4. TExtensions and Generalizations

In the preceeding section on the basis of a Hilbert scale

we had derived relations between the approximation quantities
inverse ntitie

xﬂm and er qua s cﬂm

moreover the simultaneous approximability within a fixed

for different g,p and

range of the scale. The question arises what properties of
a sequence ﬂxn | o € A] of Banach spaces are necessary

such that these assertions are valid.

In Lemma %.3 and Corollary 3.4 a certain constant enters

the right hand sides of the estimates. According to figure 2

we have:

Let ¢ <c¢ <c be fixed and assume x to be

normalized such that for x ¢ mm
(4.1) inf Jx-gll, = x°7% |ixllg

5€S
holds. Then there 1s a g € S such that
c-b

(4.2) lIx-gll, =€ xlz

holds uniformly for b & [e,e] .

The constant is given by

o

(4.3) c = MT + m,\:-iw with y = =—= .

o

L

If we think of ¢ << ¢ ~ ¢ then C will be very large. In
this way for large intervals the simultaneous approximability
has 1ts prize in bad constants. The second question to be

discussed in this section 1s: Does an approximation € ¢ 8



exist such that for all b =< c¢ estimates of the type

O,IU

(h.4) lx-gll, = ¢(b) x°Pyx],

will hold.

We go back to the first question. Let us look at the
proofs of the lemmata ete. until 3.10 in Section 3. >onzwwww
we have used only the Lemmata 2.2, 2.3, and 2.4, i.e. besides
the inclusions mm & mp for ¢ < g the logarithmic con-
vexlty of the norm and an appropriate approximability of

elements x g mm

Remark: 1In this context the compactness of the embedding

by elements y ¢ m< with y > g .

mxm Hmwwwmwm<w5n.
8 .

Now let us assume that a set #xp | @ € A] of Banach

spaces with norms

is given which fulfills

Proposition 4.l: For q@,B8 € A with g < g the

mﬁmom xm HmooanncocmH%msvmaaman xﬂ msa

(4.5) =x=p =< =x=m for x ¢ xm .

Proposition 4.3: For any triple q,p,y € A with

o< B <y then

v v
(4.6) lclly = el IxIY ror x ¢ H
with
u oE - B-a
h#..ﬂv M y-o. 2 Y v-a. .

Proposition 4.4: Let q,8,y as stated in Proposition 4.3.

To ¢t >0 and x ¢ H there is an approximation

B
y € :< according to

4.3
Ix-yll, s P %=y
(4.8) Ix-yllg, lvllg = lxllg
Ivll, = B

It 1s obvious to verify that then the assertions of the
Lemmata and Corollaries 3.3, 3.4, 3.5, 3.8, and 3.9 remain
valid, of course the indices q,8 ete. have to be 1in the
set A . In the inequalities of the propositions some
numerical constants may appear. All the assertions remain

valid with modified constants.

Remark; In the applications quite often it is possible
to check the validity of the propositions directly.
We mention the case of Scbolev spaces _EW | X = 0,050 0

for fixed p € (0,») .

Now we turn over to the second question. In order to
have transparency we will use a rescaling: The linear

A A

transformation b - b defined by b (b-c)|(c-c) maps

_ A A

the points b =c¢ resp, b=c¢ to b =0 resp. b =1
A

and b <ec¢c to b < 0. By a corresponding rescaling of

# we replace (4.1) by

Assumption: Let x be normalized such that for
X € :H

(4.9) Mmm lIx-gll, = lixll

holds.,



4.4
According to (4.4) we ask for a £ € S such that
(k.10) Ix-gll, s C(b) W x|

holds true for b = 0 . The answer is given by

Theorem 4.5: Let » be defined by (4.9). To x € Hy

there is a g ¢ S such that (4.10) holds with

c(b) depending only on b for b =0 .

Proof: We recall the definition of the a-inner-product

and a-norm (2.17-18). For ¢ < O and |e| >> 1 the Fourier-
coefficients x; = Ax.eHv contribute to the Qubowa with a
factor »M . Because of Ky for 1 - = these factors
will be arbitrary small. We speak of a polynomial decay. Now

we introduce an additional inner product resp. norm by

qﬁﬁ
e

I
1

ANuWVAﬁv AN.BHVAu.qunUH_.v

(4.11)
:N_:nv

1
by
5
—
.

for t > 0 . Now the factors mxﬁﬁn<ﬂwnu have an exponential

decay. Obviously we have

(4.12) I zﬁﬁvmoﬁn.dv =x=9 for x € H_

with e¢(g,t) depending only on ¢ and t > O . Thus the
(t)-norm is weaker than any q-norm. On the other hand any
negative norm, i.e. =.=9 with @ < 0 , 1s bounded by the

O-norm and the newly introduced (t)-norm:

b5

Lemma 4.6: Let @ > O be fixed. The (-qg)-norm of any

X € mo is bounded by

2

(4.13) (SR i

+ "SIy,

with 8 > O beilng arbitrary.

Proof: For any t,8,0 > O and ) = 1 the inequallty
-a 20 ﬁho|h|<wv
(4.14) A S + e

holds for the followlng reason: If »;H\m =< & then obviously
V"% £ §°% . In case of v 2 5, 5 then we have
mxn_nﬂmupu<rv_ > 1 whereas A % =<1 1is a consequence of

@>0, \=1.By the aid of (4.14) we find

o 2
Ay ®y

[

Ix1Z,

(b.15) 3

lﬂ<.?
2q £t/ re ix] .

1A

Uﬁm+m
8°% & xy

Remark: (4.13) is in a certain sense the counterpart of

the logarithmic convexity of the g-norms: We go back to

(2.33) which we rewrite with ¢ > O in the form

I3 s 2 (el
(4.16) / " ”
s (Y HRIDM )Y -

Because of u,v >0 and u+ v = 1  we may introduce

p = t-H 5 g = <|_ and apply Young's 1lnequality.



4.6

We get

(4.17)

5 < vee x4 e MG

The counterpart of Lenma 2.4 is:

Lemma 4.7:

1s an

(4.18)

llx-yll gy s e

Let t,8 >0 be fixed. To any x € mo

¥y € mp according to

-yl = lIx]]

s

Ivll, < " Hixl

Proof: We try to use

(4.19)

with Xy 0=

N
¥= T

i=1

Axbeuv and N chosen appropriately. Then At.Hme

Xy

AT

Py

is satisfied. Further we get

(4.20)

In order that A#.Hmmu holds true we may choose

to

(4.21)

Then we get

(4,22)

2 N
= :H = W wH MH

2

< ay = .

Ix=y 17

A

I

1A

M+l

N+1

=% 3

% %

1/2

N+1

1/2
i

e .

N

there

according

Therefore also ﬁx.pmuw is valid.

Now we come to the counterparts of Lemma 3.3:
Lemma 4.5: Let x be defined by ( 4.9). Then

By (x) := ing {7 PXx-gl| + lx-gll ()}
(4.23) :

< he 2 .
Proof: We define for t > O fixed
(h.24) ¢ =g = m:imai | x e Hn x| = L
what gives (trivially) for x ¢ H
(4.25) m.nc.: = ellx|| .

Since mwmwv = Mnﬁxujv for ¢ € S we have in case of
X € m»

(4.26) E_(x) s ¢ inf [x-nll 5 ¢ wllxll, -
nes

Further we get because of
(4.27) E,(x) s B, (x-¥) + B (y)
with y chosen according to Lemma 4.7

B (x) s [yl gy + ¢ 2 eyl + By )
(4.28)

= ﬁmld\o + mlﬂ\mxw =N= + MﬁA%v

4.7
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(4.29) B () s {0 4 B oy gy S KAp Y
LY m.n ) Loy 4 “vd
The choice § = 2y gives # r\n L»AA&? ) &Nanﬁw@&;mMszsz
4 -

(4.30) E (x) s (2~ /21 ze) Ixll . mnmw AN+ < (r Agh n
respective

-t/2un & 1

{(4.31) £ < 2e 5E . #

In this way we have proven the simultaneous approxi-

mability: To x ¢ H there is a € € S according to

lx-gll = 4zl .

(4.32)
"2

=x|m=ﬁwv s hde

After thesepreparations we are ready to finish the
proof of Theorem 4.5. Lemma 4.6 in conjunction with (4.32)

glves

1
(4.33)  IxeslPy = 16[67% 4 o818 T/ )

for €, > O arbiltrarily chosen. We take § = 2x leading
to

2 2 2 -t/2 2
(4.33) h-gl? = 16{2%% 420 4 v/ SRR
-0
Now we take t large enough such that

(4,34) : mnd\mx < xmn

which is possible for any x » 0 . This leads to (4.10). #



