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Approximation Theory in Hilbert scales 
 

Lecture Notes  
 

J. A. Nitsche 
 
 

The Eigenvalue problem for compact symmetric operators 
 

In the following H denotes an (infinite dimensional) real Hilbert space with scalar product 

( ).,.  and the norm ... . We will consider mappings HHK →: . Unless otherwise noticed the 

standard assumptions on K are: 

i)  K is symmetric, i.e. for all Hyx , it holds ( ) ( )KyxKyx ,, =

 
ii)  K is compact, i.e. for any (infinite) sequence  

nx  bounded in H contains a 

subsequence  
nx   

such that  
nKx   

is convergent, 

iii)  K is injective, i.e. 0=Kx  implies 0=x  . 

 

A first consequence is 

Lemma: K is bounded, i.e. 

x

Kx
K

x 0

sup:


=
   . 

Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two 

other condition ii) and iii). Then K  equals 

( )

x

Kxx
KN

x

,
sup)(

0

=
   . 

Theorem: There exists a countable sequence  
ii  , of eigenelements and eigenvalues 

iiiK  =  with the properties 

i)  the eigenelements are pair-wise orthogonal, i.e.

  

( )
kiki ,,  =

 
ii)  the eigenvalues tend to zero, i.e. 

i
i


→

lim

 

iii)  the generalized Fourier sums  ( ) xxS i

n

i

in →=
=


1

,:  with →n for all Hx  

iv)  the Parseval equation 

( )


=
i

ixx
22

,  

holds for all Hx . 
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Hilbert Scales 

 

Let H be a (infinite dimensional) Hilbert space with scalar product ( ).,. , the norm ...  and 

A be a linear operator with the properties 

i)  A is self-adjoint, positive definite 

ii)  
1−A is compact. 

 Without loss of generality, possible by multiplying A with a constant, we may assume 

( ) xAxx ,

       

for all )(ADx  

The operator 1−= AK has the properties of the previous section. Any eigen-element of K is 
also an eigen-element of A to the eigenvalues being the inverse of the first. Now by 

replacing 1−→ ii  we have from the previous section 

i)  there is a countable sequence  
ii  ,  with 

iiiA  =  
 ,

   

( )
kiki ,,  = and  

i
i


→

lim

 

ii)  any Hx is represented by  

(*)     ( )
i

i

ixx 


=

=
1

,   and    ( )


=
1

22
, ixx  . 

 

Lemma:  Let )(ADx , then  

(**)  ( )
i

i

ii xAx 


=

=
1

,   ,    ( )
=

=
1

222
,

i

ii xAx  ,

 

( ) ( )( )
i

i

ii yxAyAx  ,,,
1

2


=

=
. 

Because of (*) there is a one-to-one mapping I of H to the space Ĥ of infinite sequences of 

real numbers 

 ,...),(ˆˆ:ˆ
21 xxxxH ==  

defined by 

Ixx =ˆ    with   ( )
ii xx ,=  .    

If we equip Ĥ with the norm  

( )


=
1

22
,ˆ

ixx   

then I is an isometry.  
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By looking at (**) it is reasonable to introduce for non-negative the weighted inner products 

( ) ( )( ) 


==
i

iiii

i

ii yxyxyx 

  ,,ˆ,ˆ  

and the norms 

( )
xxx ˆ,ˆˆ

2
=  

Let Ĥ denote the set of all sequences with finite − norm. then Ĥ is a Hilbert space. The 

proof is the same as the standard one for the space 
2l . 

Similarly one can define the spaces
H : they consist of those elements Hx such that 

HIx ˆ  with scalar product  

( ) ( )( ) 


==
i

iiii

i

ii yxyxyx 
  ,,,

 

and norm   

( )
xxx ,

2
= . 

Because of the Parseval identity we have especially 

( ) ( )yxyx ,,
0
=  

and because of (**) it holds 

( )0
2

2
, AxAxx =  ,

 
)(2 ADH = . 

The set  0H  is called a Hilbert scale. The condition 0  is in our context necessary 

for the following reasons: 

Since the eigen-values
i tend to infinity we would have for 0 : 0lim →i

. Then there exist 

sequences ,...),(ˆ
21 xxx = with 


2

2
x̂  , =

2

0
x̂  . 

Because of Bessel’s inequality there exists no Hx   with xIx ˆ= . This difficulty could be 

overcome by duality arguments which we omit here. 
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There are certain relations between the spaces 0H  
for different indices: 

Lemma: Let   . Then 


xx   

and the embedding 
 HH → is compact. 

 

Lemma: Let   . Then 








xxx   for 

Hx  

with 





−

−
=  

and  





−

−
= . 

 

Lemma: Let   . To any 
Hx  and 0t  there is a )(xyy t= according to 

i) 





xtyx −−   

ii) 


xyx −  ,
  

xy 
 

iii) 





xty )( −−

  
.
 

 

Corollary: Let   . To any 
Hx  and 0t  there is a )(xyy t= according to 

i) 





xtyx −−     for     

ii) 





xty )( −−        for      . 

 

Remark: Our construction of the Hilbert scale is based on the operator A with the two 

properties i) and ii). The domain )(AD of A equipped with the norm  

( )
=

=
1

222
,

i

ii xAx   

turned out to be the space
2H which is densely and compactly embedded in 

0HH = . It can 

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with 
the properties i) and ii) such that 

                       2)( HAD =

 
0)( HAR =  and  Axx =

2
. 
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Extension and generalizations 

 

For 0t we introduce an additional inner product resp. norm by 


=

−
=

1

2

)( ),)(,(),(
i

ii

t

t yxeyx i 


    

2

)(

2

)(
),( tt

xxx =  . 

Now the factor have exponential decay 
tie

−
 instead of a polynomial decay in case of 

i . 

Obviously we have 


 xtcx

t
),(

)(
  for 

Hx  

with ),( tc  depending only from  and 0t . Thus the normt −)(  is weaker than 

any norm− . On the other hand any negative norm, i.e. 


x  with 0 , is bounded by the  

norm−0 and the newly introduced normt −)( . It holds: 

 

Lemma: Let 0 be fixed. The norm−  of any 
0Hx  is bounded by 

2

)(

/2

0

22

t

t xexx 


+
−

 

with 0 being arbitrary. 

 

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of 
the norm− , which can be reformulated in the form ( 0,  , 1+ ) 

2/22










xexx −+
 

applying Young’s inequality to 









)()(
222

xxx   . 

The counterpart of lemma 4 above is 

Lemma: Let 0, t be fixed. To any 
0Hx  there is a )(xyy t= according to 

i) xyx −   

ii) xy 1

1

− 
 

iii) xeyx t

t

/

)(

−−
  
. 

 

 


