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ABSTRACT 

Gauge theories for weak interactions which employ the Higgs mechanism for spontaneous 
symmetry breakdown imply that there should exist a large vacuum energy associated with the 
Higgs scalar field condensate. A cosmological term in Einstein's field equations can be arranged to 
remove the unobserved gravitational effect of this vacuum energy in the present universe. 
However, in the early universe, the spontaneously broken symmetry should have been restored, 
leaving the cosmological term uncanceled. In this paper we investigate the conditions necessary for 
the uncanceled cosmological term to be dynamically important in the early universe. We find that 
if certain mass relations are satisfied (in particular if the physical Higgs boson is significantly 
lighter than the gauge boson), then for a brief period, the expansion rate of the universe will be 
determined by the uncanceled cosmological term prior to symmetry breaking. For example, in the 
Weinberg-Salam model with sin2 8w = 0.23 , if the mass of the physical Higgs boson is less than 
11 GeV, the universe would have undergone a period of nonadiabatic expansion prior to the 
temperature at which the symmetry is broken. 
Subject headings: cosmology - elementary particles 

I. INTRODUCTION 

It appears very likely that the basic Lagrangian for 
weak interactions is invariant under a local gauge 
symmetry (see, e.g. , Taylor 1976). However, the obser
vation of masses for bosons and fermions participating 
in weak interactions shows that such a symmetry is not 
manifest, at least under the conditions of present 
experiments. In models for weak interactions, the 
breaking of the symmetry is usually achieved by the 
Higgs mechanism. According to this, all massive 
particles are coupled to a scalar (Higgs) field whose 
self-couplings are such that it attains a suitable non
zero expectation value in the "vacuum " (lowest 
energy) state. However, there is thus far no direct 
experimental evidence for or against the existence of 
Higgs scalar fields (Gaillard 1978). Certainly most of 
the predictions of models for weak interactions of 
relevance at presently accessible energies are entirely 
independent of the mechanism of mass generation. 
There exist some requirements on the spectrum of 
masses necessary to maintain the self-consistency of 
the models (Dicus and Mathur 1973 ; Lee, Quigg, and 
Thacker 1977; Politzer and Wolfram 1979 ; Huang 
1979), but none are amenable to immediate experimen-

1 Work supported in part by the National Science Foundation 
(PHY76-83685). 

2 Work supported in part by the Department of Energy (DE-AC-
03-79EROO68) and by a Feynman Fellowship. 

428 

tal investigation. Of course, the observation of a Higgs 
particle would confirm that the Higgs mechanism is 
operative, but the prospects for such an observation 
are probably somewhat remote (Gaillard 1978). In the 
attempt to investigate the Higgs mechanism one is 
therefore led to consider its effects in cosmology. The 
existence of a vacuum expectation value for the Higgs 
field apparently leads to a very large energy density in 
the universe (Linde 1974), whose presence is com
pletely contradicted by observation (Weinberg 1972 ; 
Misner, Thorne, and Wheeler 1973). However, the 
introduction of a compensating cosmological constant 
term into Einstein's equations can be arranged to 
remove this contradiction (Linde 1974) by providing 
an effective vacuum energy density which cancels the 
large vacuum energy density associated with the Higgs 
field . However, such a cancellation may not have been 
maintained throughout the evolution of the universe. 

There are indications that, at the high temperatures 
of the early universe, symmetries which are presently 
" spontaneously broken" by the Higgs mechanism 
should have been restored and that the vacuum 
expectation value of the Higgs field should then vanish 
(Kirzhnits and Linde 1972 ; Kirzhnits 1972). In that 
case, the large energy density contributed by the Higgs 
field should have disappeared, leaving uncanceled the 
cosmological term which must be arranged to remove 
its effects at lower temperatures. In this paper, we 
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report on the consequences of this phenomenon for the 
development of the early universe. We find (despite 
previous claims to the contrary [Bludman and 
Ruderman 1977]) that it can determine the expansion 
rate of the universe for a short period, but un
fortunately this probably does not result in sufficient 
modification of the evolution of the universe to lead to 
presently observable effects. 

This paper is organized as follows . In § II we discuss 
the gravitational effects of a Higgs condensate (Higgs 
field with a classical vacuum expectation value). In 
§ III we consider the restoration of spontaneously 
broken symmetries in the early universe and its 
consequences for the evolution of the universe. 

11 . GRAVITATIONAL EFFECTS OF SPONTANEOUS 

SYMMETRY BREAKDOWN 

An inevitable consequence of quantized field theo
ries is the existence of zero-point quantum fluctuations 
in the fields, usually leading to a nonzero energy 
density for the " vacuum." These effects may be 
removed by considering only normal-ordered prod
ucts of field operators. In unbroken supersymmetric 
theories they cancel between fluctuations in boson and 
fermion fields and so are exactly zero. It therefore 
appears possible that these processes should have no 
gravitational effects, at least when gravitation is trea
ted classically. In the Higgs mechanism, however, there 
must exist a field whose vacuum expectation value is 
purely classical. The resulting vacuum energy density 
is of a somewhat different character than that as
sociated with zero-point fluctuations, and it appears 
likely that its gravitational effects cannot be neglected . 
(To determine whether this is indeed correct, one 
would have to investigate the Higgs mechanism in a 
quantized theory of gravitation.) 

We begin from Einstein's field equations with a 
cosmological term (we choose units such that G = c 
= Ii = 1): 

R~v = -tRg~v - Ag~v = 8nT~v' (2 .1) 

For a perfect relativistic fluid the energy-momentum 
T~ v is given by (our metric has signature + - - - ) : 

T~v = -pg~v + (p + p)U~Uv, (2 .2) 

where p is the pressure, p the energy density, and U the 
velocity of the fluid in a comoving frame . We may 
absorb the cosmological term in equation (2.1) by 
defining a generalized energy-momentum tensor (see, 
e.g., Zel'dovich and Novikov 1971) : 

T~.* = (A/8n)g~v + T~v , (2.3) 

so that Einstein 's equations (2.1) become 

R~ v - tRg~v = 8nT~.* . 

Introducing a " vacuum energy density," 

f A = A/8n, 

(2.4) 

(2.5) 

the generalized energy-momentum tensor for a perfect 

fluid may be written in the form 

where 

T~v* - -p*g~v + (p* + p*)U~Uv , (2.6) 

p* = p - f A ' 

p* = P + f A' 

(2.7a) 

(2.7b) 

For a field theory with spontaneous symmetry 
breaking (SSB), extra terms must be added to the 
energy-momentum tensor (2.2). We consider the com
plex scalar field (cjJ) theory with Lagrangian density 

!f = t(a~cjJ)2 - V(cjJ) , 

V(cjJ) = - (J12 /2)cjJ2 + (A/4)cjJ4 (J12 > 0). (2.8) 

The cjJ field then has a classical vacuum expectation 
when bV/bcjJ = 0, so that 

cjJo = <cjJ > = (J12/A)1 /2 . (2.9) 

A form of equation (2.8) is necessary in the Lagrangian 
for the Weinberg-Salam model. In that model 

(2.10) 

where GF is the Fermi coupling constant, mw is the 
mass of the charged vector boson , and g is the SU(2)L 
coupling constant : 

(4ncx)1 /2 = e = g' cos ew = g sin ew . (2 .11) 

The classical expectation value of the energy
momentum tensor for the cjJ field is simply 

< T~v> = V( cjJo)g ~v = fsssg ~v • (2.12) 

For spontaneous symmetry breaking to occur, cjJ = cjJo 
must correspond to the absolute minimum of V(cjJ) , so 
that V(cjJ) < V(O) = O. One then finds (3 represents the 
effect of higher order terms in the effective potential): 

V(cjJo) = - (J14/4A)(l - 3) 

(2.13) 

In equation (2.13) mH is the mass of the Higgs particle 
fluctuations of the cjJ field about its classical vacuum 
expectation value, cjJo: 

(2.14) 

To the one-loop level, ignoring contributions from 
Higgs scalar loops (Coleman and Weinberg 1973), 

3 = 4cjJo: 10214 2 [ I 3g j4 - I ;;4J , 
mH n gauge bosons fermions 

(2.15) 

where the j;(gJ are the couplings of the fermions 
(gauge bosons) to the Higgs. Note that because of 
Fermi statistics (closed fermion loops have a relative 
minus sign) the fermion contribution to 3 is negative. 
From equations (2.12) and (2.13) it is clear that the 
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spontaneous symmetry breaking vacuum energy den
sity IS 

mH 2mw2 

(SSB = - 2 2 (I - 3) 
g 

~ -8 x 103(mH[GeYJ)2 

x [I -(mH[~~YJ)2 ] Gey4 

~ -2 x 1021(mH[GeYJ)2 

x [I 21 ] - 3 
- (mH[GeYJ)2 g cm . (2.16) 

For numerical estimates of 3 see, e.g., Politzer and 
Wolfram (1979); here we ignore the fermion contri
bution. In this model, mH ~ 4.5 GeY (Linde 1976a ' 
Weinberg 1976), since (SSB ~ 0 for spontaneous sym~ 
metry breakdown to occur. There is some theoretical 
incentive for the guess mH ~ 9 GeY (Coleman and 
Weinberg 1973). 

Observations of the present rate of expansion of the 
universe show that its average mass density is less 
than 10 - 29 gcm - 3. According to equation (2 .16) the 
vacuum energy density contributed by the Higgs field 
is typically more than a factor of 1050 too large. (The 
possibility that mH :$ 10 - 16 e Y is experimentally ex
cluded .) This discrepancy could be taken to show that 
the Higgs mechanism is not operative and would 
su~~est that the symmetry breakdown is dynamical in 
o:lgm. We shall, however, not to take this point of 
View, but rather assume the Higgs mechanism and 
i~vestigate a possible cosmological resolution of the 
discrepancy. Addition of further Higgs fields cannot 
remove the vacuum energy, since each contributes a 
negative amount to < T~v), as they must all have V(<Po) 
< 0 for spontaneous symmetry breakdown to have 
occurred. 

One possible mechanism (Linde 1974) which may 
remo~e the eff~cts of the vacuum energy arising from 
the Higgs .field IS the presence of a large compensating 
cosmological term in Einstein's equations (2.1) which 
leads to a canceling effective vacuum energy density 
(see eq. [2.5J). To avoid contrad ictions with obser
va~ion we must then demand that in the present 
universe 

(TOT = (SSB + (A:$ 10 - 29 gcm - 3 . (2 .17) 

Of c~urs~, it would be very surprising if these two 
co~tnbutlOns. to the effective energy density of the 
Universe, havmg such different origins, should cancel 
to the required accuracy of better than about one part 
in ~050 . Our purpose is to investigate whether such a 
dehc~te cancellation could be maintained throughout 
the history of the universe. We find that, while it is 
probable that the cancellation failed under certain 
conditions, its failure does not appear to result in 
observable consequences for the present universe. 
However, we do find that it is quite possible that the 
expansIOn rate of the universe, i.e., a/a (where a is the 

Robertson-Walker scale parameter) may for a period 
have been determined by CA , rather than the tempera
ture of the relativistic particles. 

III. THE RESTORATION OF SPONTANEOUSLY BROKEN 

SYMMETRIES IN THE EARLY UNIVERSE 

AND ITS CONSEQUENCES 

The conventional results (eq. [2.9J) on spontaneous 
symmetry breakdown are all obtained in the approxi
~ation that fluctuations in the Higgs field are un
Important in determining the symmetry of the 
"vacuum." However, when the ambient temperature 
(T) is sufficiently high, this approximation will in
evitably break down, as thermal fluctuations in the 
Higgs field strength become comparable to the differ
ence between its zero temperature value (<Po) in the 
"ordered phase" (in which symmetry breakdown 
occurs) and in the "disordered phase," or ordinary 
vacuum state (<p = 0) (Kirzhnits and Linde 1972 ' 
Kirzhnits 1972). At zero temperature the "orde; 
parameter" <<p ) is given simply by equation (2 .9) : 
<<p )2 = /12 /A. However, at finite temperature a simple 
argument suffices to show that fluctuations in the <P 
field about <P = <Po ~ (/1/J )..) lead to (Kirzhnits and 
Linde 1972; Weinberg 1974; Dolan and Jaciw 1974): 

<<p )2 = <P02 - <:(<p - <Po?: ) ~ /12 /).. - T 2/3 . (3.1) 

It is therefore clear that a phase transition to the 
disordered phase <p = 0 occurs when 

T = [3/12/ )..JI /2 . (3.2) 

If now we include the coupling of the Higgs field to the 
gauge bosons (which is essential in order to generate 
the gauge boson masses), then the order parameter 
becomes (Kirzhnits and Linde 1972; Weinberg 1974; 
Dolan and Jaciw 1974) : 

<<p)2 ~ /12/ ).. - T2/3 - T 2/4).. I g/, (3.3) 
gauge bosons 

where the gi 2 are the couplings of the gauge bosons 
(W + , W - , zO) to <p. The difference in the coefficients of 
the terms in equation (3.3) corresponding to <p field and 
gauge boson fluctuations is a consequence simply of 
the different numbers of spin states for the fields . In the 
Weinberg-Salam model, therefore, the critical 
temperature is given by3 

T/ ~ 12/12/ [3(3g2 + g'2 ) + 4)..J . (3.4) 

For)" = g2mH 2/4mw2 « ;t(3g2 + g'2) ~ I, the term as
sociated with gauge boson fluctuations dominates, so 
that using sin 2 Ow = 0.23, 

(3.5) 

3 This calculation is valid to all orders in g2 T2, but only to lowest 
order in l/ (here 9 represents either gauge or scalar coupling). 
Perturbation theory breaks down when T", T" since powers of 9 
can be canceled by factors that become infrared divergent when the 
mass vanishes at T", Tc Therefore, equation (3.4) should only be 
regarded as an estimate. However, we can expect the true critical 
temperature T,o to be in the range IT,D - T,I ;S g2T" where T, is 
given by equatIOn (3.4). See, e.g., Weinberg (1974) for details. 
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If the gauge boson term dominates, mH is the natural 
scale for Te, rather than mw as assumed by Bludman 
and Ruderman (1977). (For mH » 200 GeV, 
Te ~ j (12)mw/g ~ 400 GeV.) High fermion densities 
can influence < ¢ )2 only through the strong gauge 
boson fields which result from them. If J/1 is the 
expe~tation value of the fermion four-current (J1l 
= < 1/1 yu 1/1 », then typically in the ordered phase 

<¢)4().< ¢ )2 _ J1 2) - J2 = 0 , (3.6) 

so that a large fermion charge density can serve to 
prevent symmetry restoration (Linde 1976b). 

In the standard Friedmann model for the evolution 
of the universe, the expansion scale factor aCt) is 
determined from the equations (. denotes time 
derivative) : 

(a)2 = - k + a2[Snp*(a)/3] , 

2ii = - [(af /a] - k /a - aSnp*(a) , (3.7) 

where account has been taken of a possible cosmo
logical term in Einstein 's equations by using the 
"generalized" density (p*) and pressure (p*) defined in 
equation (2 .7) . Since we shall consider the very early 
universe, the terms proportional to the intrinsic curva
ture k in equation (3 .7) may be neglected . 

We must now assume an equation of state for p( T) 
and peT) in order to compute the evolution of the 
universe using equation (3.7). Quantum chromo
dynamics (QCD) has been found to provide an ex
cellent theory for strong interactions, and it agrees with 
experiment in all cases where a comparison has been 
made (see, e.g., Field 1975). In particular, its property 
of asymptotic freedom has been tested in deep-inelastic 
lepton-nucleon interactions. This property leads to the 
prediction that at temperatures exceeding about 2 
x 1012 K and/or densities above about 10 15 gcm - 3 

or 10 16 g cm - 3, assemblies of hadrons should behave 
like an ideal gas of quarks and gluons (Collins and 
Perry 1975). (Note that models [Hagedorn 1965 ; 
Harrison 1972] predicting a maximum temperature 
for hadronic matter are disfavored by recent experi
mental results indicating the presence of pointlike 
weakly interacting constituents within hadrons at 
short distances, in agreement with QCD.) In thi s case 
the energy density of the universe at high temperatures 
will be 

peT) ~ (n2 / 15)T4Nclr (T) , (3.S) 

where Nell is the effective number of particle species in 
thermal equilibrium at a temperature T. U ltrarelati
vistic boson (fermion) spin states contribute 1/2(7/ 16) 
to Nen . For me ~ kT ~ mil' Nell ~ 5 due to contri
butions from y, e ±, Vi, Vi (i = e, J.l, r) , while above 
k T ~ mil' it receives a contribution 1.75 from J.l ±. 
According to QCD, above kT ~ 0.5 GeV it should be 
the quarks and gluons rather than the hadrons into 
which they are seen to be combined at lower tempera
tures, which contribute to Nen·, giving Nell ~ 45. In 
deriving NeO' we have also included a massless W ± and 

Z, since above Te the symmetry is restored and they are 
massless. The pressure should be related to the energy 
density by the ideal gas law for ultrarelativistic 
particles: 

p =!p . (3.9) 

Using the result (3 .9) , equations (3.7) become 

(a)2 = (Sn/3)(p + (TOT)a 2 , 

ii = - (8n/3)(p - (TOT)a, 

(3.IOa) 

(3 . IOb) 

where (TOT was defined in equation (2 .15) as (SSB + (IV 

Below T = Te, the symmetry is spontaneously broken , 
and one can arrange (TOT ~ O. Above T = Tn the 
symmetry should be restored , so that (SSB = 0, leaving 
uncanceled the large cosmological term (/\, which 
contributes a constant energy density, independent of 
temperature. At early times, the radiation energy 
density, which grows like T4 , should have been entirely 
dominant. However, as Tdecreased, p may have fallen 
below (/\. At T = T" 

(3.11 ) 

where the second equality follows as long as 
mil ~ 300 GeV. On the other hand , the effective 
vacuum energy density contributed by the cosmo
logical term is (minus the Higgs condensate energy 
density for T < T(. ) : 

The condition for ( TOT to be greater than p prior to 
symmetry breaking (when (TOT = 0) is 

S x 103(m,JGeV])2 ~ 60(mll [GeV])4 , 

11 .5 GeV ~ mil . (3.13) 

The limit in inequality (3.13) includes mH ~ 9 Ge V, 
which is favored from other considerations (Coleman 
and Weinberg 1973; Weinberg 1979). 

If mil satisfies the inequality (3.13) the following 
scenario can be imagined . 

I . T » Tc In this region p » (TOT = (/\. The genera
lized energy density is dominated by the contribution 
of relativistic particles, and equation (3.1 Oa) becomes 
(G - 1/ 2 = m" = 1.22 x 10 - 22 GeV) : 

iJ [sn n2 JI /2 T2 
a = "3 G 15 T 4 Ncll(T) ~ [ Ncll (T)] 1/ 2 0.43r;;~ · 

(3.14) 

Since T ~ a - I, the so lution to equation (3.14) is 
a ~ /1 / 2. This is the standard hot big-bang expansion 
rate. 

2. T ~ Tc If inequality (3 .13) is satisfied, then (TOT 

= (SSIl > p. The generalized energy density is domi-
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nated by t TOT = t A' and equation (3 .10a) becomes 

~ = (8nG t A)1 /2 = (8nG mw2m/)1 /2 
a 3 3 2g2 

2.6 X 102 2 
~ (mH[GeV]) GeV . (3 .15) 

mp 
The solution to equation (3 .15) is a ~ exp (t) . This 
expansion rate differs from the standard expansion 
rate. 

3. T ;S Te. Below Te, the symmetry is broken, t TOT 

= t SSB + t A = 0, and the expansion rate is once again 
the standard form (3.14). 

Our conclusion is that the vacuum energy density of 
the Higgs scalar field could have had important 
dynamical effects in the early universe; it could have 
for a brief period dominated the expansion rate. The 
requirement for this to happen is that the Higgs be 
much lighter than the vector bosons (but as shown 

above, still allowed). In this case the Higgs mass sets 
the scale for the critical temperature, rather than the 
vector mass. 

A glitch in the expansion rate at T ~ Te may not 
have direct observational consequences. However, 
there are several interesting phenomena that may 
occur. If Tc « mw, there is likely to be a first order 
phase transition, generating entropy and perhaps 
causing inhomogeneities to develop. If for any period 
t A > p, then the effective pressure of the universe (2. 7a) 
is negative. 

Although we have considered only the Weinberg
Salam model , our results could apply in any spon
taneously broken gauge theory, in which the Higgs 
mass is much less than the gauge field mass. If the 
Lagrangian for the scalar field is not incorporated into 
a gauge theory, the results of Bludman and Ruderman 
(1977) obtain, and the vacuum energy can never be 
important in determining the expansion rate . 
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