tan \left(\frac{\pi s}{2} \right) = 1 - i \cdot \tan(\text{atan}(\mu)) = 1 + 2i \cdot \sum_{n=1}^{\infty} (\text{atan}(1) \cdot e^{-2\pi n}) \] (\(n > 0 \))

From (TIE 4.14)), (\cite{ObF} p. 182, and (\cite{EsR}) p. 139, we recall the formulas

\[\xi(s) = \sum_{n=-\infty}^{\infty} n^{-s} = \sum_{n=-\infty}^{\infty} n^{-s} = \frac{1}{2i} \sum_{n=-\infty}^{\infty} \sin(2\pi n\pi(\mu)) \frac{d}{s}, \quad \text{Re}(s) > 1; \]

\[M \left[\frac{\pi s}{2} \right] (s) = \cot (\pi s) \quad (\text{principle value}) \quad -n < \text{Re}(s) < 1 - n, \quad n = 0, \pm 1, \pm 2, ... \]

\[\text{F.p.} (P, v, s) = \left\{ \begin{array}{ll} \frac{1}{\pi \cot(\pi s),} & \text{else}. \end{array} \right. \]
They are related to the operator $x^{-z} \to \int_0^\infty x^{-z} G_t(x) \, dx$ by

$$M[G_t(x)](s) = \pi^2 \Gamma\left(\frac{1-z}{2}\right) M[\cot^z](s)$$

whereby it holds

$$M[-xG_t(x)](s) = s[G_t(x)](s) , \ M[(xG_t)'](x)(s) = (1-s)[G_t(x)](s).$$

The Polya criterion is about the approximation of the Mellin transform integral over the half-line $(0, \infty)$ by integrals over finite intervals to obtain a theorem about zeros of the Mellin transforms ((EdH) 12.5), (PoG). The Mellin transform $M[G_t(x)](s)$ is a Müntz type representation, i.e. in a classical framework the Polya criterion cannot be applied.

We note the similar structure between the Polya RH criterion the automodel criterion ((EsR) p.57). The functions $k(x) := \cot(x)$ resp. $h(x) := \frac{1}{2} \cot\left(\frac{x}{2}\right)$ are slow varying functions (automodels) of order zero ((EsR) p.57) (*). Other slow varying functions are $-\log x$ at $x = 0^+$ or $-\log(1-x)$ at $x = 1$ (SeE).

The functional analysis approach to prove the Prime Number Theorem (PNT) is based on Tauberian theorems, which are derived from the celebrated Wiener Tauberian theorem, that "the closed linear hull of translates of a function f is the whole space L_1 if and only if its Fourier transform never vanishes" (**).

In (PiS) Tauberian theorems for integral transforms are provided, which are of Mellin convolution type and whose kernels belong to suitable test function spaces. The result is based on the Wiener-Tauberian theorems for distributions as proven in (PiS1). In (ViI) a corresponding functional analysis scheme for Tauberian problems is provided to (prove) the prime number theorem based on the Dirac delta measure $\delta_n ((\delta_n, \varphi) = \varphi(a))$. It is built on the Delta function representation of

$$\psi(x) = \sum_{n=1}^{\infty} A(n) \delta(x-n) \in H_{-1/2} \quad (\psi(x) = \sum_{n=1}^{\infty} A(n) = \int_{a-i\infty}^{a+i\infty} \frac{L(s)}{\zeta(s)} x^s \frac{ds}{s} \approx x)$$

whereby the generalized Mellin transform of $\sum_{n=1}^{\infty} \delta(x-n)$ $(\Re(s) < 0)$ is given by $(1-s)$ ((ZeA) 4.3). It is proposed to replace the formal delta series $(f_\varphi, \varphi) = \sum_{n=0}^{\infty} c_n \delta_n x$ by the numerical series $\sum_{n=0}^{\infty} c_n x$ by $(f_\varphi, \varphi)_{-1/2} < \infty , \varphi \in H_{-1/2}$. Conceptually this goes along with a replacement of the „dual“ relationship $L_1 \leftrightarrow L_{\infty}$ by $H_{-1/2} \leftrightarrow H_{1/2}(***)$. The latter Hilbert spaces are the appropriate framework for central functions in current Zeta function theory (**__). For a correspondence generalized Mellin (integral) transformation in the form $F(s) = (f(x))^2 - x$ we refer to (ZeA). For $\psi(x) = \sum_{n=1}^{\infty} A(n) \log\left(\frac{2n}{\pi}\right)$ we note the related asymptotics (KoJ) (ViI)

$$\lim_{A \to \infty} \theta^A(x) = \frac{d}{dx} \sum_{n=1}^{\infty} A(n) \log\left(\frac{n}{\pi}\right) = \lim_{A \to \infty} \psi^A(x) = 1.$$

(*) For $k(x) = \cot(x)$ resp. $h(x) = \frac{1}{2} \cot\left(\frac{x}{2}\right)$ it holds $\frac{\theta^A(x)}{k(x)} = -\frac{2x}{\sin(2x)} \approx -1 + \frac{2x}{\sin(2x)}$.\n
(**) It is about the behavior of the function f, where the limit for the convolution integral $\log(f(x))$ when $x \to \infty$ corresponds to $\theta(0)$ (θ denotes the Fourier transform of the kernel function k).\n
(***) There is a similar differenatiation between a proof of the PNT (***) (from which the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ can be derived) and a proof of the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2} \log^2\left(\frac{1}{n}\right) = 1$. Ikehara showed a Tauberian theorem for Dirichlet series in a L_1 – framework, which is equivalent to the statement that $\psi(x) – x$ as a Cesaro average.

„The corresponding theorem goes deeper than the PNT, and from it the PNT can be easily derived“ (LaE) §160.

(****) $\rho(x) = x - [x] = \frac{x}{2} + \sum_{n=1}^{\infty} \frac{\sin(2\pi nx)}{2\pi nx} , \rho_{\delta}(x) = \sum_{n=1}^{\infty} \frac{\sin(2\pi nx)}{2\pi nx} = -\frac{1}{2} \log(2\sin(\pi x)) \log\left(\tan\left(\frac{\pi x}{2}\right)\right) \in L_1^0(0,1)$, \n
$\rho_\delta'(x) = \cot(\pi x) = -\sum_{n=1}^{\infty} \frac{\sin(2\pi nx)}{2\pi nx} \log(\tan\left(\frac{\pi x}{2}\right)) = \frac{1}{\sin^2(\pi x)} \in H_{\delta}^0(0,1)$, \n
$\left\langle \frac{d\psi}{dx} \right\rangle_1 = \sum_{n=1}^{\infty} \frac{1}{n^2} = \langle \log \frac{\sin(\pi x)}{\pi x} \rangle \in H_{\delta}^0(0,1), \ i.e. \frac{\pi}{2} \in L_2^1.$

(***** (EdH) 12.7), "The PNT is about the asymptotics equivalence of $\psi(x) = \sum_{n=1}^{\infty} A(n) - x$, which is equivalent to the statement that $\psi(x) – x$ as a Cesaro average in the context of Tauberian theorems. Hardy-Littlewood were able to prove the PNT by showing $\psi(x) – x$ as an Abel average, where a significant amount of work is done by a Tauberian theorem."
Alternatively to the usage of the Hardamard distribution function \(\psi'(x) \) with the Dirac function domain \(H_{-\frac{1}{2} - \varepsilon} \) we shall use distribution functions with a \(\log \left(\frac{e}{t} \right) \) structure in combination with point measures enabling integer subsets with Snirelmann density \(\gamma_z \).

The considered Hilbert space in (BaB) is about of all sequences \(a = (a_n | n \in \mathbb{N}) \) of complex numbers such that \(\sum_{n=1}^{\infty} |a_n|d^n < \infty \) with \(\frac{1}{n} \leq \theta_n \leq \frac{1}{n} \), which is isomorphic to the Hilbert space \(H_{-1} \equiv L_2^1 \). The real part values of the zeros of the considered Kummerer function \(_1F_1 \left(\frac{1}{2}; \zeta \right) \) (alternatively to \(e^{2\log(x)} \)) enjoy appropriate behaviors (*) (**) The linkage to convergent Dirichlet series

\[
f(s) = \sum_{n=1}^{\infty} a_n e^{-\pi n s} \quad g(s) = \sum_{n=1}^{\infty} b_n e^{-\pi n s} \quad \text{for} \quad s > 0
\]
to the (distributional) Hilbert spaces \(H_{-\frac{1}{2} + i t} \equiv L_{1/2}^1 \) resp. \(H_{-1} \equiv L_2^1 \) is given by the inner products (**)\n
\[
(f, g)_{-\frac{1}{2} + i t} := \lim_{w \to \infty} \frac{1}{w} \int_{-\frac{1}{2} + it}^{\frac{1}{2} + it} f(1/2 + it)g(1/2 - it)dt = \sum_{n=1}^{\infty} \frac{1}{n} a_n b_n
\]

\[
(f, g)_{-1} := \lim_{w \to \infty} \frac{1}{w} \int_{-1}^{1} f(1 + it)g(1 - it)dt = \sum_{n=1}^{\infty} \frac{1}{n} a_n b_n
\]

For the Zeta function on the critical line \(\zeta(t) = \zeta(s = \frac{1}{2} + it) = \sum_{n=1}^{\infty} \frac{1}{n} \) it holds

\[
\zeta \in H_{-\frac{1}{2} - \varepsilon} \quad \text{resp.} \quad \|\zeta\|_{-\frac{1}{2} + i t} = \left\| \zeta(t) \right\|dt = \sum_{n=1}^{\infty} \frac{1}{n} = \zeta(1) = \infty.
\]

Putting \(w(t) := \sum_{n=1}^{\infty} \log \left(\frac{e}{n} \right) \) it holds \((\zeta(w))_{-\frac{1}{2} + i t} = 1 \) from which it follows that \(w \in H_{-\frac{1}{2} - \varepsilon} \).

The Hilbert space \(H_{-1} \equiv L_2^1 \) enables a distributional form of the Snirelmann density \(\lim_{n \to \infty} \frac{\mu(n)}{n} \)
given by \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2 / 6 \) with \(A(a_n \in \mathbb{C}) \in L_2^1 \). It puts another light on the dispersion method in binary additive number theory problems, where the binary Goldbach problem is inaccessible in the given form (LiJ).

What can derived from the PNT is the convergence of \(\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \). What cannot derived from the PNT is the convergence of the series \(\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \left(\frac{e}{n} \right) = 1 \) (**), "This theorem goes deeper than the PNT" (LaE2 §159). For the corresponding arithmetical function \(\sigma(x) := \sum_{n \leq x} \frac{\mu(n)}{n} \log \left(\frac{e}{n} \right) \) and \(A(x) := \sum_{n \leq x} \frac{\mu(n)}{n} \) it holds \(A(x) = o(1) \) ((ApT) p. 71) and for \(x \geq 1 \)

\[
\sigma(xy) + \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \left(\frac{e}{n} \right) = \sigma(xy) + 1 = \sigma(x) + \sigma(xy), \quad \sigma'(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \sim \frac{1}{x}.
\]

Its inverse mapping is given by

\[
\sigma^{-1}(x) = \sum_{n \leq x} \frac{\mu(n)}{n} \log \left(\frac{e}{n} \right).
\]

(*) For the real part values \(\omega_n \) of the zeros of \(_1F_1 \left(\frac{1}{2}; \zeta \right) \) it holds (SeA) \(2n - 1 \leq 2 \omega_n < 2n < \omega_n + 2 \leq 2n + 1 < 2 \omega_n + 1 = 2(n + 1) \) and the sequences \(2 \omega_n \) and \(\omega_n + 2 \omega_n \) fulfill the Hadamard gap condition

\[
\omega_n > \omega_n + 2 > g > 1 \quad \text{resp.} \quad \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \left(\frac{e}{n} \right) = 0 \quad \text{and one of the other above order results are both equivalent to the PNT.}
\]

We mention the theorem of Kakeya (HuA) from which it follows that all zeros of \(\sum_{n=1}^{\infty} t_n z^n = 0 \) lie in the circular disk \(\frac{1}{2} < \left| z \right| < 1 \).

We further mention the relationship to the uniform distribution of numbers mod 1 (WeH).

(**) The average orders of \(d(n), o(n), \mu(n), \sigma(n) \) orders are \(D(x) = \sum_{n \leq x} \log(n) = (2x - 1) + \frac{1}{x} \log \left(\frac{e}{x} \right) \) with \((x) = O(x^\varepsilon) \),

\[
\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log \left(\frac{e}{n} \right).
\]

The BH is true iff \(\sum_{n=1}^{\infty} \frac{\mu(n)}{n} = O(x^{-1} \pi ^2) \) iff \(\psi(x) - x = O(x^{-2} \pi ^2) \), (TIE) 14.25.

(**) (ApT) mean value formula for Dirichlet series*, p. 240, (BiN1): "orthogonal polynomials on the unit circle; \(i \), as subspace of \(L_2 \), and Szego’s theorem and its probabilistic descendants, new definition of long range dependence, (NaS),

\[
\text{h}(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \log(1 + \frac{1}{x}) = L_2(0, \infty), \quad i \in L_2(0, \infty), \quad M[h](x) = \frac{1}{\sum_{n=1}^{\infty} \frac{\mu(n)}{n}} \quad \text{on the critical line, and a formula involving sums of the form } \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cdot
\]
In the context of additive number theory problems the asymptotics of some related arithmetic functions for \(x \geq 2 \) (1) are given by ((LaE1) (**) (ApT) (**), (ScW) p. 216),
\[
\sum_{n \leq x} \frac{A(n)}{n} \sim \log x = \int_1^x \frac{d(\log t)}{t} = \sum_{n \leq x} \frac{1}{\varphi(n)} \sim \sum_{p \leq x} \frac{1 - \frac{1}{p}}{p}.
\]
Putting \(0 < \omega_n := 1 - \omega_1 < \frac{1}{2} \) we consider the sequences \(s_n^{(1)} := \frac{2\omega_n}{2n} \), \(s_n^{(2)} := \frac{\omega_n - 1 + \omega_2}{2n-1} \) fulfilling
\[
\min \left\{ \frac{2n-1}{2n} \cdot \frac{2n-2}{2n+1} \right\} = 1 - \frac{1}{2n} < s_n^{(1)} , s_n^{(2)} < 1.
\]
The related integer subsets
\[
F_{2,n} := \{(\omega_{n-1}, \omega_n) | n \in \mathbb{N}\} = \{(1,2n) | n \in \mathbb{N}\}, \quad F_{2n-1} := \{(\omega_n) | n \in \mathbb{N}\} = \{(2n-1) | n \in \mathbb{N}\}
\]
do have the Schnirelmann density \(\sigma(F_{2n-1}) = \sigma(F_{2n}) = \frac{x}{2} \). They enable the definition of (binary additive) distributional functions for \(x \geq 1 \) in the form
\[
\sum_{n \leq x} a_n \log (s_n^{(1)} \frac{x}{n}) + \sum_{n \leq x} a_n \log (s_n^{(2)} \frac{x}{n}) \quad \text{resp.} \quad \sum_{n \leq x} a_n \log \left(\frac{x}{n} \right) + \sum_{n \leq x} a_n \log \left(\frac{x}{n} \right).
\]
We note that the Schnirelmann density is sensitive to the first values of a set. This is why the subset of even integers has a Schnirelmann density zero, while the subset of odd integers has Schnirelmann density \(\frac{1}{2} \). Putting
\[
\sigma^*(x) := \sum_{n \in F_{2n}} \frac{\mu(n)}{n} \log (s_n^{(2)} \frac{x}{n}) + \sum_{n \in F_{2n-1}} \frac{\mu(n)}{n} \log (s_n^{(1)} \frac{x}{n})
\]
\[
= \log x + \sum_{\text{odd } n} \frac{\mu(n)}{n} \log (s_n^{(2)} \frac{x}{n}) + \sum_{\text{even } n} \frac{\mu(n)}{n} \log (s_n^{(1)} \frac{x}{n}).
\]
It follows (\(x \geq 1 \))
\[
\sigma^*(xy) = \sigma^*(x) + \sigma^*(y), \quad \sigma^*(x) = \frac{1}{x} + \frac{1}{x} \sum_{n \leq x} \frac{\mu(n)}{n} \sim \frac{1}{x}
\]
whereby \(\sum_{n=1}^x \frac{\mu(n)}{n} \leq 1 \) with equality holding only if \(x < 2 \) (ApT p.66, p. 97).

Let \(G_n \) denote the number of decompositions of an even integer \(n \) into the sum of two primes (whereby \(p + q \) and \(p + q \) are counted separately); let \(G_n = \frac{1}{2 \pi (n) \log(n)} \) denotes the Stäckel approximation formula with \(c = \frac{105(3)}{245} = 0.648 \ldots - \frac{1}{2} \). Then it holds (LaE1)
\[
\frac{1}{2} \log^2 x \sum_{n=1}^x \frac{G_n}{2n} \sim \sum_{n=1}^x \frac{G_n}{2n} = \frac{1}{2} \sum_{n=1}^x \frac{\log(n)}{n} \log^2(n)
\]
whereby (*)
\[
\frac{1}{2} c \sum_{n=1}^x \frac{\log(n)}{n} \log^2(n) \leq \frac{1}{2} \sum_{n=1}^x \frac{\log(n)}{n} \log^2(n) \leq \frac{1}{2} \sum_{n=1}^x \frac{\log(n)}{n} \log(n).
\]
Based on the above concept we propose the following alternative arithmetical function (***)
\[
\sum_{n=1}^{(\omega_n + \omega_{n+1})} \frac{\sigma(n)}{\log(\omega_n)} = \frac{\sigma(n)}{\log(\omega_n)}
\]
(*** With \(c = \frac{105(3)}{245} \ldots - \frac{1}{2} \) and the Euler constant \(y \) the asymptotics of
\[
\Phi(x) := \sum_{n \leq x} \frac{\phi(n)}{n} = \frac{\log x + \gamma + O(\frac{\log x}{x})}{x}, \quad \Phi_2(x) = 2\zeta(2) \log x + \zeta \left(\frac{3}{2} \right) + O\left(\frac{\log x}{x} \right),
\]
the related estimate to the sum of the divisors of \(n \) function \(\sigma(n) = \sigma(n) \) is given by (ApM) pp. 38, 57, 71),
\[
\frac{\sigma_1(n)}{\log(n)} = \frac{1}{\log(n)} \leq \frac{1}{\log(n)} \leq \frac{1}{\log(n)}
\]
\[
\sum_{n=1}^{(\omega_n + \omega_{n+1})} \frac{\sigma(n)}{\log(\omega_n)} = \frac{\sigma(n)}{\log(\omega_n)}
\]
(**** We note the two inequalities \(\frac{1}{\log(n)} \approx \frac{1}{\log(x)} = \frac{1}{\log(x)} \approx \frac{1}{\log(x)} \) and \(\sigma(n) = \frac{\sigma^*(n)}{n} \) (Til) p. 171. „The odd integers can be disregarded, as every odd integer \(n \) can be represented as sum of two primes, if \(n - 2 \) is a prime number only, otherwise not“ (LaE5).
The current tool trying to prove the tertiary and binary Goldbach conjecture is about the Hardy-Littlewood circle method. It is about a dissection of the circle $x = e^{2\pi ix}$ or rather a smaller concentric circle, into "Farey arcs". The major arcs, or basic intervals, provide the main term in the asymptotic formula for the number of representations. Their treatment does not give rise to any very serious difficulties compared to the problems presented by the "minor arcs", or "supplementary intervals". The latter ones are analyzed by estimates of the Weyl (trigonometrical) sums

$$S(x) := \sum_n e^{2\pi inx}$$

without taking any (Goldbach) problem relevant information into account. We note that an asymptotic behavior in the form $O(N^{\frac{3}{2}})$ of the Farey series is equivalent to to the Riemann Hypothesis (LaE5).

The Cesàro summable Fourier series representation (ZyA VI-3, VII-1)

$$\cot(\pi x) = 2\sum_{n=1}^{\infty} \sin(2\pi nx) \in H^0_+(0,1)$$

is related to the eigenfunctions $e^{2\pi inx} = e^{i\pi(2nx)}$. The proposed alternative Abel summable functions

$$\cot(\cdot)(x) := \sum_{n=1}^{\infty} \sin(\pi(2\omega_n) x) + \sin (\pi(\omega_n + \omega_{n+1})x \in H^0_+(0,1)$$

is related to the eigenfunctions pair $e^{i\pi(2\omega_n)x}$ and $e^{i\pi(\omega_n+\omega_{n+1})x}$ with corresponding alternative Weyl sums in the form

$$S_1^*(x) := \sum_n e^{i\pi(2\omega_n)x}, \quad S_2^*(x) := \sum_n e^{i\pi(\omega_n+\omega_{n+1})x}.$$

For the "weighted" $\cot(\cdot)$ function with the "alternative" harmonic numbers

$$2H_n := \sum_{k=1}^n \frac{1}{2k-1} = 2H_{2n} - H_n$$

the series

$$\sum_{n=1}^{\infty} \frac{2H_n}{n} e^{i\pi(2\omega_n)x} + \sin (\pi(\omega_n + \omega_{n+1})x)$$

converges almost everywhere $\text{(*)} (***) (****)$ (****) **

The H_n are always fractions (except for $H_1 = 1$, $H_2 = 1.5$, $H_3 = 2.45$), the series is divergent, but the number n that the sum H_n past 100 is in the size of 10^{63}, i.e. a computer which takes 10^{49} seconds to add each new term to the sum will have been completed in not less than 10^{17} (American) billion years ((HaJ) p. 2.3.1).

The extremely slow nondecreasing property on the interval $[1, n]$ might motivate the definition of an appropriate function to enable the corresponding Polya criterion ((EdH) 12.5, (PoG)).

("For $T(x) = -\frac{\pi}{2} \log \left(\tan \left(\frac{\pi}{2}x\right)\right)$ the following series representation holds true (Eil) $T(x) = \sum_{n=1}^{2n} \sin(n(\pi x)) = \sum_{c_2} \sin(2n\pi x)$, whereby the formal Fourier series representation of its first derivative $i \pi \left(\tan \left(\frac{\pi}{2}x\right)\right)' = \frac{c_2}{\sin(\pi x)} \in H^0_+(0,1)$.

The convergent series $\sum_{c_2} = \frac{c_2}{22} < \infty$ in combination with the

Lemma (KaM1): Let $\{\omega_n\}$ be a sequence of integers satisfying the "Hadamard gap" condition, i.e. $\frac{\omega_n}{\omega_{n+1}} > 1$. Then the trigonometric gap series $\sum_{c_2} \sin(2n\pi x)$ converges almost everywhere, if and only if, $\sum_{c_2} < \infty$

then proves that the series $\sum_{c_2} \sin(2\omega_n x) + \sin (\pi(\omega_n + \omega_{n+1})x)$ converges almost everywhere.

(\text**) We note the related potency series in the form (ChH) $\frac{1}{2} \log^2 \left(\frac{\sin(x)}{x}\right) = \sum_{c_2} \frac{2H_n}{n} e^{2\pi inx}$.

\text{****} Alternatively to $\frac{\sin(\pi x)}{\pi}$ the Fourier theory of cardinal functions enables a correspondingly absolute convergent cardinal series in the form $c(x) = \frac{\sin(\pi x)}{\pi} \sum_{c_2} \sum_{\omega_n} (-1)^{\omega_n} e^{-i\omega_n x}$ (Wh22).

\text{*****} (Rib) p. 11: "... denn so gross auch unsere Unwissenheit darüber ist, wie sich die Kräfte und Zustände der Materie nach Ort und Zeit um Unendlichkleine ändern, so können wir doch sicher annehmen, dass die Functionen, auf welche sich die Dirichletsche Untersuchung nicht erstreckt, in der Natur nicht vorkommen"
Additional references to PART I

(BiN1) Bingham N. H., Szegö’s theorem and its probabilistic descendants, Probability Surveys, Vol. 9, 287-324 2012

(HaJ) Havil J., Gamma, exploring euler’s constant, Princeton University Press, Princeton, 2003

(HuA) Hurwitz A., Über einen Satz des Herrn Kakeya, Zürich, 1913

(LaE6) Landau E., Über die Fareyreihe und die Riemannsche Vermutung, Göttinger Nachrichten (1932), 347-352

(ObF) Oberhettinger F., Tables of Mellin Transforms, Springer-Verlag, Berlin Heidelberg New York, 1974

(RiB) Riemann B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, transcribed by D. R. Wilkins, 2000

(ViJ) Vindas J., Introduction to Tauberian theory, a distributional approach, https://cage.ugent.be

PART II

3D-NSE and YME mass gap solutions in a distributional Hilbert scale frame enabling a quantum gravity theory

A common mathematical model of unified quantum and gravity theories requires a truly infinitesimal geometric framework. The Hilbert space based framework in quantum theory is certainly the more suitable geometric framework compared to Weyl’s manifold based ones. At the same point in time both theories need to leave something out as they are not compatible. In quantum theory already in the simple quantum harmonic oscillator model the eigenvalues converge equidistant to infinity, i.e. the total energy is infinite as well (*). A similar situation is given by the concept of “wave packages” with other (less regular) domain as the H_1 domain for standard Fourier waves. A related concept is a about wavelets leading to the extended Hilbert space $H_{1/2}$ (**). The standard quantum theory Hilbert space is $H_0 = L_2$ in order to enable to full statistical analysis, which is basically statistical thermodynamics.

In a general Hilbert scale framework H_a ($a \in \mathbb{R}$) a convergent momentum operator in a variational (quantum mechanical) representation would be given by $(u,v)_a = (u,v)_{a+1/2} < \infty$, $\forall v \in H_a$. One of the current handicaps of quantum mechanics is the purely mathematically conditioned Dirac “point mass density” Hilbert space $H^{-n/2,\varepsilon}$, with $\varepsilon > 0$, where $n = \text{denotes the space dimension (i.e. a point mass density in a one dimensional world (like the harmonic quantum oscillator) is different from a similar situation in a three dimensional (or even four-dimensional) model.}$ The choice $a := -1/2$ is proposed as new quantum state Hilbert space with its corresponding energy space $H_{1/2}$.

The GRT is built on Riemann’s mathematical concept of „manifolds“; we note that the mathematical model of the GRT even requires „differentiable“ manifolds, whereby only continuous manifolds are required by physical GRT modelling aspects, w/o taking into account any appropriate quantum theoretical modelling requirements. Therefore, challenging the „continuity“ concept, taking into account also its relationship to the quantum theory Hilbert space framework H_a and the related Sobolev embedding theorem, supports to the proposed replacement of the Dirac function concept by an alternative $H_{-1/2} – \text{quantum state Hilbert space also from a GRT perspective.}$

The Lagrange formalism is related to the concept of „force“, while the Hamiltonian formalism is related to the concept of „energy“. Both formalisms are equivalent only (!) in case the Legendre (contact) transform can be applied. Our proposed „alternative energy (Hilbert space) concept“ goes along with reduced regularity assumptions of the concerned operators (similar to the regularity reduction when moving from standard potential function (“mass density”) definition to Plemelj’s „mass element“ concept ($\sim C^1 \rightarrow \mathcal{C}^0$)), (Pij).

The “mass generation process“ is modelled as a „selfadjoint (Hermitian operator) property“ break down by the orthogonal projection $H_{1/2} = H_0 \otimes H^\uparrow \rightarrow H_1$, i.e. the closed subspace H^\uparrow is the model for the ground state (vacuum) energy, which is and can be neglected in all („less granular“) Lagrange formalism based physical models.

(*) With respect to the Kummer functions from the part I we note that the eigenvalue problem of the Schrödinger equation with a Coulomb potential is solved by confluent hypergeometric series

(**) (BIN): „Traditionally, the subject of time series seemed to consist of two non-intercommunicating parts, „time domain“ and „frequency domain“ (known to be equivalent to each other via the Kolmogorov Isomorphism Theorem. The subject seemed to suffer from schizophrenia ... This unfortunate schism has been healed by the introduction of wavelet methods. " Other relations to the Hilbert space $H_{1/2}$ are given by $H_{1/2} \subset YMO \subset BM\Omega$. $H_{1/2}$ occurs in work on topological degree and winding number, conformal mapping, analytical continuability of the Szegö function beyond the unit disc and scattering theory; (NaS): the $H_{1/2}$ space as first cohomology is fundamental to explain the properties of period mapping on the universal Teichmüller space (NaS).

We further note that the exterior Neumann problem admits one and only one generalized solution in case the related Prandtl operator of order one $P: H_\tau \rightarrow H_{\tau-1}$ is defined for domains with $1/2 \leq \tau < 1$ (LiJ).
In a nutshell from a mathematical modelling perspective

In the proposed model the (standard) „calculus in the small" meets the „calculus in the large" (MoM) in combination with the Hamiltonian formalism for classes of non-linear equations, where the kinetic (matter, Lagrange formalism) energy part is (only) based on a Krein space setting/decomposition (GaA) of the sub-spaces \((H_0,H_1)\) embedded into the \((H_{-1/2},H_{1/2}) = H^*_1\) Hilbert spaces\(^(*)\).

The Hilbert space subspaces \((H_0,H_1)\) are compactly embedded into the Hilbert spaces \((H_{-1/2},H_{1/2})\). This is about the same cardinality relationships as for the embeddedness of the set of rational numbers into the fields of real or hyper-real numbers \(****\).

In a nutshell from a physical modelling perspective

the physical concepts of „time" and „change" are different sides of the same coin, i.e. there is no „time" w/o „change" and there is no „change" w/o „time". In other words, the concepts of „time" and „change" are and need to be in scope of the „matter/kinetic" energy model \(H_1\), while its complementary ground state (vacuum) energy model \(H^*_1\) is per definition independent from the thermodynamical concept of „time" \(****\) ((SmL), (PrR), (RoC1)).

As \(H_1\) is compactly embedded into \(H_{1/2}\), and given an initial universe w/o any thermodynamical „time" (i.e. \(H_1 = \{\\}\), with only existing ground state energy state for the whole mathematical model system) the probability for „symmetry break down" events to generate mass were and are zero; obviously those events happened and will go on to be happen. At the same point in time the generated and still being generated „matter world" \(H_1\) is governed by e.g. the „least action principle" (KnA), and the principles of „statistical thermodynamic" (ScE), whereby the classical action variable of the system determines the „time" (HeW).

In a nutshell from a philosophical perspective we refer to (HaJ), (KaI) p. 67 \(****\), (ScE1), (WeH3) pp. 175, 177, 213.

\(^(*)\) We note that the set of integers or rational numbers is „countable", while it is not for the fields of the real and hyper-real numbers. The corresponding (Cantor) cardinalities are given by \(\text{card}(\mathbb{N}) = \text{card}(\mathbb{Q}) = \aleph_0\), \(\text{card}(\mathbb{R}) = \text{card}(\mathbb{Q}^2) = 2^\aleph_0\).

\(^(**)\) The standard energy Hilbert space \(H_0\) enables a differnetiation of „elementary particles" with and w/o mass (modelled by the orthogonal decomposition of the Hilbert spaces \(H_{-1/2} = H_0 \otimes H^*_1\) resp. \(H_{1/2} = H_1 \otimes H^*_1\)). The Hilbert space \(H_0\) is proposed to be interpreted as „fermions mass/energy" space; \(H^*_1\) is proposed to be interpreted as the orthogonal „bosons energy" space. Both together build the newly proposed quantum energy space \(H_{1/2} = H_0 \otimes H^*_1\). The sub-space \(H^*_1\) may be interpreted as zero point energy space containing „wave package" resp. „eigen-differential "elements" (phil.: ”Leibniz's living force). The concept of an optical function is an essential tool in the strategy to overcome technical difficulties to overcome the problems of „coordinates", and the „strongly nonlinear hyperbolic features of the Einstein equations" for a global stability of the Minkowski space \(*\). It is basically about appropriately modified Killing and conformal Killing vectorfields in the definition of the basic norm.

\(^{(HaM)}\) 1.2.: The idea of wavelet analysis is to look at the details are added if one goes from scale \(a\) to scale \(a\) with \(da > 0\) but infinitesimal small. ... Therefore, the wavelet transform allows us to unfold a function over the one-dimensional space it into a function over the two-dimensional half-plane \(H\) of positions and details (where is which details generated)? ... Therefore, the parameter space \(H\) of the wavelet analysis may also be called the position-scale half-plane since if \(g\) localized around zero with width \(\Delta\) then \(g_{(a)}\) is localized around the position \(a\) with width \(da\). The wavelet transform itself may now be interpreted as a mathematical microscope where we identify \(b \leftrightarrow \text{position} (\text{ax})\), enlargement; \(g \leftrightarrow \text{optics}\). The continuous wavelet transform with the complex Shannon wavelet can be considered via solutions of Cauchy problems for PDE in the context of the construction of wavelets for an analysis of non-stationary wave propagation in inhomogeneous media ((PoE).

\(^{(**)\)\) The macroscopic and microscopic state of quanta relate to corresponding frequencies of its vibrations. The corresponding action variables of the system ((HeW) II.1.c) define the related kinemathical (physical) and thermodynamical concept of „time" (RoC), (SmL), (RoC1), section 13)

\(^{(PeR)}\) „one of the deepest mysteries of our universe is the puzzle of whence it came."

\(^{(RoC1)}\), section 13: "Our interaction with the world is partial, which is why we see it in blurred way. To this blurring is added quantum indeterminacy. The ignorance that follows from this determines the existence of a particular variable - thermal time - and of an entropy that quantifies our uncertainty. Perhaps we belong to a particular subset of the world that interacts with the rest of it in such a way that this entropy is lower in one direction of our thermal time."

\(^{****\)\) (KaI) 1. Convolut, V. Bogen, 4. Seite: „Selbst der Gebrauch der Mathematik in Ansehung der Anschauungen a priori in Raum u. Zeit gehört zur Transc. Phil.. Es sollte nicht mit Newton heissen Philosophie naturals principia mathematica (den es gibt eben so wenig mathematische Principien der Phil. als philos. der Mathematik) sondern phil. transascend. prin. vel mathem. vel phil. als genus. Transc. Phil. ist das subjective Prinzip der vereinigt theoretisch/peculativens und moralisch/praktischen Vernunft in einem System der Ideen von einem All der Wesen unter dem Prinzip synthetischer Sätze a priori worin es eben so wenig mathematische Principien der Philosophie als philosophische der Mathematik giebt. Transc: Phil. ist das Prinzip eines Systems der Ideen der synthetischen Erkenntnis a priori aus Begriffen wodurch das Subject sich selbst zum Objecte constituirt (Aenesidemus) und das Formale der Wahrnehmungen zum Behuf möglicher Erfahrung anticipirt"
A common Hilbert space framework for all quantum gravity related physical mathematical models requires common conceptual building principles for problem specific mathematical-physical PDE system models.

The following changes to current building principles are proposed:

1. a classical PDE system is an „only“ approximation model to its corresponding physical relevant variational representation, and not the other way around

2. only the Hamiltonian formalism is valid (*), but not the Lagrange formalism (both formalisms are equivalent, if the Legendre transform is valid), because of only physical (energy related) relevant, but no longer mathematically (force related) assumed regularity assumptions to the variational solution. In this context we note that „continuity” is one of the commonsense notions, which should be dropped out of the assumptions list of ground principles of the Universe (KaM p. 12)); consequently, the physical concept of „force” stays to be a phenomenon of the considered PDE (problem specific physical model) system, but is no longer a conceptual element of the overall „physical world reality” (i.e. it is not a notion as part of the stage of theoretical physics).

3. The „Newton/Dirac” „point/particle mass density“ concept (whereby the regularity of the Dirac „function“ depends from the space dimension) ist being replaced by the „Leibniz/Plemelj“ „ideal point/differential mass element“ concept.

The classical Yang-Mills theory is the generalization of the Maxwell theory of electromagnetism where chromo-electromagnetic field itself carries charges. As a classical field theory it has solutions which travel at the speed of light so that its quantum version should describe massless particles (gluons) (**). However, the postulated phenomenon of color confinement permits only bound states of gluons, forming massive particles. This is the mass gap. Another aspect of confinement is asymptotic freedom which makes it conceivable that quantum Yang-Mills theory exists without restriction to low energy scales.

(*) A gauge theory is a type of field theory in which the Lagrangian is invariant under a continuous group of local transformations. The corresponding Standard Model of Elementary Particles (SMEP) is a non-abelian gauge theory with the gauge group $SU(3) \times SU(2) \times U(1)$. It describes experimental predictions regarding three of the four fundamental forces of nature, and it has a total of twelve gauge bosons: 1 photon, 3 weak bosons and 8 gluons.

The electrodynamics field $U(1)$ is the earliest field theory having gauge symmetry. It is Maxwell’s formulation of electrodynamics. The symmetry group $U(1)$ is equivalent to the group of rotations in the plane, i.e. diffeomorph to the unit circle. It provides the inner reason for the existence of classical field theory. The quantum Hamiltonian of the harmonic (quantum) oscillator $U(1)$ has one gauge field, the electrodynamics four-potential, with the photon being the gauge boson. The gauge potential is essentially the 4-vector potential of electromagnetism.

The Quantum Electrodynamics field (QED) $SU(2) \times U(1)$ generalizes the gauge invariance of electromagnetism. It is about the isospin × isotropy symmetry. The theory was constructed based on the action of the (non-abelian) $SU(2)$ symmetry group on the isospin doublet of photons and neutrons. This is similar to the action of the $SU(2)$ group on the spinor fields of quantum electrodynamics (QED). The group $SU(2)$ is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3–sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from $SU(2)$ to the rotation group $SO(3)$ whose kernel is $\{I, −I\}$. It is the field model for the electroweak interaction.

The Quantum Chromo Dynamics (QCD) field is about the special unitary (quarks flavor symmetry) group $SU(3)$. It is the field model for Quantum Chromo Dynamics, a group on the color triplet $\{u, d, s\}$ of quarks. $SU(3)$ corresponds to special unitary transformation (3x3 – matrices) on complex 3D vectors. The quarks $\{u, d, s\}$ are all light (compared to hadron masses) and their interactions are dominated by the flavor-independent color force. The group $SU(3)$ provides a description of the exchange bosons (gluons) of QCD allowing the separation of interactions between colored quarks.

The revision and completion of the axiomatic bases for many other mathematical systems:“

(**) (WeH3) p. 171: „G. Mie in 1912 pointed out a way of modifying the Maxwell equations in such a matter that they might possibly solve the problem of matter, by explaining why the field possesses a granular structure and why the knots of energy remain intact in spite of the back-and-forth flux of energy and momentum. The Maxwell equations will not do because they imply that negative charges compressed in an electron explode; to guarantee their coherence in spite of Coulomb’s repulsive forces was the only service still required of the substance by H. A. Lorentz’s theory of electrons. The preservation of the energy knots must result from the fact that the modified field laws admit only of one state of field equilibrium – or of a few between which there is no continuous transition (static, spherically symmetric solutions of the field equations). The field laws should thus permit us to compute in advance charge and mass of the electron and the atomic weights of the various chemical elements in existence. And the same fact, rather than the contrast of substance and field, would be the reason why we may decompose the energy or inert mass of a condum body (approximately) into the non-resolvable energy of its last elementary constituents and the resolvable energy of their mutual bond. “
The classical field equation of the Lagrange density of the Maxwell field is given by the wave equation. The quantized field theory with corresponding to be fulfilled commutator rule properties leads to retarding potentials generated by a „point source“ modelled as Dirac function\(^1\). In the context of field fluctuations (the „either or question“ defining the states of the Maxwell fields (by their values or the number of quanta) we refer to the proposed model the (standard) „calculus in the small“ meets the „calculus in the large“ (MoM) in combination with the Hamiltonian formalism for classes of non-linear equations, where the kinetic (matter, Lagrange formalism) energy part is (only) based on a Krein space setting/decomposition (GaA) of the sub-spaces \((H_0, H_1)\) embedded into the \((H_{-1/2}, H_{1/2}) = H'_{1/2}\) Hilbert spaces\(^2\).

The proposed common Hilbert space framework enables variational methods for nonlinear operators (VaM) for the considered mathematical physics models \(^2\). It overcomes the (claimed) common purely mathematical handicaps for problem adequate solutions in alignment with the purpose of physical models. From a physical modelling perspective it is about a replacement of Dirac’s model of the „density“ of an idealized point mass or point charge, which is called the Dirac or Delta „function“. It is a distribution equal to zero everywhere except for zero, and whose integral over the entire line is equal to one. The Dirac model of the „density“ of an idealized point mass is replaced by Plemelj’s concept of a „mass element“ (PIU), with the essential consequence, that the regularity requirement for those distributions \(d\mu\) are independent from the space-dimension in opposite to the Dirac function: the regularity of Dirac’s model of the point mass density of an idealized point mass is \(\delta \in H_{-n/2+1}^{-\epsilon} (\epsilon > 0, n = \text{space dimension})\), while for Plemelj’s mass element definition it holds \(d\mu \in H_{-1/2}\).

The „mass generation process“ is modelled as a „selfadjoint (Hermitian operator) property“ break down as orthogonal projection \(H_{1/2} = H_0 \oplus H^+ \rightarrow H^+_1\); the closed sub-space \(H^+_1\) is interpreted as the model for the ground state (vacuum) energy; this energy is then be neglected in all („less granular“) related Lagrange formalism based physical models.

\(^1\) The standard Hilbert space in quantum theory is \(L_2\) with its underlying Lebesgue integral concept. The latter one is the most relevant measurement concept in probability theory and statistics, being also applied for „observable“ measurements in quantum theory. The Hilbert space \(L_2\) is strongly related to the concept of Fourier series. Regarding the Hilbert space \(H_{-1/2}\) the corresponding integral concept is the Fourier-Stieltjes series going along with the concept of cardinal series in the context of integral and meromorh functions (WHJ). The underlying measurement value field is about the real numbers. The set of rational numbers is a „zero set“ with respect to this „measure“. We note that the subset of irrational numbers of the real numbers are „only“ defined per „completeness axiom“.

In mathematical logic the counterpart of the situation is given by the Löwenheim-Skolem theorem and the compactness theorem in the context of first-order languages and ordered fields. The difference between second-order and first-order languages lies in the fact that in former one can quantify over second-order objects (for example, subsets of the domain of a structure) whereas in the latter this is not possible. The former one leads to Trachtenbrot’s theorem, the incompleteness of second-order logic and Gödel’s incompleteness theorems based on the Zermelo-Fraenkel axioms for Set Theory in the context of the Continuum Hypothesis and the corresponding well-ordered problem ((Ehb), (Na)).

\(^2\) Non-linear minimization problems can be analyzed as saddle point problems on convex manifolds in the form (VeW): \(F(u); a(u, u) = F(u) \rightarrow \min, \ u \in U\). Let \(a(\cdot, \cdot) : V \times V \rightarrow R\) a symmetric bilinear form with energy norm \(\|u\|^2 = a(u, u)\). Let further \(u_0 \in V \) and \(F(\cdot): V \rightarrow R\) a functional with the following properties:

i) \(F(\cdot): V \rightarrow R\) is convex on the linear manifold \(u_0 + U\), i.e. for every \(u, v \in u_0 + U\) it holds \(F(1-t)u + tv) \leq (1-t)F(u) + tF(v)\) for every \(t \in [0,1]\).

ii) \(F(\cdot): V \rightarrow R\) is Gateaux differentiable, i.e. it exits a functional \(F'_v(\cdot): V \rightarrow R\) with \(\lim_{\epsilon \rightarrow 0} \frac{F(u_0 + \epsilon v) - F(u_0)}{\epsilon} = F'_v(u_0)\).

Then the minimum problem is equivalent to the variational equation \(a(u, \phi) + F'_v(\phi) = 0\) for every \(\phi \in U\) and admits only an unique solution. In case the sub-space \(U\) and therefore also the manifold \(u_0 + U\) is closed with respect to the energy norm and the functional \(F(\cdot): V \rightarrow R\) is continuous with respect to convergence in the energy norm, then there exists a solution. We note that the energy function is even strongly convex in whole \(V\).

The proposed „energy“ Hilbert space \(H_{1/2}\) enables e.g. the method of Noble ((VeW) 6.2.4), (ArA) 4.2), which is about two properly defined operator equations, to analyze (non-linear) complementary extremal problems. The Noble method leads to a “Hamiltonian” function \(WC(\cdot,\cdot)\) which combines the pair of underlying operator equations (based on the “Gateaux derivative“ concept) \(T_u = WC(u, u), T_u = WC(u, u), u \in E \subseteq H_{1/2}, u \in E \subseteq H_{1/2}\).

From a mathematical point of view this means that a Lebesgue integral is replaced by a Stieltjes integral. The corresponding \(H_{1/2}\) quantum state model (alternatively to the standard \(L_2 = H_0\) model) goes along with a corresponding quantum energy Hilbert space model \(H_{1/2}\). Its definition follows the same building principles as for the standard Laplace operator in a \(L_2 = H_0\) framework with its corresponding Dirichlet (energy inner product) integral \(B(u, v) = \langle Tu, Vv\rangle = \langle u, v\rangle\). With respect to the Bianchi identities we note that for the inner product \(\langle u, v\rangle_{1/2}\) of \(H_{1/2}\) the following relationships hold true:
The decompositions $H_{1/2} = H_0 \otimes H_\perp^1$, $H_{1/2} = H_1 \otimes H_\perp^1$, $H_{1/2} = H_1 \otimes H_\perp^1$ distinguish between elementary particle states & energy with or w/o "observed/measured mass". The "symmetry break down" model to "generate/explain" physical "mass" is replaced by a "projection of a self-adjoint operator onto the observation/measure space H_0" (**). In other words, the matter particles (fermions) are the manifestations of the vacuum energy (bosons).

The current quantum state Hilbert space $L_2 = H_0$ is extended to the Hilbert space $H_{1/2}$ including "fluid, plasma, fermion, photon, boson" states. Its dual space $H_{1/2} = H_1 \otimes H_\perp^1$ provides the corresponding quantum energy space, whereby the "mass-less EPs" (hot plasma) are (meta-physical, ground state (dark) energy) "elements" of the closed subspace H_\perp^1 of $H_{1/2}$. The standard (variational) energy space H_1 is defined by the selfadjoint Friedrichs extension of the Laplacian operator in the standard $H_0 = L_2$ – variational (statistics) framework. It keeps being valid for the quantum energy of the EPs with mass, including cold plasma. The corresponding mass/energy Hilbert space is given by the decomposition $H_{1/2} = H_1 \times H_\perp^1$ into the "fermions" space and the orthogonal "bosons" space. The latter one includes the Higgs boson. The Hilbert space framework enables a Cauchy problem representation of the Einstein-Vacuum field equation with an initial "inflation-field" with regularity $g_{inflation} \in H_\perp^1$ without singularities for $t \to 0$, avoiding current early universe state model singularities.

In a physical world only field dimensions can be measured, which are averaged with respect to the space and time variables. Concerning the "energy" dimension in a Hilbert space framework this is about the measurement in the H_1 norm (strong topology, metric space), leading to the physical concept of matter and anti-matter. The Lamb shift occurs in the context of field fluctuations in a quantized electromagnetic (Maxwell) field. In the context of the inflaton theory those quantum fluctuations kicked off the birth of the matter/anti matter universe by the "symmetry break down" effect. The main arguments against this "Big Bang" explanation is, that the assumed mathematical quantum mechanical concept of a "field fluctuation" is given a priori, that the "thermodynamic time" clock started to run with the start of the inflation process after about $\sim 10^{-33}$ s and that the (not defined!) "time" duration until that starting point is explained as a "decision making time" of the "system" to generate (matter/anti-matter) kinetic energy w/o violating the (energy) conservation law principle (see also (HaS1)). The proposed $H_{1/2}$ Hilbert space enables a weak topology based "self-adjoint property" break down process modelled by a projection operator on its compactly embedded Hilbert (sub) space H_1, i.e. the probability for such a measurable energy state generation process is zero. This model avoids the matter/anti-matter concept allowing an ongoing "fluctuation" based matter generation, which indeed happens with probability zero from a physical measurement perspective (similar to the process of picking a rational number out of the set of real numbers).

(*) (CoR) p. 765: "Huygens' principle stipulates that the solution at a point does not depend on the location of initial data within the cone of dependence but only on data on the characteristic rays through that point. ... It is proven, that for the wave equation in 3, 5, 7... space dimensions, and for equivalent equations, the Huygens' principle is valid. For differential equations of second order with variable coefficients Hadamard's conjecture states that the same theorem holds even if the coefficients are not constant. Examples to the contrary show that this conjecture cannot be completely true in this form although it is highly plausible that somehow it is essentially correct. ... Altogether, the question of Huygens' principle for second order equations should be considered in the light of the much more comprehensive problem of the exact domain of dependence and influence for any hyperbolic problem, a problem which is still completely open. Altogether, the question of Huygens' principle for second order equations should be considered in the light of the much more comprehensive problem of the exact domain of dependence and influence for any hyperbolic problem (see §5), a problem which is still completely open."

(**) The proposed common distributional Hilbert space framework $H_{1/2}$ resp. its corresponding energy dual space $H_{1/2} = H_1 \otimes H_\perp^1 \otimes H_\perp^1 \otimes H_\perp^1$ enables a common (Zeta function and quantum gravity) spectral theory providing an answer to Derbyshins question (DeJ) p. 295): "The non-trivial zeros of Riemann's zeta function arise from inquiries into the distribution of prime numbers. The eigenvalues of a random Hermitian matrix arise from inquiries into the behavior of systems of subatomic particles under the laws of quantum mechanics. What on earth does the distribution of prime numbers have to do with the behavior of subatomic particles?"
The classical Yang-Mills theory is the generalization of the Maxwell theory of electromagnetism where chromo-electromagnetic field itself carries charges. As a classical field theory it has solutions which travel at the speed of light so that its quantum version should describe massless particles (gluons). However, the postulated phenomenon of color confinement permits only bound states of gluons, forming massive particles. This is the mass gap. Another aspect of confinement is asymptotic freedom which makes it conceivable that quantum Yang-Mills theory exists without restriction to low energy scales. A variational Maxwell equations representation in a $H_{1/2}$ Hilbert space framework includes also "gluon" bosons and corresponding "self-adjointness break downs", i.e. there is no mass gap anymore.

At the same point in time the "extended Maxwell equations" put the spot on H. Weyl’s question of the existence of a substantial nucleus at the field center (*), being followed by pointing out G. Mie’s modified Maxwell equations by explaining why the field possesses a granular structure and why the knots of energy remain intact in spite of the back-and-forth flux of energy and momentum (**). Such a model would describe the ether as required by the general theory of gravity (**).

The ("physical") Hilbert space pairs (H_0, H_1) resp. the ("meta-physical") closed subspaces $H_0(H_1)$ of (H_0, H_1) are being governed by Fourier waves resp. Calderón’s wavelets (**). The current "symmetry break down" model to generate matter is replaced by a "self-adjointness break down" effect defined by the orthogonal projection from $H_{1/2}$ onto H_1. Consequently, the (kinetic) energy driven "inverse" is a kind of entropy operator with a "discrete/compactly embedded" Hilbert space domain to its complementary closed subspace of $H_{1/2}$ (**).

(*) (WeH3) p. 171: Since all physically important properties of an surrounding field rather than the substantial nucleus at the field center, the question becomes inevitable whether the existence of such a nucleus is not a presumption that may be completely dispensed with. This question is answered in the affirmative by the field theory of matter. … Such an energy knot, which by no means is clearly delineated against the remaining field, propagates through empty space like water wave across the surface of a lake. There is no such thing as one and the same substance of which the electron consists at all times. Just as the velocity of a water wave is not a substantial but a phase velocity, so that the velocity with which an electron moves is only the velocity of an ideal "center of energy", constructed out of the field distribution. … This conception of the world can hardly be described as as dynamical any more, since the field is neither generated by nor acting upon an agent separate from the field, but following its own laws is in a quiet continuous flow. It is of the essence of the continuum.

(**) (WeH3) p. 171: G. Mie in 1912 pointed out a way of modifying the Maxwell equations in such a matter that they might possibly solve the problem of matter, by explaining why the field possesses a granular structure and why the knots of energy remain intact in spite of the back-and-forth flux of energy and momentum. The Maxwell equations will not do because they imply that negative charges compressed in an electron explode; to guarantee their coherence in spite of Coulomb's repulsive forces was the only service still required of the substance by H. A. Lorentz's theory of electrons. The preservation of the energy knots must result from the fact that the modified field laws admit only of one state of field equilibrium – or of a few between which there is no continuous transition (static, spherically symmetric solutions of the field equations). The field laws should thus permit us to compute in advance charge and mass of the electron and the atomic weights of the various chemical elements in existence. And the same fact, rather than the contrast of substance and field, would be the reason why we may decompose the energy or inert mass of a compod body (approximately) into the non-resolvable energy of its last elementary constituents and the resolvable energy of their mutual bond.

(***)(EiA) Recapitulating, we may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an ether. According to the general theory of relativity space without ether is unthinkable; for in such space there not only would be no propagation of light, but also no possibility of existence of an ether (approximately) into the non-resolvable energy of its last elementary constituents and the resolvable energy of their mutual bond.

(****) (HoM) 1.2: "The idea of wavelet analysis is to look at the details added if one goes from scale a to scale $a - da$ with $da > 0$ but infinitesimal small. ... Therefore, the wavelet transform allows us to unfold a function over the one-dimensional space k into a function over the two-dimensional half-plane H of positions and details (where is which details generated)? ... Therefore, the parameter space H of the wavelet analysis may also be called the position-scale half-plane since if b localized around zero with width Δ then $g_{b,\Delta}$ is localized around the position b with width Δa. The wavelet transform itself may now be interpreted as a mathematical microscope where we identify $b \leftrightarrow$ position; $(\Delta a)^{-1} \leftrightarrow$ enlargement; $g \leftrightarrow$ optics.

(*****). The continuous wavelet transform with the complex Shannon wavelet can be considered via solutions of Cauchy problems for PDE in the context of the construction of wavelets for an analysis of non-stationary wave propagation in inhomogeneous media (PoE).
The Friedrichs extension of the Laplacian operator is a selfadjoint, bounded operator B with domain H_1. Thus, the operator B induces a decomposition of H into the direct sum of two subspaces, enabling the definition of a potential and a corresponding "grad" potential operator. Then a potential criterion defines a manifold, which represents a hyperboloid in the Hilbert space H_1 with corresponding hyperbolic and conical regions (VaM) (11.2). The direct sum of the corresponding two subspaces of $H = H_1$ are proposed as a model to define a decomposition of the "fermions" space H_1 into

$$H_1 = H_1^{\text{repulsive}} \otimes H_1^{\text{attractive}} = H_1^{(\epsilon)} \otimes H_1^{(+)}$$

whereby the potential criterion defines repulsive resp. attractive elementary mass particles (*). Then the corresponding proposed quantum energy Hilbert space (including attractive gravitons in $H_1^{(\epsilon)}$) is given by (**), (***)

$$H_{1/2} = H_1^{(\epsilon)} \otimes H_1^{(+)} \otimes H_1^{(\epsilon)}$$

(* *) we note that dark matter is only subject to gravity; the energy/matter distribution in the universe is: dark energy ~74%, dark matter 22%, atoms ~4%, whereby 99.9% of all atoms are hydrogen and helium.

(**) The theory of Hilbert spaces with an indefinite inner product is provided in e.g. (OrM), (aR2T), (OrM), (VaM). Following the investigations of Pontrjagin and Iohovod on linear operators in a Hilbert space with an indefinite inner product, M. G. Krein proved the Pontrjagin-Iohovod-Krein theorem (FaK). In case of a Hilbert space H, this is about a decomposition of H into an orthogonal sum of two spaces H_1 and H_2 with corresponding projection operators P_1 and P_2 (see also the problem of S. L. Sobolev concerning Hermitian operators in spaces with indefinite metric, (VaM) IV). We note, that for a vector space H, the empty set, the space H, and any linear subspace of it are convex cones. For x being a element of H this is about a defined "potential" ((VaM) (11.1))

$$\psi(x) = (\langle x | \alpha \rangle)^2 = \|x^* \alpha \|^2 = \|x^* x \|^2$$

and a corresponding "grad" potential operator $W(x)$, given by (VaM) (11.1) $W(x) = \frac{1}{2} \text{grad} \psi(x) = P^1 - P^2(x)$. The potential criterion $\psi(x) = c > 0$ defines a manifold, which represents a hyperboloid in the Hilbert space H with corresponding hyperbolic and conical regions. It provides a model for "symmetry break down" phenomena by choosing $P^1 = P$, $P^2 = I - P$ for the orthogonal projections $P_1: H_{1/2} = H_1$, $P_2: H_{1/2} = H_2$, leading to the decompositions $H_{1/2} = H_1 \otimes H_2$, $H_2 = H_1 \otimes H_2$.

The set for an appropriate generalization of the above "grad" definition in case of non-linear problems is about the (homogeneous, not always linear in x) Gateaux differential (or weak differential) $V_P(x, h)$ of a functional F at a point x in the direction h (VaM) (33). If there exists an operator A with $D(A) = H_1$, $R(A) = H_2$ and $\|x\|_1 = \|Ax\|_2$, whereby the operator A is positive definite, self-adjoint and λ^{-1} is compact, the corresponding eigenvalue problem $A\psi = \alpha \psi$, has infinite solutions $\{\psi(0)\}$ with $\alpha \rightarrow \infty$ and $\lim_{\alpha \rightarrow \infty} \psi(0) = \phi_\alpha$. For each element $x \in H_1 = A^{-1} H_2$, it holds the representation $x = \sum_{i=1}^\infty (\phi_i, x, \phi_i) \phi_i$. Inner products with correspondingly norms of a distributional Hilbert scale can be defined based on the eigen-pairs of an appropriately defined operator in the form

$$(x; y)_{\xi} = \sum_{i=1}^\infty (\xi, \phi_i)(\gamma, \phi_i) = \sum_{i=1}^\infty \|x_{\xi} \|^2_{\xi}$$

Additionally, for $\tau > 0$ there can be an inner product resp. norm defined for an additional governing Hilbert space with an "exponential decay" behavior in the form $\exp(-\tau)$ given by $(x; y)_{\xi} = \sum_{i=1}^\infty e^{-\tau \xi}(\phi_i) (y, \phi_i)$, $\|x\|_{\xi} = (x, x)_{\xi}$. The approximation "quality" of the proposed $H_{1/2}^\text{rep} \otimes H_{1/2}^\text{attractive}$ quantum state Hilbert space with respect to the "observable space" norm of H_0 is governed by the inequality

$$\|x\|_{\xi} \leq \delta \|x\|_2 + e^{\tau \delta \|x\|_2} < \delta \|x\|_2 + \sum_\xi e^{\tau \xi \|x\|_2}$$

The estimate is valid for all $\alpha > 0$ in the form $\|x\|_{\xi} \leq \delta \|x\|_2 + e^{\tau \delta \|x\|_2}$, which follows from the inequality $\delta^\alpha \leq \delta^\alpha + e^{\tau \delta^\alpha}$, being valid for any $\alpha > 0$ and $\tau > 1$. For a related approximation theory we refer to (BrK8), (N1J), (N1J1). Applying the mathematical wavelet (microscopic view) tool is then about an analysis of a quantum state $x = x_1 + x_2 = H_1 \otimes H_2$. Putting $x_i = x_{1/2}^i$, the approximation "quality" of a quantum state with respect to the "observable space" norm of H_0 is governed by the inequality

$$\|x\|_{\xi} \leq \delta \|x\|_2 + e^{\tau \delta \|x\|_2} \leq \delta \|x\|_2 + \sum_{\xi} e^{\tau \xi \|x\|_2}$$

(***) (NS): "The Hilbert space $H_{1/2}$ can be interpreted as the first cohomology space with real coefficients of the universal Riemann surface" namely the unit disk in a hyper-geometric sense..

(****) $H_{1/2}$ space as first cohomology is fundamental to explain the properties of period mapping on the universal Teichmüller space. We note that vector space and any linear subspace are convex cones, i.e. the tool "convex analysis and general vector spaces" can be applied. Morse's calculus of variations in the large enables a calculus of variations in the large e.g. on varifolds ((MoM), (SeH), (AlF)).

The quantum gravity model also addresses the dilemma, as pointed out by E. Schrödinger: "Since in the Bose case we seem to be fast forwarded, mathematically, with simple oscillator of Planck type, we may ask whether we ought not to adopt for half-odd integers quantum numbers rather than integers. Once must, I think, call that an open dilemma. From the point of view of analogy one would very much prefer to do so. For, the "zero-point energy" of a Planck oscillator is not only borne out by direct observation in the case of crystal lattices, it is also so intimately linked up with the Heisenberg uncertainty relation that one hates to dispense with it".

The formalism of Z-"spinors" as an alternative to the standard vector-tensor calculus (Penrose R., Rindler W.) is proposed to be physically re-interpreted and mathematically applied in the context of a H_1-space decomposition into repulsive and attractive fermions subspaces, whereby it holds $\gamma_{\text{MoM}}(\gamma) = \text{sin}(\text{ii}!x_1\sin(\text{ii}!x_2))$. The two component -component "snaps" is a very specific calculus for studying the structure of space-time manifolds... Space-time point themselves cannot be regarded as derived objects from spinor algebra, but a certain extension of it, namely the twistor algebra, can indeed be taken as more primitive than space-time itself... The programme of twistor theory, in fact, is to reformulate the whole of basic physics in twistor terms" (Penrose R., Rindler W., Volume II). The point of departure for the twistor theory is the (classical) twistor equation (with a similar form as the continuity equation). Its corresponding weak variational representation with respect to the proposed $H_{1/2}$ quantum state product leads to the Friedrichs extension of the classical Dirac spinor operator with domain $H_{1/2}$ which is about the square root operator of order one of the Laplacian operator. The corresponding singular integral operator representation is about the Calderón-Zygmund integrable differential operator ((ESG) example 3.5).
The newly proposed energy Hilbert space $H_{1/2} = H_1 \otimes H_2^c = \mathcal{H}_1^{(c)} \otimes \mathcal{H}_2$ with its decompositions into two kinetic (repulsive & attractive collision particles) energy (sub-) spaces and a ground state energy (sub-) space H_1^c is proposed for an alternative cosmic inflation model (KaD1) (VeG). The current model faces the following two major "problems":

- the "point in time", when the (physical) inflation process "starts" is the first "point in time" after the so-called Planck time $t_P \sim 10^{-43}$s ends. The "what-ever-before" "where" the "initial mover", the quantum fluctuation "happened", is not part of the mathematical model

- the main simple formula describing the inflation process (enabling physical interpretations of the unknown "phenomena"") is the energy conservation equations between the energy density $\rho = \rho(t)$ and the pressure density $p = p(t)$ (both just appearing from nowhere) given by $\dot{\rho} = -3 \left(\frac{a}{\dot{a}} \right)^2 (\rho + 3p)$ with the scale factor $a = a(t)$ being the cosmic time derived from the Friedmann-Robertson-Walker (FRW) metric also defining the Hubble expansion rate $H = H(t): = \dot{a}(t)/(a(t))$. It is derived from the solution of the Einstein field equations based on the cosmological principle assumption, which states that the universe should look like the same for all observers. "that tells us that the universe must be homogeneous and isotropic. This then tells us, which metric must be used, which is the FRW metric" (KaD1) (\ast). Essentially, the imbalance of $\rho \sim 3p$ is claimed to be the model for the expansion of the universe.

In other words, (1) the "first mover" of "everything" is not part of the model, and (2) the model itself is basically about an ordinary differential equation derived from the Einstein field equations (requiring even the existence of $\rho(t_P), p(t_P)$) based on physical large scale "universe" assumptions $(\ast\ast)$, while the purpose of the model is to describe the most chaotic "energy & mass generation process" of the universe, which ends up after a short time period in a stable state during billions of years until today.

The physical concepts of "time" and "change" are different sides of the same coin, i.e. there is no "time" w/o "change" and there is no "change" w/o "time". In other words, the concepts of "time" and "change" are and need to be in scope of the "matter/kinetic" energy model H_1 (reflecting the physical reality/theory (EiA2)), while its complementary ground state (vacuum) energy model H_1^c is per definition independent from the thermodynamical concept of "time" $(\ast\ast\ast)$.

As H_1 is compactly embedded into $H_{1/2}$, and given an initial universe w/o any thermodynamical "time" (i.e. $H_1 = \{\}$, with only existing ground state energy state for the whole mathematical model system) the probability for "symmetry break down" events to generate mass were and are zero; obviously those events happened and, according to the newly proposed model, will go on to be happen. At the same point in time the generated and still being generated "matter world" H_1 is governed by e.g. the "least action principle" (KnA), and the principles of "statistical thermodynamic" (ScE), whereby the classical action variable of the system determines the "time" (HeW).

(\ast) we claim that Gödel's metric $a^2 (ds^2 - dx_4^2 + (\frac{a_m}{a})^2 dx_4^2 - dx_4^2 + 2e^{a_m dx_0 dx_4})$ would be a better option for the standard model as the FRM metric (GK).

$(\ast\ast)$ (KaD1): "It is most amazing that the dynamics of the universe as determined by the equations of GR can be derived from purely Newtonian considerations. ... The only difference between the Newtonian and Einstein version of cosmology becomes apparent only by differentiating the Newton energy conservation equation taking into account the relation between the pressure from local energy conservation"

$(\ast\ast\ast)$ The macroscopic and microscopic state of quanta relate to corresponding frequencies of its vibrations. The corresponding action variables of the system (HeW) II.1.c) define the related kinematical (physical) and thermodynamical concept of "time" (ROC), (SmL), (RoC1), section 13). (DeR) p. 93: "In general the resonance between the wave phase velocity and the velocity of individuals electrons cannot be neglected. It involves coupling between single-particle and collective aspects of plasma behaviour, and give rise to an energy flow which is known as Landau damping. Before continuing, we should note that this topic is related to one of the main unsolved questions of physics. It has not yet been possible to resolve fully the contrast between the reversibility in time of microscopic phenomena – for example, the dynamics of a particle described by Newton’s laws of motion – and the irreversibility in time of macroscopic phenomena, as described by the second law of the thermodynamics. Any thermodynamic system is in fact constructed from a large number of particles, all of which obey Newton’s laws, so that this contrast is central to physics. A resolution of this contrast would be particularly helpful to a full understanding of Landau damping; this is because Landau damping involves a flow of energy between single particles on the one hand side, and collective excitations of the plasma on the other."

22
"The theoretical discovery of wave damping without energy dissipation by collisions is perhaps the most astonishing result of plasma physics research. Landau damping (spontaneous stabilization of plasma; return to an equilibrium w/o increase of entropy) is a characteristic of collisionless plasmas, but it may also have application in other fields. For instance, in the kinetic treatment of galaxy formation, stars can be considered as atoms of a plasma interacting via gravitational rather than electromagnetic forces. Instability of the gas of stars can cause spiral arms to form but this process is limited by the Landau damping." (ChF) 7.5 (*)

The proposed alternative cosmic inflation model is about the newly proposed energy Hilbert space \(H_{1/2} = H^1 \otimes H^1 = H^{1/2} \otimes H^{1/2} \) (with its decompositions into two kinetic (repulsive & attractive collision particles) energy (sub-) spaces and a ground state (collision-free particles) energy (sub-) space \(H^1 \) and a corresponding weak variational representation of extended (with respect to the underlying operator domains) Landau-Boltzmann equations (**/**/*).

In (BrK6) we provide a distributional Hilbert space framework to enable a proof of the non-linear Landau damping phenomenon based on the non-linear Landau collision operator. The eigen-pair solutions of the related Oseen operator is proposed to be applied to build the problem adequate Hilbert scale. The appropriate physical model of the non-linear Landau damping is built by the weak variational representation of a (Pseudo) Differential operator equation with a corresponding defined domain, including appropriate initial and/or boundary conditions. The current classical related PDE system representation is interpreted as the approximation solution to it and not the other way around.

(*) (ChF) 1.1: occurrence of plasmas in nature, "It has often been said that 99% of the matter in the universe is in the plasma state; that is, in the form of an electrified gas with atoms dissociated into positive ions and negative electrons. This estimate may not be very accurate, but it is certainly a reasonable one in view of the fact that stellar interiors and atmospheres, gaseous nebulae, and much of the interstellar hydrogen are plasmas. In our own neighborhood, as soon one leaves the earth’s atmosphere, one encounters the plasma comprising the Van Allen radiation belts and the solar wind. On the other hand, in our everyday lives encounters with plasmas are limited to a few examples: the flash of a lightning bolt, the soft glow of the Aurora Borealis, the conducting gas inside a fluorescent tube or neon sign, and the slight amount of ionization in a rocket exhaust. It would seem that we live in the 1% of the universe in which plasmas do not occur naturally."

(ChF) 7.5: the meaning of Landau damping, "The theoretical discovery of wave damping without energy dissipation by collisions is perhaps the most astonishing result of plasma physics research. That this is a real effect has been demonstrated in the laboratory. ... Landau damping (spontaneous stabilization of plasma; return to an equilibrium w/o increase of entropy) is a characteristic of collisionless plasmas, but it may also have application in other fields. For instance, in the kinetic treatment of galaxy formation, stars can be considered as atoms of a plasma interacting via gravitational rather than electromagnetic forces. Instability of the gas of stars can cause spiral arms to form, but this process is limited by the Landau damping."

(**) The model fulfills the set of principles to build a new cosmology theory in (Sml.) §10, whereby it confirms the belief that basically all current fundamental (Lagrange formalism based) models are approximations, only

(***) The Landau equation is a model describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction. It is about the Boltzmann equation with a corresponding Boltzmann collision operator where almost all collisions are grazing. The Landau damping phenomenon ("wave damping w/o energy dissipation by collision in plasma") is an observed plasma/quantum physical phenomenon. In (MoC) this phenomenon has been "proven" for the non-linear Vlasov equation based on analytical norm estimates, which is about differentiability requirements beyond \(C^0 \); even the mathematical model of the GRT (which is not consistent to the quantum mechanics mathematical model of "discrete", "quantum leaps") works out with differentiable manifolds, only, whereby the differentiability requirement is already w/o any physical meaning (1): we claim, that the proof in (MoC) is not a proof of the physical phenomenon, but provides evidence, that the Vlasov equation is not the adequate mathematical model of the Landau phenomenon. This statement is in alignment with the criticism of Landau regarding Vlasov’s equation.

Vlasov’s mathematical argument against the Landau equation (leading to the Vlasov equation) was, that "this model of pair collisions is formally (1) not applicable to Coulomb interaction due to the divergence of the kinetic terms". This argument is being overcome by the proposed distributions framework.

Vlasov’s formula for the plasma dielectric for the longitudinal oscillators is based on the integral ((ShF) p. 392)

\[
W(\omega) = -\int_0^\infty \frac{\epsilon''(\omega)}{\omega - \nu} \, d\nu
\]

As Landau pointed out, this model overlooks the important physical phenomenon of electrons travelling with exactly the same material speed \(v_p = \frac{\omega_0}{\omega} \) and the wave speed \(v \). In ((ShF) p. 395) the correct definition (as provided by Landau) for the Vlasov formula is given, which is basically a threefold integral definition depending from the value \(\omega \), the imaginary part of \(\omega = \omega_0 + i\omega_1 \):

\[
W(\omega) = -\int_0^\infty \frac{\epsilon''(\omega)}{\omega - \nu} \, d\nu \quad \text{for } \omega_1 < 0
\]

\[
W(\omega) = -\nu \, \omega_1 \int_0^\infty \frac{\epsilon''(\omega)}{\omega - \nu} - \nu \, \epsilon_0(\omega) \, \text{sgn}(k) \quad \text{for } \omega_1 = 0
\]

\[
W(\omega) = -\int_0^\infty \frac{\epsilon''(\omega)}{\omega - \nu} - 2i \nu \, \epsilon_0(\omega) \, \text{sgn}(k) \quad \text{for } \omega_1 > 0
\]

If \(\omega_1 \) were to continue and become positive (damped disturbance), then analytical continuation yields, in addition to the integral along the real line (which also presents no difficulty of interpretation), a full residue contribution.
We note that the Landau damping property is complementary to the properties of electro-magnetic "forces", which weaken themselves spontaneously over time w/o increase of entropy or friction. The Landau damping phenomenon can be interpreted as the capability of stars to organize themselves in a stable arrangement. The proposed alternative inflation model with integrated quantum fluctuation initial "value" conditions is based on the non-linear Landau collision operator in a weak $H_{-1/2}$ representation. The current classical related Landau-Boltzmann PDE are interpreted as an approximation model to it and not the other way around. The Vlasov equation (a current alternative plasma dynamics model) is discarded, as this model overlooks the important physical phenomenon of electrons travelling with exactly the same material and wave speed.

This extended Landau–Boltzmann equation (CeC) is proposed as alternative cosmical inflation model with an only H^t_1 ground state energy relevant initial/radiation value condition (in the sense of (CoR) VI.7 referring to (WeA)). As there is per definition no change in a "purely "ground state energy" framework there is also no "time" "existing", while the probability (measured in a H_1 Hilbert space) for a "symmetry break down" (the first orthogonal projection from H^t_1 onto H_1) is zero. In (GaA) unique solvability of a class of abstract kinetic equations (with accretive collision operators) is derived using Krein space methods (AznT1) (BoiJ). Semi-groups on non-linear contractions on closed convex subsets of a Hilbert space i are considered in (BrH). The Boltzmann-Landau (Fokker-Planck, (DeR 5.4)) equation describing the transport of charged particle in hot plasma is worked out as an application.

The cosmological inflation model can be derived from both, the Newtonian and the Einstein version of cosmology (!) (CoR). It is about the simple, classical ordinary differential equation $\dot{\rho} = -3 \frac{a^2}{2} (\rho + 3p)$, with energy density $\rho = \rho(t)$, the pressure density $p = p(t)$ and the scale factor $a = a(t)$ concerning the cosmic time derived from the Friedmann-Robertson-Walker (FRW) metric. This ODE is not well defined due to e.g. the missing initial value condition at the Planck time. As the unit of measure of the "pressure" is identical to the unit of measure of the "energy density" this unbalanced (not well-posed (!)) conservation law is the mathematical model to "explain" the "matter generation & "explosion" phenomena and to estimate the required expansion energy during the inflation period. In combination with the Planck thermodynamical "Hohlraum" radiation model it lead to the model of the observed "cosmic microwave background (CMB)" phenomenon (WeS) p. 506). Planck's "Hohlraum" (black body radiation) model provides the asymptotics of the matter energy density in the form $\rho \propto T^3$ with the temperature $T(t)$. In combination with the inflation theory asymptotics $\rho(t) \propto a(t)^{-4}$ this leads to the CMB asymptotics $T(t) \propto a(t)^{-1}$ (NaP). We note that the scope of Planck's "Hohlraum" thermodynamical statistical model is about countable, infinite many "EP", which corresponds to the compact embeddedness of H_1 into $H_{1/2}$.

The extended Maxwell equations (with still valid Lorentz transform properties concerning the sub-space H_1 of $H_{1/2} = H_1 \otimes H^t_1 = H^t_1 \otimes H_{1/2}$) and the proposed alternative cosmic inflation model puts the spot again on the special relativity theory (SRT) with its underlying 3-sphere model S^3. The least action principle provides the fundamental concept for the Hilbert-Einstein functional defining the Einstein field equations.

(*) (KaD1): "It is most amazing that the dynamics of the universe as determined by the equations of GR can be derived from purely Newtonian considerations. ... The only difference between the Newtonian and Einstein version of cosmology becomes apparent only by differentiating the Newton energy conservation equation taking into account the relation between and the pressure from local energy conservation*. The Einstein operator is given by $G = \mathcal{R}_{ab} - \frac{1}{2} \mathcal{G}_{ab}$ with the corresponding gravity field equations $\mathcal{G} = -\nabla \phi$ and the corresponding motion equations $\frac{d^2 x^i}{d t^2} = \frac{4\pi G}{c^4} T^i_{ab} x^a x^b$ for the path $x^i(t)$ of a particle. The change from the Newton model is about a change from the potential equation to the Einstein equation $-\Delta \phi = -4\pi G \rho_\phi \rightarrow G = -\nabla \phi$ and a change from the motion equations $\frac{d^2 x^i}{d t^2} = -\nabla \phi \frac{d x^i}{d t} \rightarrow \frac{d^2 x^i}{d t^2} = \frac{4\pi G}{c^4} T^i_{ab} x^a x^b$. Instead of one potential equation we now have 10 equations with 10 potentials ϕ_i; instead of a linear operator, we now have a non-linear operator, i.e. the gravity potential is no longer the sum of single gravitation potentials. Additionally there is a circle structure, i.e. the potentials are a functions of the $T_{ab} (\phi_i = (T_{ab}))$, while the space-time structure is a function of the potentials $(f(\phi_i))$. The matter, as described by the energy-momentum tensor T_{ab}, reflecting the principles of energy and momentum conservation, generates a curvature of the space-time and particles move along of geodesics.
We note that the assumption of the above Einstein version of cosmology to derive the ODE is based on the cosmological principle assumption; it states that the universe should look like the same for all observers. It "tells us that the universe must be homogeneous and isotropic. This then tells us, which metric must be used, which is the Friedmann-Robertson-Walker (FRW) metric" (KaD1). In other words, the physical assumptions about the state of the universe during the inflation period is the stable one, which we currently have (even Gödel's cosmological solution would be a better option than the FRW metric (GöK)); we further note, that the same model can be also derived from the classical Newtonian version of cosmology. This reminds to the origin of one of the titles of the books from R. Penrose: "The Emperor's New Clothes".

We further note that the $H_{1/2}$ space as first cohomology is fundamental to explain the properties of period mapping on the universal Teichmüller space. We further note that a vector space and any linear subspace are convex cones, i.e. the tool "convex analysis and general vector spaces" can be applied.

Morse's "calculus of variations in the large" enables a calculus of variations in the large on "varifolds" ((MoM), (SeH), (AlF)). Varifolds geometry is about integral varifolds. It is based on real valued functions (which can be the "norm" of differentials) on the space of differential forms. Because of analogy with electric currents such continuous linear functions are also called "currents" (AlF).

The combination of varifold geometry (AlF), and Morse theory (MiJ) enables a quite different physical model for the notion "energy" in the context of a rubber band which is stretched between two points of a slippery curved surface. If the band is described parametrically by the equation $x = \omega(t)$, then the potential energy arising from tension will be proportional to the integral E (at least to a first order of approximation) in the form $E = \int_0^1 \| \frac{d\omega}{dt} \|^2 dt$. This "action" integral definition is called "energy". For an equilibrium position this energy must be minimized, and hence the rubber band will describe a geodesic (*)

(*) (MiJ): "For a particle P, which moves among a surface M during a given time interval, the action of the particle during this time interval is defined to be a certain constant times the action integral "E". If no forces act on P (except for the constraining forces which hold it within M), then the principle of least action asserts that E will be minimized within the class of all paths joining $w(0)$ and $w(1)$, or at least that the first variation of E will be zero. Hence P must traverse a geodesic. But a quite different physical model is possible. Think a rubber band which is stretched between two points of a slippery curved surface. If the band is described parametrically by the equation $x=\omega(t)$, then the potential energy arising from tension will be proportional to our integral E (at least to a first order of approximation). For an equilibrium position this energy must be minimized, and hence the rubber band will describe a geodesic."
The collision operator of the Landau equation is given by

\[Q(f, f) = \frac{\partial}{\partial \nu_i} \left\{ \int_{\mathbb{R}^n} a_{ij}(v - w) \left[f(w) \frac{\partial f(v)}{\partial \nu_j} - f(v) \frac{\partial f(w)}{\partial \nu_j} \right] \, dw \right\} \]

with

\[a_{ij}(z) := \frac{a(x)}{|z|} \left(\delta_{ij} - \frac{z_i z_j}{|z|^2} \right) = \frac{a(x)}{|z|^2} \delta(z - y) \]

and \(a(x) \) symmetric, non-negative and even in \(x \). For each time \(t \) the "density of particle" at the point \(x \) with velocity \(v \) can be approximated by a linear pseudo-differential operator (PDO) of order zero with symbol

\[b_{ij}(z) := \frac{z}{|z|^2} \left(\delta_{ij} - \frac{z_i z_j}{|z|^2} \right) = \frac{z}{|z|^2} \delta(z - y) \]

whereby \(a_{ij}(x) \) denotes the symbol of the Oseen kernel (LeN). The Riesz transforms operators are defined by

\[R_k u = -i c_n p. v. \int_{-\infty}^{\infty} \frac{x_i - y_i}{|x - y|^{n+1}} u(y) \, dy \quad (\text{with} \quad c_n = \frac{\Gamma(n+1)}{\pi^{(n+1)/2}}). \]

They are related to the Caldéron-Zygmund operators \(T(f) = S \ast F \) with a distribution \(S \) defined by a homogeneous function of degree zero satisfying a kind of average mean zero condition on the unit sphere with its underlying rotation invariant probability measure (MeY).

The search for conditions of minimal regularity in the context of the "pointwise multiplication" operator \(\Lambda \) is about an analysis of the commutator \([T, \Lambda] \). This leads to the "Caldéron operator"

\[(Au)(x) = \sum_{k=0}^{\infty} R_k D_k u(x) = \frac{r^{(n+1)}}{2 \pi} \sum_{k=1}^{\infty} p. v. \int_{\mathbb{R}^n} \sum_{j=1}^{\infty} \frac{x_j - y_j}{|x - y|^{\infty+1}} \frac{\partial u(y)}{\partial y_j} \, dy \]

\[= -\frac{r^{(n+1)}}{2 \pi} p. v. \int_{\mathbb{R}^n} \frac{\partial u(y)}{\partial y} \, dy \quad = -\left(\Delta^{-1} \right) u(x) \]

with symbol \(|v|\) and its inverse operator (EsG (3.15), (3.17), (3.35))

\[\left(A^{-1} u \right)(x) = \frac{r^{(n-1)}}{2 \pi} p. v. \int_{\mathbb{R}^n} \frac{u(y)}{|x - y|^{\infty+1}} \, dy \quad n \geq 2 . \]

In dimension 1, this is about \(\Lambda = DH \) where \(H \) denotes the Hilbert transform and \(D \) the Schrödinger momentum operator in the form \(P := D = -i \frac{\partial}{\partial x} \) (MeY p. 5). The Schrödinger momentum operator in dimension \(n \), and its related Hamiltonian operator is given by \(P := -i \hbar \frac{\partial}{\partial \xi} \) resp. \(H := -\frac{\hbar^2}{2m} \Delta = \frac{1}{2m} \left(\frac{\partial}{\partial \xi} \right)^2 \). The corresponding generalization of the Schrödinger momentum operator is then given by \(\Lambda = PR \).
The one-dimensional Hilbert space model is given by $H = L^2(\Gamma)$ with $\Gamma = S^1(R^2)$, i.e., Γ is the boundary of the unit sphere. Let $u(s)$ be a 2π-periodic function and \hat{u} denotes the integral from 0 to 2π in the Cauchy-sense. Then for $u \in H = L^2(\Gamma)$ with $\Gamma = S^1(R^2)$ and for real β the Fourier coefficients

$$u_\gamma = \frac{1}{2\pi} \int u(x)e^{-ivx}dx$$

enable the definitions of the norms (see e.g. (LII) Remark 11.1.5)

$$\|u\|_\beta^2 = \sum_{-\infty}^{\infty}|v|^{2\beta}|u_\gamma|^2.$$

Then H is the space of L^2 -periodic function in R and the Fourier transform (denoted by \hat{u}) is an isomorphism between the Hilbert spaces $H_\beta = \{u: \|u\|_\beta^2 < \infty\}$ and its “dual” Hilbert space $H_{-\beta}$. The Fourier transforms δ_i of the (kernel) functions $s_i (i = -1,0,1)\), (MuN) chapter 3, §28

$$s_{-1}(x) = \ln \frac{1}{2\sin x}, \quad \hat{s}_{-1}(v) = \text{sgn}(v)/v$$

$$s_0(x) = \frac{1}{2\pi} \cot \frac{x}{2}, \quad \hat{s}_0(v) = -i \text{sgn}(v)$$

$$s_1(x) = \frac{1}{4\sin^2 x}, \quad \hat{s}_1(v) = -v \text{sgn}(v)$$

are the symbols of following (singular convolution integral) Pseudo-Differential operators (e.g. (LII) (1.2.31)-(1.2.33), (LII1)):

$$(S_{-1}u)(x) = \hat{s}_{-1}(x - y) u(y)dy$$

$$(S_{0}u)(x) = \hat{s}_{0}(x - y) u(y)dy$$

$$(S_{1}u)(x) = \hat{s}_{1}(x - y) u(y)dy.$$

The operators $S_i (i = -1,0,1)$ are isomorphisms $S_i : H_{\beta + 1} \rightarrow H_{\beta}$ and self-adjoint with respect to the corresponding energy inner products $(u,v)_{\beta+1} = (\hat{S}\hat{u},\hat{v})_\beta$. The operator S_0 is the Hilbert transform on the space of periodic functions for each Hilbert scale H_β. The operator S_1 can be considered as a generalization of the $\frac{d}{dx}$ operator being defined for each Hilbert scale H_β.

It enables inner product definition of differentials (in the Plemelj integral sense (*) in the form

$$\langle (\langle du, dv \rangle) \rangle = (S_1[u],S_1[v])_{-1} \equiv (u,v)_0 \quad \langle (\langle du, dv \rangle) \rangle = (S_1[u],v)_{-1} \equiv (u,v)_{-1/2}.$$

The Friedrichs extension of the Laplacian operator $-\Delta: H_2 \rightarrow H_0$ is a selfadjoint, bounded operator B with domain H_1. The corresponding Friedrichs extension of the operator $d: H_1 \rightarrow H_0$ is a selfadjoint, bounded ("Hodge" like) operator with domain $H_{1/2}$.

(*) J. Plemelj’s suggestion (((PIJ) XV, p. 12, p. 17, is a relationship between the differential form calculus and its application in physics (e.g. (HCA), (HFI)) and a modified representation of the potential in the form

$$v(x) = -\frac{1}{2} \log(\zeta(x) - \zeta(t))u(t)dt \quad \rightarrow \quad (**): v(x) = -\frac{1}{2} \log(\zeta(x) - \zeta(t))d(u(t)$$

Plemelj’s quote: "Bisher war es üblich, für das Potential die Form (*) zu nehmen. Eine solche Einschränkung erweist sich aber als eine derart folgenschwere Einschränkung, dass es damit dem Potentiale der grösste Teil seiner Leistungsfähigkeit hinweg genommen wird. Für tiefergehende Untersuchungen erweist sich das Potential nur in der Form (**) verwendbar."

In case of the harmonic quantum oscillator it holds in the L^2-framework $\hbar_0 = \lambda_0\Sigma\hbar_0 = \zeta\Sigma\hbar_0 = 0$ leading to the concept of "re-normalization" to ensure the existence of bounded Hermitian operators \hat{H}_{renorm} with $\hbar = \hat{H}_{\text{renorm}} + \hat{E}_0$.

The Hilbert space decomposition $H_{1/2} = \hbar_0 \otimes \hat{H}_2$ enables „mixed“ discrete (La 1, eigen-function) based and continuous (La, $\mu \in (0,1)$, eigen-differential) based „spectral“ representations: let $\hat{\xi}_\mu$ denote the ONS of the Hilbert space \hat{H}_2 and $[\hat{\phi}_\mu]$ = \hat{H}_2.

The Dirac function set-up to build spectral function representations of Hermitian operator, whereby $(\hat{\phi}_\mu,\hat{\phi}_\mu) = \delta_{\mu,m}$, $(\hat{\phi}_\mu,\hat{\phi}_m) = \delta(\mu - m)\delta_{\mu,m}$ is replaced by the set-up $(\phi_{\mu},\phi_m)_{-1/2} = \delta_{\mu,m}(\phi_m,\phi_{-\mu})_{-1/2}$. This leads to the representations

$$x = \sum_{l}(x,\phi_{-1/2})\delta_{\mu,m} + \int_0^\infty \int_{-\infty}^{\infty} (x,\phi_m)(y,\phi_\mu)_{-1/2}dxdy$$

resp.

$$\langle (\langle dx, dv \rangle) \rangle = (S_1[x],S_1[y])_{-1/2} \equiv (x,y)_2 \quad \langle (\langle dx, dv \rangle) \rangle = (S_1[x],v)_{-1/2} \equiv (x,v)_{-1/2}.$$

Additionally, for $t > 0$ there can be an inner product resp. norm defined for an additional governing Hilbert space with an "exponential decay" behavior in the form $e^{-\gamma t}$ given by $\langle (x,y)_{\gamma} \rangle = \sum_{l=1}^{\infty} e^{-\gamma t}(x,\phi_{l}) (y,\phi_{l})$, $\langle x \rangle_{\gamma}^2 = \langle x, x \rangle_{\gamma}$. The related H_{γ} - approximation theory is provided in (NJ1). The proposed H_{γ} - quantum state Hilbert space with respect to the „observable space“ norm of \hbar_0 is governed by the inequality $\|x\|_{\gamma}^{2} \leq 3\|x\|_{\gamma}^{2} + 2^2\|x\|_{\gamma}^{2} = \delta\|x\|^{2} + \sum_{l=1}^{\infty} e^{1-\gamma t}l^2$.
The notion of "time" is strongly connected with the question of the origin of the universe. It became a central open question when the steady-state model has been discarded in the context of the discovery of the all-pervading electromagnetic radiation, coming from all directions, now referred to as cosmic microwave background (CMB). It was identified as a predicted implication of the "flash" of a Big-Bang origin to the universe (PeR). The current cosmic model (based on the FRW metric in combination with Planck's black body radiation model) starts at Planck time, while the reason for this very first action is not part of the model, and while the related hyperbolic wave equation is time-symmetric, starting at \(t = 0 \). Ideas about the origin of the universe are e.g. considered in (CII) (**), (PeR) (**), (RoC1) (**), (Sml) (**). In the context of the newly proposed model (including newly the quantum theory, which is somehow a priori "given" in the current cosmic model) the notion "universe" needs to be defined with respect to physical and mathematical terms. "Our" physical world (including the "particle" interaction in the SMEP) is on this side of the light velocity border (which also is a key ingredient of the wave equation governed by perfect Fourier waves in the Hilbert space \(H_0 \)). Regarding the cosmic inflation model the Planck time is the most prominent example of this kind of borders for physical observations. This (Planck time) point in "time" is the birthday of our observed universe. In this sense, the CMB model, which is basically the wave equation starting at \(t = 0 \), is a not appropriate model. So, from a physical modelling perspective our current universe model starts at Planck time governed by hyperbolic (evolution) equations starting at \(t = 0 \). The observed CMB indicated something (microwaves) at the border of our universe with some impact on the "time" before the Planck time, concluded out of the current model, which could not be explained by a steady-state (elliptic) mathematical model. As a consequence, the steady-state (elliptic) mathematical model has been discarded and new ideas/principles like "time reborn" (Sml), and "cycles of time" (PeR) are currently discussed.

(1) (CII) 5.2.1: "Thus we may present the following arguments against the conception of a space-infinite, and for the conception of a space-bounded, universe:
(1) From the standpoint of the theory of relativity, the condition for a closed surface is very much simpler than the corresponding boundary condition at infinity of the quasi-Euclidean structure of the universe,
(2) The idea of Mach expressed inertia depends upon the mutual action of bodies, is contained, to a first approximation, in the equations of the theory of relativity; ...
(3) An infinite universe is possible only if the mean density of matter in the universe vanishes. Although such an assumption is logically possible, it is less probable than the assumption that there is a finite mean density of matter in the universe.

(*) (PeR) 2.6: We still need to understand the extraordinarily low-entropy start of the universe, and according to the arguments in §2.2 this lowness of entropy lay essentially in the fact that the gravitational degrees of freedom were not excited, at least not nearly to the extent that involved all other degrees of freedom.

(**) (RoC1) II, 6: Time, as Aristotle suggested, is the measure of change: ... The entire evolution of science would suggest that the best grammar for thinking about the world is that of change, not of performance. Not of being, but of becoming. We can think of the world as made up of things. Of substances. Of entities. Of something that is. Or we can think of it as made up of events. Of happenings. Of processes. Of something that occurs. Something that does not last, and that undergoes continual transformation, that is not permanent in time.

(***) (Sml) §10: What must we require of a true cosmological theory?
(1) Any new theory must contain what we already know about nature. We need to current theories,
(2) the Standard Model of Particle Physics - general relativity, and quantum mechanics,
(3) to emerge as approximations to the unknown cosmological theory whenever we restrict our attention to scales of distance and time smaller than the cosmos
(4) The new theory must be scientific. ... There can be no just making things up because it makes a nice story. A real theory must imply specific testable predictions,
(5) The new theory should answer the "Why these laws?" question. It must give a substantial insight into how and why the particular elementary particles and forces described in the Standard Model were selected. In particular, it must explain the special and improbable values of the fundamental constants that obtain in our universe – the parameters, like masses of elementary particles and the strength of the various forces, that are specified by the Standard Model,
(6) The new theory should answer the "Why these initial conditions?" question, explaining why our universe has properties that seem unusual when compared to the possible universes that might be described by the same laws.
In our proposed model the birth “day” of the physical universe (which is the universe of the second law of thermodynamics additionally to the dynamical laws) is at Planck time; this is the very first interaction of created EP after “symmetry break down” onto the physical energy Hilbert space; from that point in time the radiation is being governed by (weak variational) evolution (hyperbolic) PDO in the proposed extended Hilbert space framework.

The physical universe model is part of the mathematical universe model, which is a steady-state model being governed by (weak variational) (elliptic) PDO equations. At the same point in time the integrated steady-state ground state energy (ether) model comes along with an explanation of the observed cosmic microwave background radiation. We note that the observed CMB is basically “only” about electromagnetic waves, which are a very specific phenomena of our planet.

Our proposed model is very much in line with Bohm's concept of „hidden variables in quantum theory“ (*). It handles especially those physical problems dealing with extremely short distances (Planck length and shorter) and high energy (~10⁻⁹eV and higher) ((BoD) p. 83). In our case the first change („mover“) of the “system” happens/occurs at Planck (point in) „time“; the „time“ before that „point in time“ can be interpreted as a „hidden variable“ in the sense of D. Bohm. In (BoD1) Bohm shows (**) „how many of our „self-evident“ notions of space and of time are, in fact, far from obvious and are actually learnt for experience, starting to understand the importance of measure and the need to map the relationships of these objects on to a co-ordinate grid with time playing a unique role“.

Bohm’s concept of hidden variables overcomes current challenging consequences of main features of the quantum theory, like the fact, that there is „no wave function existing describing a state, where all physical relevant quantities are dispersionless, i.e. they are sharply defined and free from statistical fluctuations“ (***) Bohm himself challenged his alternative model with respect to the proposed notion of a „quantum potential“ and its related „many-dimensional field“ to describe the many-body problem (****).

We emphasise that our proposed „quantum potential“ model (the closed subspace H1 of H1/2) is complementary and therefore independent from the „physical world“ Hilbert space H1. In other words, the extended energy Hilbert space H1/2 = H1 ⊗ H1 represents a “complementary” thermodynamic vs. ether (ground state or dark quantum potential or Leibniz’s living force) energy field model (*****).

(*) David Bohm, Causality and Chance in Modern Physics, London, 1957
(**) (BoD) Foreword: „It is also shown, through perception and our activity in space, we become aware of the importance of the notion of relationship and the order in these relationships. Through the synthesis of these relationships, we abstract the notion of an object as an invariant feature within this activity which ultimately we assume to be permanent. It is through the relationship between objects we arrive at our classical notion of space. Initially, this relations are essentially topological but eventually we begin to understand the importance of measure and the need to map the relationships of these objects on to a co-ordinate grid with time playing a unique role."

(***) In (BoD) the main six features of quantum theory are recalled. As a consequence of three of those features (features 4-6) it follows that there is „no wave function existing describing a state, where all physical relevant quantities are dispersionless, i.e. they are sharply defined and free from statistical fluctuations“. Then the corresponding interpretation of a quantum theory based on the proposed hidden variables concept is described by five bullet point. The model explicitly allows, that an electron do have more properties, than the so-called „observables“ of the quantum theory is able to describe.

(****) (BoD) p. 102: First of all, it must be admitted that the notion of the „quantum potential“ is not entirely a satisfactory one, for not only is the proposed form, \(U = -\frac{1}{2} \nabla^2 \phi + \frac{1}{2} \phi \nabla^2 \phi \), rather strange and arbitrary but also (unlike other fields such as the electromagnetic) it has no visible source. „…, we evidently cannot be satisfied with accepting such a potential in a definitive theory. Second, in any-body model, we are lead to introduce a many-dimensional \(\psi \) -field (\(\psi(x_1, x_2, ..., x_N) \)) and a corresponding many-dimensional quantum potential \(U = -\frac{1}{2} \nabla^2 \phi + \frac{1}{2} \nabla^2 \phi \phi \) as in the one-body case.

While the energy space \(H_1 \) (which is compactly embedded into \(H_{1/2} \)) is about the concepts of event & action (and corresponding variables, including „time“, „space“, „matter“, as perceived through perception and „our“ activities in space and time (**)), the (much more larger) closed subspace \(H_1 \) is about the „energy source“ space from where perceived events and actions are generated from. By definition those „generation processes“ happen independently from all only \(H_1 \) relevant variables.
In the following we give some context of the proposed quantum gravity model to the underlying concepts of Kant (LoJ), Leibniz (RuB), Schopenhauer and Schrödinger.

The intrinsic evolution (energy transport) model in a hyperboloid framework is applicable when the first matter/energy occurs in the „physical world“ Hilbert space \(H_1 \). The corresponding action variable defines the related time variable ((HeW) 2.2) and the related causality principle. This is the „world“ considered by Kant as a phenomenon existing in space and time (*): the space-time frame is necessarily required to enable the human mind to connect sentiuently perceived objects. „Space“ and „time“ are no empirical notions, but necessarily required conditions of the human mind to enable sensitive perceptions.

The model situation „before the first creation of matter“ is characterized by purely ground state energy as „part of“ the closed subspace \(H^1_1 \) of \(H_{1/2} \). Dirac's (replaced) point mass density concept corresponds to the field of real numbers, while (the newly proposed) Plemelj's mass element concept corresponds to the (extended) field of hyper-real numbers. Both fields do have same cardinality. The latter one (also called the field of ideal numbers) are related to Leibniz's monad concept. From a mathematical point of view, both fields are ordered fields, but the differentiator is the validity of the Archimedean axiom: it basically states that any given distance can be measured (resp. over estimated) by a value calculated as an (integer) multiple of a given standard unit (while no standard metric exists). Bohm's concept of wholeness and the implicate order might be interpreted as the „delta“ between the ordered field of hyper-real numbers and the ordered field of real numbers (BoD).

The proposed model comes along with the metric \(\| du - dv \|^2 = \| S_0[u] - S_0[v] \|_{L_2}^2 \). In the corresponding weak topology being testing against test functions of the Hilbert space \(L_2 = H_0 \) (in the sense \((S_0; (du - dv, z)) \forall z \in H_0 \)) the corresponding metric is given by \(\| u - v \|^2_{L_2} \).

For the relation of the notions „space“ and „time“ to Leibniz’s notion of „substance”, „monads“ (differentials), his arguments against „extended atoms & vacuum“ and „action at the distance“, we refer to (RuB).

Schopenhauer argues that there are only three a priori forms by which our minds render our experience of the world intelligible to ourselves: time, space, and causality. He rejected all other proposed categories of the understanding from Kant. The other aspect of his view of the world, the Will, or "thing in itself", which is not perceivable as a presentation, exists outside time, space, and causality. This Will is related to Kant's concept of "freedom"; one also could relate this concept to the quantum potential in our proposed model, which exists independently of the forms of the principle of sufficient reason that govern the world of representation. We note that the judgment „every event has a reason“ is a synthetic judgment (a priori), as the notion „event“ does not contain the notion „reason“.

*) (LoJ) p. 4: The critique of pure reason is guided by five important requirements of reason. These are completeness, exhaustiveness, certainty, clarity, and freedom.

The notions „space“ and „time“ are considered in Kant’s first antimony; the notion „causality“ is considered in Kant’s third antimony; the notion „substance“ as part of the „world“ is considered in the second antimony (MeJ).

(LoJ) xi: According to Kant, time and space are not objectively real but rather a framework within which our experiences are constructed. It is, in large part, this framework of time and space that makes our sensory experiences possible, or at least meaningful. His view has momentous (perhaps alarming) implications for our traditional notion of causality. Given Kant’s view, if Y follows X (or if indeed we say that X causes Y), it is because our minds arrange it so. The mind is not a tabula rasa but rather an active shaper and creator of one’s experiences.

(LoJ) p. 14: „the only intuition that is given a priori is that of the mere form of appearances, space and time“. That time and space are intuitions does not mean that they are unreal. For Kant, neither time nor space can be said to be „things in themselves“; however, both are empirically real. They are not empirical concepts, nor are they „derived from outer experiences“, but they are the forms of outer sense, and as such are necessary a priori representations, and so have empirical reality, though transcendental ideality.

**) (RuB) p. 108: „Leibniz rejected atoms, the vacuum, and action at a distance. His grounds for these three rejections must be now examined: (RuB) (45) …, (46) …, (47) ….“
According to Kant, time and space are not objectively real but rather a framework within which our experiences are constructed. It is, in large part, this framework of time and space that makes our sensory experiences possible, or at least meaningful. In this sense it corresponds to the proposed "Minkowski space-time based attractive and repulsive fermions energy" Hilbert space \(H \). The "existence" of its elements, truly fermions (elementary particles with mass) is "caused" by truly bosons (the elementary particle elements without mass) being modelled as elements of the complementary subspace of \(H \) with respect to the inner product of \(H_{1/2} \).

With respect to the both halves of Schopenhauer's view of the world in "the world as will and imagination"

(1) the "will", the aimless, cosmic, universal energy as reason of the world
(2) the "imagination", the world's appearance as idea,

the "will" ("Brahma" in Hinduism) corresponds to the "ether energy", and the "imagination" corresponds to the "fermions energy".

With respect to Heidegger's "Being and Time" an analog phrasing with respect to the relationship between "ether energy" Hilbert space \(H_{1/2} \) and its "fermions energy" Hilbert subspace \(H \) could be "Being and Space-Time" resp. "Being and Da-sein" (the noun "Da-sein" to stress the sense of "being(t)here"), to anticipate Heidegger's specific view on human beings in "Sein und Zeit".

With respect to Schrödinger's "(My) View of the world" (*), e.g. about "What is Life" (**)
the proposed model is in accordance with the following three mathematical model layers:

(1) the quantum/"differential" (*) layer: the variational \(H_{-1/2} \times H_{-1/2} \) based quantum gravity (NMEP) "EP world"

(2) the "atom" (*)/density layer: the variational \(H_0 \times H_0 = L^2 \times L^2 \) based statistical thermodynamical "EP world"

(3) the "organism" (*),(**)/ exact physical laws layer: the classical PDE \(H_k \) (resp. the classical PDE \(C^k \) (Sobolev embedding theorem, \(k > n/2 \)) based "organic world".

31
The central part to prove the well-posedness of the 2D non-linear, non-stationary Navier-Stokes equations is a proper energy norm inequality estimate. It does not lead to blow-up effects for $t = T$ and do not show a Serrin gap with respect to the corresponding Sobolev norm estimates. All attempts failed to extend the existing 2-D NSE problem solution technique to the 3D case (Giy). For the weak H_0 based representation of the 3D non-linear, non-stationary Navier-Stokes equations the non-linear part of the "energy"-term vanishes. This is a great thing from a mathematical perspective, but a doubtful thing from a physical modelling perspective.

Energy transport equations (e.g. radiation problems) need to deal with sometime "inappropriate" physical solution behaviors for $t \to 0$, as well as blow-up effects for existing global bounded solutions until a certain point in time ($t < T_{\text{Blow-up}}$) or no existing global bounded solution at all (e.g. 3D-NSE). Such singularity behaviors and blow-up effects are the mathematical consequence of corresponding Sobolev space (energy) norm estimates governed by corresponding Sobolev embedding theorems:

i) already the most simple, linear homogenous heat equation with non-regular initial value function $g \in H_0$ shows a singular solution behavior for $t \to 0$ in the form

$$\|x(t)\|_2 \leq c \exp(-\delta t\|g\|_2^2), \quad \int_0^T \|x(t)\|_2^2 \, dt \leq c\|g\|_2^2 \ (*)$$

ii) the global boundedness of the solution of the 2D-NSE is governed by the ODE

$$y'(t) = y^2(t), \quad y(0) = y_0$$

with the solution $y(t) = y_0/\left(1 - t \cdot y_0\right)$ becoming infinite in finite time (blow-up effect)

iii) the 3D-NSE is governed by the ODE

$$y'(t) = y^2(t), \quad y(0) = y_0,$$

i.e. there is no global global boundedness at all (which is the 3D-NSE Millennium problem with the proposed solution in (BrK2).

The alternatively proposed "fluid state" Hilbert space $H_{1/2}$ with corresponding alternative energy ("velocity") space $H_{1/2}$ avoids the blow-up effect due to Ricci ODE estimates in the form $y'(t) \leq c \cdot y^{1/2}(t) (**)$, while enabling at the same time an "energy" norm inequality (including contributions from the non-linear term), based a corresponding Sobolevskii estimate. The newly proposed scale value $c = -1/2$ fulfills also the requirement $0 < \alpha < n/2 + \varepsilon$. It therefore provides an alternative model to the Dirac (Delta) "function" for energy transport equations.

\[
\begin{align*}
(*) & \text{ From } x(x, t) = \sum_0 \phi_0(x) \text{ it follows } x - x^* = \sum_0 \phi_0(x) \text{ and } x_0(x) = 0. \text{ Therefore } x_0(x) = x_0(x) \text{ and } x_0(x) = g_0(x) = (g, \phi_0). \\
& \text{ Putting } C_0(x) = \sup \left\{ \sum_0 \phi_0(x) \right\} \text{ it follows } ||x(x)||_2^2 = \sum_0 \phi_0(x) = \sum_0 \phi_0(x) \leq C_0(x) \sum_0 \phi_0(x). \text{ The conditions } (k - I)\sum_0 \phi_0(x) = 2a \sum_0 \phi_0(x) \text{ leads to } (\text{for the critical case } k > t) \lambda = t^{-1}.
\end{align*}
\]

For the orthogonal set (ν_i, λ_i) of eigenpairs of the non-stationary Stokes operator

\[A := \nu + \nu \cdot f, \quad w(0) = 0, \quad t \in [0, T] \]

one gets $w_i(t) = \int_0^t e^{-\lambda(t-t')} f_i(s) \, ds$. By changing the order of integration it follows for $\beta > -1$

\[
\int_0^T t^\beta w_i(t) \, dt \leq \int_0^T s^\beta w_i(s) \, ds \leq A_1 \int_0^T s^\beta f_i(s) \, ds \leq A_1^2 \int_0^T s^\beta f_i(s) \, ds \leq A_1^2 \int_0^T s^\beta f_i(s) \, ds.
\]

From this one gets $||e^{\beta(\nu)}(\nu)||_{\nu \in A} \leq c||e^{\beta(\nu)}(\nu)\|_{\nu}, \quad \beta > -1$, with $||\nu(i)||_\nu = \int_0^T ||\nu(i)||_\nu \, ds, \quad \nu \in \nu$.

\[
(**) \text{ Lemma of Gronwall (general form): Let } a(t) \text{ and } b(t) \text{ nonnegative functions in } [0, A) \text{ and } 0 < \delta < 1. \text{ Suppose a nonnegative function } y(t) \text{ satisfies the differential inequality}
\]

\[
y'(t) + b(t) \leq a(t) y^{\delta}(t) \quad \text{on } [0, A),
\]

Then for $0 \leq t < A$

\[
y(t) + \int_0^t b(s) \, ds \leq \int_0^t a(t) \, ds + \int_0^t a(t) \, ds \leq 2^{1/1-\delta} + 1 y_0 + 2^{1/1-\delta} \int_0^t a(t) \, ds.
\]
The Stokes operator is a projector from $A: L^2 \to L^2$: \((\psi v) \in L^2 \wedge \text{div}(v) = 0 \). The Hilbert scale is built on the Stokes operator on $\Omega \subseteq \mathbb{R}^n \, (n \geq 2)$ in the form $A = \int_0^\infty \lambda^2 dE_\lambda$. The Stokes operator enables the definition of a related Hilbert scale $(a \in \mathbb{R})$ with a corresponding norm $\|u\|_a := \|A^{\alpha/2}u\|_{\alpha'}$, enabled by the corresponding positive selfadjoint fractional powers ((SoH), IV15)

\[
A^a = \int_0^\infty \lambda^a dE_\lambda \quad , \quad -1 \leq \alpha \leq 1
\]

The corresponding Stokes semigroup family $(S(t))$ is built on the everywhere bounded, positive selfadjoint operator

\[
S(t) := e^{-tA} = \int_0^\infty e^{-\lambda t} dE_\lambda |\lambda| \geq 0 , t \geq 0.
\]

Putting $B(u) := P(u, \text{grad}u)$ in the NSE and assuming $P \Psi_0 = \Psi_0$, the NSE initial-boundary equation is given by $\frac{d\Psi}{dt} + Au + Bu = Pf$, $\Psi(0) = \Psi_0$. Multiplying this homogeneous equation with $A^{-1/2} \Psi$ leads to

\[
(\Psi(t), \Psi(t)) + (A \Psi(t), A \Psi(t)) + (B \Psi(t), \Psi(t)) = 0, \quad (\Psi(0), \Psi(t)) = (\Psi_0, \Psi(t)) \quad \text{for all} \quad \Psi \in H_{1/2}
\]

We note that the the pressure ρ (which can be also interpreted as energy density) in the variational representation

\[
(Au, v)_{-1/2} \equiv (\Psi u, v)_{-1/2} = (\Psi v, v)_{-1/2} + (\Psi, v)_0 \quad \text{for all} \quad v \in H_{1/2}
\]

\[
(u(0), v)_{-1/2} = (u_0, v)_{-1/2}
\]

can be expressed in terms of the velocity by the formula

\[
\rho = -\sum_{j=1}^3 R_j R_k (u \Psi_k)
\]

with (R_1, R_2, R_3) is the Riesz transform.

In case of $\alpha = -1/2$ one gets from Sobolevskii-estimates ((*) , (GiY) lemma 3.2) the corresponding generalized "energy" inequality, given by

\[
\frac{1}{2} \frac{d}{dt} \|u\|_{1/2}^2 + \|u\|_{-1/2}^2 \leq \|B \Psi_0, u\|_{-1/2} \leq \|u\|_{-1/2} \|B \Psi_0\|_{-1/2} \leq \|u\|_{-1/2} \|A^{1/4}Bu\|_0.
\]

Putting $\gamma(t) := \|u\|_{3/2}$ one gets $\gamma(t) \leq c \cdot \|u\|_{1/2} \cdot \gamma(t)$, resulting into the a priori estimate

\[
\|u(t)\|_{-1/2} \leq \|u(0)\|_{-1/2} + \int_0^t \|u\|_{3/2} (s) ds \leq c \|u_0\|_{-1/2} + \|u_0\|_{3/2}.
\]

This energy norm estimates ensures global boundedness provided that $u_0 \in H_0$.

\[
(*) \text{(GiY) lemma 3.2.} \quad \text{For} \quad 0 \leq \delta < 1/2 + n \cdot (1 - 1/p)/2 \text{ it holds } \|A^{-\delta}P(u, \text{grad})v \|_p \leq M \cdot \|A^{\alpha}u\|_p \cdot \|A^{\alpha}u\|_p \quad \text{with a constant } M := M(\delta, \theta, \nu, \eta) \text{ if } \delta + \theta + \rho > n/2p + 1/2, \eta, \theta > 0, \theta + \rho > 1/2. \text{ Putting } \nu := 2, \delta = 1/4, \eta = 1/2 \text{ fulfilling } \theta + \rho > 1/(n + 1) = 1 \text{ it follows } \|A^{-\delta}P(u, \text{grad})v\|_p \leq c \cdot \|A^{\alpha}u\|_p \cdot \|A^\alpha u\|_p = c \cdot \|u\|_p \cdot \|u\|_p = c \cdot \|u\|_p.
\]

resp.

\[
\frac{1}{2} \frac{d}{dt} \|u\|_{3/2} + \|u\|_{1/2} \leq \|B \Psi_0, u\|_{-1/2} \leq c \cdot \|u\|_{-1/2} \|u\|_p.
\]
Another rational for the more appropriate \(H_{-1/2}\) based variational representation of the NSE is about the following Neumann problem representation for the pressure field \(p(\vec{x}, t)\) (\(\vec{n}\) denotes the outward unit normal to the domain \(G\))

\[
\Delta p = \rho(\vec{v} \cdot \nabla \vec{v} - \vec{f}) \quad \text{in} \ G \\
\frac{\partial p}{\partial n} = -[\mu \Delta \vec{v} - \rho \vec{v} \cdot \nabla \vec{v}] \cdot \vec{n} \quad \text{at } \partial G.
\]

It follows that the prescription of the pressure at the bounding walls or at the initial time independently of \(\vec{n}\) could be incompatible with the initial and boundary conditions of the NSE PDE system, and therefore, could render the problem ill-posed (GaG), (HeJ). A \(H_{-1/2}\) based representation with correspondingly extended domains of the related operators overcomes this issue.

The related Prandtl operator \(\mathbb{P}\) is the double layer (hyper-singular integral) potential operator of the Neumann problem. It fulfills the following properties ((LiI) Theorems 4.2.1, 4.2.2, 4.3.2):

i) the Prandtl operator \(\mathbb{P}: H_r \to R_{r-1}\) is bounded for \(0 \leq r \leq 1\)

ii) the Prandtl operator \(\mathbb{P}: H_r \to R_{r-1}\) is Noetherian for \(0 < r < 1\)

iii) for \(1/2 \leq r < 1\), the exterior Neumann problem admits one and only one

generalized solution.

The related Leray-Hopf projector \(\mathbb{P}\) is the matrix valued Fourier multiplier given by

\[
P(\xi) = \text{Id} - \frac{\xi \otimes \xi}{|\xi|^2} = \delta_{jk} - \frac{\xi_k \xi_j}{|\xi|^2} \quad \text{is} \quad \mathbb{P} = \text{Id} - R \otimes R =: \text{Id} - Q
\]

resp.

\[
P = \text{Id} - R \otimes R =: \text{Id} - Q = \text{Id} - \frac{\partial \otimes \partial}{\partial \xi} \text{Id} - \Delta^{-1}(\nabla \times \nabla).
\]

As the operator \(Q = R \otimes R = (R_1 R_2)_{12} : k \mapsto Q^2 (R_1)\) denote the Riesz operators \((\ast)\) is an orthogonal projector, the Leray-Hopf operator is also an orthogonal projection, where the domain can be defined on each Hilbert scale. In (LeN1) an explicit expression for the kernels of the Fourier multipliers of the corresponding Ossen operators are provided, which involves the incomplete gamma function and the confluent hypergeometric function of first kind.

\((\ast)\) The Riesz transforms (the \(n\)-dimensional generalization of the Hilbert transform) are special Calderón-Zygmund (Pseudo Differential, convolution) operators with symbols \(m(\omega) \in L^\infty(\mathbb{R}^n - \{0\})\), where \(m(\omega) = m(\omega, \mu > 0\), where the mean of \(m(\omega)\) on the unit sphere is zero and where it holds \(m(\omega) = \frac{\omega}{\mu} \|\omega\|\) commutes with translations and homothety, having nice properties relative to rotation. Especially the latter one play a key role in the concepts of the proposed concept of „rotating differentials“ with respect to the rotation group \(SO(n)\):

let \(m = m(x) = (m_1(x), \ldots, m_n(x))\) be the vector of the Mikhlin multipliers of the Riesz operators and \(\rho = \rho_k \in SO(n)\), then it holds \(\rho(m(x)) = m(\rho(x)) \) (i.e. \(m(\rho(x)) = \rho m(x)\)), because of

\[
m(m(x)) = c_1 \int_{\mathbb{R}^n} (\frac{1}{\|\rho^*\|} \text{sign}(\rho^*x^{-1})(y)) + \log \frac{1}{\|\rho^*\|} \delta(y) \text{d}y = c_2 \int_{\mathbb{R}^n} (\frac{1}{\|\rho^*\|} \text{sign}(x^{-1})(y)) + \log \frac{1}{\|\rho^*\|} \delta(y) \text{d}y.
\]

The Riesz operators are related to the Caldéron- Zygmund operators \(T(f) = S \ast F \) with a distribution \(S\) defined by a homogeneous function of degree zero, satisfying a kind of average mean zero condition on the unit sphere with its underlying rotation invariant probability measure (MeY). The search for conditions of minimal regularity in the context of the „pointwise multiplication“ operator \(A\) is about an analysis of the commutator \([F, A]\). This leads to the „Caldéron operator“

\[
(Au)(x) = \sum_{j=1}^{n-1} R_j A_k u(x) = \sum_{j=1}^{n-1} \sum_{k=1}^{n} \sum_{l=1}^{n-1} p(v) \int_{\mathbb{R}^n} \text{sign}(x^{-1})(y) \delta(y) dy = - \sum_{j=1}^{n-1} \sum_{k=1}^{n} \sum_{l=1}^{n-1} p(v) \int_{\mathbb{R}^n} \text{sign}(x^{-1})(y) \delta(y) dy = \langle \delta A^{-1} \rangle u(x)
\]

with symbol \(|v|\) and its inverse operator ((EsG) (3.15), (3.17), (3.35))

\[
(A^{-1}u)(x) = \sum_{j=1}^{n-1} R_j A_k u(x) = \frac{1}{|v|} \int_{\mathbb{R}^n} \frac{u(y)}{\|y\|^{n-1}} \delta(y) dy, \ n \geq 2.
\]

In dimension 1, this is about \(A = \text{Dil}\) where \(\text{II}\) denotes the Hilbert transform and \(\text{D}\) the Schrödinger momentum operator in the form \(P = -i\frac{\partial}{\partial x}\) ((MeY) p. 5). The Schrödinger momentum operator in dimension \(n\), and its related Hamiltonian operator is given by \(P = -i\hbar \frac{\partial}{\partial x}\) resp. \(i\hbar = \frac{\partial}{\partial t} \).
Additional references to PART II

(BiN1) Bingham N. H., Szegö’s theorem and its probabilistic descendants, Probability Surveys, Vol. 9, 287-324 2012

(CeC) Cercignani C., Theory and application of the Boltzmann equation, Scottish Academic Press, Edinburgh, Lonson, 1975

(EiA) Einstein A., Ether and the theory of relativity, An Address delivered on May 5th, 1920, in the University of Leyden

(EiA3) Einstein A., Mein Weltbild, Ullstein Taschenbuch, Zürich, 2019

(GöK) Gödel, K., An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation, Review of Modern Physics, Vol. 21, No. 3, 1949

(HaJ) Hawley J., The Bhagavad Gita. A Walkthrough for Westerners, New World Library, Novato, California, USA, 2001
(HaS1) Hawking S. W., Particle Creation by Black Holes, Commun. Math. Phys. 43, 199-220, 1975

(HeW) Heisenberg W., Physikalische Prinzipien der Quantentheorie, Wissenschaftsverlag, Mannhein, Wien, Zürich, 1991

(KaI) Kant I., Kant’s handschriftlicher Nachlass, Opus Postumum, Erste Hälffte (Convolut I bis VI), ForgottenBooks.com, Berlin, Leipzig, Walter de Grunter & Co., 1936

(MuN) Muskelishvili N. I., Singular Integral Equations, P. Noordhoff N. V., Groningen, Holland, 1953

(NiJ1) Nitsche J. A., lecture notes, approximation theory in Hilbert scales, extensions and generalizations

(PlJ) J. Plemelj J., Potentialtheoretische Untersuchungen, B.G. Teubner, Leipzig, 1911

(PoE) Postnikov E. B., Singh V. K. Continuous wavelet transform with the Shannon wavelet from the point of view of hyperbolic partial differential equations, arXiv:1551.03082

(RoC1) Rovelli C., The Order of Time, Penguin Random House, 2018

(ScE1) Schrödinger E., What is Life? Cambridge University Press, Cambridge, 1944

(ScM) Schmidt-Salomon M., Jenseits von Gut und Böse. Warum wir ohne Moral die besseren Menschen sind, Pendo Verlag, München-Zürich, 2009

(ScM1) Schmidt-Salomon M., Entspannt euch! Eine Philosophie der Gelassenheit, Piper-Verlag, München, 2019

(SeH) Seifert H., Threlfall W., Variationsrechnung im Grossen, Chelsea Publishing Company, New York, 1951

(SmL) Smolin L., Time reborn, Houghton Miflin Harcourt, New York, 2013

(SmL1) Smolin L., Einstein’s Unfinished Revolution, The Search for What Lies Beyond the Quantum, Penguin Press, New York, 2019

(SmL1) Smith L. P., Quantum Effects in the Interaction of Electrons With High Frequency Fields and the Transition to Classical Theory, Phys. Rev. 69 (1946) 195

(WeA) The generalized radiation problem and Euler-Poisson-Darboux equation, Instituto Brasileiro Educacao, Ciencia e Cultura, pp. 126-146, 1955

(ZiR) Zimmer R., Arthur Schopenhauer, Ein philosophischer Weltbürger, Deutscher Taschenbuch Verlag, München, 2012

With respect to the topics „ground state (or dark) energy“ and „quantum gravity“ we also refer to https://quantum-gravitation. With respect to the NSE topic we also refer to https://navier-stokes-equations.com.