Approximation Theory in Hilbert scales

Lecture Notes

J. A. Nitsche

The Eigenvalue problem for compact symmetric operators

In the following *H* denotes an (infinite dimensional) real Hilbert space with scalar product (.,.) and the norm $\|..\|$. We will consider mappings $K: H \rightarrow H$. Unless otherwise noticed the standard assumptions on *K* are:

i) K is symmetric, i.e. for all $x, y \in H$ it holds (x, Ky) = (x, Ky)

ii) *K* is compact, i.e. for any (infinite) sequence $\{x_n\}$ bounded in *H* contains a subsequence $\{x_{n'}\}$ such that $\{Kx_{n'}\}$ is convergent,

iii) K is injective, i.e. Kx = 0 implies x = 0.

A first consequence is

Lemma: K is bounded, i.e.

$$||K|| := \sup_{x \neq 0} \frac{||Kx||}{||x||}$$

Lemma: Let *K* be bounded, and fulfill condition i) from above, but not necessarily the two other condition ii) and iii). Then ||K|| equals

$$N(K) = \sup_{x \neq 0} \frac{|(x, Kx)|}{||x||} \quad .$$

Theorem: There exists a countable sequence $\{\lambda_i, \varphi_i\}$ of eigenelements and eigenvalues

 $K\varphi_i = \lambda_i \varphi_i$ with the properties

- i) the eigenelements are pair-wise orthogonal, i.e. $(\varphi_i, \varphi_k) = \delta_{i,k}$
- ii) the eigenvalues tend to zero, i.e. $\lim_{i \to \infty} \lambda_i$
- iii) the generalized Fourier sums $S_n := \sum_{i=1}^n (x, \varphi_i) \varphi_i \to x$ with $n \to \infty$ for all $x \in H$
- iv) the Parseval equation

$$\|x\|^2 = \sum_{i=1}^{\infty} (x, \varphi_i)^2$$

holds for all $x \in H$.

Hilbert Scales

Let *H* be a (infinite dimensional) Hilbert space with scalar product (.,.), the norm $\|..\|$ and *A* be a linear operator with the properties

- i) A is self-adjoint, positive definite
- ii) A^{-1} is compact.

Without loss of generality, possible by multiplying A with a constant, we may assume

$$(x, Ax) \ge ||x||$$
 for all $x \in D(A)$

The operator $K = A^{-1}$ has the properties of the previous section. Any eigen-element of K is also an eigen-element of A to the eigenvalues being the inverse of the first. Now by replacing $\lambda_i \rightarrow \lambda_i^{-1}$ we have from the previous section

i) there is a countable sequence $\{\lambda_{\!_i}, \varphi_{\!_i}\}$ with

$$A\varphi_i = \lambda_i \varphi_i$$
, $(\varphi_i, \varphi_k) = \delta_{i,k}$ and $\lim_{i \to \infty} \lambda_i$

ii) any $x \in H$ is represented by

(*)
$$x = \sum_{i=1}^{\infty} (x, \varphi_i) \varphi_i$$
 and $||x||^2 = \sum_{i=1}^{\infty} (x, \varphi_i)^2$.

Lemma: Let $x \in D(A)$, then

Because of (*) there is a one-to-one mapping I of H to the space \hat{H} of infinite sequences of real numbers

$$\hat{H} \coloneqq \left\{ \hat{x} \middle| \hat{x} = (x_1, x_2, \dots) \right\}$$

defined by

$$\hat{x} = Ix$$
 with $x_i = (x, \varphi_i)$.

If we equip \hat{H} with the norm

$$\left\|\hat{x}\right\|^2 = \sum_{1}^{\infty} (x, \varphi_i)^2$$

then *I* is an isometry.

By looking at (**) it is reasonable to introduce for non-negative α the weighted inner products

$$(\hat{x}, \hat{y})_{\alpha} = \sum_{i}^{\infty} \lambda_{i}^{\alpha} (x, \varphi_{i}) (y, \varphi_{i}) = \sum_{i}^{\infty} \lambda_{i}^{\alpha} x_{i} y_{i}$$

and the norms

$$\left\|\hat{x}\right\|_{\alpha}^{2} = (\hat{x}, \hat{x})_{\alpha}$$

Let \hat{H}_{α} denote the set of all sequences with finite α – norm. then \hat{H}_{α} is a Hilbert space. The proof is the same as the standard one for the space l_2 .

Similarly one can define the spaces H_{α} : they consist of those elements $x \in H$ such that $Ix \in \hat{H}_{\alpha}$ with scalar product

$$(x, y)_{\alpha} = \sum_{i}^{\infty} \lambda_{i}^{\alpha} (x, \varphi_{i}) (y, \varphi_{i}) = \sum_{i}^{\infty} \lambda_{i}^{\alpha} x_{i} y_{i}$$

and norm

 $\|x\|_{\alpha}^{2} = (x, x)_{\alpha} \cdot$

Because of the Parseval identity we have especially

$$(x, y)_0 = (x, y)$$

and because of (**) it holds

$$||x||_{2}^{2} = (Ax, Ax)_{0} , H_{2} = D(A)$$

The set $\{H_{\alpha} | \alpha \ge 0\}$ is called a Hilbert scale. The condition $\alpha \ge 0$ is in our context necessary for the following reasons:

Since the eigen-values λ_i tend to infinity we would have for $\alpha < 0$: $\lim \lambda_i^{\alpha} \to 0$. Then there exist sequences $\hat{x} = (x_1, x_2, ...)$ with

$$\left\|\hat{x}\right\|_{2}^{2}<\infty$$
 , $\left\|\hat{x}\right\|_{0}^{2}=\infty$.

Because of Bessel's inequality there exists no $x \in H$ with $Ix = \hat{x}$. This difficulty could be overcome by duality arguments which we omit here.

There are certain relations between the spaces $\{H_{\alpha} | \alpha \ge 0\}$ for different indices:

Lemma: Let $\alpha < \beta$. Then

 $\|x\|_{\alpha} \leq \|x\|_{\beta}$

and the embedding $H_{\beta} \rightarrow H_{\alpha}$ is compact.

Lemma: Let $\alpha < \beta < \chi$. Then

$$\|x\|_{\beta} \le \|x\|_{\alpha}^{\mu} \|x\|_{\gamma}^{\nu} \text{ for } x \in H_{\gamma}$$

with $\mu = \frac{\gamma - \beta}{\gamma - \alpha}$ and $\nu = \frac{\beta - \alpha}{\gamma - \alpha}$.

Lemma: Let $\alpha < \beta < \gamma$. To any $x \in H_{\beta}$ and t > 0 there is a $y = y_t(x)$ according to

- i) $\|x y\|_{\alpha} \le t^{\beta \alpha} \|x\|_{\beta}$
- ii) $||x y||_{\beta} \le ||x||_{\beta}$, $||y||_{\beta} \le ||x||_{\beta}$
- iii) $\|y\|_{\gamma} \leq t^{-(\gamma-\beta)} \|x\|_{\beta}$.

Corollary: Let $\alpha < \beta < \gamma$. To any $x \in H_{\beta}$ and t > 0 there is a $y = y_t(x)$ according to

- i) $||x y||_{\rho} \le t^{\beta \rho} ||x||_{\beta}$ for $\alpha \le \rho \le \beta$
- ii) $\|y\|_{\sigma} \leq t^{-(\sigma-\beta)} \|x\|_{\beta}$ for $\beta \leq \sigma \leq \gamma$.

Remark: Our construction of the Hilbert scale is based on the operator A with the two properties i) and ii). The domain D(A) of A equipped with the norm

$$\left\|Ax\right\|^{2} = \sum_{i=1}^{2} \lambda_{i}^{2} \left(x, \varphi_{i}\right)^{2}$$

turned out to be the space H_2 which is densely and compactly embedded in $H = H_0$. It can be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with the properties i) and ii) such that

$$D(A) = H_2 R(A) = H_0 \text{ and } ||x||_2 = ||Ax||.$$

Extension and generalizations

For t > 0 we introduce an additional inner product resp. norm by

$$(x, y)_{(t)}^{2} = \sum_{i=1}^{\infty} e^{-\sqrt{\lambda_{i}t}} (x, \varphi_{i})(y, \varphi_{i})$$
$$\|x\|_{(t)}^{2} = (x, x)_{(t)}^{2} .$$

Now the factor have exponential decay $e^{-\sqrt{\lambda_i}t}$ instead of a polynomial decay in case of λ_i^{α} . Obviously we have

$$\|x\|_{(t)} \le c(\alpha, t) \|x\|_{\alpha}$$
 for $x \in H_{\alpha}$

with $c(\alpha, t)$ depending only from α and t > 0. Thus the (t) - norm is weaker than any $\alpha - norm$. On the other hand any negative norm, i.e. $||x||_{\alpha}$ with $\alpha < 0$, is bounded by the 0 - norm and the newly introduced (t) - norm. It holds:

Lemma: Let $\alpha > 0$ be fixed. The $\alpha - norm$ of any $x \in H_0$ is bounded by

$$\|x\|_{-\alpha}^{2} \leq \delta^{2\alpha} \|x\|_{0}^{2} + e^{t/\delta} \|x\|_{(t)}^{2}$$

with $\delta > 0$ being arbitrary.

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of the α – *norm*, which can be reformulated in the form (μ , ν > 0, μ + ν > 1)

$$\left\|x\right\|_{\theta}^{2} \leq v\varepsilon \left\|x\right\|_{\gamma}^{2} + \mu e^{-\nu/\mu} \left\|x\right\|_{\alpha}^{2}$$

applying Young's inequality to

$$\|x\|_{\alpha}^{2} \leq (\|x\|_{\alpha}^{2})^{\mu} (\|x\|_{\gamma}^{2})^{\nu} \cdot$$

The counterpart of lemma 4 above is

Lemma: Let $t, \delta > 0$ be fixed. To any $x \in H_0$ there is a $y = y_t(x)$ according to

- $||x y|| \le ||x||$
- ii) $||y||_1 \le \delta^{-1} ||x||$
- iii) $||x y||_{(t)} \le e^{-t/\delta} ||x||$.