J. Math. Kyoto Univ. JMKYAZ) 539
34-3 (1994) 539-584

Compactness in Boltzmann’s equation
via Fourier integral
operators and applications. III

dedicated to the memory of Ron DiPerna
By

P. L. LioNS

I. Introduction

This work is the continuation of Parts I [55] and II [56]. In particular,
a general introduction to Boltzmann’s equation (and kinetic models) can be
found in [55] together with a description of the main goals of this series. Re-
ferences can be found in the bibliography here which is a combined bibliogra-
phy of Parts I-III. We also keep the same notations as in [55], [56].

Let us begin by recalling the general form of the Boltzmann's equation
where we include force terms

o . V. f=
(1) at+v fo+F Vuf Q(f'f) )

xER, vERY, >0

where N>2, f -the unknown- is always assumed to be a nonnegative (scalar)
function on R2Y x [0, o0).

In the classical Boltzmann’s equation, one takes F =0 and the so-called
collision term (or operator) Q (f, f) introduced by L. Boltzmann [11] and J. C.
Maxwell [61], [62] is given by the following bilinear operator

2 QULN=Q*(£,.N—Q (£.N) ,
@ QU= ave [, d0BO—ve W) .

QN = [ dva [, d0Bw—va, @) ffa=fL() .
L()=Axf,

@)

and A (2) = [s+B(z, w)dw (zERY), fa=f(x, vs, ), [ =f(x, v, ), f's=f(x, v,
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t), vV=yp— (1)—1)*, (1)) W, Vx=vx+ (v—v*, a)) w, Vsx=vx+ (v—v*, CO) w. Let
us recall that here, as in [55], [56], we denote indifferently by a*b or (a, b)
the usual scalar product of a, bER?.

The so-called collision kernel B that enters the operator @ is a given
function on R¥ X SV~1 We shall always assume (at least) that B satisfies

(5) BEL'(BgxS¥Y) for all R€ (0, ) , B>0
where Bg= {zERV, |z| <R}, and

(6) B(z, w) depends only on |zl and |(z, w)

’

A+e) ([ Awav—0

as |zl—o0 |, forall RE (0, o)

()

and we shall not recall these assumptions in all that follows.

A classical example is given by the so-called hard-spheres model where

we have
Bz, w)=|(z, a))l .

To complete the description of (1), we now have to explain the meaning
and detail the form of F. It is physically natural to add a force term to the
classical Boltzmann’s equation (see for instance C. Cercignani [13], [14]) and
mathematically this modifies very little the analysis at least when F is a given
external force i.e. a given function on RY (or on R¥ x [0, o), or even R X
[0, ©)). However, if the particles whose dynamics are described in a statis-
tical fashion by (1), interact with a two-body force, we are naturally led to a
Vlasov-like force (or self-consistent force, or mean field...) F given by

F=-VV , V:V()*p s
9)
o (x, t)=j;Nf(x, v, t)dv on RYx [0, o)

where V) is the interaction potential between the particles always assumed to

be at least in Wit (RY). Of course, we might add to this force a given
(external force) and we may consider as well more complicated systems with
several species of particles.. But these extensions do not affect the results
we prove here and this is why we prefer to skip them. A case of particular
physical interest corresponds to the so-called Vlasov-Poisson model where

N=3, VO:Z;rlIH so that (9) becomes
(10) ~4:V=p onRYx[0, %) , p=[ fdv on R¥x [0, ) .

We shall call the composite model (1) and (9) the Vlasov-Boltzmann sys-
tem (VB in short) and the above example (N = 3, V, = 4—71_15[) the



Boltzmann’s equation [l ' 541

Vlasov-Poisson-Boltzmann system (VPB in short). Let us finally mention an
extension of the VPB system namely the Vlasov-Maxwell-Boltzmann system
(VMB in short) which looks like the VPB system is a very natural model in
Physics for charged particles (in plasmas, lasers...). In that case, (9) is re-
placed by the Lorentz force determined by the electro-magnetic field created
by the particles themselves. More precisely the VMB system consists of (1)
and choosing N=3

(11) F=E(z,1) ++vXBx, 1

(12) aa—f—ccurlB:—j, divB=0 on R3X (0, o)
9B _ o ,

(13) 5 TeeurlE=0, divE=p  on R°X (0, )

= dv , jx= vidv
(14) 0= J.f I

(1<k<3) on R*x(0, ) ,

where ¢ denotes the speed of light.
Of course, all these systems have to be complemented with initial condi-
tions. In the case of the VB system, one simply prescribes f at time =0 i.e.

(15) f|r=0=fo on R%

where fo= 0 satisfies some bounds detailed below. And in the case of the
VMB system, we add to (15) initial conditions for E, B i.e.

(16) E|t=O=E0- B|¢=o=Bo on Ri

with the usualy compatibility condition
(17) div E0=po=jl;fo dv on R .

We state in section II below our main existence and compactness results
concerning the VB system. We assume that f, satisfies

[ [ o040 @) +lol+ hog o)z
(18)

+fj;z~p°(x)|V°| (x—y) po(y)dx dy<oo |

where w satisfies
(19) w=20, (14+w)Y? isLipschitzon RY , e “eL!'(RV)

(typical examples are w (x) =|z|? |x|, (1+]x|?)*? with 0<a<2..). We also
make some regularity assumptions on V, that are detailed and discussed in
section II: let us only mention at this stage that these conditions hold in the
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. 1
case of the VPB system i.e. N=3, V0—4—n_|—[.

We then present in section II a result that states the existence of global
weak solutions - whose precise definitions are given in section II, let us only
mention that they correspond to the formulation introduced in Part II [56] for
Boltzmann’s equation and which is a refinement of the notion of renormalized
solutions introduced in R.]. DiPerna and P.L. Lions [25], [26]. This global
existence result is thus the analogue of the existence results shown in [25],
[26] and refined in Parts I and II [55], [56].

The proof of this global existence result is given in section III and of
course as in [25], [26], [30] relies upon compactness and stability results
that are also presented in section II and proved in section III. These results
concern sequences of weak (possibly approximate) solutions of the VB system

denoted by f”, corresponding to initial conditions f§=0 which satisfy the fol-
lowing natural uniform bounds

sup{ [ [ s 80+l () +liog st dz av
(20) =)

+fj:v~pg (l")lvo(x—y) |03 (y)dx dy] <oo

where, of course, p§ = fR,,f(’,’dv. As we shall see in section II, under simple
conditions on V), these bounds imply similar bounds uniform in ¢ on the solu-
tions f” namely ‘

sup {f szf"(1+|v|2+w(x)+|logf"|)dxdv
(21) n21,t€(0, T]

[ [ o @IVaa—y)lor )iz ay) <oo

for all T€ (0, ). And without loss of generality, extracting subsequences if
necessary, we may assume that f% f" converge weakly in L' (respectively
weakly in L*(R%), L' (R¥ x (0, T)) for all TE€ (0, o)), to some fo, f respec-
tively. Our first result states that f is also a global weak solution of the VB
system satisfying (15) and is thus the analogue of the result shown in [25],
[26] on Boltzmann's equation. But we want to point out that the extra Vla-
sov term requires a new argument which in fact can be seen as a simplifica-
tion of the original proof made in [25] for Boltzmann's equation. The proof
uses heavily renormalization techniques (and in particular the results of R.].
DiPerna and the author [29] on ordinary differential equations and linear
first-order equations with nonsmooth coefficients): indeed, one weakly passes
to the limit in the renormalized equations, then renormalize the resulting limit
equation and finally let the first renormalization go to the identity. Except for
this new idea, the main compactness argument is, as in [25], the compactness
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of velocity averages (or macroscopic quantities) in L'.

The second compactness result shows that, if f§ converges strongly in L!
to f”, then f” converges to f strongly in L' (R%) uniformly in t€ [0, T] (for
all TE (0, )). This result is thus the analogue for VB systems of the one
shown in Part II [56] for Boltzmann's equation. As in [56] the proof relies
upon the a.e. compactness of the gain term (of the collision operator) and
some renormalization techniques for linear first-order equations.

At this stage, it is worth mentioning that all the “compactness-stability”
and existence results are shown under conditions on V, which include
variants of the following (crucial) one

D3 (Vo*p) €Ll (RY) if 020,

22
(22 j;wp(|logp|+1+w(x))d.r<00 :

This condition is satisfied, for instance, in the case of the VP system where N
=3, Vo=]%[: indeed, in that case, (22) holds in view of classical results on

Riesz transforms - see, for exemple, E. Stein [68]. It is also worth noting
that the condition (22) is essentially the condition needed in the proof of P. L.
Lions and B. Perthame [57] for Vlasov systems (without the collision terms)
on the propagation of high moments in v and the regularity of solutions.

Next, in section IV, we consider the coupled VMB system (1), (11) - (14)
and we prove the existence of “very weak solutions” for general initial condi-
tions (15)-(16)) (fo, Eo, Bo) satisfying (17), fo0=>0 a.e. and

(23) fj;ﬁfo(l-l-a)(r)+|v|2+|logfo|)d.rdv+j;J|E0|2+|Bo|2dx<00 :

In fact, we introduce for this purpose a new notion of weak solution that is a
bit weaker than the notion introduced in [25] (namely, the notion of renormal-
ized solution).

Finally, in section V, we study the so-called Boltzmann-Dirac model (BD
in short) consisting of (1) with F=0 and a collision term Q given by

(24) Q:j;"dv*.[gmde (v—vs, o)
A (l—ef) Q—efs) e (l—ef) 1 —ef )}

where B satisfies the same conditions than in the above Boltzmann models and
€>0 is a (small) physical parameter. The physical background on such a
model can be found, for instance, in S. Chapman and T.G. Cowling [17]: let us
simply indicate that this phenomenological model aims to incorporate quantum
effects such as the Pauli exclusion principle in the statistical description of
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possible collisions. From a mathemanical viewpoint, this collision operator
presents some advantages over the classical Boltzmann's operator since one
expects, at least formally, solutions f to satisfy

(25) 0<r<1/e on R2Y X [0, o]

at least if the initial condition (15) f, satisfies the same constraints. In other
words, L” bounds are available. A general study of this BD equation was
performed in J. M. Dolbeault [34] that yields the existence, uniqueness and
further properties (conservations, é—0..) of solutions at least when B sa-
tisfies in addition

@) [ dzdwBw)=[ A@d<wo

a condition that excludes the hard-spheres model. We show here a general
existence result of bounded solutions which relies upon a weak compactness
result for solutions of (BD) corresponding to initial conditions which weakly

converge in L' (R%) (and satisfy uniform natural bounds described in section
V). In turn, this compactness result shown in section V is deduced from
“compactification properties” of various nonlinear terms that appear in Q.
Namely, we show that for a bounded sequence of solutions f” then, under
appropriate conditions on B, the following quantities are compact in

Lioc (RE X (0, 0))

27) f~ SN_,dv*de(v—v*, w)F"

where F'=f"f%, f"f% f¥% ST %

In fact the first term is (essentially) the gain term we analysed in Part I [55]
for which we proved such an “automatic” compactness. The two other

quadratic terms namely f"f% and f%f % are simple adaptations of the preceding
one. We also have to prove the weak convergence in L},, (and strong con-
vergence in Ll of velocity averages) of the trilinear term (27) where F"=

SYTE.

II. Existence and compactness results for Vlasov-Boltzmann systems

In this section we investigate the VB system (1) -(9) (when N=2) and
the collision term Q (f, f) is given by (2) - (4) and B satisfies (5) - (7). We
shall not recall these assumptions below.

We first collect some (“classical”) a priori estimates. First of all, using
the classical identity
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RN e w)dv
(28)

=%f./;v~dv dv*j;N_.de (Ff s—ff) o+ osx— @ — @]

we deduce the following local conservations of mass, momentum and kinetic
energy

(29) %p+div, ()=0 in R¥x (0, o)

(30) L jetdiva( [ vonfan) =0 in R (0, o)

(31) %(j;vﬂ”lzd”)+divx<_/;~v|v|2fdv)

+2div; {(Vo*p)jt —2(Voxp)divz(j) =0 in R¥ x (0, o) .

Integrating (29), (30), (31) in x over RY and using (29) in (31) we deduce
the following global conservations of mass, momentum and total energy

(32) %f RmfdxdeO for t=0 ,

(33) %f wof Vedz dv=0 for 20, for 1<E<N |

4 ff 2
T { RM/M dx dv+

(34)
+f_[;z~p(x) Volx—y)o(y)dxrdyt =0 for t=0 .

Therefore, if we assume that the initial condition fo (see (15)) and V,
satisfy for some C=0

(35) VoELL:(RY) , Vilx—y)<C(+wkx)+twly)) ae x, yERY

f o]0 142+ @) +|logfoll dx dv
(36)

+fﬁz~p° @) [Volx—y) loo(y)dax dy <+o0

we deduce for the nonnegativity of f and fo

sup SO T+ o @) dr dv
(37) [0, T]f’/;

+fj;,~p(x. DIVel@—y)loo(y, t)dx dy <C(T)

for some nonnegative constant C(T) that depends only on T and on the bound
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(36). Indeed, the L' bound on f(t) is obvious in view of (32) while (34)
yields, for all t=0, because of (35)

ffnmf(t)lvlzdxvarfﬁwp(x, DVolx, y)lo(y, dx dy
$C+2fj;wp(x, DV olx—y)o(y, t)dx dy

SC+CLNp(x, t)w(x)dr=C(l+fmef(t)w(x)drdv) )

Here and below, C denotes various constants that depend only on (36). Next,
we observe that we also have

%(LJQ)CO(.:C)dv)+divx[j:wf(t) dev}
=fRNf(t)v° Vo)dy

1 1
<3 J fbav 500 0|V 0 @)

<[ fokavt+crc [ ro@a

in view of (19). In particular, we deduce

[ r0e@arascrs[ [ 1o li+ow@ldaa

We easily obtain (37) from these inequalities applying Grénwall’s lemma.

The final formal bound we wish to obtain is deduced from the (formal)
entropy identity. As usual (see [13]..) it is obtained multiplying (1) by
log f, using (28) which yields, at least formally

il
T, RZNflogfd:c dv

+% RNdxfwadv dv*fSN_‘da)B(f’f’*—ff*) 10811,9{;*:0 '

Since the second term is clearly nonnegative we deduce in particular

stlznopfﬂwf(t)logf(t)dr dvéfj;mfologfodr dv .

This inequality together with (36) and (37) then implies (see Part I [55] for
more details)

(39) Sup. f j; () |logf (8) ldx dv<C(T)

where C(T) denotes various nonnegative constants which depend only on T
and on the bound (36).
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Then, if we go back to (38), we also deduce from (39)

(40) f f f dv dvx f dwB (f'f’ *—ff*)logff;—* c(T) .

In conclusion, we obtain the following (formal) bounds

Sup f.];wf(t) 1+l +w (@) +logf () |} dxdv+

tefo, T]

ay  { +[ [ e DlVae—yloly. Dz ay<c(m)

[afacf fvine o (ra-grod L <cm

for all TE (0, o).
In addition, if w (x) =|x|?% C(T) is independent of T provided we replace
w by w(xr—uvt) in (41).

Before we state our main existence and stability results, we need to ex-
plain the notion (s) of weak solutions we use. First, we state some regularity
conditions we need on the potential Vy:

If 920, ¢ (1+w+|loge|+ VE*¢) is bounded in L' (RY),

then Vo* ¢ is bounded in L}, (RY),
(42)

N+2

V (Vo*¢) is bounded in L= (RY) +L73 (RY),
D% (V,* (0) is bounded in L}, (RY).

The role of this condition will be clear in the proofs of the results we state be-
low. Let us make a few remarks about it. First of all, we observe that be-
cause of (41), the integrability conditions of (42) hold for ¢=p(t) (uniformly
in t€ [0, T], for all TE (0, )). This is immediate except for the integrabil-
ity of go|logqo| whose proof is given in the Appendix 1. We thus deduce that

Vo0 €L (0, T; Ll (RY)), Vo(Voxp) EL=(0, T; L=+L"Z" 2(Voxp) €
L=(0, T; Ll (RY)) for all TE (0, ).
We next give a few examples showing how one can check (42). Let us

mention, by the way, that (42) is (when N=3) exactly the condition needed in
P.L. Lions and B. Perthame [57] for the obtention of moments bounds (and

regularity) for solutions of Vlasov systems. Next, if Vo= | e with =0 (a

<N, a=0 means V,=loglr|) then we claim that (42) holds if 0 <a <min
(N_Z-I—N—l N — 2). Indeed, first of all, by a simple Fourier analysis (for
example), we see that |x|™* o €L2(RY) if (x| **¢) o€ L' (RY) where f=

%, Therefore, by Holder's inequality, |x|~*® % ¢ and thus V (Vo* @) €
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L? (RY) where p=1—2_|%=%. And p=> N+2

Next, if &« <N —2, D%V, € LN/@+2-=>(RN) (Marcinkiewicz space) and thus D2

(Vo* ) ELN/@D=(RN) CL},.. The case a=N —2 is more delicate: indeed,
we have for some constant ¢y

if and only if a_N+1

62
axiaxj (V0*§0) :CNRiRJ'QD
where R; denotes the Riesz transform (a—ij(—A) ‘”2>‘ And we conclude that

D%(Vo* @) ELI,: (RY) by classical Harmonic Analysis results (see for instance
E. M. Stein [68]) since ¢ (1+]|logp|) EL'(RY). Observe finally that the con-

dition a <min ( ZN N—2) is clearly met when a=1, N=3 - the case that

N+1°
corresponds to the Vlasov-Poisson model (in three dimension).

We may now define solutions of the system (1), (9) ((VB) system): we

say that f€C ([0, o0); L' (R3Y)) =0 is a weak solution of (1), (9) (of the
(VB) system) if for all T€ (0, o)

’ sup {ffmf(t) N4+ w (@) +Nogf(t) |} dx dv+

tefo, 7]

(A) * +f P @ D Volz—y)loly, t)da:dy}<oo :

L-l;rdtj;wdxfj;wdv dv*j;w—:de (f'f s—ffx) logfﬂf;—*< o

and if we have for all mE M

(43) —‘£+v Vof.m>+<F-Vof.m>=<Qf.f). m>

where M is a class of test functions (or multlpllers) which was introduced in
Part II [56] and that we recall now: m belongs to J if

(44) m=¢ @ t)a' (W) (f—9))+¢(x v, )B (f—9)

where 9 €C5 (RY % [0, )), p€Cy (R X [0, )), BEC' ([0, )) such that
B (t) (141) V2 and B(t) (14¢) ~ are bounded on [0, ©) where a=1/2 if N=
2, a=%—:_é if N>3. In addition, p satisfies

pECRY) , p>0 on R¥,
(45) (ax(3)) bl rec®y . v.(;)err @ .

And «a belongs to a class # defined as follows. First of all, we define a class
B consisting of those functions € C* (R; R) satisfying a(0) =0, a is Lipschitz
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on R, & (t) =1 for >0 large and a(t) —a’ (t)¢ is bounded on R. And % con-
sists of functions a € C (R; R) such that a(0) =0, a is Lipschitz on R, «a
admits right and left derivatives for all ¢ and is differentiable everywhere ex-
cept for a finite number of points, @’ (t) =1 for t>0 large and a(t) —a’ (t)tE
L*(R). Finally, at each nondifferentiable point t;, we define a’(t;) by choos-
ing an arbitrary value between a’ (t;_) and a’ (t;3) (included).

We finally have to define the class of test functions g that we allow i.e.
the space & given by all functions g satisfying

geC([0, 00); L*(RE)) , glleL=(, T; L' (R%)) |

€L7(0, T;L7(RE)) . Xty 7oL REX (0, 7))

A *g
1+|v)?

vaELl (Ov T; Lfoc (Rlzvv L (RvN)))
for all T€ (0, o), where p=2 if N=2, p=

N+2
N—1

Remark II.1. i) One might allow more general multipliers relaxing
the regularity of B, ¢, ¢, choosing more elaborate functions p and S that may
depend on x, ¢, taking different functions ¢ inside & and ...

ii) In Part II [56], we did not require that a(t) —a’(t) is bounded on
R. This additional assumption seems to be needed here in order to cope with
the force term “F-V,f".

iii) Similarly, we did not ask in [56] that V,,(%)EU(RN). In particu-
lar we have to check that such a p exists. Recall that we have shown in [56]

that there exists @ E Co(RY), @>0 on RY such that IA—_:"%ECO(RN). The
v

construction made in [56] also shows that we may always assume: @ €
L'(RY). Then, let p € C*(R") be such that =0 on R", [,.0dv=1 We
claim that p= (®) ! where @= ®*p satisfies (45). Indeed, >0 on R", V,®
=@ * Vpe L'(RY), ® € C(R" and A * &= (4 * ®) * p hence
A*x0) 1+l 'eCy(RY).

iv) In [56], we did not make any assumptions on V,g in the defininion
of 4. This extra assumption is needed here to take into account the force

if N>3.

term. Many variants are possible: in particular, if, in (42), N;Z is replaced

2 . .
by a larger exponent then x-{—_l can be decreased to its conjugate exponent.

For example, when N =3, Vo=]%[, (42) holds with NTH=% replaced by 2

and thus xi—i =% can be replaced by 2. A similar observation can be made

on the growth condition on .
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Of course, these remain to give a precise meaning to each of the terms be-
tween brackets in (43). This is done in Part I [56] for the first term and
the last one. We do not recall the details here but we simply recall that we
have on one hand

<%+v- Vim>= <<%+v' V,)[co(p(f—g))%}, o>
+ [Tt [ e p(-0)) o[ L+ 7.0)
+<(Z 40 7)BU—0). 9>

+[Catf a8 (~0) o{ L4 7]

And the first and third terms make sense in distributions sense while the
second and the fourth ones are meaningful in view of the assumptions made
upon 4. On the other hand, using the symmetries of the collision operator, we
write as in [56] the term<Q(f, f), m >as follows

<Q(f. /), m>=j;wdtﬁwdx(p(x, 1) {j;mdv du*fwdw
Bffxla (o' (f'—9")) —a’ (p(f—9))}
+f0 dtfRNdxj;wdv dv*j;N_lda)B(/I U =S B (f—9) .
These two terms are shown to be meaningful in [56] because of the properties
of a and B and of the “entropy dissipation bound” assumed in (A).
These remain to define “<F*V,f, m>"in (43). To this end we set

<F-Vuf, m>=<F- Vug.m>+ﬁwdtﬁNdxF(P‘fwdeu<%) :

=0 o —0) —ap—a) = [t [ Fe [ av7.0B(—0) |

The first term makes sense since m is bounded and has compact support in
N+2

RY x [0, o0): indeed F, because of (42), belongs to L*(0, T; L,_— RY)) if N>

3

oc
3, L= (0, T; L% (R?)) if N=2 (for all TE (0, 0)) and our claim is shown in
view of the integrability of V,g assumed in the definition of A.

The second term is treated in a similar way since, by assumption, p (f—g)
a (p(f—9)) —alp(f—g)) is bounded while V,,%GL‘(R{,V). Finally, for the

last term, we use the growth condition on 8 to deduce that
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Je

V.¢llB(f—g)ldveC ([0, oo; LY (RY) NLT(RY)))

where 7= %t? if N23, y=2 if N=2. In addition this integral has compact
support in RY X [0, o) in view of the support of ¢. And we conclude using

N+2

(42) since FEL®(0, T: L*(RY) +L73 (RY)) if N>3 while
FEL” (0, T; Lia (RZ)) if N=2.

Let us finally observe that the above notion of (weak) solutions is stron-
ger than the notion of renormalized solutions introduced by R.]J. DiPerna and
the author [25] (for the pure Boltzmann equation) which corresponds to the
special case when m = ¢B'(f) (p=a=g=0) and BE C' ([0, )), B(0),
B’ (t) (1+4t) 7! is bounded on [0, o). In this paper we shall say that f is a re-
normalized solution of (VB) if the above definition holds for multipliers m of

the form ¢B’ (f—g) as in the previous definition (in other words we simply
take p=a=0).

We may now state our main existence result recalling that assume (35),

(36), (42).

Theorem II.1. Let fo=0 satisfy (18), then there exists a global solution
fof (VB) satisfying (15) and the following entropy and energy inequalities

f Rwﬂogf dx dv(t)

(46) 3 +%j:dstdxfj;wdv dv*fSN_,B (ff s—ff+) logf;;*

Sfﬂwfologfod.rdv , forall t>0

and
f Rmf(t) lv|2dx dv+fj;mp(x, t) Volx—y)p (y, t)dx dy

(47) 4 Sfﬂszo|v|2dxdv+fLmPo(x) Volx—y) oo (y)dx dy ,
for all t>0 .

Remark I1.2. i) Since f(w+P[?) €L=(0, T; L*(RZ)) for all TE
(0, o) the left-hand side of (47) makes sense because of (35).

ii) It is not known whether equalities hold in (46) and (47) or even if
the inequalities hold between s=0 and ¢=s only s=0 seems to be “available”.

iii) Of course, as in the case of the pure Boltzmann model, further a
priori bounds or regularity properties of solutions are not known and the un-
iqueness is a major open problem. However, exactly as we did in Part II
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[56], one can show the uniqueness of solutions provided there exists a strong
one (more regular, see [56] for more details]. Our analysis is indeed readily
adapted to the VB case. Concerning the regularity, let us mention that if B=
0 i.e. the VB system reduces to the pure Vlasov system then further a priori
estimates, regularity and uniqueness can be shown (if N =3 for example)
under an assumption on Vo which is extremely similar to (42) namely:

{VVOEL”+L%»°° (R?) ,
[(D?V,) *] is bounded from L? (R®) to L*+L? (R3) for 1<p<oo .

Indeed these conditions allow to copy the proof made in P.L. Lions and B.
Perthame [57].
iv) The solution we build also satisfies

(48) fj;mkadx dv is independent of t=0 , for 1<k<N .

v) We want to emphasize the fact that the solutions built in Theorem
II.1 enjoy various properities such as the local (and global) conservation of
mass and a priori estimates. Since these properities are somewhat hidden in
the rather complicated definition of solutions, it is worth explaining how one
can recover them. First of all, we observe that choosing a (t) =t, B=9=0 we
obtain from the definition of solutions

(49) %‘tl+div,(f)=0 in 2 (RYx (0, o))

or equivalently for all 9 E€CF (RY X [0, o))

j:odtfj;wd.r dv f(x, v, t) {%‘f (@, t) +v- Voo (x, t)}

(49)
+fﬂz~dx dv fo (x, 0) =0 .

The equality (49) is known as the local conservation of mass. Next, if we
take ¢ (z, t) = @ (t) ¢)(§) where @ € C5 ([0, o)), ¢ ECF(RY), ¢ =1 on

fle| <1}, ¢=0 for |x|=2, n=1. We deduce easily letting # go to + 0 and

using the fact that f (1+[v|?) €L=(0, T; L' (R%)) (for all TE (0, )) the fol-
lowing global conservation of mass

(50) fj;mf(t)d.r dv is independent of ¢t=0 .

Similarly, using ¢=¢ (t) (,b(%)w(x) and the bounds assumed on f, we obtain

(51) %(fj;mfwdx dv>=f ol 0 Vaw)dz do
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Observe indeed that

1 T
wl V ¢” (x) l SC;I»tSh‘ISanSC 1+w 1)IS|I|SZH

since w<C(1+|z|?). This is why we have

./;wdtfj;wco ) f (@, v, v Vo dx 0 .

Then, (50), (51), (46), (47) allow to deduce exactly as we did in the begin-
ning of this section the following a priori estimates: for all T € (0, ), there
exists a positive constant C such that

.

sup {f e O *1+|v|2+w(x)+Ilogf(t)|+lvo|*p(t)(dxdu]

tefo, 1]

(52) 1+ j; "t j; dx j; dvdvs fs doB(f'f s —ff+) logLflf%

SC{fj;z,,fo(1+|v|2+w+|logf0|+|V0|*po)dxdv+1] ‘

Theorem IL.1 is shown in section III. Its proof relies upon some stability
results we wish to state now. They concern sequences of solutions - we
could consider as well approximated solutions.. - with uniform natural
bounds and show, extracting subsequences if necessary, the weak convergence
in L' to a renormalized solution and the strong convergence in L', uniformly ¢
€ [0, T] (for all T€ (0, )), if the initial conditions converge strongly in L.
More precisely, we make the same assumptions as before on V, and B and we
consider a sequence of nonnegative initial conditions (f).>1 satisfying (20).
Without loss of generality, we may assume that f§ converges weakly in
L' (R%)) to some f, (which then satisfies (36)). Then, we consider a sequ-

ence (f").>1 of renormalized solutions of (VB) such that f"|,=o =fZon R¥
and satisfying for all T€ (0, =)

sup [fj;wdrdvf”(t) N+ l2+w @) +llogs” &) |+ Vol * 0™ () |

n21

(53) {teh.7l
T , ”’ - n, nl
voup [ at fuaz [ [ avave [ a0 1og; "ff'l: <o

Of course, we denote by " (t) = [rsf "(x, v, t)dv.

The existence of such a sequence f”, given the sequence f§, is insured by
Theorem IL.1. In fact Theorem II.1 (see Remark I1.2) provides not only a re-
normalized solution satisfying (53) but a (weak) solution satisfying even
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more precise bounds than (53). Without loss of generality (extracting a sub-
sequence if necessary), we may assume that f” converges weakly in L? (0, T;

L' (RZ)) (for all 1<p<oo, TE (0, ©)) to some f= 0 which belongs to
L=(0, T; L*(R%)) (for all TE (0, =)).

We may now state our main convergence results where we say that ¢”=
" (y, t), yERF, k=1, tE€ [0, o) converges locally in measure to ¢ if we have
for all RE (0, ), a>0
measy, 4" (v, ) =4 (y. )| > [y| <R, 1€ [0, R]} >0 .

Theorem IL.2. The weak limit f is a renormalized solution of (VB) and we
have:

1) For all ¢ €L5sc(RY) such that | @) |<C A+ |v[?) *? ae. on RY for

some <2 then [re f*Q dv converges to [rfpdv in L? (0, T; L*(RY)) for all 1
<p<oo, TE (0, ).

2) L(f") converges to L(f) in L?(0, T; L*(RYXK)) forall 1<p<oo, TE
(0, ), K compact set in RY. '

3) Forall $E€L™(RY) with compact support, [eQ* (f", f") ¢pdv converges
locally in measure to | ,.Q* (f, f) ¢dv. And Q*(f", ")+ (1+f") 7! are relatively
weakly compact in L* RY XK X (0, T)) for all TE (0, ), K compact set in RY.

4) QT (f™ f") converges locally in measure to Q* (f, f).

Remark II.3. In addition, we have the following inequalities that are
deduced from the above result exactly as in [26] by (essentially) convexity
arguments

E,gl—fj;mf"(t)logfn(t)d.rdefwaf(t)logf(t)dx o
li_mj:dsﬁl”dxfj;’"dvdv*.];mnde(f"'}”i:—f”f@)]ng;':;‘_f
n %
Zj;tdsfwdxf f"’”dv dv*j;N_lde (ff x—ffx) log%

for all t=0.

Theorem I1.3. If in addition [ converges in L' (RZ) to fo, then ™ con-
verges to fin C ([0, T]; L*(R2)) for all TE [0, ). And f is a solution of the
(VB) system if (f™)nis a sequence of solutions.

Remark I1.4. Parts 1) -3) of Theorem I1.2 are the analogues of results
shown in R.]. DiPerna and P.L. Lions [25] for the “pure” Boltzmann model.
Part 4) corresponds to the main compactness result shown in Part I [55]
while Theorem II.3 is the analogue of the convergence result shown in Part II
[56] again for the Boltzmann equation.

Theorems II.2 and IL.3, as Theorem II.1, are proven in the following sec-
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tion.

III. Proofs

We begin with the proof of Theorem 11.2. We divide it into two main
steps. In the first one, we briefly explain why parts 1) -4) hold. And we
concentrate in the second step on the proof of the fact that the weak limit is
indeed a renormalized solution of VB. If the first step is essentially an
adaptation of the results and methods of [25] ([26]) and [52], the second one
requires a new argument which may be seen as a simplification and extension
of the original argument introduced in [25] for the weak passage to the limit
in the context of Boltzmann equations.

Step 1. In fact, we are only going to prove 1) following the arguments
of [25] (see also [52]) since 2) and 3) are then shown exactly as in [25].
Finally, once 1)-3) hold, the proof presented in Part I [56] immediately yields

4). In order to prove 1), we first recall that for all compact sets KCRY, T€
(0, ). Indeed, we have

ffmxkdr dv (1+/")7'Q~ (f", f™) Sfj;,vx,(d-r doL"(f)
- RNdxf;an(I. Vs, t)j;(A (v—v4)dv

<c[ dz [ "G vw ) UHlosl)dos

in view of (7). And (54) follows from (53).
Next, we observe that we have
QY (f" M) <2Q(f" f™)
]- n cn’ nen ey
+iogZ RNdv*fsN_leco(f 5 —fr)log Lx
ff%

Hence, (53) and (54) imply
(55) Q+7/")'Q*(f* ™) is bounded in L0, T; L*(RY X K))
for all compact sets K in RY, T€ (0, o).

Next, we observe that since f” is a renormalized solution of (VB) we

have for all B€C* ([0, o); R) such that 8(0) =0, B’(t) (1+¢) is bounded on
R

56) (2o VL)BU = —div, IFBUM +B (MRS in D

In order to apply the velocity averaging results of [32], we remark that (54)
and (55) imply that B (f") Q (f* f") is bounded in L' (0, T; L' (RY X K)) for
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all compact subsets K of RY, T € (0, ). And (53) shows that 8 (f") is
bounded in L™ (0, T; L? (R2)) for all TE€ (0, ), 1<p<oo. Finally, we de-

duce from (42) that F*=F"(x, t) is bounded in L* (0, T: L°°+L13J.Q(R§")),
hence F"B (f") is bounded in L= (0, T; L, (R%)) for all T€ (0, ), 1<q
<N+2

=

At this stage, we may use (56) and the velocity averaging results of [32]
to deduce from those bounds

(57) R#B (f") ¢dv s relatively compact in L, (RY X (0, 0)) for all 1
<p<oo, pEL*(RY) with compact support. Then, (53) yields

(58) j:wﬂ (f®) ¢dv is relatively compact in L?(0, T; L? (0, T: L* (RY))
for all 1<p<oo, TE (0, o), pE L% (RY) such that ¢ (1+][v]?) ! goes to 0 as
v goes to + o,

Part 1) then follows from (58) and (53) since we only have to choose S

=Bo=%log(1+5t) (0€ (0, 1]) and to observe that we have for all R>1
0</"—B;(f") S5Rf"+f"1(fn>mSaRf”+fnllo()gR ’

Step 2. We wish to prove now that f is a renormalized solution of
(VB). First of all, we observe that it is enough to show that the following
holds

69 2B +div B +div,(FBU) =B (NQ(f.)) in @

where B(t) =log(14+t), F=—V Vo*p, p=fm,fdv.

Indeed, it is shown in the Appendix 2 that (59) then implies that f is a
renormalized solution of (VB).

Let us also recall that we deduce from (53) and weak passages to the
limit
sup { [ [ ) () ol liogs 0|+ Vol *0 (1) dz a0
te[0, T

+ _/;T‘“ fR dx j; _dv dvs fs Bdw (ff x—ffx) 10%9;%]@0

for all T€ (0, o),

(60)

Let us now explain the strategy of proof we use to derive (59). We con-

sider Bs (f™) =f"(1+0dr") ™ for 6 € (0, 1] and weakly pass to the limit as n
goes to + 00 in the equation satisfied by Bs(f”) (we use here the fact that f*
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is a renormalized solution). Then, we renormalize (taking B of the limit of
Bs(f™)) the resulting limit equation and we let J go to O to recover (59).

In order to do so, we need a few notations. Without loss of generality,
extracting subsequence if necessary, we may assume that for all § >0

(61) Bs (™) —B;  weakly in L*(R¥X (0, 7))
(62) =(1+0") 2—’ hs weakly in L™ (R2%, X (0, o)) (weak *)
(63) g§=f"(1+5f")-27g5 weakly in L? (RZ,x (0, T))

for all T € (0, o), 1 <p<co (p = o means the weak * convergence..).
Furthermore, because of part 3), we may assume that

(64) Q+67) 2Q* (s, ")—>Q,, weakly in L'(R¥xK x (0, T))

for all compact sets KCRY, T€ (0, o).

Of course, (56) holds with B replaced by Bs for all >0 and we want to
pass to the limit in these equations as #n goes to +00. To this end, we deduce

from part I that p” converges in L? (0, T; L' (RY)) (for all 1<p<oo, T € (0,
)) to p. Since V Vo€ Ll (RY), we deduce that F* converges in L? (0, T;
Lic(RY)) to F=—V Vo*p. And finally (42) yields

Fr—F in L?(0, T: Li,.(R"))
n

(65)
for all 1<p<oo, 1<q<NT+2

and for all T€ (0, o0).

We then pass to the limit in (56) and we obtain
66) 2 Bytdive(uBy) +div, (FB) =QF Q7 in @ .

Next, we observe that the vector-field B= (v, F (t, x)) satisfies: divz, (B) =0

and BEL™(0, T; Whe (RZ))). We may thus apply the general results of R.]J.
DiPerna and P.L. Lions [29] on linear transport equations and ODE's to de-
duce that 85 is a renormalized solution of (66).

This fact has many consequences, one of which is the continuity of s
with respect to t=0 with values in L? (RZ}) for all 1<p<oo. In view of

(53), it is clearly enough to show that 8; € C ([0, o); L, (RZ)) (V1<p
<). To this end, we remark that if we regularize by convolution (with a

mollifier) B; into B§ as in [29], we obtain
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D B tu- Vo B5+F- 7, B5= Qi — Qi+

where ¥—0 (as € goes to 0) in L' (0, T; L}, (RZ)) for all T€ (0, ). In
addition, B§E€C ([0, ); L? (R%])) for 1<p< oo because of the equation it sa-
tisfies. Next, we deduce from (66) and the fact B; is a renormalized solution
of (66)

4
dtJ R

Bs—B§|?¢ dxdv — 0 in L'(0,T) , as e— 04

for all 1<p<oo, TE (0, ), pECT(RZ), ¢=0. And we conclude.

This strong continuity in ¢ allows to deduce that necessarily f€C ([0, «);

L' (R2Y)). Indeed, because of (53) - see step 1 for a similar argument-, we
have for all T€ (0, o)

(67) sup s[up] If%—Bs (f*) |l wey—0 as 0—0, .
0, T

n2l e

Hence, 85 converges in C ([0, T]; L*(R%})) to f proving thus our claim.

We next wish to precise (66). In order to do so, we observe that —
t

1
1+0t" (14-61)°

are convex on [0, ) therefore we have

(68) Bs<Bs(f) , hs=(Q+0)2 ae.on R x(0, ) .
In addition m=ﬁa (t) 1—6B5(t)), hence
(69) 9:<B5;(1—6pB;) ae.on RZ X (0, o) .

Furthermore, because of part 2 and (62), we deduce easily
(70) Qs =9sL (f) ae.on RZVX (0, c0) .

In fact, using part 4, we could also deduce that

(71) F=h:Q* (. /) ae.on RZ,x (0, o) .

But since (71) is not needed for our argument here (and thus part 4 is not
needed here) we shall only prove this property in the course of proving
Theorem I1.3.

We finally use the fact that B85 is a renormalized solution of (66) to write
2.(B(Bo)) +divi BB +dive IFB(B)]
= (1+B5) 7'Q3 — (1+B5) 'Q5 .

(72)
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And we wish to recover (59) letting 6 go to 04. Recall that we already saw

above that 85 converges to f in C ([0, T]; L (RZ)) for all TE (0, ). There-
fore, in order to complete the proof of Theorem II.2, there only remains to
show

1+Bs) 'Qs— (1+N'Q (£, f)
(1485 'Qi— (14 'Q* (1. f) a.e.

(73)

as 0 goes to 04, and
(74) QF (14B;5) ™' are weakly relatively compact in L' (RY¥ XK X (0, T))
for all compact sets KCRY, T€ (0, ).

We begin with Q5. Without loss of generality, we may assume that s
converges a.e. to f as 0 goes to 04. Then,

(1485 7'Qs = (1+85) ~'gsL (f)—6*(1+f)‘lfL (f) ae
provided we show that g5 converges a.e. to f.
This is easy since we have for all R>1
0<f*—f"(1+3df") *<3Rf"+f"Lym>m

hence g5 converges to f in C ([0, T]; L' (RZY)) (VT € (0, ©)). We now
prove (74) for Q5 and we simply observe that (69) yields

0< (14+B5) "'Q5 = (1+B5) 'gsL (/)
<U-08) TR L(NSLY) ae

And we conclude since L(f) €L=(0, T; L' (RY X K)) for all compact sets K C
RY, T€ (0, ).

We conclude the proof of Theorem I1.2 by proving (73) and (74) for Qf.
We begin with (74). And we recall the following classical inequality valid
for all K>1

@5) QU SKQT () e

where ¢" = [rdvs Js-Bdw (f"f% — f"f% )log)};* is bounded in L} (R3% X

(0, T)) for all T€ (0, ). Without loss of generality, we may assume that ¢”
converges weakly in the sense of measures to some bounded nonnegative mea-

sure ¢ on R%, X [0, o) and we denote by e, its regular part (e0=g—;). Di-

viding (75) by (14+6f") and letting n go to 40, we obtain
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<
(76) Q3 KQ"+logK
hence
1
(77) Qi <KQ5+ log K eo ae.on R X (0, ) .

And (74) is proven for QF since we already showed it for Qj.
We finally prove (73) for Q. We first remark that we have for all R>0
Q+ (fn, fn) 2 (1_'_5)(71) —2Q+ (fn,fn)
= (14+0R) 72Q* (f™, ") Lincnr .

(78)

In particular, if we multiply (78) by ¢ E€CF (RY), ¢=0, we find letting # go to
+ oo and using part 3

Q' (£ ¢dv= [ Qigds  aeon REX (0, w) .

Indeed the integrated left-hand side converges locally in measure while the
right-hand side converges weakly in L' and this is enough to pass to the limit

in the a.e. inequality on RY X (0, ©). Therefore, we have for all 6€ (0, 1]

(79) Q* (£, /) =Q5 .

Next, we use the other part of the inequality (78) and we write for v €
(0, 1] using (79)

(146R) 2(A+vL (fM) QT (f" ™
(80) <A+ fM+ A4+vL (f") @ (£, f7)
<A+ Q" ") + i g+ o Lumsr

We then observe that Q* (f*, f") (1+vL (f*)) 7! is relatively weakly compact
in LY(R#x (0, T)) (VT€ (0, o)) since it is bounded by e"+Kf" for all

1
log K
K> 1. Hence, we may assume without loss of generality that it converges
weakly in LY'(R# x (0, T)) (VTE (0, ©)). We claim its weak limit is given
by (1+4vL () 'Q* (£, f). Indeed, if ¢ €EL™(RL) with compact support, we
have

o LHVL ) TR (7, f*) ddv= | Q*(f" f7) Pidv

where ¢ is uniformly bounded in L”(RY), has a uniform compact support and
Pr—¢,= Q1+ vL(f) ¢ in LP(RY) (V1<p<oo). Their properties are

enough to adapt the proof of part 3) (see [26], [27] for related arguments)



Boltzmann's equation [ 561

and to deduce
Qv — [ QN guav

locally in measure on RY X [0, ). And our claim is shown.
We then pass to the limit in (80) and deduce as above

1 4
logk *°

(B) (43R 2(1+uL())7Q* () <QF+ +£fe ac.

where fg is the weak limit of f"1(msp). Since we have because of (53)

. C
- "] (n <—
fj;mdx dvfr ll,:“f.faz"d‘r dv f"Lignsp logR

we deduce from (81) letting first & go to O+, then K go to +©o, then R go to
+ oo and finally v go to O+

(82) Q*(f, /) Sdling a.e.

—0+

The combination of (79) and (82) completes the proof of (73) and thus of
Theorem I1.2.

We now turn to the proof of Theovem 11.3.
We keep the notations of the previous proof. And we know that f €

C ([0, o©); L' (RZ)) is a renormalized solution of (VB). In particular, we

know that we have, setting 7, () =%log(1+5t)

) %(T,, () +dive o7 (D} +div F7s ()]

=75(NQ* (. /) = 1frs(DIL(S) in 9 .
Of course, 75 (f) €C([0, ); L? (R%})) for all 1<p< oo and
(84) 75 (M) le=0=75(fo) ae.on R .

We are going to follow the scheme of the first proof of the analogous re-
sult shown in Part II [56] for the “pure” Boltzmann's equation. Once more
the force term introduces specific difficulties. Let us first explain the strategy
of proof. We introduce, without loss of generality, the weak limit of 75 (f")
(in L2 (RZ,x (0, T)) for all TE (0, c0), 1<p< o) that we denote by 75. The
first step consists in showing that 75 is a supersolution of (83). In a second
step, we deduce that 75=17;(f) and that f” converges to f a.e. or in L' (RZ X
(0, T)) (for all T€ (0, ©)). Finally (step 3), we show that f” converges to
fin C([0, T]; L*(RZ)) (VTE (0, ©)) proving thus Theorem II.3.

Before we begin this proof, we wish to make a few preliminary remarks.
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Adapting the proof made above (step 2), we show that 75 satisfies: 75 €
L=(0, T; L*(RZY)) (VTE (0, ), V1<p<oo)

(85) 0<7:<75(f) ae on RZx (0, o)
and
66)  Dtdivelorad +dive Pl =QF Q5 in @

where Q3, Q3 are respectively the weak limits (in L' (RY X K X (0, T)) for all

compact sets K CRY, T€ (0, ©)) of (1+0d") 7'Q* (v, f"), A+ 'Q"
(f* f™. In fact, we claim that 75 is a renormalized solution of (86) and be-

longs to C ([0, o); L? (RZY)) (V 1<p<oo). The proof made above almost
adapts to this case except for some minor technicality due to the fact that 75 is
no more bounded. This difficulty is circumvented by introducing 75 (B (f))

for e € (0, 1] and its weak limit denoted by 7§. Then, the proof made in Step

2 above adapts and shows that 7§ €C ([0, ); L? (RY,)) (1<p<o0) is a re-
normalized solution of

(87) %rﬁ +divz oyl +dive IF78l =QFe— Q3
The proof of our claim follows upon letting € go to 0, since we have
0<y; (f") =75 (/") <f"=B(f)—0  in L'(REY)
uniformly in =1, t€ [0, T] (VTE (0, )),
0< (s (/M) —7sB(f))B(F)Q~ (/" 1)

s%(wﬁ%;)L (fm=0 in L'(RYXK)
uniformly in =1, t€ [0, T] for all TE (0, o), compact sets K CRY, and
0< (s (F) =71 B (fM)B ()R (" /)
K5 (1) =75 B B M@ (7 )+ e
for all K>1.

Step 1. 75 is a supersolution of (86)
Without loss of generality, we may assume that we have

1+15f,,—; {6 weakly (*) in L*(REX (0, o))

75 (") =
and

f"T’.s(f”)ZI:L%-:Ea weakly (%) in L* (R, x (0, )) .

Furthermore, since 7’5(t), —t7’:(t) are convex on [0, ), we deduce the fol-
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lowing inequalities

- Gpyg=1s() . &STig=rrs(h) .
B<Flog(+0) =5 ()  aein REX (0, ) .

In view of part 2) of Theorem IL.2, we see that

(89) Q5=6&L(f) ae.on REx(0, 00) .
We then wish to use part 4) of Theorem II.2 to deduce

(90) =00 (f. 1) ae.on R X (0, ) .

Indeed, let C be an arbitrary compact subset of RZY x [0, ). By the Egor-
ov's theorem, we find, for all €>0, a measurable set E such that measz,,(E)
<e, QT (f™ f™) converges uniformly to Q* (f, f) on E° and Q* (f, ) is integr-
able on E°. Then, for all 9 €L* (R x (0, o)) supported in C, we deduce

o 17sm @ (77,57 —6Q* (7. )l dz v a
< ||¢||L-fEr’a FMQH(F" ") +4Q* (f, fdx dv dt

+f,;c<0 s (f") — ol @ (£, f)dx dv dt
Hlel-suple* (7. s —Q* (7.9 .

The third term goes to O as n goes to + 00, for each ¢>0. And so does the
second term since ¢lgQ* (f, f) EL' (R X (0, c0)). Finally, since - see part
3) of Theorem I1.2 - 75 (f") Q*(f*, f") is weakly relatively compact in L* (RY
XK X (0, T)) for all compact sets KCRY, T € (0, o), the first term can be
made arbitrarily small uniformly in »n if we let € go to 04+. Notice also that
LY (f, /) EL*RYXK X (0, T)) since {5 (Q* (£, f) AR) is easily seen to be the

l + n n .
1+Cf"(Q (™ f") AR). And this shows (90).

Then, if we collect (88), (89) and (90) and insert these informations in
(86), we find

weak limit of

@) Dtdivbord +dive Frl 275 (00N in 9

This inequality holds in the sense of distributions on R%Y X (0, ©) and in fact,
it also holds in renormalized sense ie. the 9" inequality still holds if we re-
place 75 by B(75) where BEC' ([0, =); R) is nondecreasing and then we re-
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place 7'5(NQ(f, /) by B’ (rs) s (NQ(f. ).

We conclude this first step proving that 7s satisfies (84). Indeed, in
view of the equation satisfied by 75(f"), we deduce easily that 75(f") con-

verges in C ([0, T]; Wig' RZ)) (Vs>1, VT E (0, ©)) to 75 But, by

assumption, 75 (") l;.=o=75(f%) converges in L' (R%) and thus in Wi3' (R2Y
to 75 (fo). And, thus, we conclude that 7; satisfies the initial condition (84).

Step 2. 75=75(f) and f" converges in L! to f.

We consider 75(f) —75=7;E€C ([0, 00); L (RZ})) (V1<p<oo) and we
observe that 7 satisfies in view of (83) and (91)

(92) %ra-l-divz{vr‘;} +div, {Frst <0 in 2.

Not only this inequality holds in the sense of distributions but it holds in re-
normalized sense in view of the “renormalized calculus” established in R.]J.
DiPerna and P.L. Lions [29]. Furthermore, in view of step 1, we know that
we have

(93) 750 a.e. on R&X (0, ) , 75,2e=0 ae. on RZ .

We first want to prove that 7 =0. In order to do so, at least formally,
we only have to integrate (92) over R? to find

d .
hadil < ’
it gnodx av=<0 in 2 (0, o) .

And this inequality combined with (93) yields: 7s=0 on R%¥ x (0, c0).

We thus have to justify the integration over R*. In order to do so we
consider @ €C3(RY), ¢(z) =1 if |z2|<1, ¢(2) =0 if |z|=>2 and we wish to
multiply (92) by go(%)tp(%) But before we do so, we remark that B; (r5) =

¥s

1+£1’5
<o) for e>0. And we find finally integrating over R® x (0, T) for all t=>0

f o B (ra)(D(f)go(%)dx dv () sj;‘dsf Az dv B (rs)
Lero(E)-o(2)+or e 0 o(2)e(Z))

We then wish to let n go to +c0. In order to do so, we recall that (53) and
(60) yield

also satisfies (92) and (93) (and B:(rs) €C ([0, o0); L? (R2Y)) for 1<p

(94)

(95) sup{fj;mﬁe (rs) v|*dx dv; t€ [0, T], €20, 520] < oo
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for all T€ (0, ). Hence, we have the following estimates

o f f e o2 (22

t
Sﬁdsfﬁmﬁe (7’6)1()15|r|$2vl)2||¢‘|L“||V(p“l."d.r d'v_’:o N

oo f f e a0 of2te 072

t
S(j; dsfj;wdx dv Be (r,s)%|F (@, )16 <hisandx dv) *

and

@l 7 gl .

Then, we recall that, because of (42), FEL=(0, t; L= (RY) +13% (RY)). And
the bounded part of F clearly gives a contribution to the preceding integral
that vanishes as n goes to +o0. Therefore, we may assume without loss of

generality that FEL™ (0, ¢; L3 (RY)). We next observe that because of (95)

1
“ »l‘RNdee (76) n ]-(nSlv|S2n)

1 .
=—¢, with¢,—0
L0 LR 3 n

while of course we have for some C¢ >0

HLNdeE (7’5)%1(::3|v|$2n) <Cn™ 1.

LY0, t: L™ (RY))

Therefore, we deduce from Holder’s inquality that we have for all €>0

[ avBetr) Musicn—0 i L0 6 LVEH®RY) |
3 n

N+2
Since FEL=(0, t; L 3 (RY)), we have thus proven

t
j;dsfj;mdx dv Be (r5) %|F (x, 1) |1("s|.,|sz")—n>0 :

And letting first n go to +° and then ¢ go to 04+ in (94), we deduce

j;mr,;(;r, v, )dx dv<0 for all t=0 .

This, combined with (93), implies that 7s=0 on RZY X (0, c0).

In other words, 75 (f") weakly converges to 75 (f) and, since 7; is strictly
concave on [0, ), we deduce from classical functional analysis arguments

that f” converges in measure to f on R¥, x (0, T) for all T€ (0, o) (observe

for instance that 75 (ﬂzii) —% (rs /™) +75(f))—0 in L* (R2Y, x (0, T))...).

And this convergence, because of (53), implies



566 P. L. Lions
(96) f"—n»f in L?(0, T; LY(R%)) , for all 1<p< oo, TE (0, o0) .

Step 3. Conclusion.

We only have to show that f* converges to f in C ([0, T]; L' (R%)) using
(96) and the equation satisfied by f". Then, because of (53) and (67), it is

clearly enough to show that, for each >0, T€ (0, o), K compact set in R%,
we have

97) .Bo(f")_n’ﬁa(f) in C([0, T]; L*"(K)) .

We then take ¢ €C§ (RZ}) such that ¢=1 on K, ¢=0 and we use (56) to de-
duce for all £=0

(98) <f Rz,,/ga(f (0drdv>(t fdsf Jdxdv 1+5n3
QU™ M o+Bs () - Vop+F" Voph .

Then, because of (96), Bs(f™) converges to Bs(f) in L? (R% X (0, T)) for all
1<p<oo, TE (0, ) and one checks easily that the right-hand side of (98)
converges uniformly in ¢t € [0, T] (V T € (0, ©)) to the same experession
with f* F” replaced respectively by f, F. Since B85 (f) is a renormalized solu-
tion of (66), this experession is also given (for all t=0) by ([ [..B:(f) %@
dx dv) (t). In other words, we have

f Rwﬁa(f”)%odxdv—;f B (NP0 dxdv

uniformly in t€ [0, T] ,

(99)

for all TE€ (0, ).

In addition, as we saw above, B5(f") converges to Bs(f) in C ([0, T];
Wit (R%)) (for all s>1 and in fact s=1 because of (96)). Therefore, if we
consider L3=L? (Suppe, ¢dx), since (B5(f")), is bounded in L2, we deduce
that B5(f") converges uniformly on [0, T] (V T€ (0, ©)) to Bs(f) in L en-
dowed with the weak topology (represented by a distance on a large ball of
L2%). This combined with (99) and the fact that B;(f) € C ([0, o); L2) im-

plies that 85 (f™) converges to B5(f) in L% (strongly) uniformly on [0, T]
(VTE€(0, )). And (97) follows.

This concludes the proof of Theorem I1.3 since the fact that f is a solution
of the (VB) system follows by straightforward limiting arguments that we
leave to the reader.

Remark III.1. Another convergence proof is possible using instead
the second scheme of proof introduced in Part II [56] in the context of Bolt-
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zmann's equation.

We conclude this section by alluding briefly to the proof of Theorem IL1.
Indeed, once Theorems II.2 and I1.3 are shown, Theorem 1.1 follows from a
rather standard (and tedious) approximation argument. It is enough to copy
the argument presented in [25] for the Boltzmann's equation - with some
additional remarks made in Part II [56] - and we skip this more or less tri-
vial adaptation. Let us only mention that one needs to regularize Vo as well
in such a way that (42) holds uniformly. To this end, we consider w €
Cs(RY), >0, [revwdx=1 holds uniformly in &. Indeed, we apply (42) with

0e=@*w, and we find that Vo* @., V (Vo* @), D*(Vo* @) are respectively

bounded in Ll (R"Y), L”(R) + L%(RN). Lic (RY). Therefore, the same

holds with Ve* ¢ since Ve* o= (Vo* @c) * we.

IV. Remark on Vlasov-Maxwell-Boltzmann systems

We briefly investigate in this section the Vlasov-Maxwell-Boltzmann sys-
tem (VMB in short) of (1), ((2)-(4)) and (11)-(14) complemented with the
initial conditions (15), (16) that must obey the compatibility condition (17).
The formal identities and a priori estimates that we recalled and derived in
section II on (VB) systems can be checked for the VB (VMB) system, the main
and only modification being the (formal) conservation of the total energy

(100) fj;ﬂdex dv-l—fflelz+|B|2dx is independent of 20 .

On then derives the following a priori estimates

(101) 1es[l(l)‘pr]r[fj;f(1+|1)|2+a)(1') +logA) dx dv+j;JE,|2,_|_|B|zdx]
+J afye [ favavs [ aon 7 gpios! é** <C(R. T)

if we have

(102) fj:zsf()(1+|v|2+a)(x)+|logf0|)dxdv_,_LJEO'z_'_'Bolzdst |

Here, R and T are arbitrary in (0, ) and C(R, T) is an (explicit) positive
constant which depends only on R and T.

We do not know whether Theorem II.1-I1.3 can be adapted or extended to
the case of the (VMB) system. In fact, the only information that seems to be
missing would be an a priori estimate of E, B in L' (0, T; Wit (R®)). If such
an estimate were available, then all our analysis would go through and the

same results as those stated in section III and proven in section III would
hold.
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It is also possible to build a solution in a rather weak sense. Indeed, by
convenient approximations, one can build a sequence (f”, E", B").>1 of
approximated solutions (in fact solutions of similar problems with essentially
the same structure.. - see [25], [27] for more details). And then, one can
prove that parts 1) -4) of Theorem II.2 still hold here.

Next, we wish to pass to the limit, as » goes to + 0, in the equations sa-
tisfied by B(f") (we also consider B (f*—g)..), E", B". Of course, we can
consider, extracting subsequence if necessary, the weak limit of (f" E", B")
denoted by (f, E, B) (respectively in L', L? L?) and, clearly, (11)-(14) hold
in the sense of distributions. But we also need to describe the weak limits of
B(f™), B (f") and B’(f"). To this end, it is convenient to introduce the
Young’s measures Vz,: associated to the sequence f” in the spirit of L.
Tartar’s theory of compensated compactness (see L. Tartar [69], [70], R.J.
DiPerna [22], [23], R.J. DiPerna and A. Majda [33]..). Indeed, one shows
the existence of probability measures Vs, on [0, ©) depending measurably

on (x, v, t) €RE,Xx (0, ) such that (extracting a subsequence if necessary)
109 B [BWdvand)  weakly in Lbe (RS, % [0, %))

for all BEC([0, ); R) such that B(t) (tlogt) =0 as t—+co. In particular,
we have easily

(104) f:fxdu,r,u,t , fELm (0, 0o, L= (Rg,v)) s
feC([0, 0); L'(RE,) —w)
IES;;‘DT]{_[LJ(I-H”'Z_H”(“?) +|1logA) dx dv
(105) i+ f fR dx dv f AllogAld vz, + fR |EI*+|Bl?dx
T rer /f/ -
~+’/; dtj;adxfj;edvdv*j;zde(ff* ff*)logfff—**]é ,

for all T€ (0, ). In (104), fE€ C ([0, o); L* (RS,) -w) means that f(t,)
—f(t) weakly in L' (RE,) if t,(€ [0, ©))—t€ [0, 00). Of course, the initial
n

conditions (15), (16) holds. In addition, we have

(106) V.t,v,tzafo(x.v) a.e. x, ‘l)EEI{.6 .

Then, as we said above, parts 1) -4) of Theorem I1.2 still hold here and in
particular from the proofs made in the preceding section, we can deduce

o D <B> +dive b<B>} +dive F<B>|

=<B>Q*(f. ) =<BA>L()) in 2" (R§,x (0, ))
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where we denote by <¢>= [ ¢ (1)dvs,.: (1) for any ¢ €C ([0, ); R) such
that ¢ {tlogt} ~! is bounded on [2, o).

In the limiting procedure that yields (107), there is just one technical
point to be checked that was not present in the arguments of section III name-

ly the fact that F” does not converge anymore strongly say in L}, (or at least
we do not know if it does). One can still pass to the limit using the argument
introduced by R.]. DiPerna and P. L. Lions [27] for the Vlasov-Maxwell sys-

tem: indeed, because of part 1), [ B(f") ¢dv converges in L? (RI X (0, T))
(VTE (0, @), V1<p<oo) for all ¢ ECF (R3), BEC ([0, ); R) bounded
(or bounded by C log(1+¢)...).

The equation (106) clearly holds for all B€ C! ([0, c), R) such that
B’ (t) (141) is bounded on [0, ) but with a little more work one can check it
holds if B’ (t) (14+¢)Y? is bounded on [0, o) and that we have

[Tatf, azarler 0 ([B D aven)
~L (28 W) dven)

(108)
< oo

for all compact sets KCR3, T€ (0, o).
In addition (46) holds and we have

(109) %Hiv,(f):o in 2 (Rix (0, o))
(110) j;skad.rdv is independent of t>0 for 1<k<3

ffwflvlzdx du+fw|E|2+|B|2dx

(111)
< f fk folvl?dx dv+ L Eol?+|Bol?%dx

for all t=0

This combination of properties (104) - (111) together with (11)-(14) can
be used as a definition of a weak solution of the VMB system. And we just
saw why there always exists such a weak solution corresponding to the initial

conditions (15), (16).
Let us once more emphasize the fact that, if we know that E, BEL(0, T;

Wit (R®)) (VT€E (0, o)), then we can show using the methods of proofs in-
troduced in the preceding section that f is a renormalized solution of the
(VMB) system - this relies upon (107) -. Once this is shown, then we can

also obtain <B;> = Bs(f) where Ba=%log (140t). This equality then im-

plies that vz, = 0sz.sn and the a.e. or strong L' convergence. Finally, this
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could then be used to check that f is a solution in a sense analogous to the
ones we introduced in section II. Unfortunately, all this argument relies upon

the L} (W}t) regularity for E, B which does not seem to be available.

The above notion of weak solution can be seen as a precised notion of
measure-valued solutions (precised for the collision part of the equation).
And the usefulness of such a formulation is not entirely clear. However, it
does contain some relevant informations as it can be seen from the following
considerations that concern the asymptotics of the (VMB) system when ¢ goes

to +00. We then consider a family (f§, E§, B§) of initial conditions satisfying
(17) and the bound (102) uniformly in ¢. Then, we introduce (f¢, V¢, E¢, B®)

solutions of the (VMB) system corresponding to the initial conditions (f§, E§,

B§) satisfying (105) uniformly in ¢. Therefore, we may assume without loss
of generality, extracting subsequences if necessary, that f¢, E°, B° converge
weakly, respectively in L' (RS, X (0, 7)), L2(R2 x (0, T)), L2 (R2 x (0, T))
(VT€E (0, 0)) to f, E, B and that L° converges weakly in the sense of mea-
sures to some v which is a probability measure on [0, o) parametrized
(measurably) by (x, v, t) ER®X [0, ). Clearly, (104) - (106) hold by the
same arguments than those introduced in section III (see also the above

comments) with F=E and (11) holds where f, is the weak limit (in L' (R®))

of f§. In addition, parts 1) -4) of Theorem II.2 also hold here (with f” re-
placed by f€) and we have

w2 [ B0 st 0= [ [BR) @0 v (R) asc—+oo

in L? (0, T; L'(RE)) (V1<p<oo, VTE (0, o)), for all BEC ([0, =); R)

such that 8(0) =0 and B’(t) is bounded on [0, ©) and for all ¢ € L™ (R})

such that ¢ (v) (14+[v]?) ' —0 as Jv| =+ o (irlllfess lg @) [(1+v|?) 4 —0 as
v|2R

R—40).

We next claim that f€C ([0, o); L' (RE,)) is a renormalized solution of
the (VPB) system or in other words that F=E=— V V where V solves
(113) —AV=p(=j;3fdv> , VEL=(0, o0; L**(R3)) .

In order to prove this claim, in view of the arguments presented in section III,

we only have to understand why E= — V V with V solution of (113) (ie. V=
1 1 . C C .

ir H*p). But, if we pass to the limit in the sense of distributions in (12),
(13) using (112), we find

(114) curl B=divB=curl E=0 , divE=p in 9.

Hence, B=0 (recall that BEL®(0, oo; L2(R2))) and (113) holds.

Furthermore, if we assume that f§ converges strongly in L' (R®) to fo, then
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we deduce from the arguments of section IIl that VYz»: = Oszsn and that
S B(A)drs,, converges in L' (RE,) uniformly in t€ [0, T] (VT € (0, )) to
B(f) for all BEC' ([0, )) such that B(0) =0, B’ is bounded on [0, ). In
particular, f¢ (= [ AdvS,,) converges to f in L'(RS,) uniformly in t € [0, T]
for all TE€ (0, ).

V. On Boltzmann-Dirac model

We consider in this section the Boltzmann-Dirac model (BD in short)
namely equation (1) with F=0 and Q given by (24) where the collision ker-
nel B still satisfies (5) - (7). Of course, we complement this system with an
initial condition (15) where fo=>0 satisfies

(115) 0<fo<e! a.e. on R? | fo(l+ 4w (x))drdv<oo .
RZN

Then, at least formally, we expect to find a solution f which satisfies
(116) 0<f<e™! a.e.on RZx [0, o) .

This fact follows easily from simple differential equations considerations
(maximum principle, notice indeed that Q (f, f) <0 at a point (x, v, t) where f
is equal to & while Q (f, f) =0 at a point where f is equal to 0).

This bound explains why, in some sense, the (BD) model is somewhat
better behaved than the Boltzmann model. And in fact, it was shown in J. M.
Dolbeault [34] that the existence, uniqueness and regularity of solutions is

available when BEL' (RV x S¥~!).  However, if we drop this requirement, the
situation is less clear and the non-quadratic nature of the collision operator
creates additional difficulties for weak passages to the limit. In particular,
the method introduced in [25] (or in section II for the proof of Theorem I1.2)
for the Boltzmann model does not seem to carry over the (BD) model.

We resolve this problem in this section where we prove a general exist-
ence theorem based upon a Fourier analysis of various parts of the collision
operator. In some sense, this analysis relies upon the analysis performed in
Part I [55] via Fourier integral operators.

Let us first state precisely our main results. We begin by recalling that,
but for the entropy, the same conservation laws that for Boltzmann model are
available here namely (29), (30), (31) (with Vo=0) and in particular (32)-
(34) still hold here.

Furthermore, we have (at least formally)

(117) %ffkwfwdxdv=fj;mf{v'Vw(x)}dxdv

and
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(118) fj;mflx—vﬂzdx dv is independent of >0 .
Finally, the entropy identity (38) is now replaced by
(d f 1,_ _
i) Jenflo8f+ . (1—e¢f)log (1 —¢f) dx dv
+%j;ﬂdxfkmdv dv*fsN_lda)B(l—ef) (1—efs) QA—¢f") (1—¢f %)

[ [’ [l f [x ]
1—ef 1—¢f'x 1—¢f 1—¢fx

(119) 1

. f’ '« 1—¢ef 1—¢gfs]
L log[l—Ef/ 1—£f,* f fx *] =0

Notice that the second term is nonnegative.

It is worth emphasizing the fact - justified in [34] when BEL! - that we
recover the Boltzmann model if we let € go to O+ in which case (119) reduces

to (38) (using the conservation of mass (32)). Observing that %(1 —e¢t) log

(1—et)=—1t on [0, ), we deduce easily - as in section II - the following a
priori bounds

(120) sup {ffwf{l-i-|v|2+w(x)ldx dv] <oo | for all TE (0, o)

tefo, 7]

[latf az [ avave [ dwB(1—ep) 1—cpa) -

(1—¢f") (1—¢f'x) \F'F «—FF4} log%< oo, for all TE (0, )
*

(121)

__/
where we set F'= T—e
In addition, if we take w (x) =|z|? in (115) then (120), (121) hold with T
= + o replacing @ (z) bylr —vt|? in (120). Finally, the bounds in (120),
(121) depend only on the bound in (115).

We then define solutions of the (BD) model as follows: fec ([0, «);
L? (RZY)) for all 1 <p<oo, satisfies the (BD) equation (in the sense of dis-
tributions for instance), (116), (120), (121). Notice that Bffs (1 — &f’)
(1—¢f’s) €L (0, T; L' (RY X K X RY, X S¥1)) for all T € (0, o), K compact
set CRY and thus Bf’f'« (1 —¢f) (1 —¢fs) CLY(RY XK X RY, X St x (0, T))
(for all T€ (0, ©)) because of (121). Thus Q(f) EL'(RY XK X (0, T)) for
all compact sets KCRY, T€ (0, ), and the equation makes sense. We could
complement this formulation with various conservation laws (like (29), (32),

(33), (117)) or even more complicated identities involving multipliers like the
ones introduced in section II but we shall not do here in order to simplify the
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presentation. Also, we could request energy and entropy inequalities

(122) fj;mf(r, v, 1) vz dvéfﬂ‘mﬂﬂzdr dv , forall t=0,

’fj;wflogﬁ%(l—ef) log (1—¢f)dx dv

t
+fdsf dxf dvdv*f_da)B°
J 0 RN RZN SNI

c(1—¢f) Q—efx) (L—&f") (1—&f ") IFF'x—FFal logh lx <
FFy

f waologfo-i-%(l—sfo)log(l—efo)d.rdv, for all t=0 .

(123)

Our main result is the

Theorem V.1. Let fo (115), then there exists a solution f of the (BD) mod-
el satisfying the initial conditions (15) and the a priori bounds (120)-(121).
Theorem V.1 is a straightforward consequence of stability results we de-

scribe now: we consider a sequence of initial conditions (f%).>1 satisfying
(115) uniformly in #n. And we consider a sequence of solutions of the (BD)

model denoted by (f").>1 that corresponds to the initial condition f§. In
addition, we assume that f” satisfies (120), (121) uniformly in n. The exist-
ence of such a sequence follows in fact from Theorem V.1. Extracting sub-

sequences if necessary, we may assume without loss of generality that f§, f*
converge weakly in L'(RZ) and L (R%) —*, in L'(R®, x (0, T)) (VTE
(0, ©0)) and L~ (R, x (0, o)) — * respectively to fo, f. In the result that
follows, we denote by

a2) Q@ (N =[ dva [, dwB(1—ep) A—efu)ff s

125 @ (D= dva [ dwBOU—e) Q—ef " .

Our main stability result is the following

Theorem V.2. The weak limit f is a solution of the (BD) model satisfying
(15). Furthermore, we have

LN,B(f”) ¢dv  is relatively compact in L' (RY X (0, T)) (VTE (0, o))

for all BEC ([0, ), R) such that B(t)t™' is bounded near 0 and for all ¢ €
L3 (RY) such that ¢ () (1+|v|?) 7'—0 as |v|—o0,

(127) L(f”)—n>L(f) in L?(0, T; LY"(RYXK)), V1<p<oo,
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QT(f™, Q@ (f*)  comverge weakly to  Q*(f), Q™ (f) respectively,
in L'(RYXK X (0, T)) for all TE (0, ), compact sets KCRY .

(128)

Remark V.1. i) We do not know if solutions are unique, nor if they
are more regular if fo is more regular.

ii) Theorem V.1 is still valid if we let the collision kernel B depend on n
provided B” satisfies (5), (6) for all =1, (7) uniformly in » and B" con-
verges to B in L* (K X S¥7!) for all compact sets K ER".

iii) We could also consider problems set in a periodic box. The results
would be identical and we could consider the behavior of solutions when ¢
goes to +o00,

iv) It is possible to study the limit when & goes to 0, and recover solu-
tions of Boltzmann’s equation. But we shall not do so here.

In view of the preceding remark (ii), the existence result (Theorem V.1)
follows from Theorem V.2: indeed, it is enough to truncate B, apply the re-
sults of J. M. Dolbeault [34] to obtain solutions for the resulting equations and
pass to the limit using Theorem V.2.

Before we really begin the proof of Theorem V.2, we wish to make a few
preliminary remarks. First of all, (126)-(128) are easy to show (with simi-
lar arguments, and in fact simpler, than in [25] or in section III). Let us

only point out that (128) follows from the fact that 0 <Q~ (") S%L(f”)

while the weak compactness in L' of Q* is deduced from the weak compact-
ness in L' of @ and from the entropy dissipation bound (121). Then, (126),
(127) follow from velocity averaging results and the bounds (120).

Then, without loss of generality, we may assume that Q*(f"), Q= (f")
converge weakly in L* (RY X K x (0, T)) (for all compact sets KCRY, T €
(0, ©)) to, respectively, @*, @ =0. And we have of course: fE€ C ([0, o);
L? (R%)) satisfies (120), (15) and

(129) %+v- Vof=Q*—Q~ in D'(R¥x (0, o)) .
Furthermore, adapting the argument used in section III, we have
1 1
+ - -< +
(130) QT<KQ +logKe° ., QT<KQ +10gKeo a.e.

for some ¢0=0, eo€EL'(RZ, % (0, T)) (VTE (0, =)).

In order to complete the proof of Theorem V.2, these remains to show that
Q*—Q =Q(f) or in fact that Q*=Q*(f), @ =Q (f). The proof of these
two claims is divided into several steps. The first one consists in approx-
imating B conveniently. We truncate B and consider B; (z, ) (0<d<1) a
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nonnegative function of |z| and |(z, a))| only such that

(131) Bs=0 for |2| small, |2| large, |z* w| small, |z]—| (z, )| small
(132) 0<B;(z, w) <B(z, )
(133) Bs(z, 1) 1Bz, w) as 010y, ae. (z, w) ERV XSV,

We denote by Qs QF, Q5 the associated collision operators defined by replac-
ing B by B;s in Q, Q*, Q@™ respectively.
We claim that we have

Slzlll) o+ (") —QF (f " o +1Q~ (f" —Q5 (f ) o

—0 as 0—0,
where C=RY XK X (0, T), for all compact sets KCRY, T€ (0, ). Obviously
QY —Q%, Q@ — Q5 are also collision operator that corresponds to the collision
kernel (B — Bs) which satisfies: 0 <B — Bs <B. Therefore, it is enough to
prove (134) for Q@ — Q57 since the other assertion then follows using (121).
Next, we observe that we have

(134)

0<Q~ (/") —Q5 (/" S%(A —Ad) X" ae.
where A;(v) = [s-Bs (v, w))dw. Therefore
o= (/™) —Q5 (/) I <
[ izt e d) [ (A—40) b—vadv .

Then, because of (133), [ x(A—A;) (v—vx)dv converges to.0 uniformly in v
and is bounded as 0 goes to O,. And since, by assumption on B.

OS];(A—A‘;) (v—vs)dv
<[Aw—vdav=olud) as loal—eo
K

we conclude easily that (134) holds.

We next wish to show that Q;(f") converges weakly in L* (RZY X
(0, ©)) —* or in L? (R x (0, T)) for all TE (0, ), 1<p<o0, to Qs(f).
Notice that 0 <Q#F (") si IBs Il ®* x s»v, (121) holds and Qj (f%) <

1 .
E"-BJHL‘(R"'XSN“)fn, and thus the weak convergences are obvious. However, we

have to identify the weak limits and this is a priori delicate since Q; is highly
nonlinear. Assuming that this claim has been proven, we see that f is indeed
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a solution of the BD model or, in other words, that Q* —Q~=Q(f). For, be-
cause of (134), Q;(f) converges to Q* —Q™ in L' (RY XK x (0, T)) as 0 goes

to 04 (for all compact sets KCRY), T€ (0, c)). On the other hand, adapting
the argument made above and using in particular (130), we check that Q; (/)

converges to Q(f) in L'(R¥ XK X (0, T)) (VK compact CRY, VT€E (0, )).

In order to prove that the weak limit of Q;(f") that we denote by Qs is
nothing but Qs (f), we decompose Q;(+) in the following way: we write for all
functions g

(135) Qs(9) =Q5(9) —gRs(g)

where @}, R5=>0 are given by

136) Q@)= [ dve [ dwBwsx(1-204)

130 Re9)= [ dva [ dwBsloa(1—eg) (1—e0's) +eg's's (1—eg %)} .
Of course, we may rewrite Q5 and R; as follows:
(138) Qi) =QF (9,.9) —eQ3(@) ., Q5 (g)z_ﬁ{Ndv*ﬁﬂ_,deag’g’w*

where Qf (9, 9) is the usual (quadratic) “gain” of the Boltzmann’s collision
operator, and

(139) Rs(9) =Ls(9) —eQ3 (g, 9) —eQ3 (9, 9) +eQ3 (9, 9)

where

(140) Q0.9 = dvx [, dwBww’

14 Q40,9 = [ dva [, dwB's’

Observe also that Q% (" f"), @ (f". f"), Q% (™, ™), Q5(f™) are clearly
bounded in L* (RZ, X (0, o)) (by Cc|Bsll:) and also weakly compact in L

(R x (0, T)) (VT€E (0, ©)). We skip these easy arguments somewhat
similar (and simpler!) to many ones we did before.

The above claim about @; will be a consequence of the following fact: for
each 6>0, we claim that we have

142) QUM@Y) . R R in L2 (REX (0,7))
and

(143) f QG (") pdv— f QGB(Ngdv  in LPREX (0, T))
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for all 1<p<oo, TE (0, o), 9ECT (RE).
Therefore, we only have to prove (142) and (143) which, in turn, is a
consequence of the following convergences

QM = QS . BU ) — L)
(144)
QS — Q371

ws) [ aUmga— [ @nga

in L?, for all 1<p<oo, TE (0, ).

In addition, by a simple density argument, we see that it is enough to
show (144) and (145) in the case when Bs; € Cy (RY X S¥1) (or even more
precisely is a C* function of |v|, (v, w) that vanishes for |v| small, |v| large,
| (v, )| small, |v]—|(v, w)| small). From now on, we make this assumption
and we omit the subscript d in all that follows in order to simplify notations.

In order to prove (144) and (145), we want to apply the results of Part I
[55]. We begin with the three quadratic terms Q*, Q3 Q*. The strategy and
the results are the same for each of these terms: we are going to show that
velocity averages of these terms are compact (in L' or in L% in (x, t) and

then we shall prove that they belong to L? (RY x (0, T); H::C_1 (RY)) (VTEe
(0, )). This is enough to conclude that (144) holds by the arguments of
section [I in [55] that Q* (™ f™), Q(f™ ™), Q*(f", f") are bounded in L*
(R#,x (0, ©)) and weakly compact in L' (RZ, X (0, T)) for all TE (0, o), so
we only need the compactness in L}, in order to prove (145).

Then, we need first to show that for all p€CF (RY)

RNQ+ (fn,fn) (/)dv, RNQ3 (fn,fn)(l)d‘l), j;NQ4 (fn,fn) (/) dv

(146) converge respectively to

U NGav [ @G ngdn, [ Qg

in Liee (RY X (0, 0)) (say!). This will be in fact a straightforward consequ-
ence of (126) choosing B(t) =t (and observing that [.f"¢dv is relatively
compact in L2(RY¥ X (0, T)) (VT€ (0, ©)) and thus converges in L? (RY x
0, T)) (VTE (0, o)) to [rfddv for all o E€CF (RY). Indeed, we only have
to show that the three integrals in v above (velocity averages) can be written
as

RzNf”(a:, v, )f"(x, v, t)a (v, w)dv dw
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for some a €ECy (R®). Then, (146) follows easily.

Such a representation is easy for @* since we have changing variables
("=, v'5>v4)

@ mgan=[ [ o 0 v )

{ B (v—vx, a))¢r(v’)dw]dv dvx .

The representation for @* is obtained in a similar way (in fact simpler) to the
one for @Q° so we only detail it for Q% We first remark that, by the same
change of variables, we find

9 (f".f”)¢dv=f_/;mxsy_,f”(x, v, Of" (x, V"%, 1) )

‘Blv—vx, 0)dvdvsdo .

Then, the idea is that, roughly speaking, v'x describes R when (v4, w) de-
scribes RY X S¥~! with in fact (N — 1) free paramenters for each fixed v.
More precisely, on can check that the mapping from S= {(v, w) ER¥ x S¥-1/
veew=0,v.w>0} into RY— jv| defined by v'x=vx+ (v, w) w is smooth and
1—1. The representation we look for is thus achieved by a simple change of
variables: notice indeed that B (v —v4, @) vanishes near {(vs, @) =0, (v, ®)
smalll and that v} is the image of {(vs, @) €S/|lv—v«|=|—vs, ®)|} ina
neighborhood of which B vanishes. Therefore, the change of variables is
smooth over the support of B and we conclude.

In order to complete the proof of (144), we still have to show that Q*

N-1
(f" M, Q@ (f" ™, Q* (f", f™) are bounded in L2(RY X (0, T); Hi;? ). For
Q*, this is a simple consequence of the results of Part I [55] since we have
for all x, ¢

(147) lQ* (£, /) Iy <CIf e | e ey

for some C=0 independent of f. Of course, we deduce from (147) for each R
€ (0, o)

(148) 1Q* (£, /) a0 S CIf ez @aero I f o Benso

for some Ro (that depends only on the size of the support of B), where By= v
ERY/lv|<M}. And our claim on Q* (f*, f") is shown since ( Jau.|f|?dv)*?"
(foualfldv) €LY (RY x (0, T)) N L= (RY x (0, 0)) (V TE (0, 0)). The
above claims on Q% @Q* are proven in the same way in view of the result that
follows which shows that the results shown in Part I [55] on Q* also hold for
Q*® and Q*. Let us recall that in the result which follows, B=B(z, ®) is a

smooth function over R¥ X S¥1 that vanishes near 2=0, z*w=0, |z|]—| (z, w)| =0,
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|z| large and which depends only on |z| and | (z, ) | We denote by

149 Q. 9)=[ dvx [ dwB—vx w)f g o)

(150) Q' (f.9)= pdvx ), dwB —vsx, @) fWx)g V%)

SN—‘
for all £, gE€Cy (RY). We then have the

Proposition V.1. Q® and Q* are bounded bilinear maps from L*(RY) X
L%(RY) into H%(RN).

Remark V.2. Exactly as in Part I [55], more general results are possi-
ble with L? spaces. In particular, we can replace L'(R¥) by the space of
bounded measures on RY. Also, @ and Q* are bounded from L!(RN) X

B (RY) into H**FH(RY) for all s€R.

Proof of Proposition V.1. We simply observe that by changing variables
[(w, v)— (", v"%)] we find for all ¢ €Cy (RY)

RNQs(f, g)godv:’[;Ng(v)dv{ffNXsN_‘B (v —vx, a))go(v')f(v/*)dv*dw]

= ] 9 0)Q" (@, fdv

and similarly changing variables [ (v, vs)— ("%, v") ]

W@ (1, 9) odv =f;,,g (v)dv [ILNXSN_,B w—vs, @) f) @ (v’*)dv*dw}

=) I WQ* (£, @)dv .
And we conclude easily using the results of Part I [55] since Q* is bounded
from H"%(RN) XL'(RY) and L'(RY) x H-*(RY) into L2(RY).

There remains to prove (145). First of all, we consider ¢ €CF (RY) and
rewrite exchanging v and v«

QM gdv= | " v, t)
(151) : f

: {f fRNXSN-,B (—vx, @)f"(x, v, )" (x, 0’5, 1) @ (v*)dv*dw]dv .

The quantity between brackets has exactly the same structure that Q* (f*, f")
and the same proof as above yields



580 P. L. Lions

ffRNXSN-.Bf"" fE Prdvrdw —n’f_/;vxsy_,Bf’f’*gb*dv dw
in L*(R¥x (0, 7))

for all TE€ (0, ), 1<p<oo, We then use (126) to deduce from (152) the
convergence (145). And we conclude.

Remark V.3. It is natural to ask whether (145) can be improved and

in particular whether Q*(f”) can be (automatically) compact in LL,,
(locally). In fact, this is not the case. Indeed, one can, equivalently, consid-
er for complex-valued functions f”, g”, h"

Q*(f" g% w") = f ﬁ v dvsd@ B AV Ry

We then choose f"=e "¢, g" =e™1¢p, h" =¢™¢ where n=>0,¢p €Cy (RY) is
such that Q*(¢, ¢, ¢) #0. Then, we observe that we have

QZ (fn’ gn, hn) :eim/le ((0, 0, QD)

and this sequence is not relatively compact in L, (R X (0, ) ).

Appendix 1. Llog L integrability of averages
We show in this appendix the following
Lemma. Let f20 satisfy

(A.1) A sz‘uwf(x' y) A+l +w @) +logf]) dx dy < oo
where o satisfies (19). Let p(x) = [ . f (x, y)dy. Then, we have
(A.2) o 0 @) logo (x) |dz <Cod
for some Co>0 independent of f.
Proof. In view of the Appendix 1 of Part I [55], it is enough to show

(A.3) [ plogodz< (1+m)a

since (A.1) implies obviously: pw €L (R¥).
In order to prove (A.3), we use a classical trick (in Stastical Physics)
and we recall first the following convexity inequality valid for all a, b€ [0, o)

(A.4) aloga =alogb+a—10 .

We then apply (A.4) with a=f(x, y), b=p(x)e ™2 and we find integrating
(A.4) over RV X Rk
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fj;Nkaflogfdr dnyfoka(x, y) flogo (x) —ly|* dx dy .

Therefore,

_];Np(x)logp(a:)deffRNkaf(logf-l-ﬂyP)dxdy

and (A.3) is proven.

Appendix 2. An equivalent formulation of renormalized solutions

In this appendix, we show why the formulation of renormalized solutions
of (VB) equations is in fact equivalent to the natural adaptation to the (VB)
system of the formulation originally introduced in [25]. Indeed, we wish to

show that if fEC([0, o); L' (RZ)) (f=0) satisfies (A) and
w5 BY i B +div PO =B (@S in D

for all BEC' ([0, e): R) such that 8’(t) (1+¢) is bounded on [0, o), then f
is a renormalized solution of (VB) in the sense of section II. In fact, by a
simple approximation argument (truncating 8 and ¢, smoothing ¢ and ), we
easily check it is enough to prove that (A.5) implies

%r(f—g) +dive wr (f=9)| +div, IF7 (f—g)|

(A.6)
=1 (F~0)QU N —7 (0 [Ztv- Vg +F Vog) in @

for all y€C7 ([0, ); R), g €Cy (R%, x [0, )). In order to do so, we first
observe that FEL> (0, T: Wit (RY)) (V T € (0, ©)) because of (A) and

(42). Therefore, by the results of R.J. DiPerna and P.L. Lions [29], (A.5)
implies

A7)

v -0 (8.0~ [Z v veg+r-vi9]}] o

where S (t) :ﬁ on [0, o) (¢>0).

And (A.6) follows easily upon letting € go to 04 provided we check that

(A.8) 7' (B:(N=9)B(NRUAN2T (f=9)Q(f.f) in L' (RIXKX(0,T))

for all T€E€ (0, o), compact set KCRY. Since the a.e. convergence is obvious,
we only have to check that we have
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1
Lian—sso———Q* (£, f) is relatively weakl i
(4.9) 18 (1) =gl <€) (1+ef)2Q (f.f) s relatively weakly compact in

L' (R¥xKx (0, T))

for all C, T € (0, o), compact set K CRY. And in view of (75), it is, as
usual, enough to check (A.9) for Q. But, we have then a.e. on R%) X (0, )

Las.(p—-al<0)

1 _f
(1+ef)2Q (f,f)Sl(ﬁ.U>sc+a>1+st (f)
<CL(f)

since ¢ is bounded. And we conclude.
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