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The Eigenvalue problem for compact symmetric operators

In the following H denotes an (infinite dimensional) real Hilbert space with scalar product
(.,.) and the norm||..| . We will consider mappings K :H — H . Unless otherwise noticed the
standard assumptions on K are:

) K is symmetric, i.e. for all x,y e H it holds (x,Ky)=(x,Ky)

i) K is compact, i.e. for any (infinite) sequence {x_ } bounded in H contains a
subsequence {x,} such that {Kx, } is convergent,

i) K is injective, i.e. Kx=0 implies x=0 .

A first consequence is
Lemma: K is bounded, i.e.

1K= sup 14
x#0 HXH
Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two

other condition ii) and iii). Then ||K|| equals

N (K) =sup‘(X’KX]

x#0 HXH

Theorem: There exists a countable sequence {/Ii N7 }of eigenelements and eigenvalues
Ko, = 4,9, with the properties

i) the eigenelements are pair-wise orthogonal, i.e. (p,,¢,)=5,,

ii) the eigenvalues tend to zero, i.e. !m A

iii) the generalized Fourier sums ¢ :22”:()( 2 ) —> X with n —> oo for all xe H

i=1

iv) the Parseval equation
I} =2 ()

holds for all xe H .



Hilbert Scales

Let H be a (infinite dimensional) Hilbert space with scalar product () the norm ||“ and
A be a linear operator with the properties

i) Ais self-adjoint, positive definite
iy A"is compact.
Without loss of generality, possible by multiplying A with a constant, we may assume
(x,Ax)=|x|  forall xeD(n)

The operator K = A™ has the properties of the previous section. Any eigen-element of K is
also an eigen-element of A to the eigenvalues being the inverse of the first. Now by
replacing A, — A "we have from the previous section

i) there is a countable sequence {4,,¢,} with

Ap, = A4p; (¢i!¢k)=5i,kand lim 4;

1—>00

i) any X € H is represented by

o0

O x=Slak =S

1

Lemma: Let xe D(A), then

) ac=Zaleodn I =T 2in)

(A A= 2 (cp Xv.0)°

Because of (*) there is a one-to-one mapping 1 of H to the space H of infinite sequences of
real numbers

H = {&% = (X, X,.,...)}

defined by

g=1x with x =(x¢) -

If we equip H with the norm

X

R,

then 1 is an isometry.



By looking at (**) it is reasonable to introduce for non-negative o the weighted inner products
(®.9). =345 (o Xy o) = B 2%y,
and the norms
%7 = (%, %).

Let H , denote the set of all sequences with finite &z — norm. then H ., Is a Hilbert space. The
proof is the same as the standard one for the space |, .

Similarly one can define the spaces H , : they consist of those elements X € H such that
IXe I:Ia with scalar product
(e Y). =327 (oo Xyo0) = 347y,

and norm

IXII%, = (x. ).,
Because of the Parseval identity we have especially

(x. ¥)o = (x.y)
and because of (**) it holds

Xl = (Ax, AX)y + H, = D(A) -

The set {H |« > 0} is called a Hilbert scale. The condition ¢20 is in our context necessary
for the following reasons:

Since the eigen-values 4, tend to infinity we would have for o <0: lim4* — 0. Then there exist
sequences X = (X, X,,...)with

IR]2 <0 + %] =0 -

Because of Bessel’s inequality there exists no xeH with IXx=X. This difficulty could be
overcome by duality arguments which we omit here.



There are certain relations between the spaces {H o= 0} for different indices:
Lemma: Let o< . Then
I, < I,

and the embedding H, >H, is compact.

Lemma: Let o < f< . Then

I < Il

X

" for x e H
V4 Ve

Lemma:Let a< f<y.Toany xe H, and t>o thereis a y =y, (x) according to

D x=yl, <t
0 x=yl <, I, <,
i)yl <IN,

Corollary: Let ¢ < p<y.Toany xe H, and t> o thereis a y =y, (x) according to
) x-yl, St for aspsp

iyl s, for pso<y

Remark: Our construction of the Hilbert scale is based on the operator A with the two
properties i) and ii). The domain D(A) of A equipped with the norm

o =T (o

turned out to be the space H , which is densely and compactly embedded in H = H,,. It can

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with
the properties i) and ii) such that

D(A)=H, R(A)=H, and x|, =[Ax|.



Extension and generalizations

For t > owe introduce an additional inner product resp. norm by

(X ¥)%, = Ze‘ﬁ‘(x, 2, @)

M = 0205, -

Jat

Now the factor have exponential decay € '™ instead of a polynomial decay in case of A" .

Obviously we have

HXH@) <c(a t)|x|, for xeH,

with c(e,t) depending only from ¢ and t > 0. Thus the (t) —norm is weaker than
any  —norm . On the other hand any negative norm, i.e. || with « <o, is bounded by the

0—normand the newly introduced (t)—norm. It holds:

Lemma: Let « > o be fixed. The o —norm of any xe H, is bounded by
X, < 5%|x; +e"* I,
with ¢ > Qbeing arbitrary.

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of
the o —norm, which can be reformulated in the form (v >0, u+v>1)

2
X,

I < velx]} + s
applying Young'’s inequality to

I® < )¢

M

The counterpart of lemma 4 above is

Lemma: Let t,6 > Obe fixed. Toany x e H, thereis a y =y, (x) according to

D =yl =l
iy yl, <57
i Ix=yl, <e™lx -



