
NOTE ON IRREGULAR PRIMES

L. CARLITZ

1. We recall that a prime p is irregular if it divides the numerator

of at least one of the numbers

(1 • 1) B2, Bi, • ■ • , Bps,

where Bm denotes a Bernoulli number in the even-suffix notation.

Jensen has proved that there exist infinitely many irregular primes

of the form 4w + 3 (for the proof see [3, p. 82]; see also [4]).

In this note we give a simple proof of the weaker result that the

number of irregular primes is infinite. We also prove a like result cor-

responding to the prime divisors of the Euler numbers.

The letter p will always denote a prime >2.

2. We shall make use of the following well known properties of

Bernoulli numbers. For proofs see [2, Chaps. 13, 14].

(2.1) Bm = 0 (mod pr)        (pr \m, p - \\m).

(2.2) pBm = - 1 (mod p) (p - 11 m).

(2 ■ 3) T^T^TV s — (mod #) <* " J W-
m + r{p — 1)        m

(2.2) is contained in the Staudt-Clausen theorem, while (2.3) is a spe-

cial case of Kummer's congruence for the Bernoulli numbers. Note

that both members of (2.3) are integral (mod p).

A prime divisor of the numerator of Bm/m may be called a proper

divisor of Bm; this is not quite the terminology of [4].

It follows from (2.3) that if p is a proper divisor of Bm then it is

also a divisor of Bs, where

m = s (mod p - 1) (0 < s < p - I);

that s^O is a consequence of (2.2). Thus a proper divisor of any Bm

is certainly irregular. Now assume that there are only a finite num-

ber of irregular primes pi, • • • , pk, and consider the number Bm,

where

(2.4) M = 2tlJ(pi- 1).
t-i

If we put
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(2.5) BM/M = Nm/Dm ((Nm, Dm) = 1),

it follows from the above and (2.2) that Nm = ±1. For, as already

remarked, a prime divisor of Nm is a proper divisor of Bm and there-

fore irregular; but by (2.2) and (2.4) the irregular primes pi, ■ • • , pk

occur in the denominator of Bm- On the other hand it is clear from

Blm 2(2«-l)|-     1— = (-i)«-i-22 —
2m (2x)2m     rti  rim

that \Bim/2m\ —><» as ra—><». Since t in (2.4) is at our disposal, it is

evident that this contradicts | Nm\ =1.

3. Some criteria in terms of Euler numbers for the first case of

Fermat's last theorem have been given. Vandiver [5] has proved that

if

xp + yp = z" (p\xyz)

is satisfied, then

(3.1) £p„3 =" 0 (mod p).

Gut [l] has proved that if

is satisfied, then

(3.2) £j,_3 = £p_6 = Ep_7 = £p_9 = £j,_n = 0 (mod />).

Here the Em denote Euler numbers in the even suffix notation.

We accordingly define a prime p as irregular with respect to the

Euler numbers if it divides at least one of the numbers

(3.3) Ei, Ei, • ■ • , Eps.

We shall prove that the number of such primes is infinite.

Analogous to (2.3) we now have [2, Chap. 14]

(3.4) £m+r(p_i) =■ Em (mod p) (m ^ 1).

We have also the property [2, p. 273]: if p — \\m,

(0 (mod p) ipml (mod 4))
(3.5) Em =  <

[2 (mod p) (p = 3 (mod 4)).

We shall say that p is a proper divisor of Em provided p\ Em and

p — \\m; clearly in view of (3.5) only primes of the form 4« + l can

be improper divisors.
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It follows from (3.4) that if p is a proper divisor of Em then it is

also a divisor of Es, where

m = s (mod p — 1) (0 < s < p — 1).

Let us now assume that there are only a finite number of irregular

primes (relative to the Euler numbers) pi, • • • , pk, and consider the

number Em, where

(3.6) M = itJliPi- 1) + 2.

By (3.4)

EM = E2 = — 1 (mod pi) (i = 1, • ■ • , k).

Thus

(EM, pipi ■ ■ ■ pk) = 11

also since M =2 (mod 4), it is clear that Em has no improper divisors.

Consequently Em = ±1. But since

4(2«»)!2»-  -    (-1)'
E2m = (-1)™-Z -—'

it is evident that | Em \ —* °° •
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