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Compactness in Boltzmann's equation
via Fourier integral

operators and applications. III
dedicated to the memory of Ron DiPerna

By

P. L. LIONS

I. Introduction

This w ork is the continuation of Parts I  [55] a n d  II  [5 6 ]. In particular,
a  general introduction to B oltzm ann's equation (and  kinetic m odels) can be
found in  [55] together with a description of the main goals of th is series. R e-
ferences can be found in  the  bibliography here which is a  combined bibliogra-
phy of Parts I-III. W e  a lso  k e e p  the same notations as in  [55], [56].

L e t u s  begin by recalling th e  general form  o f  th e  Boltzmann's equation
where we include force terms

(1)
-°-f+v • 17 f+ F •  Fvf-=Qcf, ,

x E R ,v E le ,  t_ O

where N  2, f  -the  unknown- is always assumed to be a  nonnegative (scalar)
function on RZ,x [0, co).

In  the  classical Boltzmann's equation, one takes F  0 and  the  so-called
collision te rm  (or operator) Q (f, f) introduced by L. Boltzmann [11] and J. C.
Maxwell [61], [62] is given by the following bilinear operator

(2) Q ( f ,  f )  = Q+  (f, f ) — (2-  (f , f)

(3) Q+ ( j )f) =fi r dv* .rs , ,choB(v—v * , w )f 'f '*

IQ-  ( f , f) = Ld v *L  ‘d (0B (v—v * , co)ff*=fL (f)

L (f) = A *f  ,

and A (z) = (z, dw (z E R N ) , f*  = f (x, v * , t) , f '  =f (x, y', t) , f ' * = f (x, y',
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(7)
{ (1 + 1 .z i2 ) - 1 ( f  A (v)dY ) — +0z+BR

a s  1z1--*00 , for all RE (0, 00)
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t), =v — (V —v, w )  co, v '* = v* +  — v * , (D) w, y '* =y * + (y —y*, w) w. L e t
u s  recall that here, a s  in  [55], [56], we denote indifferently by a • b o r  (a, b)
the usual scalar product of a, b E R N .

T h e  so-called collision kernel B  th a t e n te rs  th e  opera tor Q  i s  a  given
function on RN x

Ns -1, W e shall always assum e (at least) that B  satisfies

(5) BEL1 (BR  x SA T -1 ) for all RE (0, 0 0 )  , 0

where BR= izER N , Izi , and

(6) B ( z ,  w )  depends only o n  I z l  a n d  I (z , (.0)1

and we shall not recall these assumptions in  all that follows.
A  classical example is given by the  so-called hard-spheres model where

we have
B(z, (.0) H (z , (0)I •

To complete the description of (1), w e now  have to explain the  meaning
and detail the  form of F .  It is physica lly  natura l to  add  a force term  to  the
classical Boltzmann's equation (see for instance C. Cercignani [13], [14]) and
mathematically this modifies very little the analysis at least when F  is  a  given
external force i.e. a  given function on R:" (or on R'xv x [0, 0 0 ) ,  o r even RZ, x
[0, c o ) ) .  However, if the particles whose dynamics are  described in  a  statis-
tical fashion by (1), interact w ith a two-body force, we a re  naturally led to a
Vlasov-like force (or self-consistent force, or mean field...) F given by

IF =  — 7  V  ,  V= Vo*P ,

p(x , t) = f i e f (x , v , t)dv o n  11;1 x [0, 00)

w here Vo is  the interaction potential between the  particles always assumed to
b e  a t  le a s t  i n  WV, (RN ). O f course , w e  m ig h t  a d d  to  th is  fo rc e  a  given
(external force) and we may consider as w ell more complicated systems with
several species o f particles... B ut these extensions do n o t affect the results
w e prove here and th is is w hy w e prefer to  skip  th e m . A  case of particular
physical in terest corresponds to  th e  so-called  Vlasov-Poisson model where

N=3 1, Vo= 471.1.x i so  tha t (9) becomes

(10) —4,V= p  on R i
x' x [0, co ) , p= f i e f d v  on R I,' x [0, co ) .

W e shall call the composite model (1) a n d  (9) the Vlasov-Boltzmann sys-

tem ( V B  i n  s h o r t )  a n d  t h e  a b o v e  e x a m p le  (N  =  3, V o =   the)

(9)
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Vlasov-Poisson-Boltzmann system  (VPB in  s h o r t ) .  Let us finally mention an
extension of the VPB system namely the  Vlasov-Maxwell-Boltzmann system
(VMB in  sh o rt)  which looks like th e  VPB system  is a  very natural m odel in
Physics for charged particles (in  p lasm as, la se rs ...) . In  th a t case , (9) is re-
placed by the Lorentz force determined by the  electro-magnetic field created
by the partic les them selves. More precisely the VMB system consists o f  (1)
and choosing N =3

(n) F=E  (x , t)  + 1
C v X  B (x,

(12)
aE 

 --c curl B = —  j ,  div B=0 o n  R 3 x (0, 00)

(13)
aB 

 +6. curl E = 0  ,  div E =p o n  R 3 x (0, co)at

(14)
p =  fw f d v  ,  j k =  f  fvkdv

(1 k 3)o n  R3 x (0, co)

where c denotes the speed of light.
Of course, all these system s have to be complemented with initial condi-

t io n s .  In the case of the VB system, one simply prescribes f  at time t 0 i.e.

(15) f  It=o=fo on R r v

where f o 0  sa tisfies som e bounds deta iled  below . A nd  in  the  case  o f the
VMB system, we add to (15) initial conditions for E, B  i.e.

(16) E l t = 0 = E 0  ,  B 0 B 0 o n  IC

with the usualy compatibility condition

(17) div E o = p o =  f  f o  dv o n  14 .

W e state in section II below our main existence and compactness results
concerning the VB sy s te m . W e  assume that f o satisfies

i ff„fo(i+o) (x) ±Iv1 2  l l o g f o l) dxdv

f f i p po(x)1V01(x — y) P (y) dx  dy  < œ

where co satisfies

(19) (f) 0  , (1  +  (0 ) 1 / 2 i s  L ip sch itz  o n  RN , e- w EL 1 (R N )

(typical examples are  co (x ) Hx 1 2, x i  (1+ lx1 2 )" / 2  w ith  0 < a We also
m ake som e regularity assum ptions o n  Vo t h a t  a re  detailed a n d  discussed in
section II: le t us only mention a t  th is  stage tha t these  conditions hold in the

(18)
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case of the VPB system i.e. N=3, V o =  
1

47r ix i .

W e then present in  section  II a  resu lt tha t s ta tes the existence of global
weak solutions - whose precise definitions a re  given in  section II, le t us only
mention that they correspond to the formulation introduced in  P a rt II  [56] for
Boltzmann's equation and w hich is a  refinement of the notion of renormalized
solutions introduced in  R. J. DiPerna and P. L. L ions [25 ], [26 ]. This global
existence re su lt is  th u s  the analogue of the existence results show n i n  [25],
[26] and refined in  Parts I and  II [55], [56].

T h e  proof o f  th is  global existence re su lt is  g iv e n  in  section  III and  of
c o u rse  a s  in  [25], [26], [30] re lies upon compactness a n d  stability results
tha t a re  also presented in section II and proved in  se c tio n  III . These results
concern sequences of weak (possibly approximate) solutions of the VB system
denoted by f n , corresponding to initial conditions f 0 which satisfy the  fol-
lowing natural uniform bounds

sup Iff„f (i+Ivi2+(o(x) +110groodi dv

+ ff„pg (x)1 v .  —y) ipg (o d x  dy l < c o

where, of course, pg = f i e f ôd v . A s w e sha ll see  in  section  II, under simple
conditions on Vo, these bounds imply similar bounds uniform in  t  on the solu-
tions f a  namely

{  s u p  I f  f  f
1, e [0, /1

n(1-FivI2H-co(x)+Ilogfni)dx dv
le t  

for all T E (0, 00). And without loss of generality, extracting subsequences if
necessary, w e m ay assum e that f g ,  f n converge  w eakly  in  L '  (respectively

(R 2N) , L i (R 2Nweakly in L x  (0 , T )) for a ll T E  (0 , 0 0 ) ,  to some fo, f  respec-
t iv e ly .  O ur first result states that f  is a lso  a global weak solution of the VB
system  satisfying (15) and is  th u s  the analogue of the result show n i n  [25],
[26] on B oltzm ann's equation. But w e w ant to  point out tha t the extra Via-
soy term  requires a  new argument which in  fact can be seen a s  a  simplifica-
tion of the original proof m ade  in  [25] fo r B oltzm ann's equation. T he proof
uses heavily renormalization techniques (and in particular the  resu lts of R. J.
DiPerna a n d  th e  a u th o r  [29] o n  ordinary differential equations a n d  linear
first-order equations w ith nonsmooth coefficients): indeed, one weakly passes
to the limit in  the  renormalized equations, then renormalize the  resulting limit
equation and finally let the first renormalization go to the iden tity . E xcep t for
this new idea, the m ain compactness argum ent is, as in  [25], the  compactness

(20)

(21)
+ f f i v ,pn (x) vocx ip. (o d x  dyl <00
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of velocity averages (or macroscopic quantities) in L'.

The second compactness result shows that, if f Poi converges strongly in  L'
to f  ,  then f  converges to f  strongly in (11,g) uniformly in  t E [0, 7] ( f o r
all T E  (0, œ ) ) .  T h i s  resu lt is  thus the analogue for VB systems of the one
shown in  P a r t  I I  [56] for B oltzm ann's equation. A s  in  [56] the  proof relies
upon th e  a.e. compactness o f  th e  g a in  te rm  (o f  the  co llision  ope ra to r)  and
some renormalization techniques for linear first-order equations.

A t th is  stage, it is w orth m entioning that all th e  "compactness-stability"
an d  ex is ten ce  r e s u lts  a r e  sh o w n  u n d e r  c o n d itio n s  o n  Vo w h ich  inc lude
variants of the following (crucial) one

.D.i, (Vo*p) E L L  (R N ) if p ,
(22)

P (110g pl +1 - kw (x))dx< 00 .

This condition is satisfied, for instance, in the case of the VP system where N
1=- 3, Vo= - : indeed, in  th a t case , (22) holds in  view of classical results on

Riesz transform s -  see, for exemple, E . S te in  [ 6 8 ] .  It is a lso  w orth  noting
that the condition (2 4  is essentially the condition needed in  the proof of P. L.
Lions and B. Perthame [57] fo r Vlasov system s (w ithout the collision terms)
on the propagation of high moments in y and the regularity of solutions.

Next, in section IV, we consider the coupled VMB system  (1), (11) - (14)
and we prove the existence of "very weak solutions" for general initial condi-
tions (15) - (16)) (fo, Eo, Bo) satisfying (17) , a . e .  and

(23) f  f Rofo (1 -  +w (x) ±1v1 2d x  d v  f  1 E 0 1 2 +IB 012dx < 0 0  .

In fact, we introduce for this purpose a  new notion of weak solution th a t is  a
bit weaker than the notion introduced in  [25 ] (namely, the notion of renormal-
ized solution).

Finally, in section V, w e study the so-called Boltzmann-Dirac model (BD
in short) consisting o f  (1) with F=0 and a collision term Q given by

(24)
IQ --= f  d v * f da)B (v —v*, co)

RN V '

• 1 f Y ' * (1 — ef) (1— 4'4 ) -I-ff*  (1 — sf ') (1— s f ')1

where B satisfies the same conditions than in  the above Boltzmann models and
E> 0  i s  a  (sm all) physica l param eter. T h e  physical background on such  a
model can be found, for instance, in S. Chapman and T. G. Cowling [17]: let us
simply indicate that this phenomenological model aims to incorporate quantum
effects such as the  P auli exclusion  principle in  th e  sta tistical description of
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possib le  co llisions. F rom  a  mathemanical view point, th is collision operator
presents som e advantages over th e  classical Boltzm ann's operator since one
expects, at least formally, solutions f  to satisfy

(25) O f l / E o n  RZ, x [0, 00]

at least if the initial condition (15) fo satisfies the  sam e  constra in ts . In other
w o rd s , L  b o u n d s  a re  a v a ila b le . A  genera l study  o f  th is  BD equation was
performed in  J. M . Dolbeault [34] th a t y ie ld s  the existence, uniqueness and
fu rthe r p rope rtie s  (conservations, 6 — > 0...) of so lu tions a t le a s t w h en  B  sa-
tisfies in addition

(26) f dz d(.0 .13(z ,(0 )= f  A  (z )dz <oo

a condition that excludes th e  hard-spheres m o d e l. W e show  here  a  general
existence resu lt o f  bounded solutions which re lies upon a  weak compactness
result for solutions of (B D ) corresponding to initial conditions which weakly
converge in L ' ( R )  ( a n d  satisfy uniform natural bounds described in section
V ) .  I n  t u r n ,  th is com pactness result show n in  sec tio n  V  is deduced from
"compactification properties" o f  v a rio u s  n o n lin ea r  te rm s th a t ap p ea r in  Q.
Namely, we show  th a t  f o r  a  bounded sequence of solutions f n  then , under
ap p ro p ria te  c o n d it io n s  o n  B ,  t h e  fo llo w in g  q u an titie s  a re  c o m p a c t in

Lioc (RZ, x (0, o°))

( 27) f ,,N.1:N_dv *dw B(v — v*, (0)Fn

w h e r e  Fn =f n f l ',  f n i l c  f , f n 'f .

In fact the first term  is (essentially) the gain term we analysed in  P art I  [55]
f o r  w h ic h  w e  p ro v e d  su c h  an  "au tom atic" com pactness. T h e  tw o o ther
quadratic terms namely f w f l  and f l:f 1  are simple adaptations of the preceding
o n e .  W e a lso  have to  p rove  th e  w eak convergence in Lioc (and strong con-

vergence in  Lio c o f  velocity averages) o f the  trilinear te rm  (27) where F n =

f

II. Existence and compactness results for Vlasov-Boltzmann systems

In  th is  section we investigate the  VB system  (1) - (9) (when 2 ) and
the collision term  Q ( f ,  f )  is  g iven  by  (2) - (4) and B  sa tisfies (5 ) - (7 ). We
shall not recall these assumptions below.

W e first collect some ("classical") a  p rio ri e s tim a te s . F irs t  of all, using
the classical identity



±2div x  (Vo*P)./[ — 2 (Vo*P) divx (i) =  0  in R N  x (0, 00)
Integrating (29), (30), (31) in x over R N  a n d  u s in g  (29) in  (31) we deduce
the following global conservations of mass, momentum and total energy

(30) :4 j k - F divx (fR y vkf dv) =0 in RN x (0, 00)

(31)
i l(fR,AvI2dv) - i- divr(fR ylvi 2fdv)

Boltzmann's equation N 545

(28)

f fied v  d v coB (f'f'* — ff* ) ko+ (p* —  (p' —  ço' *]

we deduce th e  following local conservations of m ass, momentum and  kinetic
energy

a(29) -Np-I-divx(j) =0 in RN x (0, 00)

R Q  f, (v)dv

(32) t t  f  f i e f  dx dv= 0 f o r  t_ . ()

(33) t t f  f R j v k dx dv=0 f o r  t_0, fo r 1  .1?' N

1f t if f i e fivi2dx dv+

± f  f R p (x)vo(x—y)p(Y)dx d y i = 0  for t i:)

Therefore, i f  w e  assum e th a t  the initial condition fo (see (15 )) and Vo
satisfy for some C . 0

(35) VoE/Joc (R N ) , VcT (x — y )  C (1 ± co (x) +w  (y)) a .e. x, y ERN

I f  f R f. ii+1v12+0)(x) +110gfoli dx dv
(36)

we deduce for the nonnegativity of f  and fo

{s u p f f  f (t )1 1 - Elv12 ±w (x)Idxdv[o, 71 le'
± f f i e , P (X ,  t) I VO (x — y) 1(3'1)(y , t)dx dy • C (T)

(34)

+ f  fR p0(x)1V 0(x — y )  IPo(Y)dx dy +00

(37)

for some nonnegative constant C(T) that depends only on T and on the bound
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(3 6 ). Indeed, the  L' bound on f ( t )  is  obv ious in  v iew  o f  (32) w h ile  (34)
yields, for all because o f  (35)

f f . 2„f(t)1, 12dx d v + fL ,p (x , t)i vo(x, y) (y, t)dx dy

<CH- 2 f f ie , p  (x, t) (x— y) p (y, 1- )dx dy

f R o o (x , co (x )dx---- 4 1 +  f f(t) co (x)dx dv) .

Here and below, C denotes various constants that depend only o n  (3 6 ). Next,
we observe that we also have

c
(

lw ( fR ,f (t) w (x) dv)± div x if  (Oycodvi

= f (t)v • V co (x)dv

f R fIvI 2dv (t, x)1 V w (x)I 2

f R i lv i 2dv+C±C fR i(t) w (x)dv

in view o f  (1 9 ). In particular, we deduce

d
d

t  f f R .f (t) w (x)dx dv<C+1», i f  j (t) [M 2 +  (x ) dx  dv .

R' N

W e easily obtain (37) from these inequalities applying GrOnwall's lemma.

The final form al bound w e w ish to obtain is deduced from  the (formal)
e n tro p y  id e n tity . A s  u s u a l ( s e e  [13]...) it is  ob ta ined  m u ltip ly ing  (1 ) by
log f, using (28) which yields, at least formally

I
f t i f t e l . logf dx dv

+ + f dx  f f d v  d v * f s ,_,dw.13(f7' * - - ff * )log i— = 0  .
RN V N ff*

Since the second term  is clearly nonnegative we deduce in  particular

su p fL ,f  (t) log f (t)dx dv < f f i v ,fologf 0 dx dvto
This inequality together w ith (36) a n d  (37) then im plies (see P art I  [55] for
more details)

(39) s u p  i f  j ( t )  Ilogf (t)Idx dv <C (T)
t e  [O r]

where C (T) denotes various nonnegative constants w hich depend only o n  T
and on the bound (36).

(38)
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Then, if we go back to  (38), we also deduce from (39)

(40) fo dt f i e d x  f  fl e f t y  dv *  g c o B  ( f 'f ' * —ff* ) logq f ( T )  .

In conclusion, we obtain the following (formal) bounds

sup  f  f  f  (t) ± Iv1 2 +  (x) Ilogf (t) dxdv +
fE[O,

(41) ff„,, p (x, olvo(x—  y)lp (y , t)dx dy (1')

f 0
 T dt f i e d x  f  fi dv dv* f dcoB (f 7 ' * —ff* ) logq *

/ *  C ( T )
S ' - '

for all TE (0, co).
In addition, if w (x) =IxI 2 , C(T ) is independent of T  provided we replace

w by 0.)(x—vt) in  (41).
B efore w e state our m ain existence and stability results, w e need to ex-

plain the notion (s) of weak solutions we u s e .  First, we state some regularity
conditions we need on the potential Vo:

If 9 0 ,  cp (1+ w +Ilog9I+ VC,- * 9) is bounded in Li  (R N ),

t h e n  V o*9 is bounded in / l c (RN ),

V (Vo * (p )  is bounded in I, -  (RN ) +L ' 2  (11N )

1) 2 (Vo * (p )  is bounded in Lioc (R N ).

The role of this condition will be clear in the proofs of the results we state be-
lo w .  L et us make a  few  rem arks a b o u t  i t .  F irs t  o f a ll, w e observe that be-
cause o f  (41), the integrability conditions of (42) hold for 9 =p ( t )  (uniformly
in tE [0, T], for all TE (0, c o ) ) .  This is immediate except for the integrabil-
ity  of gollog91 whose proof is given in  the  Appendix 1. W e thus deduce that

Vo * pE L - (0 , T; Li0c(R I:r)) , G's ( Vo * p) E 1,  (0, T; I, -  + L N r  (R I ) ) ,  Dl(V o*p) E
L0 0 (0, T; L li0c(R,1\0 )  for all TE (0, 00).

W e next give a  few examples showing how one can  check  (42). Let us
mention, by the way, th a t  (42) is (when N =3) exactly the condition needed in
P. L. L ions and B . Perthame [57] for the obtention of m om ents bounds (and

regularity) for solutions of Vlasov system s. N ext, if  V o =  
1

with a  0  (aHa

<N , a = 0 m eans Vo = log Ix1) then  w e  c la im  tha t (42) holds if  0  a  min
1 2N 
k N +1  '  N —  2). Indeed , f irs t o f  a l l ,  b y  a  s im p le  F o u r ie r  a n a ly s is  (for

example), we see that Ix I- s * 9 E L2 (1e) if (Ix  I '*  9 ) 9  E Li  (R N )  where p=
N+ a Therefore, by 1161der's inequality, Ixl - ( 1 + a ) * 9  and th u s  V (V 0* (P) e2 '

(42)



I
PEC(RN )  ,  p > 0 o n  R N

(45)
(A*(1))(1±Iv12)-1ECo(RN) v 41) e  L i ( R N)

P
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2N  LP (R N )  where p = 2$ N + a  
1+ a 1+ a  •  And N± 2

3  i f  a n d  on ly  if  a  1\1 ± 1 . .

Next, if  a GN — 2, D;Vo 
E  L N / ( a + 2 ) , ' ' '  ( R N

)  (Marcinkiewicz space) and thus D.;
(1/0 * ( p )  E LN/(a+2),.0 (R N )  OE L l o c .

we have for some constant cN
a2

ax tux, (Vo* 9) = cNR,Ri 9

The case a =  N - 2  is  more delicate: indeed,

where Ri denotes the Riesz transform  (  a
 

( A ) -1/2)
 

A nd we conclude that

D ,(V o*yo ) Lloc (R N )  by classical Harmonic Analysis results (see for instance
E. M . Stein [68]) since 9 (1 +110g91) EL I  (R N ). Observe finally that the con-

dition a . min (
N

2 N

+ 1 '  
N - 2 )  is clearly  met when a= 1, N 3 -  the case that

corresponds to the Vlasov-Poisson model (in three dimension).

W e may now define solutions of the  system  (1 ), (9 ) ((V B ) system): we
say  that f c C  ([0 , co); (R n ) )  0  i s  a  weak so lu tion  o f (1 ) , (9 )  (of the
(V13) system) if for all 'FE (0, co)

, : r 71 If  f R,,f(t) 1'1)12+ w (x) Ilogf (t) d x  d v+

(A) f t)Ivo(x—y)lp(y, t)dx d y l <c o

f dt f i r d x  f  fR ,c1v dv*fs , dwB ( f *—  ff * ) logq *  < co

and if we have for all m E X

(43) ‹f  + V  •  Vx f, m > - 1- <F• 17v f, m> = ‹Q  (f, f), m >at
where .41 is  a  class of test functions (or m ultipliers) which was introduced in
P art II [56] and that we recall now: m belongs to X  if

(44) m =9(x, (p (v) (f—g)) -Hp (x, v, t) ( f — g )

where 9E Q"(R'; x [0, co)), O E  C (R g , x  [0 , c o )) , S E C ' ([0, co)) such that
/3'(t) (1-Ft) 1 / 2 and  $ (t) (1+0 are bounded o n  [0, co) w here a= 1/2 if N =

N - 1 2, a— N  + 2  if  N > 3 . In addition, p satisfies

And a belongs to a  class defined as fo llo w s . F irs t  of all, we define a  class
B consisting of those functions ac C d (R; R) satisfying a(0) =0, a is Lipschitz
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on R, a' (0 =1 for t>0 large and a (t) — a' (t) t is bounded on R .  A n d  con-
s is ts  o f functions a E C (11.; R) such  tha t a(0) =0 , a i s  L ipschitz on R, a
admits right and left derivatives for all t and is differentiable everywhere ex-
cept for a  finite number of points, a' (t) =1 for t> 0 large and a(t) — a' (t)t E
Lc° (R) . Finally, at each nondifferentiable point t:, we define a' ( t i )  by choos-
ing an arbitrary  value between a' (t,_ ) and a' (t1+ ) (included).

W e finally have to define the  c lass o f te s t functions g that we allow i.e.
the space gi given by all functions g  satisfying

g EC ( [0, co); L i  (R Z )) , 911» E r ' (0, T; (R Z ) ) ,

A *g 
1+1'1)12 (°' r; (RZ))

-H
ag
— y  • Vx.  EL I (R ry  X (0, T ))at

17  E  L i  (0, T; Lfo,(R; Ll (Win))

for a ll TE (0, c o ) ,  where p= 2 if N=2, p=
N + 2  .

N  1  l f  \

Remark HA. i) One might allow more general multipliers relaxing
the regularity of P, (p, (I), choosing more elaborate functions p and p that may
depend on x, t, taking different functions g inside a and 13...

ii) In  P a r t  I I  [56], w e did  not require  that a (t) — a ' ( t )  is bounded on
R .  This additional assumption seems to be needed here in  order to cope with
the force term "F • Fvf"•

i) Similarly, we did not ask in  [56] th a t  17 (1 ) E L ' (R N ). I n  particu-

lar we have to  check that such a p ex ists. R eca ll tha t w e have shown in  [56]

that there exists  E Co (R 2
1,1) 0 >  0 on  R N  s u c h  th a t  A *0

E Co (RN ) . The
1±Iv12

construc tion  m ade  in  [5 6 ] a lso  show s tha t w e m ay  a lw ays assum e: E
L l  (R N ) . Then, le t p E  C00

0  (RN) b e  su c h  th a t 0  o n  RN ,  I .„,pdv  = 1. We
claim that p= ( V - ' where (h= 0* p satisfies ( 4 5 ) .  Indeed, -43>0 on RN ,  Vvdi
= P *  17p E  L i (RN ), -0  E  Co (RN ) a n d  A  * =  (A  *  (P ) *  p  hence

* (1+ Ir12) -1 E Co (R N ) .
iv) I n  [56], we did not make any assumptions on V g in  th e  defininion

of 4 .  T h is  ex tra  assum ption is needed here  to  take in to  account the force

t e r m .  Many variants are possible: in particular, if, in (42)
,  

N ± 2 i
3 

s replaced

N± 2 by  a  larger exponent then ,  ,  can be decreased to its conjugate exponent.

1 For example, when N = 3, Vo— , (42 ) holds w ith N +2
—

 5
3 rep laced  by  2

N + 2 55=  2 can be replaced by 2. A sim ilar observation can be madeand thus N - 1  

on the growth condition on p.
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Of course, these remain to give a  precise meaning to each of the terms be-
tw een brackets in  (4 3 ). T his  is done in  P a r t  I I  [56] fo r  th e  first te rm  and
the  last o n e .  W e do  not recall the  details here bu t we sim ply recall that we
have on one hand

<1+v  • V  f , m > = <(1+v • V x )I9(p(f— g)) 1
p 1, 9>

+ f+- ag dt f  dx a4  (f  —g)) a, + v •  x g }
0 R N

< (1+1). V x )S  ( f - g )  >
+  f  d i ' dx13' (f —g) c,b1 +v • vxgl .

+00

0 Fr

A n d  th e  f irs t  a n d  th ird  te rm s m ake  sense  in  d istribu tions sense  w hile  the
second and the fourth ones a re  meaningful in  view  o f th e  assumptions made
upon g. On the other hand, using the symmetries of the collision operator, we
w rite a s  in  [56] the term <Q ( f ,  f ) ,  m >as follows

<Q  f ) , m > =- f  d t f  d x 9 (x , O f f  dv dv *  f  do)R-

Bff* la' (p' (f'—g )) —a' (p(f—g))1

+  fo - dt f i e dx  fRAv dv*  dwBçb '*—ff*1 (  f  —g) .

These two terms are shown to be meaningful in  [56] because of the properties
of a and /3 and of the "entropy dissipation bound" assumed in (A ).

These remain to define " < F •  Vvf , m >" in  (4 3 ). To this end we set

1<F• 1 7 f ,  m > = <F • V g, m > +
0 I r

dt f  dx Fy o• fi e ,dv17 .

ip( f — g)a4(f— g))— a(p(f— g))} — fo - dt f ity •  fR flv7v0/3(f — 9) .

T he first term  m akes sense since m is bounded a n d  h a s  compact support in
N+2 

E x  [0, co): indeed F, because o f  (42), belongs to (0, T; (R ))  if
3, L  (0, T; Lioc (R2) )  if N-=2 (for all T E  (0 , 00)) and our claim  is shown in
view of the integrability of V g  assum ed in the definition of A.

The second term  is treated in a similar way since, by assumption, p(f—g)

a' (p (f—g)) — a (p ( f — g ))  is bounded w hile Vvi
p  E  (R i

v
v ) . Finally, for the

last term, we use the growth condition on is to deduce that



Boltzmann's equation N 551

L,1741113 (f— g) ldv Ec ([0, co; Ll(R) nu(W)))

N+2 where r= 
N - 1  

if 3, r= 2 if  N = 2 .  In addition this integral has compact

support in x  [0, c o )  in  view of the support of (P. And we conclude using

(42) s in c e  F E U  (0, T; L  (R )  - FLN r  (R )  ) if 3 while
EEL -  (0 , T ; L ioc(R )) if N=2.

Let us finally observe tha t the  above notion of (w eak) solutions is stron-
ger than the notion of renormalized solutions introduced by R. J. DiPerna and
the  au tho r [25] (for the pure Boltzmann equation) w hich corresponds to  the
special case when m = (P g '( f )  (go a  g 0) and  g E C 1 ( [ 0 ,  c o ) ) ,  $ O ,

/3' (t) (1-Ft) - '  is bounded o n  [0, 00). In this paper we shall say that f  is  a  re-
normalized solution of (VB) if the  above definition holds for multipliers m of
the form (pg' ( f —  g) a s  in  th e  previous definition (in  other words we simply
take 0—= a  0) .

W e m ay now  state our main existence result recalling that assum e (35),
(36), (42).

Theorem 11. 1.L e t  f c-,, 0 satisf y  (18), then there ex ists a global solution
f of (VB) satisfy ing (15) and the following entropy and energy inequalities

ff.-flogf dx dv (t)

± -1 -f  tdsf dx B(f  f  d v  d v * f  f ' f — f f * ) l o g f  r*4 0 le iv̂ sN- f f *

.f..f.z,fologfodx d v  , for all t >0

ff,,,f wid 2dx dvd- f p (x, V o (x  — y) P (y, l)dx dy

f f R„folvI 2dx dv± f po(x) Vo(x —  y) po(y)dx dy

for all t>0 .

Remark 11.2. i) Since f  (co ±1v12)  E L  (0, T; (R rv )) for a ll T E
(0, co ) the left-hand side o f  (47) makes sense because o f  (35).

ii) It is not know n w hether equalities hold i n  (46) a n d  (47) o r even if
the inequalities hold between s O and t s only s 0 seems to be "available".

iii) O f course , as in  the  case  of the  pure  B oltzm ann m odel, fu rth e r  a
priori bounds o r  regularity properties of solutions are not known and the un-
iqueness is  a  m a jo r open  problem . H ow ever, exactly  a s  w e  d id  in  P art II

(46)

  

and

(47) 1
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[56], one can show the uniqueness of solutions provided there exists a  strong
one (more regular, see [56] for more d e ta i ls ] .  O ur analysis is indeed readily
adapted to the VB c a s e .  Concerning the regularity, let us mention tha t if I 3
0 i.e. the VB system reduces to the pure Vlasov system  then further a priori
estim ates, regularity a n d  un iqueness can  be  show n ( if  N = 3 fo r  example)
under an assumption on Vo which is extremely similar to (42) namely:

{

17 Vo( R 3 )

[(D 2 V0) *] is bounded from LP (R 3 )  to r'd -  LP (R3) for 1 < p ‹ .  .

Indeed these conditions a llow  to  copy th e  proof m ade in P . L . Lions and B.
Perthame [57].

iv) T h e  so lu t io n  we build also satisfies

(48) f f..fvkdx d v  is independent of t O  , for 1 k N .

v )  W e w ant to em phasize th e  fac t tha t the  so lu tions bu ilt in  Theorem
enjoy various properities such  as the local (and global) conservation of

m ass and a priori estim ates. S ince these properities a re  somewhat hidden in
the  rather complicated definition of solutions, it is w orth explaining how  one
can  recover them . F irst of all, we observe that choosing a (t) =t, g , g , 0 we
obtain from the definition of solutions

(49) T-I-divx(j) =0 in x (0, cc))

or equivalently for a ll 0E Cc; (Rx [0, œ ))

(49') I  of - d tf L ,dx  dvf(x, v, t )   t )  + v  •  V s go(x, t))

T he equa lity  (49) is  know n as the  loca l conserva tion  o f m ass. Next, if  we

ta k e  go (x, t) = 9 (t) ( 1 -
n )  w here  9 E  C o ( [ 0 ,  co)), E  C7.7 (R N ), = 1 on

ilx1 11, ç O for I 1. We deduce easily letting n go to + co and
using the fact that f (1+11)1 2) EL -  (0, T; (R .Z ) )  (for a ll T E  (0 , 0 0 ) )  the  fol-
lowing global conservation of mass

(50) f f..f (t)dx  dv is independent o f  t O .

Similarly, using 9= 9 (t) 0(—

n
)co (x) and the bounds assumed on f, we obtain

(51) l ( f f R  fw dx d i) =  f  fit .f (v • s o)) dx dv .

f dx dv fog, (x, 0) =0 .
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Observe indeed that

(01 V On(r)1 C irt1„51x152.0) C .11 ±

since (c) C(1 - 1- 1x12). This is why we have

dt f ( f,t,, (x, y, t)y • ( p n co dx

T hen, (50), (51), (46), (47) allow to deduce exactly a s  w e d id  in  the  begin-
ning of th is  section the following a  p rio ri estimates: for a ll T E (0, co), there
exists a positive constant C such that

t : r7T3 If f R z i ( t )  11+11)12 +W (x) - 1- 11ogf(t) 1+Ivol * dx dy1

(52) + fo rd t  fRd x  fR ,,dydy* d  c o B  f  ' * —ff4Ologf — i '
f f*

c I f f R ,,,f0(1-Fivi2+w+ilogfoi+Ivol*po)dxdv+il

Theorem 11.1 is shown in  sec tion  III. Its proof relies upon some stability
re su lts  w e  w ish  to  s ta te  n o w . T h ey  co n ce rn  seq u en ces  o f so lu tions -  we
cou ld  conside r a s  w ell approx im ated  solutions... -  w ith  un ifo rm  na tu ra l
bounds and show, extracting subsequences if necessary, the weak convergence
in L ' to  a  renormalized solution and the strong convergence in L ', uniformly t
E [0, 7] ( f o r  all T E  (0, 0 0

)  ) ,  if the initial conditions converge strongly in L'.
More precisely, we make the same assumptions a s  before o n  Vo and  B and we
consider a  sequence of nonnegative initial conditions ( f satisfy ing (20).
W ith o u t lo ss  o f  g en e ra lity , w e  m ay  assum e th a t  f o

z converges w eak ly  in
L ' (R e )  to  so m e  f o (w h ich  then  sa tisfies  ( 3 6 ) ) .  Then, w e consider a  sequ-
ence

 ( f n ) , ,
 o f  renormalized so lu tions of (VB) such that f n i 0 o n  R 2N

and satisfying for a ll TE (0, co)
t— f '01 

Isup If 1
(53) ( E [0 7]1]

+ s u p '

T f  n' f 1r
dt f  d x  f  f  d y  d y * f  d c o  B  (r e  f 7i: — f nflO  log ' ' *  <00  .

0 R" s—
fnfn*

Of course, we denote by pn (t) = f Wf n
( x , y, t)dy.

The existence of such a  sequence f n , given the  sequence rot , is insured by
Theorem 11.1. I n  fact Theorem 11.1 (see Remark 11.2) provides not only a  re-
normalized so lu tion  sa tisfy ing  (53 ) b u t  a  (w e a k )  so lu tion  satisfying even

dx dy f n (t) 11+11112 ± CO (x) -fdlogf (t)1+1Vol * pn  (01
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more precise bounds than (5 3 ). W ithout loss of generality (extracting a  sub-
sequence if  necessary), w e m ay assume that f n  converges weakly in  LP (0, T;

(R e ) )  (fo r a l l  1 < 0 0 ,  T  E  (0, 0 0 ) )  to some 0 which belongs to
L00(0, T; (R e ) )  (for all T  (0, 00)).

W e m ay now state our main convergence results w here w e say that 0"=-
0"(y, t), y E R k , k• 1, tC [0 , 00) converges locally in  measure to 0 if we have
for all R E  (0, 00), a > 0

measy ,t 1195n (Y t) —0(y, t)l a, t E [0, R] H 0 .

Theorem 11.2. The weak limit f is a renormalized solution of  (VB) and we
have:

1) For all E Lro, (R N ) such that 10 (v)I C (1+1v12) 2 a.e. on RN for
some a <2 then f it- f n O dv converges to  fief(Pdv in L P (0, T; (R ) )  f or all 1

p< co, TE (0, 00).
2) L (fn ) converges to L ( f )  in  LP (0, T; ( R 1;1 X K)) for all 1 p<co , T E

(0, co), K compact set in RiN.
3) For all cP E  (R N )  with compact support, fieQ± ( f n, f n ) Oclv converges

locally in  measure to f R„Q±  (f, O d v .  A nd Q±  (fn, fn) • (1+f n ) — 1 are relatively
weakly compact in L l (14' X K X (0, T )) for all TE  (0, co ), K compact set in 10/.

4) Q+ (f n , f n )  converges locally in measure to Q+  (f, f).

Remark 11.3. In addition, w e  have  the  follow ing inequalities that are
deduced from the  above result exactly a s  in  [26] by (essentially) convexity
arguments

lim  f  f  f  n  (t) log f n  ( t )d x  d v  f  fR,,f (t) logf (t)dx dv

t
lim f ds f dx f f dv dv *  f d(.013 (f n ' f 1: — f nf 1)logf n ' f 1:
—n 0 IV R . —

f n f l

f t ds f d x  f f d v  d v *  f  cicol3(f'f'*—ff*)log f  r*
0 R "  R .  s— f f *

for all t. -0.

Theorem 11.3. If  in addition fg converges in L 1 (R e ,) to f o, then fn  con-
verges to f  in  C ( [0, T]; L 1 (R e ) )  for all T E  [0 , c o ) .  A nd f  is a solution of the
(VB) system i f  (f " ) n is a sequence of solutions.

Remark 11.4. P arts  1) -3) of Theorem 11.2 are the analogues of results
shown in  R. J. DiPerna and P. L . L ions [25] for the "pure" Boltzmann model.
P a r t  4 ) corresponds to  the  m ain  com pactness result show n in  P a r t  I [55]
while Theorem 11.3 is  the analogue of the convergence result shown in Part II
[56] again for the Boltzmann equation.

Theorems 11.2 and 11.3, a s  Theorem 11.1, a r e  proven in  the  following sec-
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tion.

H I . Proofs

W e beg in  w ith  the  proof o f Theorem 11.2. W e  d iv id e  it  in to  tw o  main
s t e p s .  In  th e  first one, w e briefly  explain  w hy p a r ts  1) - 4 ) h o ld . A n d  we
concentrate in the second step  on the proof of the fac t tha t the weak limit is
indeed a  renormalized so lu tio n  o f  V B .  I f  t h e  f ir s t  s te p  is  e s se n tia lly  an
adaptation of the results and methods o f  [25] ([26]) a n d  [52], the second one
requires a  new argument which may be seen as a simplification and extension
of the original argument introduced in  [25] for the  weak passage to  the  limit
in the context of Boltzmann equations.

Step 1. In fact, w e are  only going to prove 1 ) following the arguments
o f  [25] (see  a lso  [52]) since 2) and  3 ) a re  then show n exactly a s  in  [25].
Finally, once 1) - 3) hold, the proof presented in  Part I  [56] immediately yields
4 ) .  In order to prove 1), we first recall that for a ll compact sets  K CR Y , T  E
(0, co). Indeed , w e  have

f K d x dv (1  + f )  - 1 Q-  (fn, fn) f dvLn (f)
R" X

= f  f  n ( x  v , A  (v—v * )dv

f d x  f  f  n (X * (1+IV  *1 2 ) dV *

in view o f  (7 ) .  A nd  (54) follows from (53).

Next, we observe that w e have
Q+ ( f n f n) <2Q- (f  n, f n)

f  d v * f  Bd w —fnfl) log' *  .log2 le S" f n f l

Hence, (53) a n d  (54) imply

(55) (1 ± f  n ) - 1 Q+  (f  n , f  n ) is bounded in L i  (0, T; x K ))

for all compact sets K  in RY , T E  (0, co).

N ext, w e observe that since P i  i s  a  renormalized so lu tion  o f (VB ) we
have for all ISE Cl  ([0, co); R ) such that 13(0) =0, 13' ( t)  (1 + t)  is bounded on

(56) ( a
a

t + v • v x )g (fn ) =  —div i, ns(fn)F ± is r (fn )Q (fn , fn )

In order to apply the  velocity averaging results o f  [32], w e rem ark  that (54)
a n d  (55) im ply that g '( f  n ) Q (f n , f n )  is bounded in  L 1 (0, T; 1, 1 (Ri' x K ) )  for
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a ll compact subsets K of R ,  T C (0, c o ) .  A n d  (53) show s th a t 13 ( f n ) is
bounded in (0, T; LP (R ) )  for a ll T  (0, co), 1 p  < co. F inally , w e de-

duce from  (42) tha t Fn = Fn (x , t) is bounded in L  (0, T; LN-1-2 (R ) ),
hence FniE3 (fn )  is bounded in L  (0, T; Lloc (R ) )  f o r  a ll  T G  (0 , 0 0 ) 1

3

A t th is stage, we may u se  (56) and the velocity averaging results o f  [32]
to deduce from those bounds

(57) LS (f n ) Odv is relatively compact in LtE (WE X (0 , co ))  for a ll 1

c,b (W) with com pact support. T hen , (53) yields

(58) fo 9(f n) Odv is relatively co m p ac t in  LP (0, T; LP (0, T; L1 (W))
for all 1 - p<00, TE (0, co), E Lroc (Il ly') such that 0 (1+Iv1 2) - 1  goes to 0 as
Ivl goes to +co.

P a rt 1) then follows from  (58) a n d  (53) since w e only have to choose

= 15.5 = w iog (1+ 5t) OE (0, 1]) and to observe that w e have for all R>1

0- fn — f3(f n ) c51?f n -f-f n l(fn>R) (3Rf n-l-fntag fi  .

Step 2. W e w ish  to  prove now  that f  i s  a  renormalized solution of
(V B ). F irs t  o f a ll, w e observe tha t it is  enough  to  show  th a t the  following
holds

a(59) +divv (.6 +divv (FS W ) (f)Q (f, in D'

where $ (t) = log (1+0, F= — V Vo* P, p= L f dv .

Indeed, it is show n in  the  Appendix 2 th a t  (59) then im plies that f  is  a
renormalized solution of (VB).

L e t u s  a lso  recall tha t w e deduce from  (53) and  w eak passages to  the
limit

s u p  I f  f
0

 /4) (1+ w (x) +Iv 12 + 'log/ (t) I + I yoI *p(t))dx
te [o, 7]E

dv
(60)

T ç r  

{

f
f f f f 'f '* — ff*)± ds dx dv dv* Bd co (./- log.' f f

1

*
*1 < 0 0

0 le I t ' S '- '

for all T c (0, 00).

Let us now explain the strategy of proof we use to  derive  (59 ). We con-
sider Pd (1. n ) = f n ( 1 ±  of n ) —1 f o r  5 E  (0 , 11 a n d  w eakly pass to the  lim it as n
goes to +00 in  the equation satisfied by R.5 (f n ) (we use here the  fact that f n
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is  a  renormalized so lu tio n ) . T h e n , w e renormalize (taking 13 of the  lim it of
P j ( f " ) )  the resulting limit equation and we let 5 go to 0+ to  recover (59).

In  o rder to  do so , w e need a  few  n o ta tio n s . W ithout loss of generality,
extracting subsequence if necessary, we may assume that for all 5> 0

(61) R6 ( f " ) —) A; weakly i n  LP (I(2Z, X (0, T))

(62) hâ= (1 -F  n ) — ) h o weakly in (Rrvx (0, c o ) )  (weak*)

(63) 0 3 _  f n  ( i+  n ) —2 ,n  g 6 weakly i n  LP (R .Z x  (0, T))

fo r  a l l  T  E  (0 , c o ) ,  1 1<p = c o  m eans th e  w e a k  *  convergence...).
Furthermore, because of part 3), we may assume that

(64) (1+ 5. I' )  -
2 (j±  (f n , f n ) T )

1 Qk weakly in Li (R x K  x  (0, T))

for all compact sets K C IV , T E  (0, co).

O f course, (56) holds with 13 replaced by 194 fo r a ll 5 > 0  and we want to
pass to the limit in these equations as n g o e s  to  + c o . T o  th is  end, we deduce
from p a r t  I  t h a t  pn converges in LP (0, T; (R D ) (for a ll 1 < co , T E  (0,
co )) to  p. S ince  V Vo E Lloc (R N ) ,  w e deduce that r  converges in L° (0, T;
Lloc (RN ) )  to F=  — V Vo * p. And finally (42) yields

(65)
IF"— F in LP (0, T; Lloc (R N ))

for a ll 1  .p<0.0,1 q<
N + 2

 3

and for all T E  (0, co).

W e then pass to the limit in  (56) and we obtain

a .(66) V a (v/3,5) ±divv (Ff3a) in .

Next, we observe tha t the  vector-field B = (y , F (t, x )) satisfies: divx ,, (B) = 0
and B E (0, T; (R ) )  .  W e m ay thus apply the general results of R. J.
DiPerna and P. L. L ions [29] on  linear transport equations and ODE's to de-
duce that 136 is  a  renormalized solution of (66).

T h is  fact has m any consequences, one  o f w h ich  is  th e  continuity o f Pa
w ith  respect to 0  w ith  va lues in  LP (RN) )  fo r  a ll  1 p  < c c .  In  view  of
(53), it is  c learly  enough  to  show  tha t /3s E C  ( [0, c o );  L f o c  (R11,vv)) V 1
<cc) . T o  t h i s  end, w e rem ark that if  w e regularize by convolution (w ith a
mollifier) R6 into sg a s  in  [29], we obtain
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1 / 3 g±v• 17.43g+F• I7v i3g=W  — Qi +re

where ra--*0 (as E  goes to  0 ) in  1,1 (0, T; Lioc (R.V, ) )  fo r  a ll T E (0, c c ).  I n
addition, Sg E C ( [0, °°) ; L I) ( R ) )  f o r  1 < co because of the equation it sa-
tisfies. N ex t, w e  deduce  from  (66) and the fact /34 is  a  renormalized solution
o f  (66)

Cid7 f R ,,,1 )3  SgIP (40 dxd v 0 r  (n.n , a s  E 0+

for a ll 1 p< co, TE (0, co), (pE C ; ( R ) ,  yo. O. And we conclude.

This strong continuity in t allows to deduce that necessarily fc  C ([0 , co);
1.1 ( R ,Z ) ) .  Indeed, because o f  (53) - see  step  1 fo r  a  sim ilar argum ent-, we
have for all T E  (0, 0 0

)

(67) s u p  s u p  O f  n  — Sa(f n ) 11,2 (Rn->0 as
LE  [o,

Hence, P6 converges in C( [0, 7 ] ; L1 (RZ) )  to f  proving thus our claim.

W e nex t w ish  to  p rec ise  (6 6 ) .  In  o rd e r  to  d o  so , w e  observe th a t  —
t 1 

(1+602 are convex o n  [0, co) therefore we have14-6r 

(68) i3(3 135(f) , (1 -1- 51) -2 a.e. o n  R.Z, x (0, 00) .

In addition — (t) (1 — 5136 (t)) , hence
(1— at) 2

(69) g 6 13 ( 1 - 5 ) a.e. o n  Rr, X (0, c o )  .

Furthermore, because of part 2 a n d  (62), we deduce easily

(70) Qi =9 a.e. o n  RZ, x (0, co)

In fact, using part 4, we could also deduce that

(71) (Q-â = M r (f, jr) a.e. o n  kr, x (0, cc)

B ut s ince  (71) is not needed fo r o u r  argument h e re  (and thus p a rt 4  is not
n e e d e d  h e re )  w e  sh a ll o n ly  p ro v e  th is  p ro p e rty  in  th e  c o u rse  o f  proving
Theorem 11.3.

We finally use the fact that [36 is  a  renormalized solution of (66) to write

(72)11 (is (i s o ) )  ±divx iv 13 (lea) } ±divv IT- $(13,0}

= (1+ Oa) — (1+ Pa) - 1 (2i .
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And w e w ish to  recover (59) letting 5 go to  0+ . Recall that we already saw
above that i3,5 converges to f  in C( [0, T] ; ( R )  )  for all T E  (0, 00). There-
fore, in  order to  com plete th e  proof o f Theorem  11.2, there only rem ains to
show

(73) 1(1+ 13,3) ( l + f ) - 1 Q -  ( f ,  ,

(1+ 133) - 1 Q-â—  (1 + f ) - 1 Q+ (f, a.e.

as ô goes to 0+ , and

(74) Q  (1+A ) - 1  a r e  weakly relatively compact in L' (E. X K X  (0, T))

for all compact sets Kciti", TE (0, co).

W e begin w ith Q .  W ith o u t  lo s s  of generality, w e m ay assume th a t Pa
converges a.e. to f  as ô goes to 0+ . Then,

(1+ 153 ) = (1+ AO (f) > + f ) - 'fL (f) a.e.

provided we show that g 5 converges a.e. to f .

This is easy since we have for all R > 1

— fn (1+5f n) - 2 3R5fn +f n l(fn>R)

hence g 5  converges to f  in  C ([0, T] ; (R ) )  ( V T   E  (0, 00)) We now
prove (74) for Q i and we simply observe th a t  (69) yields

0  (1  + = (1 +19 6 ) - 'q 6 1, (f)

(1 -S$ ) (f) a.e.

And we conclude since L (f) E L -  (0, T; L ' (it X K ))  for a ll compact sets K c
T E  (0 , 00 ).

We conclude the  proof of Theorem 11.2 by proving  (73) a n d  (74) for Q .
W e begin  w ith  (7 4 ). A nd w e recall the  following classical inequality valid
for all K>1

n
(75) Q+ ( f" ,  fn)

1
fn )±  l o g K e

fn 'p r
where en = f }H y* is—Bdco ( f n

 -  f log bounded in  L i
+ (Itg , X

f n f l

(0, T ))  for a ll TE (0, 00). W ithout loss of generality, we may assume that en
converges weakly in  the  sense of measures to some bounded nonnegative mea-

De sure e on Kg, x [0, c o )  and  we denote by eo its  regu lar p a r t  (Co = 
D y

). Di-

v id ing  (75) b y  (1 +5f  n )  and letting n go to  + 0 0 , we obtain
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1 (76) + 
l o g  K  

e
hence

1 
(77) 1 (Q +  

log K  e° a.e. o n  R.Zx (0, co) .

A nd (74) is proven for (21- since we already showed it for Q. i.

W e finally prove (73) for Q .  W e  firs t rem ark  tha t w e  have for all R>0

(78)
I Q + (f  n, f n) (1+ of- n) —2Q+ (f n , f n)

(1+ 51?) - 2 Q+  (f n , fn)1(fn<R) •

In particular, if we m ultiply (78) by 0eCco"(W ), we find letting n go to
+ c o  and using part 3

fR,Q+  (f, f) (M y  f tep Odv a.e. o n  E x  (0, 00) .

Indeed th e  integrated left-hand side converges locally in  m easure w hile the
right-hand side converges weakly in L ' and this is enough to pass to the  limit
in the a.e. inequality on E x  (0, c o ) .  Therefore, we have for a ll 5E  (0, 1]

(79) Q+ (f,

Next, we use the other part o f the  inequality  (78) and w e w rite  for E
(0, 1] using  (75)

(1+ 51?) — 2 (1 + (f  n )) — i Q+ ( f n , f n )

(80) (1+ 5f  n ) —2Q+ (f n±  ( 1 +  (  f  n )) - 1 1 (fn>R)Q+ (f  n

< (i+ of  n ) - 2 Q+ (fn, f n ) ± l o g
1
 K en + f+I n l(fn>R) .

W e then observe tha t Q+  (f  n f n )  (1 + vL (f n )) —1 is relatively w eakly compact

in L i  (R.Z, x (0, T)) (V  T E (0, c o ))  since it is bounded by l o g
l

K en +Kf n  fo r  all

K > 1. H ence, w e m ay assum e w ithout loss o f  g en e ra lity  th a t it  converges
weakly in Ll (R?,I, X (0, T)) (V  T E (0, C a ) ) .  W e claim  its w eak lim it is given
b y  (1+ vL (f)) - 1 Q+  (f, .  Indeed, if  0 E L ( R n  w ith  compact support, we
have

fR" (1+ L ( f  n )) -1 Q+  ( fn ,  fn ) (P d v = fR ,Q + ( f  n , fn ) gclv

where 0',1 is uniformly bounded in L- (Rn , has a  uniform compact support and
0 7„1---*0„ = (1 + L  (f )) - 1 (,b in  LP (R ) ( V  1 < c o ) .  T heir properties are

enough to adapt th e  proof o f  p a rt 3 )  (se e  [26], [27] fo r related arguments)
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and to deduce

fR ,Q +  (f  n , f) n a idv f R ,Q +d v

locally in measure on R.12Y x [0, 00). And our claim is shown.
W e then pass to the limit in  (80) and deduce a s  above

1  (81) (1+ 5R) - 2  (1 +  ( f ) ) - '() + (f, ±  
l o g  K  

e0+—

v
f R  a.e.,

where J R  is  the weak limit of f n 1(fn>R). Since we have because o f  (53)

f  f R .dx  dv f R =lim  f  fw ,dx dv fnl ( f n,R )  log R

we deduce from  (81) letting first o go to  0+ , then K  go to  - I-  co, then R  go to
+00 and finally v go to 0+

(82) Q+ (f, limQ a.e.
6—.0+

T he combination o f  (79) a n d  (82) completes th e  proof o f  (73) and th u s  of
Theorem 11.2.

=r',3(PQ+ (f, —  lfr'5 (f) in

Of course, r C ([0 , o°); (R.V ) ) for a ll l p<co and

(84) T5 (f)It=0 =  rd (f0) a.e. o n  RZ •

W e are  going to follow the  scheme of the first proof of the  analogous re-
sult show n in  P a r t  I I  [56] for the  "pure" B oltzm ann 's equation. Once more
the force term  introduces specific difficulties. Let us first explain the strategy
of proof. W e in troduce, w ithout loss of generality, the  w eak lim it of To ( f n )

(in LP (R x  (0, T ))  for a ll  TE (0, co ), 1. p< 00) th a t w e  d e n o te  b y  y . The
first step consists in  showing that ro is  a  supersolution o f  (83 ). In a second
step, we deduce that r To (f) a n d  that f n  converges to f  a.e. or in  L ' (R ri, x
(0 , T )) (for all T E  ( 0 ,  0 0 ) ) .  Finally  (step 3), we show that f  n converges to

f  in C( [0, 7 ] ; L' (R n )) ( V  T E  ( 0 ,  0 0 ) )  proving thus Theorem 11.3.

W e now turn to the proof of Theorem 11.3.
W e keep  the  no ta tions o f the  p re v io u s  p ro o f . A nd  w e know  that f  E

C ( [0 , 0 0 ) ; L ' (R il,gv) )  i s  a  renormalized so lu tion  o f (V B ).  In  particular, we

know that we have, setting r5 (t) --q log (1 + 6 t)

{

1
(83)

 ( y o  (f )) ±divx ivr5 (P I  +div 1Fra (f) r

Before we begin this proof, we wish to make a  few preliminary remarks.
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A dapting th e  p roof m ade ab o v e  (s tep  2), w e  show  th a t  To satisfies: To E
L00 (0, T; LP (R ,Z )) (V  TE  (0, o c ) ,  V  1  p< 00)

(85) o 7-6 (f) a.e. o n  RZ X (0, co)

and

(86)
v  

ivr,51 ±divv iF7-31 =Q1" —Qi inat 
where (A Q i are  respectively the  w eak lim its (in L' (W X K X (0, T ) )  for all
compact sets K c Ri)r, T E  (0 , 0 0 ) )  o f  (1 o f  -

1 Q +  ( f n ,  f n )
,

 ( 1  +  n )  
-

1Q -

(r ,  f n ). In fact, we claim  that To is  a  renormalized solution of (86) and be-
longs to C ([0, 00); LP (Rn )) ( V  1  p  < 0 0 ) .  T he proof made above almost
adapts to this case except for some minor technicality due to the fact that To is
no more b o u n d e d . This difficulty is circumvented by introducing To(138(f n ))
for e E (0, 1] and its weak limit denoted by TN. Then, the proof made in Step
2 above adapts and show s tha t TN E C ( [0, 13°) ; LP (R .L)) (1  p  < 0 0 )  is  a  re-
normalized solution of

(87) a rg+cliv,z. 1VTN +div,, IFTP .

The proof of our claim follows upon letting s go to  0+ since w e have

0 To ( f n )  — rg ( f n ) in (Rn)

uniformly in vt.1, t E [0, ( V TE (0, co)),

0 ( 7 -'5 ( f n ) r'd (15's (f  n )) IT  (f  n )) Q-  (fn,fn)

< c ( s +   E f n ( f ,i) L o i n  L i  (R l
x
v  X K)

52 \ 1±Ef n i

uniformly in n.1, tE [0, 7] f o r  all TE (0, co), compact sets Kc10, and

0  < ( 7.,5 ( ) en) r  o (p e (f n)) 13, E (f  n)) (2 + ( f  n f  n)

K(T',3(f n ) n)) 13 'E(f n ) ) (fn, fn)+ l o g
1

 K  e n

for all K > 1.

Step 1. To is a  supersolution o f  (86)
Without loss of generality, we may assume that we have

and

1 
T'a (f Cd

1+ 5 f  n n

fnr'5(fn) — f  n

1 ± 6 f n  n

w eakly ( * )  in (RZ, X (0, 0 0 ))

w eakly ( * )  in (RZ,x (0, c o ) )  .

Furthermore, since r '  j( t) , — tr ' f ( t )  are  convex o n  [0, 0 0 ), we deduce the fol-
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lowing inequalities

(88)
{C6 - 1 +1a f = s r ' 3 ( f )  1 14 =1 "7 /5 ( f )  ,

1r6 1og (1 + af) = y (f) a.e. in RZ, x (0, c o )  .

In view of part 2) of Theorem 11.2, we see that

(89) (Q = 3.1,(f) a.e. o n  R,Z, X (0, 00) .

W e then wish to use part 4) of Theorem 11.2 to deduce

(90) =CaQ+ (f, a.e. o n  Rr„ x (0, 00) .

Indeed, let C be an  a rb itra ry  compact subset of R rv x [0 , 00). By the Egor-
ov's theorem, we find, for a ll E> 0, a  measurable se t E such  tha t meas.,,,,t (E)

Q+ (fn, f n )  converges uniformly to Q+ (f, f) on EC and Q+ (f, f) is integr-
able on Ec . Then, for all E  ( I t Z  x  (0, 00)) supported in C, we deduce

f  IT' (f n ) Q+ (f n , f ") — C5Q+ ( f, f) dx dv

-1149 11L-f E r' a ( f n ) Q+ (fn , fn ) + CaQ+  (f, dx dv dt

t f E y  ir ' ( f  
n ) —C61 Q+ (f, dx dv dt

+ 11911L-sup1Q+ (f n , f n ) Q + (f, .

EC

The third term  goes to 0 as n goes to  + 00, for each E> 0. A nd so does the
second term since çolE vQ+ (f, E L ' (Rr, X (0, n o ) ) .  F in a lly , s in c e  - see part
3) of Theorem 11.2 - 7 ' 13 ( f n ) Q+  (fn, f n )  is weakly relatively compact in L'
XKX (0, T ) )  for a ll compact sets K C R , T E  (0 , 00), th e  first term can be
made arbitrarily sm all uniform ly in  n if  w e le t s  go to  0+ . Notice also that
Ca Q+ (f, E L ' (R l

x
v  X K X (0, T )) since Cg (Q+ (f , R ) is easily seen to be the
1 weak limit of

1+ C f  
(Q+ ( f n , f n ) A R ) .  And th is show s (90).

n

Then, if w e collect (88), (89) a n d  (90) and  insert these informations in
(86), we find

(91) Nrra l +div v 1Frar (f)Q ( f , in D' .a tx

This inequality holds in the sense of distributions on RZ,x (0, 00) and in fact,
it a lso  holds in  renormalized sense i.e. th e  D' inequality  still holds if  we re-
place r, by [3( .7.5) where ISE C' ([0, 00); R) is  nondecreasing and then we re-
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place f a  (f)Q (f, f) by IT (To) r  (f ) Q  (f, .

W e conc lude  th is  f irs t s tep  p rov ing  tha t To sa tis f ie s  (8 4 ). Indeed, in
view  o f the  equation satisfied by To (f n ) , w e deduce easily  that To (f n )  con-
verges in  C ([0, 7] ; (R ) )  (  V  s> 1, V T E (0, 0 0 ) ) to  T o .  B ut, by
assumption, To 1 1 - 0

=  To Or c o n v e rg e s  in  12 ( R )  and thus in  Wioscj  (Rrv)
to  To (fo). And, thus, we conclude that To satisfies the initial condition (84).

Step 2. r,=r,( f )  and f n  converges in L' to f.
W e consider T,5 (f) T 6  =  r,5 E C  [0, 0 0 ); I )  ( R ) )  ( V  1 p < 0 0 )  and we

observe that ra satisfies in view o f  (83) a n d  (91)

a(92) -Nrad-divx ivral +div, 0 in D' .

Not only this inequality holds in  the  sense of distributions but it ho lds in  re-
norm alized sense in  view  o f  th e  "renormalized calculus" established in  R. J.
DiPerna and P. L. L ions [2 9 ]. Furthermore, in  view of s tep  1, we know that
we have

(93) ra 0 a.e. on Rg, X (0, 00) , ralt=o=0 a.e. on RY,=, •

W e first w ant to prove that  ro = 0. In  o rde r to  do so , at least formally,
we only have to integrate (92) over R 2 N  to find

—d f radx dv 0 in D' (0, 00) .dt

And this inequality combined with (93) yields: r0 . 0 on Rg, X (0, 00).

W e thus have to  justify  the  integration over R 2 N . In  o rde r to  do so we
consider 9 E Cei (R i " ), 9 (z) = 1 i f  z I 1 , 9  (z) =  0 if  I z I >_ 2 and  we wish to

im ultiply (92) by 9
 ( z - )

 go

 ( p - ) .
 B u t b e fo re  w e  do so, w e rem ark that p,(r,) =

r0 also satisfies (92) a n d  (93) (and 13,(r6 ) E C  [0, 0 0
)  ;  LP (RV,V

v )  )  for
1 + e r a

< 0 0 )  for E > 0 . And we find finally integrating over 112 N  X (0, T) for all t O

(94) 1 ILN  fi, (r,5 ) ço( n )9 ( I
n
± )dx dv (t) f 0

' ds f  ..f .
R.dx dv SE (ro )

. i nv . v  9 (xn ) . 9 ( nv) ±  n1 F  ( x ,  t )  . v  9 (vn ) 9 (xn )1 .

W e then wish to let n go to  +0 0 . In order to  do so, w e recall tha t (53) and
(60) yield

(95) s u p  I f i%(r,y)Ivi'dx dv; te [0, 7], e_0, 6>_01<00
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for all TE (0, 00). Hence, we have the following estimates

f o
td s f  fRAx dvi3, (rd ) bv,7 •

 V
Iço 1 -

n  ço ( 1i )

f `d s  f  8  )  1. ( To. ( 152 ) 211(Pli x dvd — K)0f i t m X L- L-

and

f otc/sf f d x  dv 13, (rd ) ÷ ( ) F (x, t) • V go( lin )

(f d s  f f d x  d v  1%0'5) 7÷, IF (x, dv) *IIS0 111.-IIV <PL-O

Then, we recall that, because o f  (42), FE L -  (0, t; (R IP  F L N 3+2  (1t)) . And
th e  bounded p a rt o f  F  clearly  gives a contribution to  th e  preceding integral
that vanishes as n goes to  - I-  0 0 . Therefore, we may assume w ithout loss of

generality that F (0, t; L N r  (R D ) • W e next observe that because o f  (95)

(ro) —

n
1 (n S ir l 2,1)Ofied v 1= — E n

L' (0, t, L' ORD ) n3
with e n

— g)

while of course we have for some C5 > 0

dv 1(36 (ra) 1 1(”s1,1 2 V 1,, (o, I. 1.= (Ri.))
N -1

Therefore, we deduce from Wilder's inquality that w e have for all e >0

1dv ( r  1
--
1
-
,
-1(, is2.)— '0 i n  Ll (0, t; ( W)) .

N+2 
Since FEL -  (0, t; L  3 (RO ) , w e have thus proven

1f o ds f  f Ri dx dv RE (ro ) —n F (x, 0 .

And letting first n go to  + 0 0  an d  then E go to 0+  i n  (94), we deduce

(x , v, t)dx  dv 0 for all .

This, combined with (93), implies that r5 - 0 on 11,11,vn X (0, 00).

In other words, T o  ( f n )  weakly converges to To ( f )  and, since y„ is strictly
concave on [0, 00), w e deduce from  classical functional analysis arguments
that f"  converges in measure to f  on R,Z, x (0, T) for a ll TE (0, c o )  ( observe

for instance th a t  ya (f
n  2

+ f
) 2

1 (y, (f.) + y„(f))—* 0 in  L Ix  ( 0 ,  T)) ...) .

And th is convergence, because o f  (53), implies
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(96) fn 7>, f  in LP (0, T; L 1 (R ) )  ,  for a ll 1 . p<00,TE (0, 00)

Step 3. Conclusion.
W e only have to  show that f n converges to f  in C ([0, 7] ; L' (A n ))  u s in g

(96) and  the  equation satisfied by f n . Then, because o f  (53) and (67), it is
clearly enough to show that, for each 5>0, TE (0, 00), K compact set in RZ,
we have

(97) Sa (f n ) ( f ) in C( [0, 7] ; L' (K)) .

W e  th e n  ta k e  E C '(1 0 ) such that ço l o n  K, 0 and we u se  (56) to de-
duce for all

(ff„,,s5 ( f n ) 2 9 dx dv)(t)=
0 R
ds f  f  d x  d v 2 1 9 3 ( f n )

" 1+5f n(98) 

• Q  ( fn ,  f  9 - 1-  Pa ( f n ) 2 iv- 17 x (p-1- Fn • V v(pl .

Then, because o f  (96), Pa ( f n )  converges to 13a ( f )  in LP (R,Z, x (0, T ) )  fo r all
1 p <œ , TE  (0, 00) and one checks easily  that the  right-hand side o f  (98)
converges uniformly in  t E  [0 , ( V T E  (0, c o ) )  t o  th e  sam e experession
with f n , Fn replaced respectively by f, F .  Since 34 ( f )  is  a  renormalized solu-
tion o f  (66), th is  experession is  a lso  g iven  (for all 0 ) b y  ( f 1R4A 3  (f)
dx dv) (t). In other words, we have

(99)
f  f R ,03,3(f n ) 29 dx dv f  f i r  ,A3(f) 2 9 dx dv, ,

uniformly i n  tE [0, ,

for a ll TE (0, co) .

In  addition , as w e saw  above, Pa (f n )  converges to  Sa (f) in  C ([0 , 1] ;
W  (R ') )  ( fo r  all s >1 and in fact s=1  because o f  (9 6 ) ) .  Therefore, if we
consider 14= L2 (Supp9, (pdx), since  (13.5(f n )) n is bounded in  14, we deduce
that (3,5 ( f n )  converges uniformly o n  [0, 7] ( V  T E  (0, 00)) to 136 ( f )  in g o en-
dowed with the  w eak topology (represented by a  d istance  on  a  la rge  ba ll of
L ) .  T his com bined w ith (99) and  the  fac t tha t $o ( f )  E  C (  [0 , c o );  ap) im-
p lies tha t Pa (P)  converges to  j33 ( f )  in  a  (strongly) uniform ly o n  [0, T]
( V T E  (0 , 00 )). A nd  (97) follows.

This concludes the proof of Theorem 11.3 since the fact that f  is  a solution
o f  th e  (V B ) system  follow s by straightforw ard lim iting argum ents that w e
leave to the reader.

Remark 111.1. A nother convergence proof is  possible using instead
the second scheme o f proof introduced in  P a r t  I I  [56] in  the  context of Bolt-
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zmann's equation.

W e conclude this section by alluding briefly to the proof of T heorem  III
Indeed, once Theorem s 11.2 and  11.3 a re  shown, Theorem 11.1 follows from a
ra ther standard  (and tedious) approxim ation argum ent. It is enough to copy
the argum ent presented i n  [25 ] fo r  th e  Boltzm ann's equation -  with some
additional remarks m ade  in  P art II [56 ] - and w e skip  th is  m ore or less tri-
vial adap ta tion . L e t u s  only mention tha t one needs to regularize Vo a s  well
in  such  a  w a y  th a t  (42) h o ld s  u n ifo rm ly . T o  th is  end , w e consider co E
C7(RN ), co 0 , f Fro) dx = 1 holds uniformly in E. Indeed, we apply (42) with
(Pe= (P* oh and w e find that Vo * (pE, V  (Vo* (Ps), D2  ( V0*(pE) a re  respectively

bounded in  Lloc (R N ) ,  L-  (R) L N - 2  (R N )  1 , 10c (R N ) . Therefore, th e  same
holds with 1/. * yo since V,* yo= (Vo*(Pe) *we.

I V .  Remark on Vlasov-Maxwell-Boltzmann systems

W e briefly investigate in this section the Vlasov-Maxwell-Boltzmann sys-
tem  (VMB in  sh o rt)  o f  (1), ((2) - (4)) a n d  (11) - (14) complemented with the
initial conditions (15), (16) tha t m ust obey the  compatibility condition (17).
The form al identities an d  a  p rio ri estim ates that w e recalled and  derived in
section II on (VB) systems can be checked for the VB(VMB) system, the main
and only modification being the (formal) conservation of the total energy

(100) f  f R ,AvI 2dx dvd- f  f R JE12 +1Bi 2 d x  is independent o f  t- . 0 .

On then derives the following a priori estimates

(101)
{ ,:1[1),] Iff,f(i+Ivi2±(0(x)±110g.f)dxdv±fRJE12±1B12dx1

± f o
r  dt f R,dx f  f i v dv dv* f s , d(oB (fif i

* —ff* )log f  Y ''' . 0 (R, T)
f f*

if we have

(102) f  f R i o (1 l id 2 +co (x) - 1- 11ogfol)dx dv - F iRJEol 2 +1Bol 2dx .

Here, R and T a re  a rb itra ry  in  (0, co ) and C(R, T) is  an (explicit) positive
constant which depends only on R and T.

W e do not know whether Theorem 11.1- 11.3 can be adapted o r extended to
the case of the (VMB) s y s te m . In fact, the only information that seems to be
missing would be an  a  p rio ri estimate of E, B in 1,1 (0, T; Wibi

c  (R3 )) . If  such
a n  estim ate w ere available, then all our analysis w ould go  through and the
sam e resu lts a s  those  sta ted  in  sec tion  III and  proven  in  sec tion  III would
hold.



fo r  a l l  T E  (0 , c o ) .  I n  (104), f E C ( [0, co ); L i  (1 4 v) -w) means that j ( t )
- f (t) weakly in L' (In v )  i f  tn (E [0, 0 0 )) — >tE [0, c o ) .  Of course, the initial

conditions (15), (16) h o ld s .  In addition, we have

(106) vx,v,t=5mx,v) a.e. X ,  v ER 6 .
Then, as we said above, parts 1)-4) of Theorem 11.2 still hold here and in

particular from the proofs made in the preceding section, we can deduce

(107)
l<S> -Fdivx iv<S>1 ±divv 1F<S>

= < IT >  (2+  (f, — <,3'2 > L (f ) in x (0, 00))

1
,: ,PT ,Iff„„ f(i-F iv i2 + , 0(x).-Filogf)dxdv

(105) d- f f  dx dv 2iloadvx,v,t+ fie lE12 ±1B12dx

f dt f dx f f dv dv *  f d (.0B  (f ' * —ff* )logf  i *1 00
0 W  S2 ff *
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It is a lso  possible to  build  a solution in a rather w eak s e n s e .  Indeed, by
convenient approxim ations, one c a n  b u ild  a  sequence  ( f " ,  En , B ')  of
approximated solutions (in  fact solutions of similar problems with essentially
th e  same structure... - s e e  [25], [27] for m ore details). A nd then, one can
prove that pa rts  1)-4) of Theorem 11.2 still hold here.

Next, we wish to pass to the limit, as n goes to  +00, in  th e  equations sa-
tisfied by S (f  n ) (we also consider S ( fn  — 9 ).. . ) ,  En , B. O f  c o u r s e ,  we can
consider, extracting subsequence if  necessary, th e  w eak lim it o f  ( f n , En , B")
denoted by (f, E , B ) (respectively in L I , L2 , L2 )  and, c learly , (11)- (14) hold
in the sense o f d istribu tions. B ut we also need to describe the weak limits of
0 (f n ), )3' (r )  a n d  S '( r ) .  T o  th is  end , it is  conven ien t to  in troduce  the
Y oung's m easures v,,,,t assoc ia ted  to  t h e  sequence f n  i n  t h e  s p i r i t  o f  L.
Tartar's theory  of compensated compactness (see L .  T a r ta r  [69], [70], R. J.
DiPerna [22], [23], R. J .  DiPerna and A . Majda [33].. .). Indeed, one shows
the existence of probability m easures vx,v,t o n  [0, 00) depending measurably
o n  (x, v, t) ERL, x (0, co ) such that (extracting a  subsequence if necessary)

(103) is (fn) —fs(2) d vx,v,t (2)
n
w e a k l y  i n  Lloc (Itl.,v x [9, 0 0 ))

for all 13 C( [0, 0()); R) such that S (t) (tlogt) - 1 — >0 as t—>+ 00. In particular,
we have easily

{

(104)
f= f Àdv x ,v ,t ,  f E L -  (0, 00; I, -  (R ) )

fEC ([0, co); L 1 ( R )  — w)
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where we denote by G go> =  1go (2) dvx,v,t (A) for any  0  C ([0, cc); R ) such
that 0 itlogt1 - 1  is bounded o n  [2, 0 0 ).

In  th e  lim iting  p rocedure  tha t y ie lds (107), th e re  is  ju s t  one technical
point to be checked that was not present in the arguments of section III name-
ly the fact that F '  does not converge anymore strongly say in Ljo, (or at least
we do not know if i t  d o e s ) .  One can still pass to the limit using the argument
introduced by R. J. DiPerna and P. L. L ions [27] for the  Vlasov-Maxwell sys-
tem: indeed, because o f  p a r t 1 ), f 03(f n ) 0dv converges in Li' (111 x (0, T))
( V T E  (0, 00), V 1 00) for a ll 0 E C  (R ), j3 E C  [0, cc); R )  bounded
(or bounded by C log (1+0...).

T he  equation  (106) clearly  holds fo r  a ll 13 E C 1 ( [0, c c ) ,  R )  such that
(t) (1-Pt) is bounded o n  [0, 00) but with a  little more work one can check it

holds if (t) (1+0 1 7 2  is bounded o n  [0, 00) and that w e have

i
f o

T  dt f ite  ,< Kdx dv1Q+ (f, f) ( fa '  
(2)d

L  (f) f Às' (2)d vx ,v ,t )l < co

for all compact sets KOER, TE (0, co) .

In addition (46) holds and we have

ap
± d i v  0 . )  = 0 in ' ((109) D111 x (0, co ))at x

(110) fvkdx dv is independent of f o r  1 3

(m)
Iff.,Avi2dx dv + L1E12 ±IBI 2dx

f f R folv12dx dv ± f i t  JE 0 12 +1130 12dx

for all t
This combination of properties (104) - (111) together w ith (11) -  (14) can

be used a s  a  definition o f a  weak solution of the VMB s y s te m . And we just
saw why there always exists such a  weak solution corresponding to the initial
conditions (15), (16).

Let us once more emphasize the fact that, if we know that E, B  E  (0, T;
(W ) ) ( V TE (0, co)), then w e can show using the  methods of proofs in-

troduced in  th e  preceding section tha t f  i s  a  renormalized solution of the
(VMB) system  -  th is  re lies u p o n  (107) -. Once this is show n, then w e can

also obtain < 136 > = 196  (f) where 136= —1 1og (1 ± at). T his equality then im-

plies th a t  vx,v,r = 5px,v,t) and  the  a.e. o r  strong L ' convergence. Finally, this

(108)
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could  then  be  used  to  check that f  is  a  so lu tio n  in  a  sense analogous to the
ones we introduced in section II. Unfortunately, all this argument relies upon
the Lt (141.1

c )  regularity for E, B which does not seem to be available.

T h e  above notion of w eak solution can  be  seen  a s  a  precised notion of
measure-valued so lu tio n s  (precised fo r  th e  c o llis io n  p a r t  o f  th e  equation).
A nd the  usefulness o f such  a form ulation is  no t en tire ly  c l e a r .  However, it
does contain some relevant inform ations as it can be seen from  the  following
considerations that concern the asymptotics of the  (VMB) system when c goes
to  + 0 0 . W e then consider a  fam ily (f 8, Eg, BS) of initial conditions satisfying
(17) and the bound (102) uniformly in c. Then, w e introduce (f C , V, EC, BC)
solutions of the (VMB) system corresponding to the initial conditions (f S, Eg,
Bg) satisfying (105) uniformly in c. Therefore, we may assume without loss
of generality, extracting subsequences i f  necessary, that f  C, E `, BC converge
weakly, respectively in  L1 (RL, x (o, T)) , L 2x  (0, T)) , L 2x  (0, T))
( V T E (0, 00)) to f, E, B and th a t vc converges weakly in  the  sense o f mea-
su re s  to  so m e  v  w h ic h  is  a  probability  m easure o n  [0, 00) parametrized
(m easurably) by (x, y , t) E  R6 x  [0 , c0 ). C learly , (104) - (106) hold by the
sam e argum ents than  those  in troduced  in  s e c t io n  I I I  (se e  a lso  th e  above
comments) with F = E  a n d  (11) holds where f o i s  the  w eak lim it (in L ' (R 6) )
of fg. In  addition , parts 1) - 4 ) o f Theorem 11.2 also  hold  here  (w ith  f i  re -
placed by f c )  and we have

(112) Lis(2)0(v)d)4v,(t)—fR ,fsGoo(v)dvs,,,,(2) as c-->+00

in  LP (0, T; (R D )  ( V 1 _<.p <c o  ,  V T E  (0, 00)), for a ll p E ( [0, oo) ;
such  that so =0 a n d  S' ( t )  is bounded o n  [0, 0 3 ) an d  fo r  all E (R )

such that (i) (y) (1 ± Iv 2) 
1

— )0 a s  Iv H  +00  (infess 110 (01(1 + y  12 )  
- 1 1 — 1

:
1 a s

+ co) .
W e next claim that fE  C ( [0 , co) ; (R h )) is  a  renormalized solution of

th e  (VPB) system or in  other words that V V w here V solves

(113) v  = p(= fR , f d v )  ,  v  I:" (0, 00; L 3 ''' (R ) ) .

In order to prove this claim , in view of the arguments presented in section III,
we only have to understand why E -=- — 17 V w ith V solution of (113) (i.e. V=
1   1 

4 7 r ix l* p ). 
But, if w e pass to the limit in  the  sense of d istributions in  (12),

(13) using (112), we find

(114) curl B= div B = curl E 0 , d ivE = p in .

Hence, B 0 (recall that BEL -  (0, 00; L2  (R )  ) )  a n d  (113) holds.

Furthermore, if we assume that f S converges strongly in 1,1 (1e) to f o , then
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w e deduce from  the  a rgum en ts  o f sec tion  III t h a t  vx,v.t = 5f(x,v,t) a n d  that
I  (A)  d14,v,t converges in  L i  ( R , )  uniformly in t E  [0, ( V T E  (0, o c ) )  to

/3 ( f )  for all RE Cl ([0 , o 0 )) such that R(0) =0, )3' is bounded o n  [0, c o ) .  In
particular, f c ( =  f  Â d I 4 )  converges to f  in L ' (R .,)  uniformly in  t E [0, 7 ]
for all TE (0, 00).

V. On Boltzmann - Dirac model

W e consider in  th is  section the Boltzm ann-D irac m ode l (BD  in short)
namely equation (1 ) with F 0 a n d  Q  given  by  (24) where the collision ker-
nel B  still sa tisfies (5 )  -  (7 ) . Of course, we complement this system with an
initial condition (15) where f o 0 satisfies

(115) 0  f o___E- 1 a . e .  on l e N  , (x ))dx  dv  <c o  .

Then, at least formally, we expect to find a solution f  which satisfies

(116) a.e. o n  RZ, x [ 0 ,  0 0 )  .

T h is  fac t fo llo w s ea sily  fro m  sim ple  differential equations considerations
(maximum principle, notice indeed that Q (f , a t a  p o in t (x , v , t)  where f
is equal to E while Q (f, 0 at a point where f  is equal to 0).

T h is  bound explains w hy, in  some sense , the  (B D ) model is somewhat
better behaved than the Boltzm ann m odel. A nd in fact, it w as show n in J. M.
Dolbeault [34] th a t  the existence, uniqueness a n d  regularity  of solutions is
available when B ( R N  x  s N-1) However, if we drop this requirement, the
situation is  le ss  c lea r and  the  non-quadratic nature of the collision operator
creates additional difficulties fo r  w eak passages to  the  lim it. In  pa rticu la r,
the method introduced in  [2 5 ] (or in section II for the proof of Theorem 11.2)
for the Boltzmann model does not seem to carry over th e  (BD) model.

W e resolve this problem  in  th is  section w here w e prove a  general exist-
ence theorem based upon a  F ourie r analysis of various parts of the collision
o p e ra to r . In  some sense, th is analysis relies upon the  analysis performed in
Part I  [55] via Fourier integral operators.

Let us first state precisely our main results. W e begin by recalling that,
but for the entropy, the  same conservation law s that for Boltzmann model are
available here namely (29 ), (30 ), (31 ) (w ith  170-.=' 0 )  and  in  particu la r (32) -
(34) still hold here.

Furthermore, we have (at least formally)

(117) -d — ff  f c o d x  d v =  f  f  f  Iv  V  w (x)} dx  dvdt
and
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(118) f  fR
.Ax—vt-12dx d v  is independent of .

Finally, the entropy identity (38) is now replaced by

c idt f  fR-f 1 °g f  H -1

1

(1 — ef) log (1— ef)dx dv

+ 71 f w ,dx f ie v dv dv*fs dcoB (1— et) (1— ef *) (1— el . ') (1— ef '*)

.  f '  f '*  I f
 1 - e f ' * 1 —f  ef 1 L*Ef* )

• log { f '  f ' *  1—el 1— ef*1=o r  t0f1— ef' 1— ef '* f f * _ O .

Notice that the second term  is nonnegative.

It is worth emphasizing the fact - justified in  [34] when BEL' -  that we
recover the Boltzmann model if we let E go to  0+  in  which case  (119) reduces

to  (38) (using the conservation of m ass (3 2 )). Observing that —1 (1 — st) log
E

(1 — et) — t o n  [0, 00), we deduce easily - as in  section II -  the  following a
priori bounds

(120) su p  if f R. f 11+11)12 ± co (x)i dx dv} <00 , for all T E  (0, co)
te [0, T.]

f0 d t f i e dx fRA v d v*fs , gcoB (1 -6 f)  (1— ef*) •{ 

(1—ef') (1—ef'*) 1F'F'* — FF*1 logF ' F '  <00 for a ll TE (0, 00)
FF *

where we set F = 1— ef*

In addition, if we take co (x) =1x12 i n  (115) th en  (120), (121) hold with T
= co replacing w(x) by Ix — vt12 i n  (120). Finally, th e  bounds i n  (120),
(121) depend only on the bound in  (115).

W e then define so lu tions o f the  (BD ) m odel a s  follows: f  E  C ( [ 0 ,  co);

LP (R n ) )  f o r  a ll 1 < 0 0 ,  satisfies the  (B D ) equation  (in  the  sense o f dis-
tr ibu tions fo r  in s ta n c e ) , (116), (120), (121). N otice th a t  Bff*  (1 — ef
(1-- ef' * ) E L -  (0, T; L l  (It i

x̀
r x K x1114,x S 1) )  fo r all T E  (0, co), K compact

set OE IC and thus Bf '* (1 —  ef) (1— ef* ) ( I C T . x K x x  ( 0 ,  T ))
(for all T  ( 0 ,  0 0 ) )  because o f  (121). Thus Q (f) EL' (It l

x̀
r x K x (0, T ) )  for

all compact sets KŒW, T E  (0, 00), and the equation makes s e n s e .  We could
complement this formulation w ith various conservation law s ( lik e  (29), (32),
(33), (117)) or even more complicated identities involving multipliers like the
ones introduced in section II but we shall not do here in  order to simplify the

(119)

(121)
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presentation. A lso, we could request energy and entropy inequalities

(122) ff„ f(x , y , 0 1 ,1 2 d x  d v  f  f ieN fivi 2 dx dv for all

f log f + — (1— sf) log (1 — Ef) dx dv

(123) f o tdS f R , d X  fR AV dv * ,d(oB •

• (1— sf) (1— Ef*) (1— E f  (1— Ef '*) iF'F'*— F F I  log r r * <
FF *

f f fo lo g fo + 1  (1 —  Efo) log (1—Efo )dx d v  ,  for all t O .

Our main result is the

Theorem V .1 .  Let fo (115), then there exists a solution f  of  the (BD) mod-
el satisfy ing the initial conditions (15) and the a priori bounds (120) -  (121).

Theorem V.1 is  a  straightforward consequence of stability results we de-
scribe now : w e consider a  sequence o f in itia l cond itions (fg) 1 satisfying
(115) uniformly in  n. A nd we consider a  sequence of solutions of the (BD)
m odel denoted  by  ( f n ),, i t h a t  corresponds to  the in itia l condition f g .  In
addition, we assume that f n sa tisfie s  (120), (121) uniformly in n. The exist-
ence of such  a  sequence follows in  fact from  Theorem  V .1 .  Extracting sub-
sequences if  necessary, we m ay assume w ithout loss of generality that fg, f n
converge weakly in  L ' (11Z ) and L " (W) — * , in  L ' (R ,Z , x  (0, T ) )  ( V T E
(0, c o ) )  and 1,-  (RZ, X (0, 0 0 ) )  —  *  respectively to fo , f . In  th e  result that
follows, we denote by

(124) Q +  (  =  fi e dv* i sB  (1— Ef) (1— efi )f 'f

(125) Q -  ( f )  L d v  * (7)13 (1— Ef ') (1—Ef ',Off* .

Our main stability result is the following

Theorem V .2 .  The weak limit f  is  a solution of  the (BD) model satisfying
(1 5 ) . Furthermore, we have

f R N  S (fn )(Pdv is relatively com pact in 1,1 (Itisï  x (0, T ))  (V  TE (0, co ))

f or all R E  ( [0, 0 0 ) ,  R )  such that R (t)t — '  is bounded near 0 and for a l l  (PE
Lro c (R N )  such that c/(v) (1+17)12 ) - 1 — '0 as Ivi' ° ° ,

(127) L (f n ) V ,  ( f ) i n  LI' (0, T; x K)) , V 1 < co,
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IQ+  (fn), Q -  (fn) converge w eak ly  to Q±  (f), Q -  ( f )  respectively,

in  L l  (E X K X (0, T )) fo r all TE (0, 00), comPact sets  Kcit i
l)i .

Rem ark V .1 . i) W e do not know  if solutions are unique, no r if  they
are more regular if f o is  more regular.

ii) Theorem V.1 is still valid if we let the collision kernel B  depend on n
provided B n sa tisfies (5 ), (6 ) fo r  a ll n -. 1, (7 )  uniformly in  n and B n con-
verges to B  in L i  (K x SN - 1 )  for all compact sets K E R N .

iii) We could also consider problems se t in  a  periodic b o x . T h e  results
w ould be identical and  w e could consider th e  behavior of solutions w hen t
goes to +00.

iv) It is  possible to study the  limit when E goes to 0+  a n d  recover solu-
tions of Boltzm ann's equation. But we shall not do so here.

In  view of the preceding rem ark (ii), the existence result (Theorem  V.1)
follows from Theorem V.2: indeed, it is enough to  truncate B, apply th e  re-
sults of J. M. Dolbeault [34] to obtain solutions for the resulting equations and
pass to the limit using Theorem V.2.

Before we really begin the  proof of Theorem V.2, we wish to m ake a  few
pre lim inary  rem arks. F irst o f  a ll, (126) - (128) are  easy to  show  (with simi-
la r  argum ents, and in  fact sim pler, than i n  [25] o r in  se c tio n  III). Let us

on ly  po in t ou t t h a t  (128) follows from  th e  fa c t  th a t  0  (,)- (r )  —1
E L. (Pi)

while the  weak compactness in  L ' of Q+  is  deduced  from  th e  weak compact-
ness in L ' of Q-  a n d  from the entropy dissipation bound (121). T hen, (126),
(127) follow from velocity averaging results and the bounds (120).

Then, w ithout loss o f  generality, w e m ay assum e th a t  (2+  (f " ) ,  Q -  ( f " )
converge weakly in  L.' (W,Y x K  X  (0, T ) )  (for a ll com pact sets K C R I: ,  T E
(0, 00)) to , respectively, Q+ , Q - . - O. A nd w e have of course: f  E C ( [0 , 0 0 ) ;
LP (R )  )  satisfies (120), (15) and

(129) at.
L -Fv• G' f =Q + —Q- i n (Rry x (0, œ )))) .x

Furthermore, adapting the argument used in section III, we have

(130) ‘24-" K (2 -+  
1

log K e°Q - 1 ( Q + +  
1  

log K a.e.

for some eo 0, eo EL1 (Rry  x (0, T ) )  (v T E  (0 , 0 0 ) ) .

In order to complete the proof of Theorem V.2, these remains to show that
Q+  —Q -  = Q  (f ) o r  in  fac t tha t Q+  =Q + (f ),  Q = (2-  (P . T he proof of these
tw o  c la im s is  d iv ided  in to  seve ra l s tep s. T h e  f irs t one  consists in  approx-
imating B  conveniently . W e truncate B  and consider B 6 (z , (0) (0 < 5  1 ) a

(128)



Boltzmann's equation N 575

nonnegative function of Izi and I (z, (0) I only such that

(131) E3a 0 for IzI small, Izl large, Iv col small, IzI—I (z, co)I small

(132) 0 /3,5(z, w) (z, w)

(133) Ba(z, T B(z, (.0) as a 10 + , a.e. (z, 0.)) E RN x  sN -1

W e denote by Qa, Q ,  Q i  the  associated collision operators defined by replac-
ing B by B a in Q  Q  Q-  respectively.

We claim that we have

(134)
{ supn21 111Q+ 

(fn)( f  n )111.1 (c) +11Q- 
( f n )

( f (01

— >0 a s  5—>0+

where C= W. X K X  (0, T ), for all compact sets K C T E  (0, co). O bviously

Q+  —Q  —  Q i a re  also collision operator that corresponds to  the collision
k e rn e l (B — B.5 )  which satisfies: 0 — Ba Therefore, it is enough to
p rove  (134) fo r IQ-  — (Q since the  o ther assertion then follow s using (121).
Next, we observe that w e have

0 (fn) _ Q ( f n ) —A6) *fn a.e.

where A  (v ) = I s-- .B (v, w) ) d co. Therefore

1 f

11Q-  (f n ) — W  (f n )I1D(c)

II I
d t  f n  (x, v*, t) f (A — A6) (v — v*)dv .

6 J 111"x (0, T) K

Then, because o f  (133), f K (A —, 46) (v— v*)dv  converges to  0 uniformly in I)*
and is bounded as o goes to 0+ . And since, by assumption on B.

f (A - 246) (v — 14 ) d t )

f A (v — v*)dv= 0 (1v*I 2) a s  Iv*I2 — ' co

we conclude easily that (134) holds.

W e  n e x t  w is h  to  show  th a t  Qa(f n ) converges w eak ly  in  Lc° (R ri, x
(0, co)) — * o r  in  L ° (R Z , x  (0, T ) )  fo r a ll T E  (0, on), 1 < 00 , to  Q a( f ) .

, 1  1N otice t h a t  0 (2,1(f n)1 6 2
at" x (121) h o ld s  a n d  Qi (f  n )

1 II (le x s'-r)f n , and thus the  weak convergences are obvious. However, we

have to identify the weak limits and th is is  a  priori delicate since Q a is highly
nonlinear. A ssum ing that this claim  has been proven, we see that f  is indeed
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a solution of the BD model or, in  other w ords, that Q±  — Q ( P .  For, be-
cause o f  (134), Qa ( f )  converges to  Cr — Q-  in  L 1 (it{ x K X  (0, T ) )  a s  5 goes
to 0+  ( fo r  a ll compact sets  K C R ,  T E  (0, c o ) ) .  On the other hand, adapting
the argument made above and using in  pa rticu la r (130), w e check tha t Qa (f)
converges to Q (f ) in L i (R x K x (0, T )) (V  K  compact c R y , V TE (0, co)).

In  order to  prove that the weak limit of Qa (f n )  that w e denote by Qa is
nothing but Q a (f), we decompose Qa( • )  in the following way: w e w rite for all
functions g

(135) Qa (g )  =CA (g )  —gRa (g)

where CA, R .  0 are given by

(136) Q  (g) = f„„dv*.f s do)BagT * (1— sg *)

(137) (g) = L d v *fs , cic.oB a * (1 — (1 —Eg' * ) + w'g' *  (1— w * .

Of course, we may rewrite Q la and Ra as follows:

(138) W(9) = (4 (g, g )  —6 0 (g ) , Q i(g )=  fw dv* f s. ,AwB ag'g'.g *

w here Q  (g , g )  i s  th e  usua l (quadra tic ) "gain" of the Boltzmann's collision
operator, and

(139) Ra (g )  =La (g) E Q i(g , g ) — EQ1(g, g) + EQ1-  (g, g)

where

(140) Q  (g, g )  =  fi o dv* f s , ,choBj g

(141) , g ) = ft e g v * fs choBag'*g'

O bserve also that ( f f l ,
f ( f n

 f n )

 Q * 1  ( f n ,  f n ) ,  Q i  f  n ) a re  clearly
bounded in  L -  (R 1',v„ x (0, co)) (by 1C, II/36 1 )i v ,  and  also w eakly compact in L'
(1t,11,vi,  x  (0, ) ( V T  E  (0, c o ) ) .  We s k ip  these  easy  arguments somewhat
similar (and simpler!) to many ones we did before.

The above claim about Qj  w ill be  a  consequence of the following fact: for
each 0>0, we claim that we have

(142) Qi (fn) Q1,5 ( , R  (  f  n
) R 5  ( f )  in L P (R,Z)  X (0, T))

and

(143) f  (f n) Odv f  ( f )  d v i n  LP (11';' x (0, T))



Boltzmann's equation N 577

for all 1 T E  (0 , 0 0 ),  E Co° (W )

Therefore, w e only have to  p ro v e  (142) a n d  (143) which, in  tu rn , is  a
consequence of the following convergences

Q ± (fn
'
 fn ) Ti eg (f, f) , Q1 (f n  , f n ) —> Qi ( f . f )n

(144)
{

Q1 (f fn ) (11 (f,

(145) fR,Qa ( f n ) dv f R ,Qa ( f) dv

in LP , for all 1 . p<0. 0 , T E (0, 00).

In  addition, b y  a  sim ple  density  argument, w e  see  tha t it is  enough  to
show  (144) a n d  (145) in  the  case  when 136 E CP° (RN  X 

s N - 1 )

 ( o r  even more
precisely is a  C-  function o f  I d ,  (y, w) that vanishes fo r  Id sm all, M  large,
(y, w ) I small, Iv I — I (y, (0) I small). F ro m  n o w  on, we make this assumption

and we omit the subscript ô in  all that follows in order to simplify notations.

In order to  prove (144) a n d  (145), we want to apply the results of Part I
[5 5 ]. W e begin with the three quadratic terms Q+ , Q 3 , Q 4 . The strategy and
the  resu lts  a re  th e  sam e fo r each o f these term s: w e a re  going to show  that
velocity averages o f these  term s are  com pact (in  L ' o r  in  L2 )  i n  (x , t )  and

N -1  
then w e shall prove that they belong to L2 (Ws' x (0, T); 1112  ( E ) )  ( V  T  E
(0 , 0 0 )).  T his  is enough to  conclude that (144) holds by  the arguments of
section i l  i n  [55] tha t Q + (f n, f  n ) , Q 3  (fn  fn ) , Q 4  (fn  fn ) a re  bounded in

x  (0, 0.0)) and weakly compact in L i  (R,g, x (0, T ) )  for a ll TE (0, 0 0 ), so
we only need the compactness in L L  in order to  prove (145).

Then, we need first to show that for all OE Co°(R iN)

(146) 1 converge respectively to

Q + (fn , f n )( ,bdv , f  Q 3 ( f n ,  f  (I) d v ,  f ( f n , f n )  d v
11."

fR ,Q+ (f, f ) d v ,  f R ,Q 3 (f,f) dv, L Q 4 (f., (,b dv

in / lc  (R N  x (0, 00)) (say!). T h i s  w ill be in  fact a  straightforward consequ-
ence o f  (126) choosing R(t) t  (and  o b se rv in g  th a t f ie f n Ody  is relatively
compact in L 2 (R 's'  X  (0 , T ))  (V  T  E  (0 , 0 0 ) ) and thus converges in 1,2 (W  X
(0, T )) (V  T  E  (0, 00)) t o  f RIOdy for all E Cci (R 7N) . Indeed, we only have
to show that the three integrals in y above (velocity averages) can be written
as

f  n  ,  V , O f '  , v , 1)a (v , w )dv  dw
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for some a e Co° ( 12 N ). Then, (146) follows easily.

Such a  representation is easy  fo r  Q+  s in c e  w e  have changing variables
y'*- 0-v*)

JR" 
Q+  (f", f n ) d v =  f  fi r ,f"(x , v , t)f n (x, v*, t)

L B  (v — v *, (.0) (v')dwidv dv * .•I -
The representation for Q4 is obtained in  a  sim ilar w ay (in fact sim pler) to the
one  fo r Q3 so  w e  o n ly  d e ta il it  fo r  Q3 . W e firs t rem ark  tha t, by  th e  same
change of variables, we find

( f ", fn) d v =  f n ( Of' (x, v' * , t) 0 (0
fR v f „ x s

f x ,  v ,
—

•B  (v—v * , co)dv dv * dco

Then, the idea is that, roughly speaking, V * describes R N w h e n  (y* , co) de-
scribes RN  x  SN - 1  w i t h  in  f a c t  (N — 1) fre e  paramenters fo r  each fixed v.

s N-1/More precisely, on can check tha t the mapping from S =  I (y, (.0 ) e  RN x
v* •co = 0, v•co> 01 into R N _  1y1 defined by v'*=v*H- (/), co) co is smooth and
1- 1 .  The representation we look for is thus achieved by a simple change of
variables: notice indeed that B  (v — v*, (.0) van ishes near 1(y*, co) =0, (y, co)
small} and th a t  1/4 is the im age of 1(v*, co) E S/IY — v*1= I (I) — v*, (011 in a
neighborhood o f  w hich B  van ishes. T here fo re , th e  ch an g e  o f  v a riab le s  is
smooth over the support of B and we conclude.

In  order to com plete th e  proof o f  (144), w e  s till have to  show th a t Q+

(f n, f  n) , Q 3  ( f  n , f  n ) , Q 4  (f  n ,

 , )nj a re  bounded in  1,2 (W  X (0, T); H i
Nd 1 ). For

(24
- , th is  is  a sim ple consequence of the results o f  P a r t  I  [55] since we have

for all x, t

(147) (f ,  f)11Ĥ(}1n dif 11v (R )IlfIlL (Rn

for some C O  independent of f. Of course, we deduce from (147) for each R
E (0, 00)

(148) IlQ+ (f, C11.1.11L'(%.,„)11f

for some Ro (that depends only on the size of the support of B ) ,  where BM=
E RN /Iv I <MI. A n d  our claim  on Q± 

( f n  f n )  is show n since ( fB„o.,If 12 d0 1 / 2

( f Idv) E Ll  (E  X  (0, T ))  f l  L -
 ( E x  (0, 00)) V  T E  (0 ,  00) ) . The

above claims on Q3 , Q4  a r e  proven in  the  same way in  view of the result that
follows which shows that the results shown in  P art I  [55] on Q+  also hold for
Q3 a n d  Q4 . L et us reca ll tha t in  th e  result which follows, B = B (z, co) is  a
smooth function over IV x Si v - 1  that vanishes near z= 0, z•co=0, 1z1 1(z, co)1=0,
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Izi large and which depends only on 121 and I (z, w) I. W e  d e n o te  b y

(149) Q3 ( f, g) (v—v*, w)f (v*)g (y')

(150) Q4 (f, g) = f R ,dv*fs do).B(v—v*, w)f (v*)g (v'*)

for all f, g E C(1' ORIn  .  W e then have the

Proposition V.I.. Q3  an d  Q4  are  bounded bilinear maps from L 1 (R N )  x
L 2 (RN) i n t o  H y  (R N)

Remark V.2. Exactly as in  P art I  [55], more general results are possi-
b le  w ith  LP s p a c e s .  In  particu la r, w e  can  replace L ' ( R N )  b y  th e  space of
bounded m easures o n  10. A lso , Q3 a n d  Q4  a r e  bounded from  L' (R N ) x

Hs  (R N )  into IP ± N 21 (R N )  for all s E R.

Proof of Proposition V .1 . W e sim ply observe that by  changing  variables
[(y, y*) — ) (//, y' * ) ]  we find for all 0 E Co° (RN )

fR Q3 ( f, g) d v = g (v )d v f f B (y — v*, w ) (Jo (Of (1/ *)dv*d co}

=  fi e g (y)Q+ (0, f)dv

and similarly changing variables [ (y, v * )—* (v'*, 0 ]

fR9 4 (f, g) 0dv = f R ,g (v) dv if  f i e  B  - * , (Of (vt) (v i  *)dv*d co}

=  fR v g (y)Q+ (f, 0) dv

A nd we conclude easily using the resu lts o f P art I  [55] since Q+  is bounded
/V-1 N -1

from H  2  (R "  X L ' LI  (R N ) and  L l  (R N ) X H  2

There rem ains to prove (145). F irst of all, w e  c o n s id e r  E (R n  and
rewrite exchanging y and y*

(151)

I fR

:Q 3 ( f n )  d v =  f i r  fn (x, v,

If —v * , w)fn (x, ,  O f' (x, v'*, t) ( v * )dv *dwidv .

(R N )  into L2 (R N )

The quantity between brackets has exactly the same structure tha t Q+  ( f n , f n )
and the same proof as above yields
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{
nff.,x S' - 'B f  nf' fl' (1)*dv*dco — > f  f

I t v x S " - 'B f  
'f'*(P*dv do)

i n  LP (1Vx̀
r x (0, T ))

for a ll T C (0, co) , 1 p < 0 0 . W e then u s e  (126) to deduce from  (152) the
convergence (145 ). And we conclude.

Remark V .3 .  It is  na tu ra l to  a sk  w he the r (145) can be im proved and
i n  p a r tic u la r  w h e th e r  Q 2 (f  n ) c a n  b e  ( a u to m a t ic a lly )  c o m p a c t  in  LI,,,,t
( lo c a lly ) . In fact, th is is no t th e  c a s e . Indeed, one can, equivalently, consid-
er for complex-valued functions f n  , g n , hn

Q2 (f n  g n  h n )  f
R N

dv* dco B .

We then choose f n  = e 1 0, gn = ei n n q,o, =e i n n 'yo where n 0,(/) E co (Rn is
such that Q2 ((p, cp, ço) 00. Then, we observe that w e have

Q2 (f n g n hn) = e inviQ2 ((p (p)

and this sequence is not relatively compact in Li0c(R11,\Tvx ( 0 , °°)).

Appendix 1. Llog L integrability of averages

We show in this appendix the following

Lemma. Let f__O satisfy

(A.1) A = f  L x i v f (x, y ) (1+1vI 2 -  (x ) ± I lo g f  I) dx dy< 0 0

where co satisfies (1 9 ) . Let p (x) =  I R I ( .  y ) d y .  Then, we have

(A.2) L p (x )I lo g p  (x) Idx CoA

for some Co>0 independent off.

Proof. In view of the Appendix 1 of Part I  [55], it is enough to show

(A . 3) plogp d x  (1 + 7 ) A

since (A.1) implies obviously: pweL l  (R N ).
In  o rde r to  p rove  (A .3), w e u se  a  classical t r ic k  ( in  Stastical Physics)

and we recall first the following convexity inequality valid for all a, b [0, 00)

(A .4) aloga +a —b .

W e then apply (A .4) with a =f (x, y ) , b= p(x)e - n lY12 a n d  we find integrating
(A . 4) over R N X Rk
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ff.,f log f dx dy f  f f (x, y )  Ilogp (x) — IYI9 dx dy
R 'x i t

Therefore,

fR  
p  (x ) lo g p (x )d x  f fI r x i t ,f (log f  7 6 1 2 ) dx dy

and  (A.3) is  proven.

Appendix 2. An equivalent formulation of renormalized solutions

In  this appendix, we show why the formulation of renormalized solutions
o f  (VB) equations is in  fact equivalent to the  natural adaptation to  th e  (VB)
system of the form ulation originally introduced i n  [25 ]. Indeed, we wish to
show that if f E C ([0, 0 0 ) ; (R ) )  ( f  0) satisfies (A) and

(A.5) j-kdiv x 10 (p i  +div v (f) =,13-  (p Q ( f , f )  in  D'a t 
for all /3E C1 ( [0, 00) ; R) such that IT (t) (1+ t )  is bounded o n  [0, 00), then f
is  a  renormalized so lu tion  o f (VB) in  th e  sense o f  se c tio n  II . In  fa c t, b y  a
simple approximation argument (truncating ig and g ,  smoothing g  and j3), w e
easily check it is enough to prove that (A.5) implies

(  A .  )

la
- Nr(f — g) ±div x lvr(f79) +divv1Fr(f — g) i

= r '(f  — g)Q(f ,f ) —  ( f — g) it+ v  •  V x g ± F. 17x 9 }  in D'

for a ll rE ( [o, 00) ; R), g E Co° (R  x  [0, 00)). In  order to  do so, we first
observe tha t F E (0, T; WL.1, (W I ) )  ( V T E  ( 0 ,  0 0 ) )  because o f (A ) and
(42 ). Therefore, by the  resu lts of R. J. DiPerna and P. L . L ions [29], (A.5)
implies

{

gt [y(/3 ( f )  —g) ±divx ivr (d3e (f) — g)1  ±div v F î (/3  (f) — g) [ =

y (/se —g) 113' , (f) IQ (f, f) — a + v -  V g + F  1 7 ,,g 1 } 1  in '

where i3,(t) — i +
t
 E t o n  [0, c o )  (e> 0).

A nd (A.6) follows easily upon letting E go to 0+ provided w e check that

(A.8) (f) — g) 13 ' Ecp  Q (f, (f — 9)Q (f, f) in L.1 (Rx K  x (0, T))

(A .7)

for a ll TE (0, co), compact set K  c lt" . Since the  a.e. convergence is obvious,
we only have to check that we have
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(A.9)
f 1 

1 (,0 )-g1 c)  113 Q± (f, f) is relatively weakly compact in
(1-F-sf) 2

Ll(WxK x (0, T ))

fo r  a ll C, T  E  (0, 00), compact set K  C It i
v
v . A n d  in  view  o f  (75), i t  is, as

usual, enough to check (A .9 ) for Q .  B u t ,  we have then a.e. on 12 x (0, 00)

1(113,(f)-gi C) • 1 + s ff1(i3.(f) C+9) l, (f )
(1 ±  0 2

CL (f)

since g  is  b o u n d e d . And we conclude.
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