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ON M. G. KREIN'S PAPERS IN THE T H E O R Y  OF SPACES 

WITH AN INDEFINITE METRIC 

T. Ya. Azizo@ Yu. P. Ginsburg, 2 and H. Langer 3 UDC 517.9 

This is a survey of the papers by M. G. Krein (and his disciples) devoted to the theory of operators in 
spaces with an indefinite metric and its applications. 

In order to reflect M. G. K.rein' s contribution to the theory of spaces with an indefinite metric in the limited vo- 
lume of this article, we focus our attention on a series of papers by M. Krein (including papers written with co- 
authors). Unfortunately, we are unable to consider here the problems of priority and to trace the development of his 
ideas in numerous researches of other authors [in particular, in the works of  his disciples {for this see, e.g., [1-3])}. 

1. A linear space `9 equipped with a sesquilinear form Ix, y], x, y e `9, is called a space with an indefinite 

metric [., - ]. The vectors of  the space `9 and its lineals are characterized by a sign determined by an indefinite 

scalar product. For example, a vector x ~ `9 is called positive (negative or neutral) if [x, x] > 0 (< 0 or = 0, re- 
spectively). The notions of  nonnegative lineal, nonpositive lineal, neutral lineal, indefinite lineal, etc., have a natural 

meaning. Denote by ~Jl+ a set of maximal nonnegative lineaR. With rare exceptions, we will omit the definitions 
having analogs in the theory of Hilbert spaces or are clear from the presentation. In particular, this is true for the 

concept of  [-, - ]-orthogonaIity of vectors and lineals. 
Let 

`9 = ,9 + [+] `9-  (1) 

be a decomposition of the space `9 into a [-, �9 ]-orthogonal sum of a positive subspace `9 + and a negative sub- 

space `9-.  A space `9 admitting decomposition (1) into spaces `9+ that are complete with respect to the norms 

[ [x, x] [ 1/e, x ~ `9• is called a Krein space; if, in addition, ~: : = rain { dim `9+, dim `9-  } < ~,  then it is called a 

Pontryagin space H,~ (for definiteness, we assume that ~: = d im`9-) .  The Krein space is a Hilbert space with a 
scalar product 

(x, y) = [x+, y+] - [x_, y_] 

for 

x = x + + x ,  y = y+ + y_, x~_ y+_~ `9+. 

This implies that [x, y] = (Jx, y), where J is the difference of mutually complementary orthoprojectors P+ and 

P - o n t o  `9+ and `9-, respectively, i.e., J = P + - P - .  In what follows, instead of [.,-]-orthogonality, we consider 
J-orthogonality (or rt-orthogonality in the special case of the Pontryagin space). This remark also relates to the 

other concepts. Note that decomposition (I) is called the canonical decomposition of `9. 

Let `9 be the Krein J-space, let (1) be its canonical decomposition, and let ~ be a set of  contractions acting 
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from 2 § into ~ - .  There is a one-to-one correspondence between the sets ~Jl + and ~ established by the fact that 

every subspace ~ �9 ~ +  is a graph of a certain operator K �9 ~ ,  i.e., 

and, vice versa, the graph of an arbitrary operator in ~ is an element of ~Jl+; K is called an angular operator of the 

subspace ~. 
Finally, note that the definitions of almost all considered classes of operators acting in the spaces with indefinite 

metrics are introduced by analogy with the corresponding "definite" definitions. The so-called plus-operators prove 

to be an exception to this rule. An operator T with a domain ~ r  is called a plus-operator if it maps the nonnega- 

rive vectors in ~ r  into the set ~+ of nonnegative vectors (it is supposed that ~Z FI ~+ ~ 0) .  

2. The communication [4] was apparently M. Krein's first work devoted to the theory of operators in spaces 

with indefinite metrics (for a detailed presentation of these results, see [5]). In fact, these articles dealt with J-non- 

negative completely continuous integaI operators. It was proved that the spectrum of a J-nonnegative completely 

continuous integral operator A is real and the kernels Ker (A - ~.I) and Ker (A - gI) are J-orthogonal for )~ ~ Ix. 

Actually, the ./-spectral decomposition of the operator A was also constructed there. More precisely, it was shown 

that the operator A is representable as a sum A = A 0 + A I of two J-nonnegative operators A o and A 1 satisfying 

the following conditions: 

(a) Ag = AoA 1 = A1A O= O; 

(b) A 1 is representable as an integral in terms of a "J-spectral function". 

(The corresponding definition and the theorem of existence can be found in Section 6.) 
Furthermore, it was proved that a ./-positive completely continuous operator possesses a complete system of 

eigenvectors and, in addition, its negative spectrum consists of finitely many 1< eigenvalues if and only if the J- 

space is the Pontryagin space I-i,:. 
The results cited above are a reformulation of M. Krein' s corresponding results for loaded integral equations 

whose distribution functions are not monotone. Although an indefinite scalar product was actually introduced in the 
indicated papers and its indefiniteness was stressed, M. Krein, in his subsequent papers, always said that Pon- 
tryagin's famous work [6] opened a new direction in functional analysis and operator theory and was pioneering. 

3. The first papers by M. Krein and his students [7-10] (see also [11]) in the abstract theory of indefinite spaces 
were devoted to the Pontryagin spaces. The papers [9, 10] play a distinguished role in this series. They were written 
with I. S. Iokhvidov who was Krein's first student involved in the investigations of the problems connected with 
indefiniteness. For about 20 years, these papers were, in fact, the only systematic exposition of the theory of the 
Pontryagin spaces II~, and a generation of mathematicians regarded them as an introduction to this theory. Unlike 
Pontryagin's paper [6] where fine analytic methods were used, papers [7-11] were based on geometric methods. 

This made it possible to construct the axiomatics of the spaces rI,~, to get much simpler proofs of the principal 
results in [6], to develop these results significantly, and to give rise to numerous new trends of investigation. In 

particular, these works laid the foundation of the theory of extensions of r~-isometric and r~-symmetric operators and 
enabled the authors to describe various types of extensions depending on the signature of the defect subspaces. 

The indicated papers were mainly devoted to the study of plus-operators, in particular, of rc -noncontracting, ~- 
isometric, and ~-unitary operators. Operators of this sort appear in applications as naturally as rc-Hermitian. The 
special attention paid to these operators is explained, on the one hand, by the fact that geometric methods are much 
simpler for them and, on the other hand, it was shown by Iokhvidov that the Cayley-Neumann transformation en- 
ables one to establish the properties of ~-Hermitian operators as the consequences of the corresponding assertions 



ON M. G. KREIN'S PAPERS IN THE THEORY OF SPACES WITH AN INDEFINITE METRIC 5 

for z-isometric operators. 

Papers [7 -  11] also contain the investigation of the root lineals and elementary divisors of re-isometric oper- 

ators, the deduction of the general form of rt-unitary and ~-semiunitary operators, and the classification of the in- 

variant subspaces of r~-unitary and r~-seIf-adjoint operators. Among the possible applications indicated in these pa- 
pers, we especially mention the investigation of indefinite Toeplitz forms, the problem of extension of the helicaI 
arcs in the Lobachevski space, etc. Here, we dwell in more detail upon two theorems in the diverse collection of 
profound results obtained in [7 -  11]. They are selected for their significance (see, e.g., their applications to the lin- 
ear-fractional transformations and quadratic bundles discussed in Sections 4 and 6) and short proofs. 

T h e o r e m  1. Let I-IK = I-i + [4-] l-I- be a canonical decomposition of the Pontryagin space, in order that an 

operator U" I-IN ~ FI~: given by" a matrix I UO 2 li.j=l with respect to decomposition (1) 'be re-unitary, it is neces- 

sary and sufficient that the following relations be true: 

UI1 = ( I  - F*F) - I /2u+ ,  U12 = F * ( I -  F F * ) - I / 2 U ,  

U21 = F ( 1 -  r ' *F) - I /2u+ ,  U22 = ( I -  F F * ) - I / 2 U  , 

where U+ and U_ are unitary operators acting in 1-I + and FI-, respectively, and F" I-i + -+I-i- is a uni- 

form contraction, i.e., 11F l[ < 1. 

and 

Proof Sufficiency is verified directly. 

To prove necessio,, one must take the angular operator of the subspace 

(I - F F  ~) 1/2U2 2 as U+ and U ,  respectively. 

UH + as F and ( I -1"*1- ' )1/2Ull  

Later, Theorem 1 was developed further; in particular, paper [12] contains the proof of the fact that similar 

relations are also valid for J-unitary operators in the Krein space. However, this follows directly from the sketch of 
the proof given above. 

The problem of existence for the maximal nonnegative invariant subspaces of the operators under consideration 
appears to be one of the key problems in the theory of operators in the spaces with indefinite metrics. Below, we 
formulate one of the basic theorems of this type and prove it by two different methods. The first method was appiied 

by M. G. Krein in the case of a rt-noncontracting operator in [8]; the second method was used in the case of a J-non- 
contracting operator [13]. 

V~ 2 T h e o r e m  2. Let V = !1 ij lli,/=, be the matrix representation of  a J-noncontracting operator V with re- 

spect to decomposition (1), let V~ + ~ ~+,  and let Vt2 be a completely continuous operator V12 e Y~. Then 

the operator V has the maximal nonnegative invariant subspace. 

Proof (a) Approximation method. Consider operators V e = VI e, e > 0, where 

I t = la/T'7~p+ + % / 1 - ~ p  - .  

Since [ VEx, V~x] >_ [Izx, Iax] = [x, x] + e(x, x), the unit circle does not contain the elements of the spectrum of 

the operator V~. By using the Riesz projectors, we choose an invariant subspace ~z of the operator V~ corres- 

ponding to its spectrum lying outside of the unit circle. The subspace ~e is maximal nonnegative. Let K E be the 

angular operator of ~ .  The invariance of ~E with respect to V~ is equivalent to the equality 
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t % / i ~ G W l l  + ~/1-G KEVI2 G - %1/-1-~ I721 - ~ V22K ~ = 0. (2) 

In view of K~ e R, we may assume, without loss of generality, that K~ converges as e --+ 0 to an operator K 0 in 

the weak operator topology. The complete continuity of V12 implies that equality (2) turns into the equality 

KoV l + Kov 2 G - - Vz2K 0 = 0 

as a -+ 0. This is equivalent to the invariance of the subspace ~0 ~ fit+ with the angular operator K 0 under V. 

(b) Fixed-point method. If ~ ~ fit+ and K is its angular operator, then V~ e fit+ and its angular operator 

has the form 

F(K)  = (V2  + V2,K)(Vl  + V12K) -I .  (3) 

Therefore, V f  = ~ if and only if K is a fixed point of the linear-fractional transformation F. It follows from the 

complete continuity of V12 that the function F is continuous in the weak operator topology. Since F:  ~ -+ ~ (see 

Section 4) and ~ is a convex bicompact set in the weak operator topology, the function F possesses a fixed point. 

Note that each of these methods gives certain additional information on the invariant subspace s. In the first 

one, it was proved that the spectrum ~ (V] ~0) of the operator V [ ~0 does not contain points of the open unit disk. 

The second one allowed us to establish that every invariant nonnegative subspace can be extended to the maximal 

nonne,,ative invariant subspace. 
If the operator V is J-unitary under the conditions of Theorem 2, then its nonunitary spectrum ernu n (V) con- 

sists of normal eigenvalues. Let 

%un(V) = ~ 1 U s  ~2 = {[-11~.~ f21} and g2 l f Ig22=  0. 

Then there exists a subspace ~ ~ fit+ invariant under V and such that ~Jnun (V[ ~) = ~21 [13]. 

4. Among Krein's researches into the theory of indefinite spaces, we should especially mention a series of pa- 
pers [ 12, 14-16] written together with Shmul'yan and containing a deep and comprehensive study of the plus-oper- 
ators. Below, we present some results obtained in these papers. 

Let V be a plus-operator. Define the functions 

p.+(V) = inf{[Vx, Vx]l[x, x] : 1}, 

 t(v) = sup{- [Vx ,  Vx] I Ix, x] = - t } .  

Clearly, bt+(V) > IX_(V) and [Vx, Vx] > g[x, x] if and only if ix ~ [ix_(V), ix+(V)]. Therefore, if bt+(V)= 0, 

then the range of the plus-operator V is a nonnegative lineal. A plus-operator V is called strict whenever g+(V) > 0. 

This operator is collinear to a J-noncontracting operator; indeed, ix§ V is a J-noncontracting operator. 

An operator V is calIed J-binoncontracting if both V and its J-adjoint operator V c are J-noncontracting. 

Let V be a strict plus-operator in the Krein space and ~ ~ fit§ Let def V : = dim (gO + / P+ V~ ~  This value 

is independent of the choice of ~ and def V = 0 if and only if V is coIlinear to a J-binoncontracting operator. 

We say that an operator V is uniformly J-expanding if [Vx, Vx] _ Ix, x] + 8 Ilx II 2 for some ~ > 0. 
A plus-operator V is called stable if all the operators in a certain neighborhood of it are plus-operators. 
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It was proved that the following conditions are equivalent: 

(a) V is a stable plus-operator; 

(b) V is a strict plus-operator and g + (V) > .u_ (V) ; 

(c) V is collinear to a uniformly J-expanding operator. 

Let A be a bounded operator. A J-self-adjoint operator R is called its J-module provided that 

G(R) C [0, o~), R 2 = ACA, and K e r r  = KerACA. 

It was proved that if V is a strict plus-operator and (j(VCV) C [0, ~) ,  then V possesses a J-module R. The 

condition cs(VCV) C [0, ~,) holds, for example, whenever V c is also a plus-operator. Under the indicated condi- 

tions there exists a J-isometric operator W such that R = WV. This, in particular, implies that every J-binoncon- 

tracting operator V admits a J-polar decomposition V = UR, where U is a partially J-isometric operator and R 

is the J-module of the operator. 
Papers [12] and [16] contain an extensive study of transformation (3), which is now called the Krein-Shmui'- 

yah linear-fractional transformation. We now cite several results obtained in these papers. Let ~0 be the interior 

of the set ~ of contractions acting from ~+ into ~ - .  In order that transformation (3) map ~ into ~ and ~0 

into ~ 0  it is necessary and sufficient that the operator V ]I~j ' �9 = t]~,j=l be collinear to a J-binoncontracting oper- 

ator. This mapping is bijective on ~ if and only if V is collinear to a J-unitary operator. 
This statement and Theorem 1 (in the strengthened form) immediately give a parametric description of the bi- 

jective linear-fractional transformations of the unit ball. Further, in order that transformation (3) map ~ into r ~  

for some r ~ (0, 1), it is necessary and sufficient that V be collinear to a uniformly J-biexpanding operator. 
The corresponding statements concerning Iinear-fractional transformations of the operator "upper half plane" 

into itself can be expressed in the same terms. These transformations are used in describing the sets of solutions of 
certain extrapolational problems for operator functions (cf. Section 10). 

5. The publication of M. Krein's lectures [17] on the theory of indefinite spaces, where the contribution of 
many mathematicians was generalized for the first time, was an event of great mathematical sig"nificance. These lec- 
tures reflected not only theory but also its various applications, in particular, to the problems of stability of solutions 
of differential equations in Hilbert spaces. The monograph by M. Krein and Daletskii [ 18] was also largely devoted 

to applications of this sort. Here, we only recall the criterion of the exponential dichotomy of equations dx / dt = 

A(t)x  with periodic Hamiltonians A in a Hilbert space g). This criterion was expressed in terms of the behavior of 
the operator-function A (t) when the space gA is equipped with an indefinite metric. 

6. In 1961-1962, M. Krein and Langer intensely studied the operators in the Krein spaces and their applications 
to the quadratic operator sheafs (see [19-  21, 13] and lectures [17]). Here, we outline some of these results. 

After an integral representation of a Toeplitz sequence with ~c (< oo) negative squares was constructed in [10] 
(as is known, for ~c = 0, this is equivalent to constructing a resolution of the identity for a unitary operator in a Hil- 
bert space) and the general spectral theory of operators with real spectrum and tempered resolvents was built (see, 
e.g., [22]), it became possible to prove the existence of the spectral function of a x-self-adjoint operator in the space 
FI~. This was done by M. Krein. Later, a more complete theory was developed by him together with Langer. 

Recall that a bounded J-self-adjoint operator A in the Krein space ~ is called definitizable if there exists a 

polynomial p such that [p(A)x, x] > O, x ~ ~ (the importance of this concept was first mentioned in [10]). Let 
us give two examples of definitizable operators: 
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(i) an integral operator with positive definite kernel and indefinite weight (in this case, p(3.) - L; these oper- 
ators were considered in Section 2); 

(ii) any bounded x-self-adjoint operator in Fi~. 

The last fact is an analytical consequence of the Pontryagin geometric theorem on the existence of a ~-dimen- 

sional nonpositive invariant subspace ~ of a x-self-adjoint operator A in FI~: (see Sections 2 and 3). Indeed, if q 

is the minimal polynomial of the restriction A I ~, then it is easy to see that 

[~(A)q(A)x ,x]  = [q(A)x, q(A)x] >_ 0 

for any x E TI~: (here, ~ denotes the polynomial q(~)). 

Let us formulate the main result concerning the J-spectral function of a bounded operator with real spectrum 

acting in the Krein space ~ and possessing a definitizing polynomial p of the lowest degree (cf. Section 2). De- 

note by IRp the ring of subsets of the real axis generated by all the intervals whose endpoints are not the roots of the 

polynomial p. 

Theorem 3. Assume that an operator A possesses the properties indicated above. Then ever3" A e ]Rp can 

be associated with a bounded J-self-adjoint projector E (A) in ~ such that 

(i) E(A)E(A')  = E(A fl A'); 

(ii) E ( A U  A') = E(A)+ E(A') i f  ANA'  = O; 

(iii) E ( A ) ~  is the positive (negative) subspacefor p(A) > 0 (p (A) < 0); 

(iv) E( IR)  = I; 

(v) AE(A)  = E(2x)A; 

(vi) (y(a [E(A)~)  = clos A. 

For the space H~:, this theorem was announced in [19]. In the general form, it was proved by Langer in his 

thesis (1965). For a special case of J-nonnegative operators, this theorem was proved in a different way by M. K.rein 
and Shmul'yan [15] who used this result in solving the problem of polar representations of plus-operators (see Sec- 
tion 4). 

Note that this situation differs from the definite case by the fact that the J-spectral function E(A) possesses fi- 

nitely many critical points. (A point ~-0 ~ IR is called critical if [I E(A)II -> ~ when one of the ends of the inter- 

val 2~ approaches ~0-) 
By using the J-spectral function of an operator A, one can construct its J-spectral decomposition (cf. Sec- 

tion 2). 

7. Having read Duffins' paper [23], M. Krein reformulated his theorem on the existence of two bases of eigen- 
vectors for a second-order overdamped matrix sheaf as an assertion on the existence of matrix solutions Z+ and Z 

of the equation Z 2 + BZ + C = 0. Later, by using his own generalization of the Pontryagin theorem, Langer ex- 

tended this result to the sheaf 22 + )~B + C, where B is a self-adjoint operator and C > 0 is a completely continu- 
ous operator in a Hilbert space. Further investigations in this direction, carried out by M. Krein and Langer (see [20, 
21]), were stimulated by the problems of the theory of nonself-adjoint operators [24]. 
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Note that paper [21] (and even its title) demonstrates a distinctive feature of many of M. Krein's investigations, 
namely, their close relation with the problems of mechanics. Here, we present one of the main results of this paper. 

Let B = B*, let C >  0 be a completely continuous operator in a Hilbert space ~ ,  and let L(Z) := Z21+ 

LB + C. One can easily see that the nonreal spectrum G0(L) of the sheaf L is discrete. 

Theorem 4. Every representation 

%(;)=AUS (S-={ZlXsa},anS=o) 

can be associated with a completely continuous operator Z in ~ with the following properties: 

(i) Z 2 + BZ + C = 0; 

(ii) Z*Z <_ C; 

(iii) the nonreal spectrum of the operator Z coincides with A ; for Z ~ A, the Jordan chains of the sheaf 

L and the operator Z are identical. 

8. In the mid-1960s, M. Krein had an idea to write with Langer a monograph devoted to the investigation of 

operators in the J-spaces. He thought that it would be desirable first to develop the applications of the already 
existing general theory. This originated a series of investigations, the results of which are discussed in this and sub- 

sequent sections. 
A series of papers published in 1968 - 1971 (see, e.g., [25-27]) laid the foundations of the theory which is now 

called the Adamyan - Arov - Krein theory. For years, this theory served as a basis of numerous researchers into dif- 
ferent fields of pure and applied mathematics. Recall that some results of this theory deal with the description of all 
possible solutions of extrapolational problems in the case where certain analytic functions have poles. Roughly 
speaking, the last statement is equivalent to the fact that certain Hermitian forms possess finitely many negative 
squares (this is discussed in Section 9 in more detail). These considerations enabled M. Krein to conclude that, by 
analogy with the corresponding classical problems, the solutions of the indicated more general problems can be 

obtained from the theory of rr-self-adjoint extensions and generalized resolvents of a z~-Herrnitian operator A. For 

a densely defined operator A with equal defect numbers and for a rc-isometry with a nondegenerate domain of de- 
finition, the corresponding theory was developed by M. Krein and Langer [28-30]. Note that a part of these results 
related to the description of generalized resolvents threw a new light on M. Krein' s corresponding earlier results for 
symmetric operators in a Hilbert space, raising them to a new level of generality. Furthermore, some assertions, e.g., 

the characteristic properties of the Q-function (see Section 9), were first obtained just for the case of the space IlK. 
We now formulate the main result of [28]. 

Let A be a densely defined closed rc-Hermitian operator in II~:, let op(A) be its point spectrum, and let 02 + 

and 02- be the open upper and lower half planes, respectively, 

~ ( A )  := Gp(A)A r ~ ( A )  := %(A)fl  02-, ~ "= I-I~ [-] (A - -Z[ )~  A. 

Then •p(A) (op(A)) consists of the eigenvalues of A whose sum of algebraic multiplicities is at most ~: and 

dim ~'l~ remains constant for z ~ 02+\ ~p(A) (z  ~ 02-\ •p(A)). This dimensionality n+(A) (n-(A))  is called 

the upper (lower) defect number of the operator A. 

Further, we consider the case where n§ = n-(A) = n _< ~. Let 18 be a Hilbert space with dimensionality 

n, iet A bea zt-self-adjoint extension of A that does not lead out of Fi~, let z 0 ~ 02+ Iq p(A ), let Fzo be a 

linear continuous operator that maps t8 onto ~ z0 bijectively, and let 
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rz  -= (A - z d ) ( 2  - zI)  -~ r~o (z ~ p ( 2 ) ) .  

Consider a set (class) No(G) of holomorphic functions T(z) defined symmetrically with respect to the real axis 

and such that, for z ~ C +, their values are densely defined maximal dissipative operators in G (including improper 

ones). Omitting the details, we only note that for n = 1 the class N0(~) (= N0((~)) is defined as a collection of 
all scalar functions locally holomorphic outside the real axis and such that 

T ( z )  = T(g) ,  I m T ( z ) / I m z  >__ 0 for Imz r 0; 

moreover, it also contains the constant ~. 

If A is a rt-self-adjoint extension of the operator A to the space l=I~: D YI~ (I< has the same value for both 

these spaces) and P is the 7t-orthogonal projector of l=I~: onto YI~, then, by analogy with the definite case, the 

operator function Rz : = P ( A  - z I )  -1 ] Fi~ is called a generalized resolvent of the operator A. 

Theorem 5. There exists a bijective correspondence between the set of generalized resoIvents R z of the 

operator A and the set filo(G ) of  operator functions ~T(z). This correspondence is given by the equality 

R- = ( ~ - z l ) - 1 - F z ( t r ( z ) + Q ( z ) ) - l F ~ ,  z e  p(A)n p(/[). 

Here, 

Q(z )  = c - iy0Fz0 I'% + (z - ~-0) FzC0Fz, Y0 = Imzo, 

is a so-called Q-function of the operator A determined to within a bounded seIf-adjoint operator C in •. Fur- 

thermore, the extension Jx can be constructed in the original space i f  and only if  T is a constant self-adjoint 

operator in ~ (generally speaking, improper). 

9. The investigation of the generalized resolvents of Hermitian and isometric operators in ilk clarified the sig- 
nificance of certain classes of complex-valued and operator-valued functions defined in a half plane or in a unit 
circle. We give the relevant definitions for scalar functions. 

First of aU, we recall the following: We say that a complex-valued kernel K( s, t) = K(t, s) defined for s, t 

from a nonempty set D ~ �9 has ~r (> 0) negative squares if, for any n ~ N and s 1 . . . . .  s n ~ D, the number of 
n 

negative eigenvalues of the matrix II K(si' s j)][i,j=l does not exceed ~:, and, at least for one choice of n, s 1 . . . . .  s n, 

it is equal to ~:. 

A function Q meromorphic in the upper half plane (E + belongs to the generalized Nevanlinna class N~: if its 

kernel 

NQ(Z, ~) = (z - -~)-1(Q(z)  - Q(~)) 

has ~: negative squares for z and ~ belonging to the domain Dp where Q is holomorphic. 

A function F meromorphic in the open unit circle ID belongs to the generalized Carath6odory class C~ if its 

kernel 

CF(Z, ~) = (1 - z-~) -1 ( r ( z )  + F(~)) ,  z, ~ ~ D r, 

has ~r negative squares. 
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A function 0 meromorphic in 11) belongs to the generalized Schur class S,: if the kernel 

Se(z,~) = (I - [ z ) -~(1  - O(~)O(z)), z ,~6  D O , 

has K negative squares. 

The corresponding operator classes N~ (G), C,: (G), and S t (G), where G is a Hilbert space, are defined 

similarly. 

The main result of [30] can be formulated as follows: An operator function Q(z) = Q* (2 ~) is a Q-function of  

a simple K-Hermitian operator A with deficiency index (n, n) (n < ~) in YI,~ if and only if 

(i) Q s N~r(G), where d i m ~  = n; 

(ii) w -  lim y-a Q(iy)= O; 
y?~ 

(iii) l i m y ( I m Q ( i y ) { , { )  = ~ for all ~ •, ~ 0 ;  
y $ ~  

(iv) the operator Im Q(z) is uniformly positive at least for one z. 

Recall that a rc-Hermitian operator in U~ is called simple if all its eigenvalues are real and 

2 7  7 l  z = 1"t~. 

Every Q-function of an operator is a Q-function of its simple part and vice versa. A simple operator is defined by 

its Q-function to within x-unitary equivalence. 
M. Krein and Langer (see, e.g., [31]) constructed integral representations for the functions belonging to the 

classes N~: and C,: with a measure that may have singularities at finitely many points. It was also shown that 0 ~ S~: 

if and only if 0(z)  = B(z)-lOo(z), z ~ Do, where 00 e S O and B is the Blaschke product of the ~:th order. The 

indicated paper also contains the proof of the assertion that every function 0(z) from the class S,: holomorphic for 

z = 0 is a characteristic function of a certain re-unitary knot U, namely, 

0 ( Z )  = U22 - zU21(I-ZUll) -IU12, (4)  

2 
where the matrix U = Iluij Ilij=l defines a x-unitary operator in the direct sum Fi~: [+] r  By the way, M. Krein 

was probably the first who understood that all types of characteristic functions of linear operators can be obtained 

from relation (4), where the operator U possesses special properties. 

As in the definite case (~: = 0), various problems of extrapolation and representation are connected with the 

classes N~, C~, and S w Some of these problems are mentioned in the introduction to [31]. Here, we formulate 

two problems of this sort. 

I. Indefinite problem of moments. Given a sequence of  complex n u m b e r s  (Sj)j=O, establish the conditions 

under which there exists a function Q e N~ with the following asymptotic expansion: 

O ( z ) -  - 1 ( S o +  s~+ s2 ) 
Z Y + ' " '  

z = iy, y ? ~ .  
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If Q is not unique, describe all these functions. 

It is known that, for ~: = 0, this problem is equivalent to the classical Hamburger moment problem. If we re- 

strict the class N~: by introducing an additional requirement that Q0 s No, where Qo(z)  = zQ(z) ,  then we arrive 
at an indefinite analog of the Stieltjes moment problem. 

II. The problem of extension of a Hermitian indefinite function with ~: negative squares. Denote by ~,~;a, 

0 < a < ~,  a set of continuous functions f defined on ( -  2a, 2a) and such that f ( t )  = f ( - t )  ( I tl < 2a) and the 

kernel f ( t -  s) (Is  I, I t l <a)  has ~c negative squares. The equality 

Q(z) = i f eiZt f ( t ) d t ,  Imz > "/f, 
0 

establishes a bijective correspondence between ~ ;  ~ and a set selected from N~: by certain conditions imposed on 
the behavior at infinity. 

Is it possible to construct an extension y ~ ~ ;  ~ of a given function f ~ ~:;  ~, a < ~ ? If this extension 

exists and is not unique, it is necessary describe all f .  

Note that the problem of extension of a function f ~  ~0; a, a < ~,, i.e., the problem of extension of a Hermitian 

positive continuous function to the entire axis, permanently drew M. Krein's attention, who suggested several solu- 

tions of it. This problem is quite important for probability theory, where f ~  ~0; ~ plays the roles of a characteristic 

function of a random distribution and of a correlation function of a stationary random process. At the same time, it 
is more surprising that this problem also plays a key role in M. Krein's investigations of inverse spectral problems 
for second-order differential operators. He explained this deep relationship by intuitive considerations provoked by 
the mechanics of an oscillating string (for details, see the paper by I. S. Kats in the next issue of the journal). 

10. The above-mentioned (and some other) extension problems are closely related to the theory of entire x- 

Hermitian operators (as in the case of ~: = 0). For Hilbert spaces, this deep theory was constructed at the end of the 
1940s. M. Krein always regarded these results as one of the most significant of his personal achievements. This is 
why he dedicated the paper [33] to his teacher N. G. Chebotarev as a sign of his deepest gratitude which was stressed 
quite often. The generalization of M. Krein's results carried out together with Langer was no longer difficult. By 
using the theory of resolvent matrices, the following result was established in [32] (at that time, it was also new for 
the case of a Hilbert space): 

Let A be a simple rt-Hermitian operator with the deficiency index (1, I) in the space II~; we say that u ~ lI~: 

is a module of A if u ~ ~ ( A  - zI)  at least for one point z e (E § and one point z ~ ~ -  and, consequently, for all 

z ~ ~+ LJ (E- except, possibly, a set of isolated points. A module u is called an entire if 

for all z ~ (I;. An operator A is called entire if it has an entire module. Such operators can be realized as operators 

of multiplication by z in the space of entire functions f ( z )  of exponential type < a. The smallest a (> 0) of this 
sort is called the type of operator A. Suppose that the space Fi~ is equipped with an involution and, hence, we can 
speak about real elements and operators. 

Theorem 6. Let A be a simple real entire x-Hermitian operator of  type a (>_ O) with deficiency index (1, 
1) acting in the space in P~ and let u be its real module (determined, for  a given A, uniquely to within a real 

Then the operator A possesses a u-resoIvent matrix co(z)= whose elements are real factor). e n -  

tire functions of exponential type a. Under the normalization conditions r 12 and detco(z) =- 1, z ~ (F., the 
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matrix co is de termined uniquely. 

Here, a u-resolvent matrix is defined as a matrix function co(z) such that the relation 

[ (~  -I ] = (.011(Z) C~(Z) + (-t)12(Z) 
-- Z l )  U ,U f.021(Z) Q.(Z ) + 6022(z) 

defines a bijective correspondence between all minimal r~-self-adjoint extensions A of the operator A (that may 

iead to the space I:i K D FI~ with the same ~:) and all 'T~ N0((2). 

In the case where problems I and II posed above admit more than one solution, the complete description of their 

solutions can be obtained by using Theorem 6. This approach was first outlined in the introduction to [31]. For 

problem I, it was realized immediately [34]. At the same time, its realization for problem II was delayed for many 

reasons, although the main result (the description of the set of solutions in the case of nonuniqueness) was obtained 

relatively soon and announced in [35]. One of the reasons for this delay can be described as follows: In [34], the in- 

definite Stieltjes moment problem was connected with a generalized Stieltjes string with positive and negative mas- 

ses and dipoles. Although there is no doubt that the indicated result should admit a generalization to even functions 

from the class ~K;=, this assertion remains unproven up until now. At the same time, for a special case of the func- 

tions f ~  ~ ; =  with accelerant (i.e., 

t 
f ( t )  = f ( 0 )  - c~ltJ - f ( t - s ) H ( s ) d s ,  (z > O, H e  /~oc(N)), 

o 

the corresponding results were obtained rather soon. The amount of accumulated material was so large that it was 

decided to speed up the publication without waiting until the investigations of  the general case could be completed 

(see [36]). It should be noted that, unlike the general case, the resolvent matrix of the function f with accelerant is 

constructed by an efficient analytical procedure. In the beginning of the 1980s, when M. Krein and Langer were 

prepared to publish the complete proofs of the results related to problem II, M. Krein had an idea to anticipate the 

presentation by a general overview of  his old results on extensions of positive definite functions (from the class 

~0:a) and their relation to the inverse problems for differential operators, helical arcs in a Hilbert space, etc. In pre- 

paring this paper, the authors wrote a new article, where the concept of indefinite metric was not mentioned at all but 

new results were obtained, e.g., in the theory of extrapolation of  stationary random processes. But both this article 

and the complete  solution of  problem II have not been published yet. Unfortunately, this is a fate of many of 
M. Krein's important results that either remain unpublished until now or have been published only partially. 
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